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Exact solutions to nonlinear symmetron theory:
One- and two-mirror systems
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Mario Pitschmann’

Atominstitut, Technische Universitit Wien, Stadionallee 2, A-1020 Wien, Austria
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We derive the exact analytical solutions to the symmetron field theory equations in the presence of a one-
or two-mirror system. The one-dimensional equations of motion are integrated exactly for both systems and
their solutions can be expressed in terms of Jacobi elliptic functions. Surprisingly, in the case of two parallel
mirrors, the equations of motion generically provide not a unique solution but a discrete set of solutions
with increasing number of nodes and energies. The solutions obtained herein can be applied to gBOUNCE
experiments, neutron interferometry and for the calculation of the symmetron-field-induced “Casimir

force” in the CANNEX experiment.

DOI: 10.1103/PhysRevD.97.064015

I. INTRODUCTION

The accelerated expansion of the Universe may require
the introduction of additional degrees of freedom (see [1]
for a recent review). Such new degrees of freedom, in
particular light scalars, are theoretically well motivated
irrespective of their role in the acceleration of the expansion
of the Universe. If they exist in nature, they must appear in
some screened form in order to prevent detection in all past
experiments and observations involving scalar fifth forces.
A number of screening mechanisms exist [1], the chame-
leon [2-4] and Damour-Polyakov mechanisms [5], the
K-mouflage [6—8] and Vainshtein ones [9], allowing such
hypothetical new fields to remain unseen in local tests of
gravity.

In the Damour-Polyakov mechanism, the coupling to
matter weakens in regions of high density or high
Newtonian potential. A particular representative of this effect
is the symmetron mechanism [10,11] (for earlier work see
[12,13]), in which the coupling of the scalar to matter is
proportional to the vacuum expectation value (VEV) of the
field. The effective potential of the scalar field is such that it
acquires a nonzero VEV in low-density regions, while the
symmetry is restored in high density regions. Thus, in such
high density regions, the field effectively disappears as it is
screened from any observation or measurement. In regions of
low density on the other hand, the field spontaneously breaks
symmetry and acquires a nonvanishing VEV, couples to
matter and mediates a fifth force.
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When the mass of the symmetron field in the cosmo-
logical vacuum is small, e.g. of order of 103H, where H,, is
the Hubble rate now, the symmetron field could have
cosmological implications [11] in particular on the growth
of perturbations and large-scale structure [14,15]. These
effects can be captured using N-body simulations in order
to obtain nonlinear properties of the matter power spectrum
and the halo mass function, see [16,17]. Although the
symmetron is not directly coupled to photons as its matter
coupling is conformal, quantum effects can give a direct
interaction to electromagnetism [18] which could lead
to signatures of cosmological domain walls [19,20].
Symmetron fields for inflation have also been investigated
in [21]. In [22-25], atomic interferometry was used to
constrain symmetrons with masses below the dark energy
scale. It was found that, whilst symmetrons with masses m
slightly larger than the present Hubble rate m ~ 10°H, have
implications cosmologically [26], they cannot be tested by
atomic interferometry, whereas symmetrons with masses of
order of the dark energy scale m ~ 1073 eV are within reach
of the Eotwash types of experiments [27]. Recent bounds on
symmetrons have been obtained by Jaffe er al. [28].

In [29], gravity resonance spectroscopy [30,31] is used
for the first time to put new bounds on symmetrons. The
experimental analysis depends heavily on the field profile
of symmetrons in both the one mirror or two mirror setups,
where the field is either present over an infinite plane of
high density or is confined between two such parallel
planes. Here, we show that an idealized one-dimensional
setup of a single mirror covering an infinite half-space or
two parallel mirrors of finite separation each covering an
infinite half-space admit exact analytical solutions, which

© 2018 American Physical Society
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can be expressed in terms of Jacobi elliptic functions.
Moreover, we find that, very surprisingly for highly non-
linear differential equations, solutions are generically not
unique but rather show a discrete spectrum of possible
solutions with an increasing number of nodes and energies.
For a similar study applied to chameleon field theory
see [32].

In Sec. II, we will recall some background information
on symmetrons, which will provide the relevant definitions
for the field theory analysis. In Sec. III, the solutions for
the one mirror case will be derived, while in Secs. IVand V,
the symmetric and antisymmetric two mirror solutions will
be given and discussed in Sec. VI. As an illustration, in
Sec. VII a particular case study is carried out for an
arbitrary choice of parameters and the complete spectrum
of solutions is derived. Section VIII provides relevant
information on the gBOUNCE experiment, where the
symmetron induced resonance frequency shift for the case
of a single mirror has also been summarized for a large
range of parameters. A conclusion in Sec. IX will be
followed by an Appendix providing additional technical
details on the screening of a neutron.

II. BACKGROUND

Following [1], the symmetron potential is given by

2
Vi) = -2+ 50 (1

with a parameter u of dimension mass and the dimension-
less self-interaction coupling A. Together with the coupling
to matter this induces an effective potential

Veir(¢) = V(9) + A(d)p. )

where for the symmetron we have

2
A =1+ o, )

and hence

Vegr(#) =2 < 4

A
(- )paie @

Here, we have neglected an additional term p, which does
not affect the equations of motion.
In the “symmetric phase” where p, > M?u?, we use

Pett = Ps — M*u* > 0, (5)

while in the “broken symmetry phase” where p, < M?u?
we use

2 __ .2 Pb
Hett = H _W>0' (6)

For the relevant experimental situations such as the
gBOUNCE experiments, neutron interferometry or
Casimir experiments like CANNEX, we typically have
Pefi = ps and p2 =~ i, still the exact solutions hold for
more general situations.

The one-dimensional Hamiltonian is given by

1 (dp\?
H = 2 (d_f> + Vgt ()

1 /dp\?* 1 A
=3 (@) (e )e i o

The two vacuum values of ¢, given by the equation
Veitp(P)] p—s4, = 0, read £¢py where

K
b o

For static solutions, we have

d2
= Vg, o

Multiplication by ‘j—‘f and integration with respect to z
provides the important relation

1 /dp\? 1 [(dp\?
2 \dz 2 \dz
which determines the solutions provided both the value of
the field and its first derivative are given at a point z.

= Vet (@) = Vet (@)|,—,»  (10)

=2

III. ONE MIRROR

In this section, we treat the case of a single mirror filling
the infinite half-space z < 0.

A. Broken symmetry Phase

First, we consider the case of low density p, < M?u>

corresponding to the medium above the mirror and search
for a solution that asymptotically for z — co goes as
¢(z) - ¢y implying ‘é—‘f — 0. Without loss of generality

we consider ¢(z) = +¢y and find for zy = 0 and 7 - o

1 (dp\2
18

Subtracting Eq. (11) from (10) gives

= Veff(¢v) - Veff(¢)|z=0' (1 1)

z=0

% <%)2 = Veff(¢) - Veff((lsv)v (12)
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leading to
#(2) d
2 (22 _ 2 u rmvaRg (13)
b N —H(9F = DY) + 2/2(d" - BY)
With y := ) and k += ¢° , the latter being the ratio between

the value of ¢ taken for z = 0 and the vacuum value ¢y, we
find

/

" Hert \/1 '2+1/2 —1)
2
= V2 (tanh~!'y — tanh~'k)
Hetr
2 —k
V2 o <y> . (14)
Heft 1 —ky

Inverting the relation straightforwardly leads to

k| + tanh (%)

D(2) = v T T s
k| 1+ || tanh(”—ﬁz)

or, equivalently,

ﬂ@=¢q%mn<€f+thlﬂ) (16)

B. Symmetric phase

Here, we consider the case of high density p, > M?u?, as
inside the mirror. Clearly, for z — —co we have ¢(z) = 0

and hence ¢ — 0. Therefore, we find for z, =0 and
7> —00
d¢
-V o 17
()] vl 0
Subtracting the latter equation of Eq. (10) gives
d¢
=V . 18
5 (52) = vat@ (13

Without loss of generality we consider the positive solution
¢(z) = 0. Then, for z <0 we obviously have

) _[Peft
= Ve s+ ¢4 (19)

or with ¢ = ¢(0)

$(2) _ VPeit
/ - Me z. (20)
1+ ;2{ :

Since for positive x

i{ ln1+\/1+7}_ 1 o)
ax x Witad
we find
%
cosh(YfF2) = \/1 + 2L ¢ sinh (2)
or equivalently
2per 1 1
¢(Z) — _ ;ffM ‘
sinh (m z —sinh™! ( @ML%))
(23)

This can also be expressed in terms of Jacobi elliptic
functions since

sinhu = sc(u, 1) = sd(u, 1). (24)

C. Boundary conditions
Using the boundary conditions

deg de¢
2<dz) 0. 2(dz>

, (25)
z=0,

we find
p A He A
RO 08 = T B - )+ (G- 4. (26)
or
dol =221 (27)
ol = )
Pe
f T
leading to
1 1
k| = : (28)
\/_ 1 + /’m
f
The second boundary condition
$(0-) = ¢(0,). (29)

is trivially satisfied.
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D. Final solution

Finally, we obtain the solution

d(z) = ®(+Z)¢V|—i|tanh (ﬂj%Z + tanh™! |k|> - 0(-2)

2pefp 1 1
A M sinh (@z — sinh™! <

2perr 1
7 My

(30)
where k is given by

n 1 1
V2 T+

which determines the boundary value of the scalar field.
This solution has been used in [29] in order to evaluate the
energy levels of a neutron in a gBOUNCE experiment.

k= (31)

IV. TWO MIRRORS: SYMMETRIC SOLUTION

In this section, we treat the case of two parallel infinitely
thick mirrors separated at distance 2d in z-direction, with
z = 0 being the center between the two mirrors. First, we
consider symmetric solutions only.

A. Broken symmetry phase

Here, we consider the case of low density p, < M?u?, as
between the mirrors and choose 7y = 0. Due to the
symmetry of the setup the derivative of the field has to
vanish there yielding

1

5 (%)2 = Veir(¢) = Ve (o). (32)

where ¢ = ¢(0). Without loss of generality we take
¢o > 0. Then, for 0 < z < d we have

¢ _
dz

“V2(Vesr () = Vesr(bo)). (33)

and

#(z) de
b0 (D — D) + 2/2(¢" - &)

=-z. (34)

With x := 22

¢j), and taking p. > 0, we have

/

L 1 /x dx
parV/1=2/2 0 (- (1 - 202
= S {F(arcsin(x) Lﬁ)
peir/ 1= K22 RVAR )

o)

where we have employed the elliptic integral of the first
kind

sin dt

o JA-A1-727)

Here, k gives the ratio between the maximum value of the
field between the two plates and the vacuum value ¢y, in the
absence of the two plates; i.e., the ratio k captures the effect
of confinement of the field between the plates. Hence, we
obtain

F¢.¢0) = (36)

$(2) = ¢(0) {F H%%)

— Hett\/ 1- kz/ZZ’\/f/_;%] } (37)

With the Jacobi elliptic functions,

sn(u, ) = sin(F~' (u, ),
cn(u, £) = cos(F~(u, £)),

dn(u, £) = \/1 — P (F(u, £)), (38)
we can write this as

T k/V2 )
2°/1-k)2

— Hett\/ 1- kz/zz,\/:{/_i%}- (39)

#(2) = ¢<o>sn{F

Since

sn (u + F<g,f) , f) - ZEEZZ; —cd(u.?),  (40)

and

dn(-u,?) = +dn(u, 2), (41)

064015-4



EXACT SOLUTIONS TO NONLINEAR SYMMETRON ...

PHYS. REV. D 97, 064015 (2018)

we have, also for —d <z <d and positive as well as
negative ¢(0)

) = kel /1 - k2/2z,¢'ffi%}. @)

B. Symmetric phase

We can read off the solution inside the mitrors directly
from the corresponding solution in the one-mirror case

_ Zpeffi

#(2) 1 M

1
x
sinh (%(M —d)+sinh™! (

. (43)
i)

where ¢, = ¢(d) and hence can be positive or negative.

C. Boundary conditions
Using the boundary conditions at the mirror surface

L dp\2| 1 [dg\?
()], -2 (@)

, (44)

z=d,

we find

2 y) R A
B (93— )+ S B ) = T i+ S (45)

or

1-K

2

|al = ¢y k| —=—=. (46)
! My
Using this in the second boundary condition,
p(d-) = ¢(d..). (47)

provides the relation

Peft

k2
\/ l—-——=,/1
2 +M2ﬂe2ff
cd{yefm/l —k2/2d,MH. (48)
1 —k2/2

The solution of the equation above gives possible values
of k; i.e., it determines the value ¢, of the field between
the two plates. It will give all solutions for which
¢'(d_) = £¢'(d,); hence, one still has to extract the
subset of solutions satisfying ¢'(d_) = ¢'(d..).

X

D. Final solution

Finally, we obtain the solution

/v
016) = 00 - okea a1 - 2722, KD

20 1
+®(|Z|—d) p;ﬁM
% §gn@ ’
i (7 = s ()
(49)
where
§gn@ = _\/_/ . (50)
RONEEEEY
k is the solution of
K Peft
]——= 1 +
2 Mz:ugff
2oy V2
) Cd{”eff L=/, 1-k2/2) 1 (1)
and
-5
by = £k (52)
1+A/1/)26ff2
Hetr

As mentioned already, Eq. (51) will give all solutions for
which ¢'(d_) = £¢'(d, ), hence one still has to extract the
subset of solutions satisfying ¢'(d_) = ¢'(d.,).

Clearly, the expression on the left-hand side of Eq. (51) is
O(1). The first factor on the right-hand side is for most
cases of interest, where typically pey > M?uZ;, compa-
rably large. This implies that for a solution the second
factor must be small, viz. it will be close to a zero of the
Jacobi function cd. The Taylor expansion around the first
zero of the Jacobi function cd reads

cd(u, ) = —(u—F(z/2,¢)) + O((u — F(n/2,£))3).

(53)
Hence, to linear order, we find
/1 _ k_2 - N+ Peft
2 M- pgg
k| /2
X |pegr/ 1 —k2/2d—F<§, K/v2 )‘
2 \/1-k%)2
(54)
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respectively,

Hett d=

Wy,

1 /4
F -
e R

] FG lf |£\1f/2>' 33)

R

Since

[kl/V2

1 V4
Flz, ————
/1-& <2 V1-k2)2

> € [7/2, ), (56)

we have

Hefrd 2 g (57)
In the limit p. s — oo, the inequality above becomes
rigorous, viz. for p.rd < /2 no solution can exist in this
limit. This result has been anticipated in [27], where also
the particular solution without any nodes has been approxi-
mated by an iteration procedure. Furthermore, in [33], the
zero-node solution has been obtained in the approximation
of vanishing field values inside the mirrors.

In this work, exact solutions are presented for the first
time both inside and outside the mirrors. This is important
for weak couplings, viz. for large values of M as well as
large values of p. In those cases, the field inside the mirrors
is less suppressed. Another novelty, not anticipated before,
is the existence of a whole set of solutions for larger values
of d due to the periodicity of the Jacobi function. These
solutions will be instrumental in analyzing the results of
neutron interferometry experiments where the integral of
the field across the space between two mirrors measures the
phase shift that a neutron experiences on its path to the
detectors and also for Casimir experiments and the corre-
sponding calculation of the “Casimir force” induced by the
symmetron field. The precise calculations of these effects
are left for future work.

V. TWO MIRRORS: ANTISYMMETRIC
SOLUTION

In this section, we treat again the case of two parallel
infinitely thick mirrors separated at distance 2d in
z-direction, with z = 0 being the center between the two
mirrors. But, here, we consider antisymmetric solutions
only.

A. Broken symmetry phase

Here, we consider the case of low density p, < M*u? as
between the mirrors and take zo = 0. Due to antisymmetry,
the field has to vanish there (¢, = 0) yielding

1 /dp\? 1
3 (52) =308 = Vato) (58)

where ¢ = % |,—o. Without loss of generality, we take
¢, > 0, then for —d < z < d, we have

d
L Jt + 2V al9), (59)

and since V() <0 this gives a real solution only for
0> = =2V (). We have

= +z. (60)

/ \/¢ - Meff¢2 + /1/2¢4

Defining ji* \/ W £\ ke — 22942, we find
:|:|¢0 \/_|¢O|/ )
2 a2 5
Yo :s )
\//:('ﬁO' F(arc31n(¢(z)),g(+>>, (61)
and obtain
_V2 |¢ o) por [LA A
o= Bl [ 5 @

With the Jacobi elliptic function
sn(u,£) = sin(F~!(u,?)), (63)
and

sn(—u,?) = —sn(u,?), (64)

we can write this as

Sl (50 ao)
\/N_(tﬁ)d sn{ﬂ—z,'ﬁl—}. (65)
i V2 )

B. Symmetric phase

$(z) ==+

Again, we can read off the solution inside the mirrors
directly from the corresponding solution in the one-mirror
case:

2pett Iz
Mz|

#(z) =
1

sinh (V5T (|2] = d) + sinh ! ((/25.51) )

(66)

X
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C. Boundary conditions

Using the boundary conditions at the surface of the

mirror,
d d
(@) (@ @
dz z=d_ dz z=d,
we find
1o e 4 Peft o A 68
S0 =S bt 0 =apfat e (68)
or
¢/
|bal = 96| (69)
Herry /1 + 370
Using this in the second boundary condition,
P(d-) = p(d,). (70)

gives

() )
i) = \/Zueffﬂl ﬂ {ﬂ a.” }' (71)
Meff \/_ M

The solution of the equation above gives the absolute value
of ¢;. It will give all solutions for which ¢'(d_) =
+¢'(d,), hence one still has to extract the subset of
solutions satisfying ¢'(d_) = ¢'(d ).

D. Final solution

Finally, we obtain the solution

6) = 20la— o) 2l
2p f 1 z
Ozl = )\ = 5T
y égnm
sinh( fjff(|z| —d) +sinh_1( #ﬁm))
(72)
where
() (=)
sn{”—d ’f—}
V2 ™
anm = ﬁ(+) :(-) ’ (73)
‘SH{—zd’W}

o+ )
_ Peft H H
T N
and
/
by =+ 4 —. (75)
Hetr 1+M2—”§ﬁ

As mentioned before, Eq. (74) will give all solutions for
which ¢'(d_) = £¢'(d.); hence, one still has to extract
the subset of solutions satisfying ¢'(d_) = ¢'(d..).

For most situations of interest, where pg > M*u2,
the left-hand side of Eq. (74) is typically small, while the

L+ m
demands that the Jacobl function sn should be close to its
zero, which is the case for a vanishing first argument. For
the first zero this leads to solutions obeying ¢'(d_) =
—¢'(d_) rather than ¢'(d_) = ¢'(d..). The Taylor expan-
sion around the second zero of the Jacobi function sn reads

factor is comparably large. Hence, a solution

sn(u,?) = —(u—2F(n/2,£)) + O((u —2F(x/2,¢))?).

(76)
Hence, to linear order, we find
)d T ~(_)
+) = /2 Pett ——2F<—,'M—)',
Hert M2 12 V2 27 )
(77)
respectively,
(=) 7(+)
i d = ﬂy:(ffj(ﬂ) Lo
2 Y2, Hetf 1 + szff
T ﬁ(_)
~V22F (= (78)
27 5+
Since
V22F f ”— € [V2r, 00 79
(
and
) € [pegr, \/Eﬂeff]y (80)
we have
Uesrd 2 70 (81)

In the limit p.s — oo, the inequality above becomes
rigorous, viz. for p.pd < 7 no solution can exist in this
limit. Here, d must be twice as large as in the case of the
symmetric solution, which is intuitively clear.

VI. DISCUSSION OF THE TWO-MIRROR
SOLUTIONS

An important question to consider is whether the sym-
metric and antisymmetric solutions exhaust the set of
possible solutions or whether there are still others without
definite (anti)symmetry? One may argue that a solution
without any symmetry must satisfy two boundary conditions
(continuity of ¢(z) and ¢'(z)) for the left boundary and a set

064015-7
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TABLE I. Values of energy E are given for the three solutions
for values p.r = 1.082 x 107 MeV*, M = 10" MeV, g =
10719 MeV, A = 1072 and mirror distance d = 9.5 x 107 m.

Mode E [MeV] k |y [MeV?]
0f —1.76369 x 10728 0.997142

1- —8.30488 x 1072 6.9018 x 10720
2+ —9.36839 x 10730 0.451367

of two different boundary conditions for the right boundary.
If we start with a symmetric solution, then all four boundary
conditions are satisfied. Moving the right mirror to generate
another solution without symmetry, we keep the parameter k
fixed (in order to still satisfy the left boundary conditions)
and vary the distance dX to the right mirror. For a given value
of k, this leads to a resonance equation for % whose solution
is either the original one df = dL or correspond to new
solutions. One may construct new solutions which are either
symmetric again or antisymmetric but will have a different
number of nodes from the solution we started with. This
depends on the value of dp. A more thorough discussion of
the possible existence of other solutions together with the
symmetric and antisymmetric ones is left for future work.
On the other hand, it is not obvious how the symmetric and
antisymmetric solutions should be expected to appear in an
experimental setup, in particular, whether the solutions are
stable or not and which one is the stablest. One can expect
that the solution with the fewest number of zeros between the
two mirrors should be the ground state, although we have no
proof of that assertion and further study is certainly necessary
to tackle this important question.

VII. A PARTICULAR EXAMPLE

Let us focus on a particular example for the parameters
given in Table I for two mirrors. This illustrates the
different cases presented in the previous sections and

(z) [MeV]

40=2
T

8.x1070
6.x10710

4.x10710 1

yo-w

-2x10"°

L L " 1 " n 1 n i Vi -1
-4x10"0 2x1010 ax100 [Mev™]

FIG. 1. The one-mirror solution is depicted for the parameters

of Table I. One can see that the condition ¢p/ M < 1, necessitated

by Eq. (3), is indeed satisfied in this case.

provides an example of multiple solutions. The correspond-
ing one-mirror solution with & = 0.214967 is depicted in
Fig. 1.

The energies

E= / dZH(2). (82)
where the Hamiltonian H(z) is given by Eq. (7), for the
complete set of three solutions are also given in Table I and
the corresponding field profiles are depicted in Fig. 2. We
denote solutions, viz. modes by their number of nodes 0,1,2
and an upper index + to denote symmetry as well as — to
denote antisymmetry. From Table I, one can see that the

8(2) [Mev]

xdo® L 5o
¢(z) [MeV]

L
-1x 10"

<

5.x1071

N ;2 MV

%010

L I n n
-1x 10" -5%10°

1410"
-5.x 1071
6(2) [MeV]
4.x10°
2.x1 -10:
L \\ 1Z[1V[evil]
~1x 10! 3\1010 : 5xrﬁ 1410"
-2, 10-105
.x10'10;

FIG. 2. The field profiles for the three solutions from Table I are
depicted. Again, one can see that the condition ¢/M < 1,
necessitated by Eq. (3), is indeed satisfied in this case.
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0sf
0sf
04f
0.2;

00
o(r) [MeV]

1

400

1

600

1

800

SR ————— )Y (5
1000 1200 1400

0.005}

__—
0.004

0.003 F

0.002 | — 0 =10.868

0.001F 0 =10.066

[ EE U E U R R

0.002 0.004 0.006 0.008 0.010 0.012 0.014

r [MeV™']

FIG. 3. Top: Here the screening charge Q is plotted as a
function of the coupling parameter M. The parameters taken
are for a neutron, vizz R=25x1073MeV~!, p,=
1.53 x 10" MeV* and p =5 x 1078 MeV. Bottom: The field
profile of a sphere (neutron) is plotted as a function of the radial
distance of the center of the sphere. The blue line corresponds to
M =500 MeV and the yellow line to M = 50 MeV with the
other parameters having the same values as those used for the
upper plot. The blue square is bounded by the radius of the sphere
(neutron) and the vacuum field value ¢ = ¢y,.

0™ mode has lowest energy, 1~ a higher one and 27" the
highest energy. The energy level E = 0 would correspond
to the vanishing solution ¢(z) = 0. These three solutions
exhaust the spectrum of possible solutions for these
parameter values and exhibits clearly how antisymmetric
and multiple node solutions are a crucial part of the
complete set of solutions.

Intuitively, we expect the energies to increase with the
order of the nodes not only in this particular example but
also in general. Clearly, depending on the parameter values
and distance between the mirrors one can have an arbitrary
number of nodes.

VIII. SYMMETRON INDUCED FREQUENCY
SHIFT IN ¢BOUNCE

In this section, we derive limits obtained from the
gBOUNCE experiment [30,31,34] using the exact solu-
tions obtained herein. In this experiment, ultracold neutrons

are dropped in earth’s gravitational potential and reflected
by a neutron mirror, which has been reported for the first
time in [35]. The energy eigenstates are discrete and allow
to apply the method of resonance spectroscopy. The basic
setup is described in [31]. In the most recent version of the
experiment, Rabi-spectroscopy has been realized with
energy resolution 3 x 10~ peV [29].

The experimental setup is such, that ultracold neutrons
pass three regions, while being reflected on polished glass
mirrors. In [29], the resonance spectroscopy transition
between the energy ground state E; = 1.40672 peV and
the excited states E; = 3.32144 peV as well as E; =
4.08321 peV have been demonstrated. First, the neutrons
pass region I which acts as a state selector for the ground
state |1) having energy E,. A polished mirror at the bottom
and a rough absorbing scatterer on top at a height of about
20 pm serve to select the ground state. Neutrons in higher,
unwanted states are scattered out of the system. This region
has a length of 15 cm. Subsequently, in region II, a
horizontal mirror performs harmonic oscillations with
a tunable frequency w, which drives the system into a
coherent superposition of ground and excited states. The
length of this region is 20 cm. Finally, region III is identical
to the first region and hence acts again as a ground state
selector. The quantum-mechanical description of a neutron
above a mirror in the gravitational potential is given by the
Schrodinger equation [36]. After separation into free trans-
versal and bound vertical states

eﬁ.(lu'XL—Eﬂ)

W (x. 1) = i (2)e B, (83
(x,1) e (z)e7n (83)
it reads

n* Py, (2)

_owac) —E . 84

02 + mgzy,(2) = E,w,(2) (84)

The characteristic length scale,

h2
20 =V3-— =587 um, (85)
g

2m

and energy scale E, = ((h*mg?)/2)'/? are given by the
mass m of the neutron and the acceleration of the earth g.
With the substitution

2m? E -
":\/g:;g<z‘_”>zz = (89)

mg

Eq. (84) becomes

— 5 —ol,(0) =0, (87)

which is Airy’s equation.
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From the effective symmetron potential,

1L/ p A
Verr(¢) = 5 <W - ﬂ2> ¢+ Z¢4’ (88)
we can deduce the semiclassical neutron-symmetron cou-
pling as

Im |
Vetr = EWW wer. (89)

There are some subtleties involved here, which will be
discussed in the Appendix. The corresponding quantum
mechanical perturbation potential is given by

1 m

and leads to a resonance frequency shift (see e.g. [37])

SES = Ey) — E\)

Likewise, the first-order correction to the wave functions
reads (see e.g. [37])

ey = L S ey (i’ ()0()°
’ 2M2 m=1\n E}(10) - Eir(z))
Xy (2)e it (92)

(0)

Hence, the correction to the density ¢, (z)=

w2 (2) to first order is given by

o (2) = 2Re(y" (2w (2))

_mg N LR dyn @y ()¢
= Z 0 0
M E) - E;)

m=1\n
<y (g (2). (93)

where Re denotes the real part.
In the one-mirror case, the unperturbed normalized
wavefunction for z > 0 reads (see e.g. [38])

ngo) (z) = c A (Z;_Z"> ’ (94)
0

with normalisation

(n !
Cy' = Y (95 )
VEAT (- 2)
andz, = 5—2. Outside this region the wavefunction vanishes.
The first few energy levels are given in table II. For a single

TABLE II.  Values of the energy of the lowest six states for the
neutrons in the terrestrial gravitational field.

State Energy [peV]
1) E, = 1.40672
|2) E, =2.45951
13) E; =3.32144
|4) E, =4.08321
|5) Es =4.77958
|6) Eq = 5.42846

mirror extending to z < 0 we can use Eq. (30) and obtain
for the resonance frequency shift

1 2 o , 2
5E;(nlr)l — N et / dz tanh (ﬂeffz + tanh‘1k>
0

2 M? 20/1 \/z
F(22Zm)2 1(22%n)2
) {Al/( ZOzm) 2 Al/( ZOZn> 2}' (96)

It is straightforward to find all the corresponding
expressions in the two-mirror case. These expressions
are very elaborate in their full detail and hence we will
refrain from reproducing them herein.

In Table III, we summarize the resonance frequency
shifts for a large range of symmetron parameters for the
case of a single mirror. Notice that larger values of 4 give
smaller energy shifts for a given p;. Similarly, increasing
M leads to smaller deviations. The whole parameter space
of symmetrons can therefore be efficiently constrained
using the exact results obtained herein. A sophisticated y?
analysis has been carried out in parallel to this work [29],
where the solutions obtained herein for a one-mirror setup

TABLE II1. 5E£‘11) for one mirror, viz. Eq. (96), for the values
p =251 g/cm? and p.; = 1073 meV. Notice larger values of 1
and M lead to smaller energy shifts. The current experimental
bound at the 107!> eV level leads to constraints on parameters
which can be easily extracted using our analysis [29]. For
instance for M = 1 MeV, we find that typically one can expect
that 1> 10710, The exact excluded regions in parameter space,
where the screening of the neutron is taken into account, can be
found in [29] (see the Appendix for a discussion).

SE\Y) [eV] M [MeV] 2
449795 x 1014 1 10-10
4.49795 x 10720 1 10~
4.49795 x 10726 1 102
451053 x 10720 103 10-10
451053 x 10726 103 10~
451053 x 10~ 103 102
575763 x 1072 10° 10-10
5.75763 x 10730 10° 1074
5.75763 x 10736 10 10?
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are used to extend the exclusion region of the symmetron
parameter space.

IX. CONCLUSION

We have derived exact analytical solutions to the
symmetron field theory in the presence of a one- or two-
mirror system. The one-dimensional equations of motion
have been integrated in each case. Surprisingly, in the
two-mirror case instead of a unique solution for a given
environment and boundary conditions, we have obtained a
discrete set of solutions with increasing number of nodes
and energies. We have derived bounds for the gBOUNCE
experiment and found agreement with those obtained in
the study carried out in parallel to this work [29]. We have
summarized the resonance frequency shift for a large range
of symmetron parameters in the case of a single mirror. The
solutions that we have obtained herein, and in particular
their stability, should be the subject of further studies as
they will play a crucial role in the analysis of neutron
interferometry experiments searching for symmetrons and
for the calculation of the symmetron-field-induced Casimir
force in the CANNEX experiment.
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APPENDIX: SYMMETRON FIELD
OF A NEUTRON

Since neutrons are used in the search for symmetrons in
gBOUNCE experiments and neutron interferometry, it is
important to understand their interaction with the symme-
tron. For a certain parameter regime this interaction
between neutron and symmetron becomes strong. In this
case, the neutron affects the background symmetron field as
generated by the mirrors of the experimental setup in a non-
negligible way, which in turn weakens the effect on the
neutron, viz. screening of the neutron sets in. Since we treat
the symmetron as a classical field theory a consistent
description of its coupling to a quantum mechanical system
is beyond our reach. Therefore, we employ a semiclassical
treatment in which the neutron’s probability distribution
times its mass acts as the source of the symmetron as
defined in Eq. (89). In the following, we will use a
pragmatic approach, which follows what has been done
in the literature so far [22-24,39-42].

A first approach to defining the mass density is
analogous to “semiclassical gravity,” which has been
introduced by Mgller [43] and Rosenfeld [44], and where

the operator-valued stress-energy tensor is replaced by an
expectation value. Its nonrelativistic Newtonian approxi-
mation, the so-called “Schrodinger-Newton equation,”
was introduced by Diosi [45] and Penrose [46]. This
equation employs the probability distribution times the
mass as the source of the gravitational potential, i.e.
considering that the square modulus of the wave function
can be used as tracing the mass density of a particle. The
Schrodinger-Newton equation has been applied to single
particles by Moroz, Penrose and Tod [47], although it can
only be understood in the Hartree approximation for a
large ensemble of particles, see [48] for a summary of the
issues related to this equation. In another approach, which
is commonly used in the literature, one may consider that
the neutron has a well-defined size provided by the quark-
gluon dynamics and that in our nonrelativistic treatment
of the neutron at energies well-below the QCD scale this
size of the order of 1 fm provides a reasonable description
for its screening. Clearly, a rigorous treatment of this
issue and distinguishing both approaches is beyond the
scope of this paper. In [29], we illustrate the two cases
and stress that more work needs to be done to derive
completely rigorous bonds for the coupling of the
symmetron to neutrons.

For a quantitative account we treat the neutron as a
classical sphere. As a conservative case we take as its
diameter 2R, = 1 fm, corresponding to 5 x 10™> MeV~!
in natural units, and nuclear density p, =1.53x10'"MeV*,
This is the most commonly used manner of treating the
screening of the neutron. On the other hand, if the mass
distribution were related to the size of its wave function, the
neutron would be approximately described as being dis-
tributed over a sphere of diameter of order z, = 5.87 um,
which is the typical length scale for its vertical wave-
function in the gBOUNCE experiment and leads to a much
weaker screening.

As aresult, we have to solve the field equation for a static
massive sphere with radius R

Ly 24 (p
—t—-——=|—- 3. Al
dr2+rdr <M2 W)t (A1)
The boundary conditions are
¢'(0) =0,
lim¢p(r) - oy . (A2)

Without loss of generality we take the asymptotic value
+¢y. Inside the sphere, we take p > M?u? and since
Ge=#)b _p _ p p

~ = > 1,
Ap? M2 ap? ™ M2/1¢2V M?u?

(A3)

we find
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&g 2dp  p
A4
ar  rdar T Me 4 (A4)
With
%
p="2. (45)
Eq. (A4) reads
o p
— =0, A6
drr — M?> ¢ (A6)
providing the general solution
e%r _ﬁ
p=A +B (A7)
r

with arbitrary constants A and B. The solution convergent
for r — 0 and satisfying the boundary condition ¢(0) =0
is given by B=—-A=: — C/2

VP
() = Csmh(M r)

r

(A8)

Immediately outside the sphere, the potential contribution
is very small compared to the kinetic parts and can be
approximated by the value close to the vacuum value

PR+ AB(RLY > 2 G(R,) + Ap(R.)’

=22 (p(Ry) — ). (A9)
Hence, for the outside solution, we find
029 g -p). (a1
The general solution is given by
oV2ur e~ V2ur
¢—¢y=E——+D——, (A11)

with arbitrary constants £ and D. The solution convergent
for r - oo and satisfying the boundary condition

lim,_, ¢(r) = ¢y is given by

o—Vur

() = py + D° (A12)

The boundary conditions at the surface of the sphere are
given by

P(R-) = p(R.).
¢ (R-) = ¢'(R,), (A13)
yielding after some algebraical manipulations
M 1 14+/2, ,uR
C ¢V \/— ’
VP cosh(2R) 1 +2uM tanh
( M ) ﬂ
-2 tanh(‘/—R)
D = —¢yReVHR i (A14)
1+ f,u M tanh(‘/_R)
Finally, we find the solution
Py L 1 14+V2uR
V'VP cosh % l+\/§;4%tanh(‘/ﬁpR)
qﬁ(r) = % sinhi%r) ’ for r <R,
oy PR _Qfy V20H) , for r > R,

T3MPI+VouR T

where we have introduced a screening charge, which we
define as

w2 1 —%_%tanh(‘/ﬁ— )
=(1 +\/_/1R) m VTR
1+\/_/4\/_tanh(ﬁ )

(A15)

With this definition, see Fig. 3,

Q 0, for screened bodies with R > M/, /p,
—
1, for unscreened bodies with R < M/, /p.

The acceleration of a small test body, which does not
disturb the field, in the outer field of the sphere is

- b3
a= —WVq’). (A16)
Asymptotically for large r we find
R? 2 —V2ur g

V3M41+\/§,uR ror

justifying the definition of Q as a screening charge, which
has to be multiplied to the transition energies. Hence, in
order to account for the neutron’s screening, one has to
replace

SE,, = Q(u, M)SE

g (A18)

Pa>
for the extraction of the experimental limits. This replace-
ment has been carried out in the sophisticated analysis [29]
but for simplicity has been neglected for all bounds derived
in this letter.
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