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Abstract 

Controlling the technological variability on an analytical chain is critical for biomarker 

discovery. The sources of technological variability should be modeled, which calls for 

specific experimental design, signal processing, and statistical analysis. Furthermore, with 

unbalanced data, the various components of variability cannot be estimated with the 

sequential or adjusted sums of squares of usual software programs. We propose a novel 

approach to variance component analysis with application to the matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) technology and use this approach for 

protein quantification by a classical signal processing algorithm and two more recent ones 

(BHI-PRO 1 and 2). Given the high technological variability, the quantification failed to 

restitute the known quantities of five out of nine proteins present in a controlled solution. 

There was a linear relationship between protein quantities and peak intensities for four out of 

nine peaks with all algorithms. The biological component of the variance was higher with 

BHI-PRO than with the classical algorithm (80–95% with BHI-PRO 1, 79–95% with BHI-

PRO 2 vs. 56–90%); thus, BHI-PRO were more efficient in protein quantification. The 

technological component of the variance was higher with the classical algorithm than with 
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BHI-PRO (6–25% vs. 2.5–9.6% with BHI-PRO 1 and 3.5–11.9% with BHI-PRO 2). The 

chemical component was also higher with the classical algorithm (3.6–18.7% vs. < 3.5%). 

Thus, BHI-PRO were better in removing noise from signal when the expected peaks are 

detected. Overall, either BHI-PRO algorithm may reduce the technological variance from 25 

to 10% and thus improve protein quantification and biomarker validation. 

Keywords 

biomarker discovery, experimental design, sum of squares type, technological variability, 

variance components 

1 INTRODUCTION 

A biomarker is “any substance, structure, or process that can be measured in the body or its 

products and influence or predict the incidence of outcome or disease” (WHO, 2001). In the 

recent years, there has been a growing interest in using high throughput technologies to 

discover biomarkers. Biomarker discovery is based on different expressions of biomarkers 

between groups. Depending on the study design, these groups may be either diagnostic groups 

(diseased vs. healthy subjects), prognostic groups (relapsing vs. remitting event-free subjects), 

or theranostic groups (responders vs. nonresponders to a specific treatment). A differential 

expression is usually defined by the ratio of between-group variance to within-group variance, 

which are both components of the biological variance. When technological variance is added 

to biological variance (to within-group variance or to within- and between-group variances), 

this ratio becomes smaller and group comparisons become less powerful and less reliable. 

Controlling the technological variability on analytical chains is thus a critical point in 

biomarker discovery. This is why the sources of technological variability should be modeled 

and taken into account through experimental design and statistical analysis (Cairns, 2011; 

Carr, 2014; Käll & Vitek, 2011; Mercier, Truntzer, & Pecqueur, 2009). 

Thanks to a reasonable cost and a simplified sample preparation, linear MALDI-TOF 

spectrometry is a growing technology in clinical microbiology. It allows identification of 

pathogen biomarkers in body fluids and large-scale detection of proteins present in a complex 

biological mixture. The measurements reflect the proteomic profiles of the samples under 

study. However, due to the low resolution of linear MALDI-TOF instruments, a robust and 

accurate protein quantification remains a challenging task. 

We addressed the question of protein quantification within the context of biomarker discovery 

by linear MALDI-TOF spectrometry. Signal processing is necessary to extract meaningful 

biological information from the observed signal. This processing may fail in removing noise 

from signal and introduce artefacts, which increases the technological variability in measuring 

biomarker abundance. In addition, before signal processing, a purification process is used to 

simplify the biological mixture by chemical treatments and each step of this process is an 

additional source of technological variability. 

Maximizing the ratio biological variance to total variance to improve quantification requires a 

complex modeling in case of unbalanced data and presence of interactions. The usual 

approaches of variance decomposition cannot always estimate the specific contribution of 

biological versus technological sources of variability and their interactions. A global approach 

is proposed here to estimate all the components of the total variance using a specific 

experimental design and a related statistical analysis plan. This approach is applied within the 

context of biomarker discovery to linear MALDI-TOF analytical chain using two types of 

algorithms for signal processing: the classical one and a novel one designed to decrease the 

impact of the technological variability. 
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In the following section, MALDI-TOF technology will be briefly described to identify the 

main sources of variability in its measurements. Section 2.1 will present the data acquisition, 

the experimental plan, and the sources of technological variability considered and will explain 

to which extent biological variability is controlled. Section 2.2 will briefly describe the 

differences between the two types of algorithms used for signal processing. Section 2.3 will 

present the statistical analysis plan explaining the methods used to quantify the variance 

components related to the main sources of variability. 

2 METHODS 

2.1  Data acquisition and experimental plan 

Because the true proteomic profiles in biological samples are unknown, a known biological 

variability of protein quantities was generated here by dilution. These quantities were 

generated from a standard preparation used for quality control, the ClinProt Standard (CPS, 

Bruker Daltronics, Bremen, Germany). The CPS is a mixture of commercial calibrants that 

contains 11 known proteins. A serial dilution of the CPS stock solution was prepared in saline 

with dilution factors 1, 2/3, 1/2, 1/4, 1/8, 1/16, 1/32, which corresponds to 160, 120, 80, 40, 

20, 10, and 5 µL of CPS. The control solution was pure saline. A constant volume (40 µL) of 

each dilution was added to a constant volume of plasma (160 µL of a single plasma sample). 

This way, the volume of CPS used reflects the relative abundance of CPS proteins in the total 

mixture and the relative abundances of native plasma proteins are constant in the serial 

dilution; only the relative abundances of CPS proteins vary with the dilution factor. Herein, 

for clarity or practicality, “relative abundance of CPS proteins” is sometimes replaced by 

“protein quantities.” 

Before signal acquisition, the samples were submitted to chemical treatments that simplify 

them by retaining specific proteins on the basis of their chemical properties. All the samples 

of the serial dilution were submitted to three main successive steps:  

(i) Equalization: To reduce the dynamic range of protein abundances, the samples were 

treated with ProteoMiner technology (BioRad Ref. 136.3012) using direct elution. The 

samples were mixed with a highly diverse library of hexapeptides bound to beads. 

Because the bead capacity limits the binding capacity, highly abundant proteins saturate 

quickly their ligands and excess proteins are washed out during the process. In contrast, 

medium- and low-abundance proteins are concentrated on their specific affinity ligands. 

(ii) Purification: The samples were purified using C8 hydrophobic magnetic beads to retain 

specific proteins according to their biochemical properties. 

(iii) Spotting: The purified samples were spotted on ground steel target plates with an α-

cyano-4-hydroxy-cinnamic matrix. This matrix confers some properties to the sample 

proteins so that they can be ionized. Ions are accelerated into the flight tube and enter a 

magnetic field-free region where they are separated according to their velocities (and 

subsequently sizes) before hitting the detector located at the other end of the tube. The 

signal acquisition is performed spot by spot in a sequential manner by moving the plate 

in front of a laser beam. 

MS spectra were acquired in a linear mode with UltraFlex Extreme MALDI-TOF (Bruker 

Daltonics). A robot with a Multi Chanel Arm (96 needles) was used for purification and 

spotting to decrease the technological variability. This technology is able to analyze 384 

samples in a single acquisition, which was sufficient to acquire the whole dataset (with 

technical replicates) in a single run. 
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The experimental design that explored the technological variability in the MALDI analytical 

chain included technical replicates at each step of the chain: (i) Equalization in 

quadruplicates, (ii) Purification in triplicates, (iii) Spotting in quadruplicates. The 

experimental design for each dilution i is summarized in Figure 1. The total number of 

replicates for each dilution was then 4 × 3 × 4 = 48. The expected number of spectra for all 

dilutions was then 8 × 48 = 384 spectra. The spectra from dilution 1 being of poor quality, we 

kept only 7 × 48 = 336 spectra for analysis. 

 

Figure 1. Experimental design. The experimental design generated the biological variance by 

controlling the relative abundance of proteins via dilution and allowed for the components of 

the technological variance via replicates at each step of the analytical chain 

Moreover, technical controls were added on the acquisition target plates to ensure the quality 

and reproducibility of the acquisition step. These controls followed the same preanalytical 

process. 

2.2 Signal processing 

Once acquired in a linear mode, the spectra were processed to extract the meaningful 

biological information from the observed signal by retrieving the artefacts of technical origin 

using three algorithms for signal processing: one classical algorithm and two versions of a 

novel one. The classical signal-processing algorithm was developed by a proteomic platform 

(CLIPP, Dijon, France). The new signal processing, “BHI-PRO” was developed as part of 
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BHI-PRO project dedicated to Bayesian hierarchical inversion for mass spectrometry and its 

application to discovery and validation of new protein biomarkers (Dridi et al., 2014; Gerfault 

et al., 2014; Gerfault et al., 2013; Grangeat et al., 2013; Szarcherski, 2012; Szarcherski et al., 

2013; Szacherski et al., 2014). 

After spectra alignment, each spectrum was analyzed according to the classical methods of 

data processing (Coombes, Baggerly, Morris, Dubitzky, & Berrar, 2007; Roy, Truntzer, 

Maucourt-Boulch, Jouve, & Molinari, 2011). The last stage was peak list extraction. The 

extracted peak list is then used as a list of variables in statistical analysis. Usually, peak list 

extraction is performed in two steps: first, baseline removal (Mazet, 2004; Morháč, 2009; 

Zhang, Chen, & Liang, 2010), then peak selection using the baseline-free spectrum 

(Antoniadis, Bigot, & Lambert-Lacroix, 2010; Renard, Kirchner, Steen, Steen, & Hamprecht, 

2008; Yang, He, & Yu, 2009). The removal of the baseline is often a critical task because it 

may introduce irreversible artefacts that corrupt the peak-finding procedure. To alleviate this, 

the new BHI-PRO algorithms perform the two steps simultaneously. 

With the classical algorithm, the first stage of signal processing was denoising; that is, 

removing the random electronic noise. This was performed with the wavelets methodology. 

Each spectrum was decomposed into detail and approximation coefficients. Detail coefficients 

were thresholded so as to retain only the highest coefficients. Once thresholded, the retained 

coefficients were back-transformed into spectra. Once denoised, the subtraction of the 

baseline was performed so as to remove the chemical noise. For this, smoothing splines were 

fitted to local minima of the spectra. This smoothed signal was then subtracted from the 

original signal. Normalization then aimed at setting all of the spectra on the same scale by 

dividing each spectrum by the standard deviation of all spectrum intensities (Meuleman et al., 

2008). All the spectra were then averaged to calculate a mean spectrum and determine the 

peak positions. The peak intensities were then measured independently in each spectrum 

using the peak area (Morris, Coombes, Koomen, Baggerly, & Kobayashi, 2005). 

The BHI-PRO algorithm is available in two versions: BHI-PRO 1 processes a single spectrum 

at a time whereas BHI-PRO 2 is able to process several spectra at the same time. Contrarily to 

the classical algorithm, BHI-PRO algorithms perform simultaneously the computation of the 

baseline, the deconvolution, and denoising. For reference, see the open source implementation 

available on GitHub (https://github.com/vincent-picaud/Joint_Baseline_PeakDeconv). 

The input spectra are stacked column by column in a matrix y. The BHI-PRO algorithms 

solve an optimization problem to find two matrices xp and xb. 

The columns of the xp matrix are sparse vectors in which nonzero components define the 

position (index of the component) and the height (magnitude of the component) of the 

deconvolved peaks. The columns of the xb matrix are vectors that store the computed baseline.  

              
       

 

 
                   

 

 
      

   
  

 
     

 
            

In this equation, the Point Spread Function (PSF) is the peak shape, i.e., Gaussian-shaped 

peak, D is a finite difference matrix used to enforce baseline xb smoothness, and Pp (xp) is a 

Lasso-like penalty term (Yuan & Lin, 2006) used to enforce deconvolved peak xp sparsity. 

With BHI-PRO 1, there is only one column, thus y, xp, and xb are vectors. The penalty term is:  

            
 
 

and the solved problem is similar to a Lasso regression. A first run was performed on the 

mean spectrum of all spectra. The detected peaks were then used to permit only certain 
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common peak positions. The algorithm was then run on each spectrum with this restricted set 

of peak positions. 

With BHI-PRO2, the penalty term is:  

                  
 

 

 

and the solved problem is similar to a group Lasso regression. This regression groups peaks 

that share the same positions (the same i-row that represents a common m/z value). BHI-

PRO 2 was directly applied to the whole set of spectra. 

Both versions of BHI-PRO were applied after spectra alignment and normalization of the total 

ionic current. The number of selected peaks depended essentially on the Lasso regularization 

parameter λ1. This parameter was selected by visual inspection and set to a low value to insure 

that even small peaks are picked. For total-ion-current-normalized spectra, λ1 = 2.5 × 10
−5

, 

λ2 = 10
−4

, and μ = 1500 were used in all computations. 

All three quantification approaches (i.e. classical, BHI-PRO 1, and BHI-PRO 2) were applied 

to the experimental data. The results of the three algorithms provided three estimations of 

each protein quantity. As the m/z ratios of CPS proteins are already known, the positions of 

the peaks that should be detected in the chosen mass window (1000–10,000 Da) are already 

known too. Their positions on the m/z axis were 1047, 1297, 1349, 1619, 2094, 2467, 3150, 

5734, and 8602 Da. 

2.3  Statistical analysis plan 

The performance of the three algorithms was first tested through checking whether the effect 

of dilution (i.e. division of protein quantities) can be reflected by the peak intensities; then 

their abilities to minimize the technological part versus the biological part of the variance 

were compared. 

The criteria used to evaluate the performance of the quantification method were: (i) the 

biological part of the variance (stemming from the serial dilution); (ii) the technological part 

of the variance (according to the replicates involved in the analytical chain); and, (iii) the 

modeling error. 

The investigation of the technological part of the variance included the parts of the variance 

due to two chemical steps of the MALDI analytical chain: equalization and C8 purification. 

The third step (spotting) was allowed for through the residual variance. 

Only peaks with a monotone relationship between peak intensities and protein quantities were 

selected for the statistical analysis. Four peaks were then concerned and were the same with 

the three algorithms under comparison. Their positions on the m/z axis were: 1349, 2094, 

3150, and 5734 Da. 

A log-transformation of the peak intensities was used to stabilize the variance. This led to 

exclude from the analysis the control solution (protein quantity = 0) and the lost values 

generated by null intensities. As twofold dilutions were used (but for dilution factor 2/3), a 

log2 transformation was applied to the peak intensity y and the protein quantity x. 



The control data (relative to the sample devoid of proteins) were used to compare graphically 

(boxplots) the peak intensities observed (before log2 transformation) and check whether the 

relative concentration of a protein is higher than in the control solution. This proved untrue in 

five peaks out of 9. 

For each algorithm and each peak, a linear regression model was built to link the peak 

intensity to the protein quantity. Applying the log2-log2 transformation, a linear relationship 

on the transformed scale (i.e. log2 y = β0 + β1 log2 x) corresponds to a polynomial relationship 

on the original scale (i.e. y =   
 

   
 

). When the slope coefficient β1 equals 1 on the log2-

log2 scale, the relationship is also linear on the original scale because y =   
 

  x. 

The CPS quantity is known but the true abundance of the proteins in the mixture is not exactly 

known because the chemical steps change the initial abundances. This error on protein 

abundance is a Berkson error; this means that the estimations of the slope and the intercept of 

the linear relationship will not be biased but that an error on x (the protein abundance) will be 

transferred to y (Berkson, 1950; Carroll, Ruppert, & Stefanski, 1995). 

Because the chemical steps may influence the relationship between protein abundance and 

peak intensity, the slopes, and intercepts were estimated for each equalization replicate and 

each C8 replicate nested in the equalization factor in a hierarchical model. Because of 

convergence problems, a fixed-effects model was used instead of a mixed-effects model in the 

variance component analysis. This is advantageous, especially when the random factor has 

less than five levels, in which case the estimates of the variance components may be 

unreliable (Piepho, Bϋchse, & Emrich, 2003). The R code used for the variance component 

analysis on simulated data with both models is available as Supplementary Material. 

A simple coding was used for the contrast matrix to enable estimating a mean intercept and a 

mean slope. Model 1 presents these means and deviations from these means in two terms, the 

first one for the intercept and the second (in brackets) for the slope (See Table 1). 

Model Formula 

Model 1                                                     

Model 2                     

Model 3                               

Model 4                                    

Model 5                                   

Table 1. Models used to link peak intensity to protein abundance 

In this model, i, j, k, and r are the indices for, respectively, the protein quantity, the 

equalization replicate, the purification replicate nested in equalization, and the spotting 

replicate. E is the equalization factor, P the Purification C8 factor, β0 the intercept coefficient, 

and β1 the slope coefficient. Finally, the residual error is      ∼ (0,  ′
2
) 

To calculate the slope of each equalization, we added the mean slope coefficient to the slope 

coefficient of the corresponding equalization. There were three slope coefficients for four 

equalizations; the fourth slope coefficient was obtained by subtracting the sum of the three 

slope coefficients from the mean slope coefficient. The coefficients of Model 1 (Table 1) were 

considered as significantly different from zero when p < 0.05 in Wald test. 
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In the graphical representation of the relationship between the protein quantity and the 

observed peak intensity on the log2-log2 scale (Fig. 2), the log2 intensities of the peaks were 

standardized (centered on the mean and divided by the standard deviation) to improve the 

detection of the outliers seen on the graphs (the distance was expressed in standard 

deviations). The global linear trend (mean slope plus mean intercept) represents the biological 

effect (main effect). The points’ dispersion on the vertical axis represents the other sources of 

variability (nonbiological variance and its interaction with the biological variance). The 

variability of the slopes represents the technological variability (and its interaction with the 

biological variability) induced by equalization and purification whose effects depend on the 

properties of each protein. This variability was represented by 12 straight lines (4 

equalizations × 3 purifications). 
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Figure 2. Protein-signal relationship. Linear relationship between the abundance of proteins 

and peak intensity with the three algorithms (classical, BHI-PRO1, and BHI-PRO2) in four 

peaks: 1349, 2094, 3150, and 5734 Da (m/z position in the spectrum). Both axes are expressed 

on a log2 scale. In each panel, 12 lines represent the linear relationships relative to three 

purifications within each of four equalizations. The legend in the far right panel corresponds 

to the equalizations 

To validate the linear model, we carried out a classical graphical analysis of the residuals (not 

shown) and checked the independence of the residuals and the homogeneity of the variance 

across the whole range of observations. Three outliers were excluded (values between 6 and 

11 standard deviations under the mean intensity of peak 2094 Da with algorithm BHI-PRO 2). 

The final phase was the decomposition of the variance into biological variance and 

technological variance. The experimental design is unbalanced because of the lost values 

generated by null intensities or the exclusion of a few outliers. Imbalance introduces a 

correlation between the main effects and their interactions. The classical approaches that use 

sequential or adjusted sums of squares (most software programs) cannot estimate the variance 

components of several sources of variation (called “factors” in the analysis of variance) and 

their interactions in unbalanced designs. Using sequential sums of squares (“Type I” in most 

software programs), the first factor in the model is assigned all of the shared variation; the 

estimation of the main effects depends then on the order of the factors. Using the adjusted 

sum of squares with higher level terms (interactions) included in the model (“Type III” by 

default in many software programs) means that each factor is adjusted on the others and on 

their interactions but then the relationships between higher- and lower order terms (i.e. 

marginality) is lost. The presence of an interaction between two factors means that both 

factors are important but that the effect of each depends on the other. The adjusted sum of 

squares with higher level terms omitted (“Type II”) is preferable to associate each factor with 

the variances of its main effect and the variances of their interactions but the sum of squares 

will still depend on the factor order. 

The analysis of variance (ANOVA) for unbalanced data (Hector, von Felten, & Schmid, 

2010; Langsrud, 2003; Nelder & Lane, 1995; Shaw & Mitchell-Olds, 1993) was used to 

quantify the components of the variance of protein abundance using adjusted sums of squares 

with higher level terms omitted (Hector et al., 2010) together with nested series of sequential 

models (Nelder & Lane, 1995). A specific method was applied to include the effects of the 

interactions on each part of the variance attributable to a given factor. The adjusted main 

effects were estimated by comparing the complete linear model (Model 1) with the 

corresponding nested models (Models 2–5). In these nested models, Model 2 included only 

the effect of the protein quantity, Model 3 only the effect of the chemical steps (equalization 

and purification), and Model 4 both effects without interaction between them. Model 5 was 

used to separate the effects of the two chemical steps. 

Table 2 presents the components of the analysis of variance. The adjusted sum of squares was 

calculated: (i) for protein quantity and its interaction with the chemical steps through the 

difference between Model 3 and Model 1 residual sums of squares (RSS); (ii) for the chemical 

steps and their interactions with the protein quantity through the difference between Model 2 

and Model 1 RSS; (iii) for the interaction between the protein quantity and the chemical steps 

through the difference between Model 4 and Model 1 RSS. The same process was applied to 

separate the two components of the chemical source of variance. 
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Source of 

variation 
DF Adjusted sum of squares 

Biology + 

interaction 

JK SS(x + x(E + P(E))|E, P(E))= RSS(Model 3) – RSS(Model 1) 

Chemistry + 

interactions 

2(JK-1) SS(E + P(E) + x(E + P(E))|x)= RSS(Model 2) – RSS(Model 1) 

Equalization + 

interaction 

2(J-1) SS(E + xE|x, P(E), xP) = RSS(Model 2) – RSS(Model 5) 

Purification + 

interaction 

2J(K-1) SS(P(E) + xP(E)|x, E, xE) = RSS(Model 5) – RSS(Model 1) 

Interaction (JK-1) SS(x(E + P(E))|x, E, P(E)) = RSS(Model 4) – RSS(Model 1) 

Residual IJKR-2JK RSS(Model 1) =                
 

     

Measurement 

error 

(R-1)IJK                 
 

     

Lack of fit IJK-2JK                  
 

     

DF, degrees of freedom (balanced design); I, number of samples; J, number of equalizations; 

K, number of purifications per equalization; R, number of replicates;         , the means of 

replicate measurements for each sample and each purification;        ; the predicted 

measurements. RSS, residual sums of squares, SS, sums of squares. 

Table 2. Components of the analysis of variance 

The residual variance was split into two components (Weisberg, 2005): (i) the measurement 

error, calculated as the sum of the squares of the differences between the spot values and their 

means. It represents the remaining technological error when the chemical steps are identical 

and depends on the effect of the spotting step, the instrumental error, and the error of the 

algorithm in estimating the peak intensity; (ii) the lack of fit to the model. 

Each variance component was expressed as percentage of the total variance and used as 

criterion to compare the algorithms. 

The term that includes the mean intercept and the mean slope, β0 + β1 x, represents the linear 

relationship between observed peak intensities and protein quantities (on the log2-log2 scale), 

which leads to the biological variance generated by dilution. The biological variance of the 

peak intensities is expected to be proportional to the squared slope coefficient and to vary 

with the equalization and purification replicates. The biological variance was defined as the 

variance explained by protein abundance in the dilution series and its interaction with the 

chemical steps. 

Some components of the technological variability are: (i) the variability of the intercept and 

slopes around their general means due to the chemical steps; that is an equalization effect,  

β0j Ej + β1 Ej x and a purification effect within equalization, β0,k(j) Pk(Ej) + β1,k(j) Pk(Ej)x; this 

leads to the part of variance attributable to the chemical steps (chemical variance); and, (ii) 

the measurement error due to the effect of the spotting step, the instrumental error (Mass 

Spectrometer), and the algorithmic error (peak intensity estimation). 

The total technological variance was defined as the variance explained by the chemical 

replicates, the variance of its interaction with the biological effect, and the measurement error. 

https://onlinelibrary.wiley.com/doi/full/10.1002/bimj.201600198#bimj1834-bib-0027


The statistical analyses were implemented in R packages stats, alr3, and lme4 (freely 

available from CRAN, https://cran.r-project.org/web/packages/). R scripts of all analyses are 

given in the Supplementary Material. 

3  RESULTS AND DISCUSSION 

3.1  Linearity analysis 

Figure 2 shows that there were trends toward a linear relationship between protein quantities 

and observed peak intensities. 

For a given protein quantity, the dispersion of the values along the vertical axis varied 

between peaks but was greater with the classical algorithm (first row of Fig. 2) than with both 

BHI-PRO algorithms (rows 2 and 3). The classical algorithm had thus a greater variability of 

slopes. This variability depended on the equalization replicate (the slopes of equalizations 1 

and 2 were more homogeneous than the slopes of other equalizations whatever the peak 

position). Algorithm BHI-PRO 1 had the lowest variability along the mean regression straight 

line whatever the peak, thus the smallest dispersion of straight lines. 

Table 3 shows slope values close to 1. These slopes varied with the equalization and the mean 

slope varied between peaks. For peak 3150 Da, the slopes were greater with BHI-PRO 

algorithms than with the classical algorithm (the 95% confidence intervals did not overlap). 

The overall slope of the relationship between protein abundances and peak intensities was not 

equal to 1 on the log2-log2 scale (the 95% CI did not include value 1) in most cases and 

varied between peaks. This means that there is a polynomial relationship between the peak 

area and protein abundance and that the value of exponent β1 is peak-specific. However, the 

confidence interval computed for a particular sample does not necessarily include the true 

value of the parameter because the observed data are random samples from a true population. 

The intercept and slope variabilities around the mean linear relationship, as evidenced by the 

dispersion of the intensities around the mean regression line, was interpreted as a 

technological variability (precisely, chemical variability plus its interaction with biological 

variability). The two chemical steps (equalization and purification) affected the relative 

protein abundance in the samples. 

 

Algorithm and 

peak (m/z) 

Mean slope (95% CI) Slopes by equalization (E1–E4) 

E1 E2 E3 E4 

Classical  

1349 0.74 (0.67–0.82) 0.82 1.00 0.49 0.66 

2094 0.69 (0.62–0.75) 0.79 0.86 0.44 0.67 

3150 1.01 (0.96–1.05) 0.94 1.15 0.80 1.13 

5734 1.49 (1.43–1.65) 1.42 1.61 1.31 1.61 

BHI-PRO 1  

1349 0.84 (0.78–0.89) 0.79 0.84 0.79 0.92 

2094 0.75 (0.70–0.79) 0.71 0.77 0.69 0.82 

3150 1.19 (1.16–1.23) 1.12 1.20 1.13 1.32 

5734 1.44 (1.40–1.47) 1.41 1.51 1.48 1.35 
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BHI-PRO 2  

1349 0.80 (0.76–0.85) 0.81 0.84 0.79 0.77 

2094 1.20 (0.93–1.48) 1.74 1.35 0.79 0.94 

3150 1.17 (1.14–1.20) 1.09 1.16 1.12 1.31 

5734 1.54 (1.49–1.58) 1.45 1.54 1.52 1.62 

Table 3. Estimations of the slope coefficient in Model 1 with the three algorithms (classical, 

BHI-PRO 1 and BHI-PRO 2) and the four peaks (label = m/z position); general mean and 

equalization means (E1–E4) 

3.2  Variance decomposition 

Table 4 shows that the biological part of the variance varied between peaks; it was higher for 

peaks 3150 and 5734 Da than for other peaks whatever the algorithm. The biological part was 

also higher with BHI-PRO algorithms than with the classical algorithm (80% to 95% with 

BHI-PRO 1, 79% to 95% with BHI-PRO 2 vs. 56% to 90% with the classical algorithm). 

These results are coherent with the results seen with the mean slopes because the mean 

squared error of an estimator consists of bias squared plus variance. However, in the variance 

decomposition method, both sources of error are considered. This means that BHI-PRO 

algorithms were more efficient than the classical algorithm in protein quantification when 

peaks were detected. This result was expected because these algorithms were specifically 

developed to increase the biological part of the variance. 

Algorithm 

and peak 

(m/z) 

Theoretical 

abundance 

+ 

interaction 

Interaction 

Equalization 

+ 

interaction 

Purification 

+ 

interaction 

Total 
Measurement 

error* 
Total 

Classical  

1349 55.58 8.97 5.77 12.91 18.68 6.65 25.34 

2094 59.99 5.92 6.10 7.23 13.33 6.65 19.98 

3150 84.93 2.94 4.32 2.25 6.57 1.65 8.22 

5734 90.00 2.35 1.11 2.47 3.58 2.55 6.13 

BHI PRO 1        

1349 82.29 0.68 0.43 2.55 2.98 6.64 9.61 

2094 79.68 1.53 0.36 2.18 2.53 4.44 6.98 

3150 94.19 0.91 0.84 0.87 1.71 1.24 2.95 

5734 94.83 0.88 0.17 1.25 1.42 1.06 2.48 

1349 82.29 0.68 0.43 2.55 2.98 6.64 9.61 

BHI PRO 2  

1349 78.86 0.83 0.31 3.04 3.35 8.55 11.9 

2094 
#
 79.42 1.14 0.48 1.71 2.20 5.09 7.29 

3150 94.68 1.28 0.93 1.35 2.28 0.87 3.15 

5734 93.54 1.66 0.26 2.12 2.38 1.08 3.46 

Variance decomposition with the three algorithms (classical, BHI-PRO 1, and BHI-PRO 2) 

and the four peaks (label = m/z position). Variance parts are expressed in percentages of the 
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total variance of peak intensity. The wording “+interaction” refers to the interaction of the 

considered factor with biological variance. In the second column, the interaction is with 

chemical variance. 
*
Instrument and algorithm, 

†
Deviation from linearity (lack of fit), 

#
Three 

outliers excluded. 

The total is not strictly equal to 100% because of the double counting of the interactions. The 

total is > 100% when the effects of the factors were positively correlated and < 100% when 

the effects were negatively correlated. 

Table 4. Variance decomposition into biological and technological according to the steps of 

the MALDI-TOF analytical chain 

The technological part of the variance varied between peaks; it was higher for peaks 1349 and 

2094 Da than for other peaks whatever the algorithm. The technological part was 

systematically higher with the classical algorithm than with BHI-PRO algorithms (6% to 25% 

with the classical algorithm vs. 2.5% to 9.6% with BHI-PRO 1 and 3.5% to 11.9% with BHI-

PRO 2). The chemical part of the variance was always higher with the classical algorithm 

than with BHI-PRO algorithms (3.6% to 18.7% vs. less than 3.5%). The measurement error 

(due to the spotting step, the mass spectrometer error, and the algorithmic error in estimating 

the peak area) was also higher with the classical algorithm than with both BHI-PRO 

algorithms in three out of four peaks. This means that BHI-PRO algorithms were better than 

the classical algorithm in removing noise from the original signal. 

BHI-PRO 1 algorithm was more efficient than the classical algorithm because it revealed a 

higher biological variance (up to 95% of the total variance) and a lower technological 

variance (< 10% of the total variance). The latter variance included both components of the 

chemical variance (the equalization variance was divided by 4 and the chemical variance 

divided by 2) as well as the measurement error. The part of modeling error (lack of fit or 

deviation from linearity) was divided by 2; thus, the linear estimator was less biased with 

BHI-PRO 1 than the classical algorithm. 

In absence of outliers, BHI-PRO 1 and BHI-PRO 2 were close in performance regarding all 

variance components. However, we had to exclude three outliers of BHI-PRO 2 measures of 

one peak; otherwise, the technical part of the variance would have increased to 71% instead of 

7.3%. 

Replacing the null intensities by the minimum of the observed intensity values showed that 

BHI-PRO 1 was less performant than BHI-PRO 2 but still more performant than the classical 

algorithm in three peaks out of four. With BHI-PRO 1, the biological part of the variance was 

58.44%, 73.48%, 81.39%, and 92.07% for peaks 1349, 2094, 3150, and 5734 Da, 

respectively. BHI-PRO 2 was then the most performant algorithm because null intensities 

were less frequent (even absent) than with BHI-PRO 1. 

In comparison with the classical algorithm, the two BHI-PRO algorithms were better in 

reducing the technological part of the variance of the peak intensities and the modeling error 

when peaks were detected. When peaks are not detected, caution is required in interpreting 

variance components because the slope estimation may be biased. 

Regarding the four peaks kept in the study, the linear model was able to explain a major part 

of the variance of protein relative abundance. 

One limitation of the present work was the exclusion of null-value peak areas in the modeling 

on the log scale. As no null intensities were observed with the classical algorithm, this may be 

seen as favoring BHI-PRO algorithms because the latter puts undetected peaks to 0, especially 

BHI-PRO 1, while the former puts a nonnull value. Replacing the null intensities by the 



minimum nonnull values decreased the performance of BHI-PRO algorithms when null 

intensities were frequent. This replacement distorts the normal distribution of the residuals 

and calls for a more complex model able to take into account the resulting mixed distribution 

(a solution would be the use of a method of normalization for censored data). However, the 

replacement of null intensities with BHI-PRO would force the quantification despite the 

assignment of value zero to noise by the LASSO penalization and would reintroduce noise. 

Another limitation was the use of fixed effects models rather than mixed effects models 

because random effects are generalizable to other similar settings. When only a small number 

of replicates per factor are available, the mixed models may not converge. In the present study 

simulations, increasing the number of replicates to 5 per factor was not sufficient to overcome 

this problem. Nearly 10 replicates per factor were necessary to achieve convergence. 

However, when the models converged, the results of the variance components analysis were 

very similar to the results obtained with fixed effects models. 

The impact of the signal processing steps was not studied here. A new experimental plan with 

replicates for each step of signal processing would allow integrating these sources of 

variability in the set of nested models. The set of models would necessarily change with the 

algorithm (or pipeline) used for signal processing. 

Another interesting extension of this experiment would be to investigate the effect of 

introducing another type of biological variability (e.g. patient variability) on the relationship 

between protein relative abundance and signal intensity. This would render the experiment 

closer to the clinical needs. 

4  CONCLUSIONS 
For five proteins out of nine, the MALDI-TOF technology failed to restitute the biological 

effect given the high technological variability whatever the algorithm used for signal 

processing. For the four other proteins, the total technological variance reached up to 25% of 

the total variance of the measurements. When a biological effect is present, protein 

quantification can be improved at the signal processing step. Choosing the most performant 

signal-processing algorithm can reduce the technological variance down to about 10% of the 

total variance. In other words, in calculating the power of a biomarker discovery study using 

MALDI-TOF, the within-group variance would better be increased by about 10%, which 

would necessary require a larger sample size. 

The present approach that includes the simultaneous development of a specific experimental 

design and a related model-based variance decomposition is able to improve the powers of 

studies that use other technologies for biomarker validation such as selected reaction 

monitoring (SRM). 

ACKNOWLEDGMENTS 

This work was supported by the “Agence Nationale pour la Recherche” (Grant ANR 2010 

BLAN 0313). The authors thank Aline Jeannin for sample processing, Pauline Salloignon for 

signal processing with the classical algorithm, Laurent Gerfault and Jean-Philippe Charrier for 

fruitful discussions regarding the BHI-PRO project, and Jean Iwaz (Hospices Civils de Lyon) 

for the revision of the final version of the manuscript. 

CONFLICT OF INTEREST 

The authors have declared no conflict of interest. 

REFERENCES 



Antoniadis, A., Bigot, J., & Lambert-Lacroix, S. (2010). Peaks detection and alignment for 

mass spectrometry data. Journal de la Société Françaisede Statistique,151, 17–37. 

Berkson, J. (1950). Are there two regressions? Journal of the American Statistical 

Association, 45, 164–180. 

Cairns, D. A. (2011). Statistical issues in quality control of proteomic analyses: Good 

experimental design and planning. Proteomics,11, 1037–1048. 

Carr, S. A. (2014). Targeted peptide measurement in biology and medicine: Best practices for 

mass spectrometry-based assay development using afit-for-purpose approach. Molecular and 

Cellular Proteomics,13, 907–917. 

Carroll, R. J., Ruppert, D., & Stefanski, L. A. (1995). Measurement error in nonlinear models. 

London: Chapman & Hall/CRC Press. 

Coombes, K., Baggerly, K., Morris, J. M., Dubitzky, M. G., & Berrar, D. (Eds.) (2007). Pre-

processing mass spectrometry data. Fundamentals ofdata mining in genomics and proteomics. 

Boston: Kluwer. 

Dridi, N., Giremus, A., Giovannelli, J. F., Truntzer, C., Roy, P., Gerfault, L., ... Grangeat, P. 

(2014). Variable selection for noisy data applied inproteomics. Florence, Italy: ICASSP. 

Gerfault, L., Klich, A., Mercier, C., Roy, P., Giovannelli, J. F., Giremus, A., ... Grangeat, P. 

(2014). Statistical analysis of Bayesian hierarchicalinversion for MRM protein quantification 

and QDA serum sample classification. Baltimore, USA: 62nd ASMS Conference on Mass 

Spectrometry and Allied Topics. 

Gerfault, L., Szacherski, P., Giovannelli, J. F., Giremus, A., Mahé, P., Fortin, T., ... Grangeat, 

P. (2013). Assessing MRM protein quantification andserum sample classification 

performances of a Bayesian hierarchical inversion method on a colorectal cancer cohort. 

Saint-Malo, France: EuPA. 

Grangeat, P., Giovannelli, J. F., Roy, P., Picaud, V., Truntzer, C., Lemoine, J., ... Lacroix, B. 

(2013). Convergence entre l'analyse biostatistique etles méthodes d'inversion hiérarchique 

bayésienne pour la recherche et la validation de biomarqueurs par spectrométrie de masse. 

Brest, France: XXIVème Colloque GRETSI. 

Hector, A., von Felten, S., & Schmid, B. (2010). Analysis of variance with unbalanced data: 

An update for ecology and evolution. Journal of Animal Ecology,79, 308–316. 

Käll, L., & Vitek, O. (2011). Computational mass spectrometry-based proteomics. PLoS 

Computational Biology,7, e1002277. 

Langsrud, Ø. (2003). ANOVA for unbalanced data: Use type II instead of type III sums of 

squares. Statistics and Computing,13, 163–167. 

Mazet, V., Brie, D., & Idier, J. (2004). Baseline spectrum estimation using half-quadratic 

minimization. In Proceedings of the European Signal Pro-cessing Conference, Vienna, 

Autriche, September 2004. 

Mercier, C., Truntzer, C., & Pecqueur, D. (2009). Mixed-model of ANOVA for measurement 

reproducibility in proteomics. Journal of Proteomics,72, 974–981. 

Meuleman, W., Engwegen, J. Y., Gast, M. C., Beijnen, J. H., Reinders, M. J., & Wessels, L. 

F. (2008). Comparison of normalisation methods for surface-enhanced laser desorption and 

ionisation (SELDI) time-of-flight (TOF) mass spectrometry data.BMC Bioinformatics, 9, 88. 



Morháč, M. (2009). An algorithm for determination of peak regions and baseline elimination 

in spectroscopic data. Nuclear Instruments and Methodsin Physics Research Section A, 600, 

478–487. 

Morris, J. S., Coombes, K. R., Koomen, J., Baggerly, K. A., & Kobayashi, R. (2005). Feature 

extraction and quantification for mass spectrometry inbiomedical applications using the mean 

spectrum. Bioinformatics, 21, 1764–1775. 

Nelder, J. A., & Lane, P. W. (1995). The computer analysis of factorial experiments: In 

Memoriam—Frank Yates. The American Statistician, 49, 382–385. 

Piepho, H. P., Büchse, A., & Emrich, K. (2003). A Hitchhiker's guide to mixed models for 

randomized experiments. Journal of Agronomy and Crop Science, 189, 310–322. 

Renard, B. Y., Kirchner, M., Steen, H., Steen, J. A., & Hamprecht, F. A. (2008). NITPICK: 

Peak identification for mass spectrometry data. BMC Bioinformatics, 9, 355. 

Roy, P., Truntzer, C., Maucourt-Boulch, D., Jouve, T., & Molinari, N. (2011). Protein mass 

spectra data analysis for clinical biomarker discovery: A global review. Briefings in 

Bioinformatics, 12, 176–186. 

Shaw, R. G., & Mitchell-Olds, T. (1993). ANOVA for unbalanced data: An overview. 

Ecology, 74, 1638–1645. 

Szacherski, P., Gerfault, L., Giovannelli, J. F., Giremus, A., Mahé, P., Fortin, T., ... Grangeat, 

P. (2013). MRM protein quantification and serum sample classification. 61st ASMS 

Conference on Mass Spectrometry and Allied Topics; Minneapolis, USA. 

Szacherski, P., Giovannelli, J. F., Gerfault, L., Mahé, P., Charrier, J. P., Giremus, A., ... 

Grangeat, P. (2014). Classification of proteomic MS data as Bayesian solution of an inverse 

problem. IEEE Access, 2, 1248–1262. 

Szacherski, P., Giovannelli, J. F., Giremus, A., & Grangeat, P. (2012). Robust MS serum 

sample classification in proteomics by the use of inverse problems. IEEE International 

Workshop on Genomic Signal Processing and Statistics; Washington, USA. 

Weisberg, S. (2005). Weights, lack of fit, and more. In: Applied Linear Regression (3rd ed., 

pp. 96–114). New York: Wiley. 

WHO. (2001). International programme on chemical safety biomarkers in risk assessment: 

Validity and validation. Retrieved from 

https://www.inchem.org/documents/ehc/ehc/ehc222.htm 

Yang, C., He, Z., & Yu, W. (2009). Comparison of public peak detection algorithms for 

MALDI mass spectrometry data analysis. BMC Bioinformatics, 10, 4. 

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped 

variables. Journal of the Royal Statistical Society. Series B Statistical Methodology, 68, 49–

67. 

Zhang, Z. M., Chen, S., & Liang, Y. Z. (2010). Baseline correction using adaptive iteratively 

reweighted penalized least squares. Analyst, 135, 1138–1146. 

https://www.inchem.org/documents/ehc/ehc/ehc222.htm

