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By solving a simple kinetic equation, in the relaxation time approximation, and for a particular
set of moments of the distribution function, we establish a set of equations which, on the one hand,
capture exactly the dynamics of the kinetic equation, and, on the other hand, coincide with the
hierarchy of equations of viscous hydrodynamics, to arbitrary order in the viscous corrections. This
correspondence sheds light on the underlying mechanism responsible for the apparent success of
hydrodynamics in regimes that are far from local equilibrium.

Introduction. The observation that the evolution
of the quark-gluon plasma produced in ultra-relativistic
heavy ion collisions is well described by viscous hydrody-
namic equations raises a number of interesting questions
that are very much debated presently [1]. Traditional un-
derstanding of hydrodynamics would imply that the sys-
tem has reached local equilibrium, and the small viscosity
extracted from the analysis of the data is suggestive of
short mean free paths. However, works on strongly cou-
pled plasmas, using in particular holography techniques,
indicate that viscous hydrodynamics works even when
large anisotropies, that signal departure from local equi-
librium, are still present [2]. At the same time, there
is evidence that hydrodynamics is capable of describing
small colliding systems, for which no clear separation a
priori exists between microscopic and macroscopic scales
(see e.g. the recent discussion in [1, 3] and references
therein).

Recently, it has been argued that part of the success
of hydrodynamics could be due to the existence of a
stable attractor, to which the solution of the dynami-
cal equations quickly converge before eventually reach-
ing the viscous hydrodynamic regime [4]. This sugges-
tion has triggered many studies, some of which involve
sophisticated mathematical developments [5–9]. In this
paper, we would like to offer an alternative perspective
on the issue, based on the simple, and physically moti-
vated observation, that the main features of the dynamics
of expanding plasmas are determined by the competition
between the expansion itself, which is dictated by the
external conditions of the collisions, and the collisions
among the plasma constituents which generically tend to
isotropize the particle momentum distribution functions.
These two competing effects give rise to two indepen-
dent fixed points of a suitably defined dynamical quan-
tity. Many recent results find a natural interpretation in
the interplay between these two fixed points.

As in many works on this issue, we focus on the
paradigmatic example of the Bjorken flow [10], and con-
sider an expanding system of massless particles charac-
terized by a distribution function f whose time evolu-
tion is given by a kinetic equation. Symmetry allows us
to reconstruct the full space-time history of the system
from the knowledge of what happens in a slice centered

around the plane z = 0 where the collision takes place.
The distribution function in that slice depends solely on
the momentum of the particle and the (proper) time τ ,
i.e., f = f(p, τ). Using a relaxation time approximation
for the collision kernel, we can then write the following
simple kinetic equation [11][

∂τ −
pz
τ
∂pz

]
f(p, τ) = −f(p, τ)− feq(p/T )

τR
. (1)

Here feq(p/T ) is a function that depends only on p = |p|
and an effective temperature T (τ) which is determined
by requiring that the energy density calculated with
feq(p/T ) and f(p, τ) takes the same value, ε ∝ T 4,
at all times. The kinetic equation (1) makes transpar-
ent the competition alluded to above, between the ex-
pansion and the collisions. In the absence of the colli-
sion term, the expansion, controlled by the term −pz/τ
in the left hand side, leads to a flattened distribution,
f(p, τ)→ f0(pzτ,p⊥), where f0 is the initial distribution
and p⊥ is the component of the momentum orthogonal
to the z-axis. On the other hand, the collision term in the
right hand side drives the distribution towards isotropy,
at a rate controlled by the relaxation time τR.

Kinetics in terms of L-moments. Although
Eq. (1) can be easily solved numerically, more insight
can be gained by using an alternative, albeit approxi-
mate, approach that eliminates from the description as
much of irrelevant information as possible. Thus, in this
paper, instead of considering the full distribution f(p, τ),
we focus on some of its moments, introduced in Ref. [12]:

Ln =

∫
d3p

(2π)3p0
|p|2P2n(pz/|p|)f(p, τ), (2)

where P2n is a Legendre polynomial of order 2n. The mo-
ments Ln with n ≥ 1 describe the momentum anisotropy
of the system. In particular L1 = PL − PT reflects
the asymmetry between longitudinal (PL) and transverse
(PT ) pressures. The moment L0 coincides with the en-
ergy density, L0 = ε = PL + 2PT . Observe that the
momentum weight of the integration in Eq. (2) is always
|p|2, instead of being an increasing power of |p| as is the
case in more standard approaches (see e.g. [13]). Thus,
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the Ln’s contain little information on the radial shape of
the momentum distribution, preventing us for instance
to reconstruct from them the full distribution. However,
this radial shape plays a marginal role in the isotropiza-
tion of the momentum distribution, which is our main
concern here. Note that all the Ln have the same dimen-
sion.

By using the recursion relations among the Legendre
polynomials, we can recast Eq. (1) into the following (in-
finite) set of coupled equations

∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]− Ln

τR
(n ≥ 1)

∂L0

∂τ
=− 1

τ
[a0L0 + c0L1] , (3)

where the coefficients an, bn, cn are pure numbers

an =
2(14n2 + 7n− 2)

(4n− 1)(4n+ 3)
, bn =

(2n− 1)2n(2n+ 2)

(4n− 1)(4n+ 1)
,

cn =
(1− 2n)(2n+ 1)(2n+ 2)

(4n+ 1)(4n+ 3)
, (4a)

entirely determined by the free streaming part of the ki-
netic equation. Note that the collision term does not
affect directly the energy density, but only the moments
with n ≥ 1. In fact, if one ignores the expansion, i.e., set
an = bn = cn = 0, the moments evolve according to

L0(τ) = L0(0), Ln(τ) = Ln(0) e−τ/τR . (5)

This solution illustrates the role of the collisions in eras-
ing the anisotropy of the momentum distribution as the
system approaches equilibrium. Of course, the expansion
prevents the system to ever reach this trivial equilibrium
fixed point: instead, the system goes into an hydrody-
namical regime, as we shall discuss later.

The system of Eqs. (3) lends itself to simple trunca-
tions. Thus by ignoring all moments of order higher
than n, one obtains a finite set of n + 1 equations that
can be easily solved. The accuracy of such a proce-
dure can be judged from Fig. 1, where the moments ob-
tained from various truncations are compared with those
of the numerical solution of Eq. (1) for an initial distri-
bution typical of a heavy ion collision: f(τ0, pT , pz) =

f0Θ
(
Qs −

√
ξ2p2z + p2T

)
with f0 = 0.1, ξ = 1.5, corre-

sponding to an initial momentum anisotropy PL/PT ≈
0.5, and τ0 = Q−1s [12]. Already the lowest order trun-
cation at n = 1 captures the qualitative behaviour of
the full solution. Note that the approach to the ex-
act solution is alternating, which offers an estimate of
the truncation error. The energy density approaches
smoothly the hydrodynamic regime as τ >∼ τR, while
the non monotonous behaviour of the ratio L1/L0 re-
flects the competition between expansion and collisional
effects that we now analyze in more detail, starting with
the free streaming regime.
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FIG. 1. (Color online) Comparison of the L-moment equa-
tions obtained from various truncation of Eqs. (3) (lines),
with those of the numerical solution of the kinetic equation
(1) (symbols).

The free streaming fixed point. The free stream-
ing regime is described by Eq. (3) where one ignores
the collision term. It is not hard to see that the result-
ing equation possesses a stable solution at large time, in
which all moments decay as 1/τ and are proportional to
each other: Ln(τ) = AnL0(τ), where the dimensionless
constants An characterize the moments of a distribution
that is flat in the pz direction [12]

An = P2n(0) = (−1)n
(2n− 1)!!

(2n)!!
. (6)

Note that A1 = −1/2, corresponding to a vanishing lon-
gitudinal pressure. As for the factor 1/τ it reflects the
conservation of the energy in the increasing comoving
volume (τε(τ) = cste). Defining

gn(τ) = τ∂τ lnLn, (7)

we get from Eq. (3)

gn(τ) = −an − bn
Ln−1
Ln

− cn
Ln+1

Ln
− (1− δn0)

τ

τR
. (8)

The solution above corresponds to a fixed point for the
gn’s. Dropping the last term, and using the expression
(6) for the ratio of moments, one indeed verifies easily
that for all n, gn(τ) = −1. If the initial ratios of moments
are chosen according to Eq. (6), the gn’s remain constant
in time (all equal to −1), whereas for arbitrary initial
conditions, they will reach the fixed point at late time.
Note that the fixed point obtained from a truncation at
a finite order differs slightly from −1: for instance, in
the simplest truncation at n < 2, g0 = g1 = −0.92937
instead of -1, and A1 ≈ −0.6 instead of −0.5.
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The hydrodynamic fixed point. We know from
our previous study [12] that, at late times, Ln(τ) admits
the following expansion, analogous to a gradient expan-
sion1

Ln(τ) =
1

τn

∞∑
m=0

α
(m)
n

τm
. (9)

The coefficients in Eq. (9) are nothing but transport co-
efficients, except for the first moment, equal to the en-

ergy density, i.e., α
(m)
0 = εδm0. The behavior of ε(τ)

at large time is obtained from Eq. (3), ignoring the
contribution of L1. Since a0 = 4/3, this behavior is
that of ideal hydrodynamics, ε(τ) ∼ τ−4/3, and hence
T (τ) ∼ τ−1/3. The leading and sub-leading transport
coefficients in Eq. (9) can be determined analytically. To
do so, we return to Eq. (8) and note that a cancellation
of the relaxation term has to occur in order to elimi-
nate the exponential decaying contributions to the mo-
ments. This cancellation determines the leading order

coefficient, viz. α
(0)
n = (−τR)nε

∏n
i=1 bi. In particular,

α
(0)
1 = −b1τRε = −2η, with η the shear viscosity. In

a conformal invariant setting [14], we allow τR to de-
pend on the temperature, with τRT (τ) kept constant2.

Then, one gets α
(0)
n ∼ τ−(4−n)/3 which implies that in

leading order, Ln(τ) ∼ τ−(4+2n)/3. This defines the hy-
drodynamic fixed point, gn(τ) = −(4 + 2n)/3.3 The sub-
leading coefficients in Eq. (9) are then fixed by imposing
this asymptotic power law, which yields

α
(1)
n

α
(0)
n

= τRbn

[
1

bn

(
4 + 2n

3
− an

)
−
α
(1)
n−1

α
(0)
n

]
. (10)

The first few coefficients reproduce the values of known

transport coefficients [12, 15], for instance α
(0)
2 =

64
105 ετ

2
R = 4

3 (λ1 + ητπ), α
(1)
1 = − 32

315 ετ
2
R = 4

3 (λ1 − ητπ),
with λ1 and τπ as defined in [14].

The attractor. One may define an attractor so-
lution as the particular solution of Eqs. (3) which, at
short time, coincides with the free streaming fixed point
gn = −1, and at large time goes over to the hydrody-
namic fixed point. It can be determined numerically, by
solving Eqs. (3) with initial conditions specified by the
constants (6). We have checked that g0 obtained in this
way is consistent with what was found by other meth-
ods in Ref. [3, 4]. The solution, obtained by truncating

1 For Bjorken flow, the gradient expansion coincides with an ex-
pansion in powers of τR/τ , which may also be viewed as an ex-
pansion in Knudsen number.

2 The constant is given by τRT (τ) = 5η/s, with the entropy den-
sity given by s = 4ε/(3T ).

3 In the conformal invariant setting, this result could also be
obtained from a simple dimensional analysis. For a time-
independent relaxation time, the hydrodynamic fixed point is
instead gn(τ) = −(4 + 3n)/3.
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FIG. 2. Attractor solutions (black solid lines) to the L-
moment equations cut at n < 20, in terms of g0, g1 and
g2. Dotted lines correspond to the hydrodynamic fixed point.
Solutions with random initial conditions are shown in grey.

Eqs. (3) at n < 20, is displayed in Fig. 2 for the first
few gn(τ). The universal character of the curves is worth
emphasizing. All the gn’s behave in the same way, in-
terpolating between the two fixed point gn ≈ −14 and
gn = −(4 + 2n)/3, the transition occurring when τ ∼ τR.

Hydrodynamics. At this point, we note that the
truncations of the equations (3) for the moments are
closely related to successive viscous corrections to hydro-
dynamics. We have already seen that the lowest order
truncation, i.e., with only L0 non vanishing, is identical
to ideal hydrodynamics. The truncation at order n = 1
yields two coupled equations that can be cast in the form

∂τ ε = −4

3

ε

τ
+

Π

τ
, ∂τΠ =

4

3

η

ττR
− a1

Π

τ
− Π

τR
, (11)

where Π ≡ −c0L1, and we used the leading order re-
lation 4η/(3ττR) = c0b1ε/τ. These are just the second
order viscous hydrodynamic equations, in the version of
Ref. [16] with βππ = a1 = 38/21. The first order viscous
hydrodynamics uses the solution of the second equation
(11) for small τR, viz. Π ' 4η/(3τ) = (16/45)ε(τR/τ).
The much studied (lack of) convergence of the hydrody-
namic gradient expansion in the context of Bjorken flow

concerns the series of the coefficients α
(n)
1 in Eq. (9) for

L1 ∼ Π, as can be deduced from the solution of the cou-
pled equations (11) at large time [5].

Taking higher moments into account is tantamount to
including higher order viscous corrections. For instance,

4 Because of the truncation at n < 20, the fixed point does not lie
exactly at −1, but at −1.00294
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The leading order corresponds to Eq. (14), the next-to-leading
order include the correction due to g3(τ).

the lowest order contribution of L2 to the equation for
L1 reads

c0c1L2

τ
=

c1b2
c0b1ε

Π2

τ
(12)

where we have used Eqs. (9) and (10) to write L2 =

α2(0)/τ2 = α
(0)
2 /(α

(0)
1 c0)2Π2. It can be verified that

the correction (12) coincides with the third order vis-
cous correction derived in Ref. [17]. Obviously, it would
be straightforward to obtain in this way higher order vis-
cous corrections, if needed. Note that since bn ∼ n at

large n, α
(0)
n ∝ n!, and the series of the α

(0)
n suffers from

the same lack of convergence as that of the α
(n)
1 deter-

mining the viscous part of the energy momentum tensor.

Renormalization of η/s. Alternatively, the effects
of the higher moments can be treated as a renormaliza-
tion of the viscosity entering the equations for L0 and
L1. To see that, rewrite the equation for L1 as

∂τL1 = −1

τ
(a1L1 + b1L0)−

[
1 +

c1τR
τ

L2

L1

]
L1

τR
, (13)

with Z−1η/s ≡
[
1 + c1τR

τ
L2

L1

]
. The dimensionless ratio

L2/L1 is analytically related to the attractor g2(τ), the

leading order result being

L2

L1
= − b2

a2 + τ/τR + g2(τ)
. (14)

Sub-leading contributions involving higher gn’s can be
obtained iteratively. The quantity Zη/s in Eq. (13) then
defines a multiplicative renormalizaiton of η/s (or equiv-
alently of τR: τR → Zη/sτR), whose variation with τR
is displayed in Fig. 3. Since successive corrections al-
ternate in sign, the grey band provides an estimate of
the error. At large times, corresponding to a system in
local thermal equilibrium, Zη/s is close to unity. For sys-
tems far-from-equilibrium, Zη/s tends to vanish. Thus,
in systems out-of-equilibrium, higher order viscous cor-
rections effectively reduce the value of η/s entering the
second order viscous hydrodynamic equations, an effect
first pointed out by Lublinsky and Shuryak [18]. As can
be seen on Fig. 1 (grey dashed line), this simple renor-
malization brings the solution of the lowest non trivial
truncation quite close to the exact solution. That is,
with this correction, second order viscous hydrodynam-
ics reproduces accurately the exact solution of the kinetic
theory.

In summary, we have seen that it is possible for vis-
cous hydrodynamics to describe accurately the evolution
of boost invariant plasmas, even in regimes where the
usual conditions of applicability of hydrodynamics are
not satisfied. This is because the viscous hydrodynamic
equations can be mapped into equations for moments of
the momentum distribution that account exactly for the
underlying kinetic theory. Although the present discus-
sion relies on specific properties of Bjorken flow and the
use of a simplified kinetic equation, we expect some gen-
eral features to be robust, such as the existence of the free
streaming and the hydrodynamic fixed points5, joined by
an attractor solution, or the renormalization of the effec-
tive viscosity. Clearly these results may have impact on
the interpretation of heavy ion data and deserve further
study.
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