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ABSTRACT
Non-Gaussianities of dynamical origin are disentangled from primordial ones using the for-
malism of large deviation statistics with spherical collapse dynamics. This is achieved by
relying on accurate analytical predictions for the one-point probability distribution function
and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias
extends the idea of halo bias to intermediate density environments and voids as underdense
regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale
dependence relevant for both high- and low-density regions, which is predicted analytically.
The statistics of densities in spheres are built to model primordial non-Gaussianity via an
initial skewness with a scale dependence that depends on the bispectrum of the underlying
model. The analytical formulas with the measured non-linear dark matter variance as input
are successfully tested against numerical simulations. For local non-Gaussianity with a range
from fNL = −100 to +100, they are found to agree within 2 per cent or better for densities
ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h−1 down to z = 0.35. The validity of the large
deviation statistics formalism is thereby established for all observationally relevant local-type
departures from perfectly Gaussian initial conditions. The corresponding estimators for the
amplitude of the non-linear variance σ 8 and primordial skewness fNL are validated using a
fiducial joint maximum likelihood experiment. The influence of observational effects and the
prospects for a future detection of primordial non-Gaussianity from joint one- and two-point
densities-in-spheres statistics are discussed.

Key words: methods: analytical – methods: numerical – large-scale structure of Universe –
cosmology: theory.

1 IN T RO D U C T I O N

Deviations from primordial Gaussianity are key to understand the
physics of the early Universe, in particular inflation, and will soon
be tested via a number of ambitious, deep, wide-field large-scale
structure (LSS) surveys like Euclid (Laureijs et al. 2011), DES
(Sánchez et al. 2014), DESI (Levi et al. 2013), LSST (LSST
Science Collaboration 2009) and SPHEREx (Doré et al. 2014).
To pin down the parameters that characterize primordial non-

� E-mail: cu226@cam.ac.uk

Gaussianity (pNG) as accurately as possible, it is wise to consider
the information contained within different probes of LSS in light of
our ability to disentangle primordial from non-linear effects caused
by gravitational evolution.

This paper revisits the question of how much information about
pNG can be extracted from simple one- and two-point densities-
in-spheres measurements within the LSS of matter, hence without
shape information from the three-point correlation function or the
bispectrum. More precisely, it will consider the full one-point proba-
bility distribution function (PDF) of dark matter densities in spheres
thereby consistently including cumulants of all orders. It updates
and generalizes the analyses based on perturbative predictions for
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skewness in Fry & Scherrer (1994) and Durrer et al. (2000) and
kurtosis in Chodorowski & Bouchet (1996), spherical-collapse in-
spired predictions for cumulants in Gaztanaga & Fosalba (1998) or
the full PDF derived from a steepest descent approach in Valageas
(2002b), as well as the purely simulation-based approach to a joint
study of variance, skewness and kurtosis in Mao et al. (2014). It
will relate the statistics of densities in spheres (a refined wording
for densities-in-cells emphasizing the symmetry of the shape of
the cells; see e.g. Bernardeau, Pichon & Codis 2014) to previous
studies of PDFs of the dark matter density (Grossi et al. 2008) and
related works on the impact of pNG on abundances of haloes (as
well as galaxies and clusters residing therein) from Press–Schechter
or excursion set based theories (Matarrese, Verde & Jimenez 2000;
Scoccimarro, Sefusatti & Zaldarriaga 2004; LoVerde et al. 2008;
Jimenez & Verde 2009; Lam & Sheth 2009; Lam, Sheth &
Desjacques 2009; D’Amico et al. 2011a) and voids as well as galax-
ies residing therein (Kamionkowski, Verde & Jimenez 2009; Song &
Lee 2009; D’Amico et al. 2011b).

Extending one-point statistics estimators, this paper also deter-
mines the two-point sphere bias describing the clustering of den-
sities in spheres in the presence of pNG. Building upon previous
works on scale-dependent halo bias in real and redshift space (in
particular Dalal et al. 2008; Matarrese & Verde 2008; Desjacques,
Seljak & Iliev 2009; Valageas 2010), it generalizes the underlying
idea to the two-point bias of average densities in spheres that simul-
taneously probes intermediate and extreme density environments
such as voids and haloes.

The outline of the paper is the following: Section 2 puts densities-
in-spheres statistics in the context of current efforts to constrain
pNG using LSS. Section 3 briefly reviews the pillars of pNG and
describes how pNG affects the cumulants of the smoothed density
field by the example of local non-Gaussianity. Section 4 recalls the
large deviation principle that allows us to obtain one- and two-point
statistics for the density in spheres. The relationship between the
initial density PDF, the initial rate function and correlations at large
separation is in particular extended to non-Gaussian initial condi-
tions. The spherical collapse model and the saddle-point approxima-
tion applied to a log-transformed density are implemented in order
to obtain the final non-Gaussian one-point PDF and two-point bias
of densities in spheres. Section 5 presents the analytical predictions
for the one-point density PDF and two-point sphere bias and com-
pares them to measurements from N-body simulations performed
with non-Gaussian initial conditions. Section 6 discusses how the
analytical PDFs can be used to constrain pNG based on densities-
in-spheres observables that are accessible from LSS and addresses
promising perspectives. Section 7 wraps up. Appendix A gives some
background for large deviation statistics while Appendix B presents
generalizations and details of the treatment in the main text.

2 C ONTEXT: pN G IN A LL SHAPES AND SI ZES

For the purpose of constraining pNG, two aspects determine how ad-
vantageous a particular observable is. First, how much information
about pNG the observable contains, and second how well theoret-
ical errors and observational biases can be controlled in order to
extract this information and disentangle primordial from evolution
effects. The following provides a very short overview of the different
probes used to constrain pNG using the cosmic microwave back-
ground (CMB) and LSS and motivates why densities-in-spheres
statistics provides complementary information that can prove use-
ful for constraining pNG.

For an in-depth discussion of inflationary models that generate
pNG, relevant references and further details of the reviews in Bartolo
et al. (2004), Chen (2010), Desjacques & Seljak (2010b), Verde
(2010), Takahashi (2014), Alvarez et al. (2014) and Renaux-Petel
(2015) are of interest.

2.1 CMB versus LSS

Currently, the best constraints on pNG come from the CMB, hence
essentially from two-dimensional information at one redshift; it is
however a rather direct and clean probe of density fluctuations,
which only underwent linear evolution. Combining temperature
and polarization in the latest Planck results (Planck Collabora-
tion et al. 2016a) gives 1σ intervals for the amplitude of primor-
dial skewness depending on the shape of the primordial bispec-
trum of f loc

NL = 0.8 ± 5.0, f equil
NL = −4 ± 43 and f ortho

NL = −26 ± 21.
Following the standardized normalization method for fNL from Fer-
gusson & Shellard (2009), observational limits and errors on f loc

NL

can be consistently compared for different models, finding that de-
spite appearances, upon this normalization current bounds from the
CMB are of comparable order for the different shapes.

Reaching the theoretically interesting benchmark of fNL � 1 will
require to extract yet more information that is in principle avail-
able within LSS because it probes three-dimensional information
for many modes over a wide range of redshifts (that can be obtained
accurately from spectroscopic surveys). Unfortunately, this infor-
mation is obscured by non-linear gravitational evolution, galaxy
bias and redshift space distortions, and hence requires accurate the-
oretical modelling to disentangle dynamically induced from pNG.
Note that most LSS-based probes are only sensitive to a particu-
lar range of bispectrum shapes, and hence their ability to constrain
the different parameters varies. Eventually one should of course
consider combined constraints from the CMB and LSS (see e.g.
Giannantonio & Percival 2014; Giannantonio et al. 2014), especially
to constrain scale-dependent non-Gaussianity; see e.g. LoVerde
et al. (2008), Sefusatti et al. (2009), Schmidt & Kamionkowski
(2010) and Becker, Huterer & Kadota (2012). For the next
generation ‘Stage-4’ ground-based CMB experiment, CMB-S4
(Abazajian et al. 2016), the expected factor of improvement over
Planck is slightly more than a factor of 2 which will be insufficient
to reach the interesting theoretical benchmark for local fNL.

2.2 Abundance and large-scale clustering of rare objects

Both the abundance and the clustering signal of rare objects, namely
extrema of the density distribution such as haloes or voids, are suit-
able to probe pNG. The effect of pNG on the halo mass function
and cluster number counts has been studied theoretically in Matar-
rese et al. (2000), LoVerde et al. (2008), Afshordi & Tolley (2008),
Valageas (2010) and Musso & Paranjape (2012) within the frame-
work of an extended Press–Schechter theory and compared to sim-
ulations in Grossi et al. (2008) and LoVerde & Smith (2011). Verde
et al. (2013) considered multivariate PDFs that characterize the ef-
fect of fNL on different observables that can be obtained from CMB
maps, but also the PDF of the linearly extrapolated and smoothed
density field. In all those studies, it has been found that the presence
of pNG modifies the abundances of haloes and voids increasingly
with the rarity of the object. While in principle the presence of
pNG might also alter the density profiles of rare objects, the im-
pact on halo profiles has been observed to be small (Moradinezhad
Dizgah, Dodelson & Riotto 2013) and a similar study for
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voids that is underway shows no perceptible differences on void
profiles.1

Furthermore, following an observation from Dalal et al. (2008),
pNG leads to strongly scale-dependent bias that impacts the large-
scale clustering of rare objects (peaks of the density distribution
such as haloes) which hence can be used to constrain pNG from
LSS (Slosar et al. 2008). Subsequently, pNG-induced halo bias and
its dependence on scale, mass and redshift in the limit of high
peaks and large separations has been theoretically investigated in
Matarrese & Verde (2008), compared to simulations in Desjacques
et al. (2009), Grossi et al. (2009), Shandera, Dalal & Huterer (2011)
and refined in a treatment in real space in Valageas (2010).

Scale-dependent bias has already been used to put constraints on
pNG based on galaxies and quasars within the SDSS in Slosar et al.
(2008), Ross et al. (2013), Leistedt, Peiris & Roth (2014) finally
reaching an individual constraint on −49 < fNL < 31 (95 per cent
confidence) for local pNG. The prospects of constraining pNG in
future surveys with two-point statistics like the 3D galaxy power
spectrum in redshift space, the angular galaxy power spectrum and
the projected weak-lensing shear power spectrum have been inves-
tigated in Giannantonio et al. (2012) finding a forecasted marginal-
ized error of σ (fNL) � 3 on local pNG for Euclid-like survey com-
bining all probes. This is in line with current forecasts of σ (fNL) �
4–5 (competitive with Planck) for local pNG achievable with Eu-
clid (Amendola et al. 2016) by combining galaxy clustering from
spectroscopic and photometric data as well as weak lensing.

With recent advancements, it should be possible to improve con-
straints for local pNG from the two-point clustering of single popu-
lations of LSS tracers, which are already at the level of pre-Planck
constraints from the CMB. To this end, Seljak (2009) demonstrated
how the effect of cosmic variance for the estimation of pNG can
be mitigated using two sets of tracers which, at large scales, are
deterministically biased with respect to dark matter. This allows
us to extract the scale-dependent relative bias due to pNG with an
accuracy set by the noise due to the discrete (Poisson) sampling
of the density field rather than cosmic variance. Hamaus, Seljak &
Desjacques (2011) investigated constraints on local pNG from two-
point statistics when using two optimization strategies – avoiding
sampling variance by comparing multiple tracers of different bias
and suppressing shot noise by optimally weighting haloes of differ-
ent mass.

Byun & Bean (2015) investigated the dependence of the halo
mass function and scale-dependent halo bias on the primordial bis-
pectrum shape. They found that the scale-dependent bias on large
scales probes general squeezed configurations from the primordial
bispectrum, while the scale-dependent bias on smaller scales and
the halo mass function are more sensitive to a broader range of
shapes. Looking at the not-quite-large scales is also interesting be-
cause effects of general relativity (GR) become significant in the
very large scale regime, precisely where the scale-dependent bias
induced by pNG is strongest (see e.g. Bruni et al. 2012; Camera,
Santos & Maartens 2015), although it has been shown that GR
effects on scale-dependent bias are not degenerate with fNL (Yoo
et al. 2012).

2.3 Bispectrum and trispectrum of the galaxy distribution

Since constraining pNG aims at probing the component of the initial
bispectrum induced by non-Gaussianity, looking at its observable

1 Private communication with N. Hamaus and K. Chan.

late-time equivalent, the galaxy bispectrum, is a natural possibility
that in particular provides means of distinguishing between different
shapes. For local pNG with small amplitude fNL, one can show that
the primordial bispectrum estimator is optimal and equivalent to
calculating the full likelihood of the data (Creminelli, Senatore &
Zaldarriaga 2007). Unfortunately, the theoretical modelling of the
late-time dark matter bispectrum induced by gravitational evolution
already proves to be difficult. In addition to the modelling of the
dark matter bispectrum, observational effects such as tracer bias
(Kaiser 1984; Dekel & Rees 1987) and redshift space distortions
(Kaiser 1987; Taruya, Nishimichi & Saito 2010) need to be included
in the analysis.

Constraints on fNL from measurements of the galaxy bispectrum
in redshift surveys have been considered as early as in Scoccimarro
et al. (2004) concluding that planned galaxy surveys at high red-
shifts can in principle give pNG constraints comparable to, or even
better than, those from CMB experiments. This was confirmed in
Sefusatti & Komatsu (2007) by performing a Fisher matrix analysis
for the galaxy bispectrum at high redshift with pNG and non-linear
but local bias, including a study of how constraints of pNG im-
prove with volume, redshift range, as well as the number density
of galaxies. These works relying on tree-level perturbation theory
for the matter bispectrum in the presence of pNG have been subse-
quently extended to include one-loop corrections (see e.g. Jeong &
Komatsu 2009; Sefusatti 2009; Bernardeau, Crocce & Sefusatti
2010; Matsubara 2011) that improve the agreement with numeri-
cal simulations (Sefusatti, Crocce & Desjacques 2010). Following
up on observations of scale-dependent bias in the two-point clus-
tering of peaks, Jeong & Komatsu (2009) considered the bispec-
trum of galaxies as peaks finding that the effect of local fNL on
the galaxy bispectrum cannot be obtained by replacing the linear
bias in the galaxy bispectrum with the scale-dependent bias ob-
tained for the power spectrum. Those perturbative analyses based
on tree-level perturbation theory and a local bias model have been
generalized in Baldauf, Seljak & Senatore (2011) to incorporate a
multivariate bias expansion (Giannantonio & Porciani 2010) and
the peak-background split method (Slosar et al. 2008). The validity
of this complete tree-level approximation at large scales has been
established by simulations with local pNG (Sefusatti, Crocce &
Desjacques 2012) and used to get a rough Fisher-matrix-based es-
timate for an expected improvement of a few over the halo power
spectrum for a combined power-spectrum and bispectrum analysis.

A more recent comparison of different perturbative and phe-
nomenological models for the matter bispectrum with Gaussian and
non-Gaussian initial conditions against numerical simulations has
been performed in Lazanu et al. (2016) and Lazanu et al. (2017); see
also references therein. It has been found that among the perturba-
tive approaches, the Effective Field Theory of Large Scale Structure
(EFTofLSS, as introduced in Baumann et al. 2012) extends the range
of validity furthest on intermediate scales. However, this comes at
the cost of introducing free extra parameters requiring calibration on
simulations or marginalization. The EFTofLSS includes those free
parameters to encode our ignorance of the small-scale physics that
cannot be captured with perturbation theory (Bernardeau et al. 2002)
and hence to trace theoretical errors.

Based on the matter bispectrum from EFTofLSS including pNG
(Assassi et al. 2015), estimates for the amount of pNG while in-
cluding theoretical errors in the modelling of the bispectrum were
obtained in Baldauf et al. (2016) and Welling, van der Woude &
Pajer (2016). They found that accounting for these theoretical errors
can weaken constraints considerably, for example, degrading by a
factor 5 from the idealized forecast for Euclid of σ (fNL) � 0.45
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(with floating bias) in Tellarini et al. (2016) down to σ (fNL) � 1.8
(with priors on EFT parameters) in Welling et al. (2016). In the
latter, it has also been established that assuming the wrong shape
for the theoretical error might lead to a false detection of pNG,
highlighting how difficult the theoretical modelling proves to be. In
addition, recent studies show that relativistic effects are relevant for
the bispectrum at an order σ (fNL) � 1 and hint at a degeneracy with
local pNG (Di Dio et al. 2017).

Regarding higher order galaxy statistics, Verde & Heavens (2001)
argued, based on an idealized case with essentially linear evolution,
that a measurement of the trispectrum, which has weaker depen-
dence on non-linear clustering, may provide pNG constraints com-
plementary to the bispectrum in the future.

2.4 Densities-in-spheres statistics

The statistics of densities in spheres (or counts-in-cells as their
counterpart for discrete tracers) entail in particular the one-point
PDF of finding a certain average density in a top-hat sphere of
given radius and the two-point clustering of those spheres given
their average density. While those statistics are related to the dis-
tribution of tracers and rare objects such as haloes and voids, they
probe a different regime than the bispectrum of tracers or the abun-
dance and clustering of rare objects and hence can improve our
ability to probe pNG. One-point densities-in-spheres statistics al-
ready contains some of the information that is in all higher order
correlation functions of the smoothed density field, namely their
zero separation limit – characterizing the cumulants and thereby
the shape of the PDF. The cumulants of the smoothed density field
can be predicted accurately using perturbation theory or spheri-
cal collapse starting from Gaussian statistics (Bernardeau 1994a),
but can also be extended to include pNG in an expansion around
Gaussian initial conditions (Fry & Scherrer 1994; Chodorowski &
Bouchet 1996; Gaztanaga & Fosalba 1998). An alternative approach
to the statistics of densities in spheres is the excursion set model
(Sheth 1998), which can be used to relate the halo mass function to
the dark matter distribution in Eulerian space. Recently, also excur-
sion set theory has been extended to non-Gaussian initial conditions
(Musso & Sheth 2014). Since the PDF includes cumulants of all
orders, it comprises more information than (a finite set of) single
cumulants which is especially relevant in the tails that are generated
through non-linear gravitational dynamics (Bernardeau 1994b), but
also sensitive to pNG. The full density PDF and its cumulants have
been considered for models with weak pNG arising from standard
slow-roll inflation (Gaztanaga & Fosalba 1998; Valageas 2002b)
and strong pNG arising from dimensional scaling models (Turok
& Spergel 1991; Gaztanaga & Maehoenen 1996; White 1999;
Scoccimarro 2000). Densities-in-spheres statistics include some
higher order information beyond the bispectrum, but they only in-
corporate a very specific part of its rich shape-dependent informa-
tion. This may seem to be a significant drawback when considering
statistical information content for constraining pNG, but it is miti-
gated by our ability to build robust estimators through ab initio the-
oretical modelling. While cumulants of average densities in spheres
can be predicted robustly from simple spherical collapse dynam-
ics for both Gaussian (Bernardeau 1994b) and close-to-Gaussian
initial conditions (Gaztanaga & Fosalba 1998; Valageas 2002b),
modelling the bispectrum requires significantly more complex per-
turbative methods as discussed in the previous paragraph.

The one point PDF includes information about abundances of
rare objects (haloes and voids) simultaneously in both tails, hence
offering a unified treatment of all density environments. Similarly,

two-point densities-in-spheres statistics, which can be computed for
large separations (Bernardeau 1996; Abbas & Sheth 2007; Codis,
Bernardeau & Pichon 2016b; Uhlemann et al. 2017b) for Gaussian
initial conditions, captures the large-scale clustering of rare ob-
jects (extreme density environments occurring in haloes or voids)
in the tails but also encodes differences in clustering for more com-
mon density environments. Given that the most competitive pNG
constraints from LSS to date come from the scale-dependence of
halo bias, it is promising to generalize this idea to a more diverse
range of density environments. The unified treatment of both high
and low densities could in particular help to disentangle otherwise
degenerate effects such as fNL and gNL.

In spirit related to the PDF of densities in spheres is the pairwise
velocity PDF whose sensitivity on local pNG has been investigated
in Lam, Nishimichi & Yoshida (2011) where 5–10 per cent effects
of pNG on the PDF were found for fNL = ±100, but its accurate
theoretical modelling proved to be difficult.

3 PR I M O R D I A L N O N - G AU S S I A N I T Y A N D
C U M U L A N T S

Let us first express the leading-order cumulants in terms of local
pNG parametrized by fNL. We refer the readers to Appendix B1.1
for next-to-leading-order terms and non-local expansions.

3.1 Local primordial non-Gaussianity

For simplicity, the main text of the paper considers leading-order
local (quadratic) pNG where the non-Gaussian field �NG (the grav-
itational potential) is expressed in terms of a Gaussian field �G

�NG = �G + fNL

(
�2

G − 〈
�2

G

〉)
, (1)

with constant parameter fNL. For a generalization including the cubic
order with gNL, see Appendix B1.2. In principle, one can express
the non-Gaussian density in terms of the Gaussian density and the
gravitational potential using the identity

��NG = ��G + 2fNL(�G��G + |∇�G|2), (2)

where � is the Laplacian and hence the left-hand side is proportional
to the density. In practice, it is often more convenient to work
in Fourier space2 where the Poisson equation becomes a simple
multiplication and smoothing operates by multiplication rather than
convolution.

Let us quantify how pNG influences the PDF of initial densities
that are smoothed over a certain radius. Hence, one needs to relate
the linearly evolved density field to the primordial curvature per-
turbation ζ encoding the information of non-linearities produced
during and after inflation. We assume the dimensionless primordial
power spectrum of the (comoving) curvature perturbation to be of
the form

�ζ (k) = As(k0)(k/k0)(ns−1), (3)

with the amplitude of the scalar power spectrum As � 2.5 × 10−9

measured at the pivot scale, k0 = 0.002/h Mpc−1, and the primordial
spectral index ns � 0.96 (consistent with recent limits from Planck
Planck CollaborationXX 2016b), encoding initial conditions with
a small departure from scale-invariance as predicted from slow-roll

2 The Fourier convention δ(x) = (2π)−3
∫

d3k exp(ik · r)δ̂(k) is used
throughout. For the sake of simplicity, we will omit the hat on the Fourier
transforms.
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Large-deviation statistics with primordial non-Gaussianity 2857

models of inflation (Mukhanov & Chibisov 1981). The gravitational
potential �3 is related to the curvature perturbation ζ , which is
preserved on super-Hubble scales, by a constant factor of 3/5 during
the matter domination era such that its power spectrum is obtained
as

P�(k) =
(

3

5

)2 2π2

k3
�ζ (k). (4)

The gravitational potential � and the linear perturbation to the mat-
ter density δp at redshift z are related through the Poisson equation
on sub-Hubble scales

δp(k, z) = g(k)T (k)D(z)�NG(k), g(k) = −2

3	m

(
k

H0

)2

, (5)

where T(k) is the transfer function of perturbation (which goes to

unity on very large scales T (k)
k→0−→ 1) and encodes the suppression

of power for modes that entered the horizon before matter-radiation
equality, D(z) is the linear growth factor which is related to the red-
shift as D(z) = (1 + z)−1 in matter domination, 	m is the present time
fractional matter density and H0 = 100 h kms−1 Mpc−1 the Hubble
constant. Finally, the spherical top-hat filtering on the density field
can be applied to obtain

δR(k) = W3D(kR)δp(k), (6)

where W3D is the Fourier transform of the top-hat filter

W3D(x) = 3

x2
(sin(x)/x − cos(x)). (7)

Now, pNG for the gravitational potential can be expressed conve-
niently as

δR,NG(k, z) = αR(k, z)�NG(k),

αR(k, z) = W3D(kR)g(k)T (k)D(z). (8)

The key assumption that allows for a general treatment of a mildly
non-Gaussian field is that it can be expanded as a local functional of
an underlying Gaussian field. On the other hand, any form of non-
locality that can be expressed as a convolution in real space can also
be handled in a similar way by suitably modifying our definition of
the kernel functions αR. This means that our results can be easily
extended to a primordial bispectrum of an arbitrary shape.

3.2 Leading-order cumulants of the smoothed density field

For one-point statistics, the skewness of the smoothed density field
is the leading-order correction to Gaussian initial conditions. To this
order, the effect of local pNG on the skewness is given by (see also
Matarrese et al. 2000)

κ3(R) ≡ 〈δ3
R,NG〉,

� 3fNL

4π4

∫
dk1 k2

1 αR(k1)P�(k1)
∫

dk2 k2
2 αR(k2)P�(k2) (9)

×
∫ 1

−1
dμ12 αR

(√
k2

1 + k2
2 + 2k1k2μ12

)
. (10)

For the non-local cases, the skewness (and also higher order cu-
mulants) of the smoothed density field can be obtained from
the primordial bispectrum B� of arbitrary shape, as discussed in
Appendix B1.1 based on equation (B4). Because of the smoothing

3 Note that in conformal Newtonian gauge, the gravitational potential is
related to the Bardeen potential as �B = −�.

involved, the scale-dependence for different shapes is typically very
similar, as demonstrated in Fig. B1, so the focus is here on local
non-Gaussianity for simplicity.

It is often convenient to consider cumulants that are rescaled
by certain powers of the variance, such as the reduced cumulants
S̃n (which remain approximately constant through late-time gravita-
tional evolution for Gaussian initial conditions; Colombi et al. 1997)
or the rescaled cumulants εn (which are approximately independent
of smoothing scale and robust against linear growth as it cancels in
the ratio; D’Amico et al. 2011a). They enter any cumulant-based
expansion – e.g. the Edgeworth expansion – of the cosmic PDFs
around Gaussian kernels

S̃n = κn

σ 2(n−1)
, εn = κn

σ n
= σn−2S̃n. (11)

The tilde is used to distinguish the primordial reduced cumulants
from the ones that are gravitationally evolved. The rescaled cumu-
lants εn are to a very good approximation perturbatively ordered,
as pointed out in (D’Amico et al. 2011a, where however a top-hat
filter in k-space was used instead of a spherical top-hat filter in
real space as considered here). Note that the smallness parameter is
ε3 ∝ fNLA1/2 where As � 2.510−9 is the amplitude of the primor-
dial power-spectrum P�, similarly ε4 ∝ ε2

3 ∝ f 2
NLA or ε4 ∝ gNLA.

Hence, for reasonably small fNL � 100 one can typically neglect
next-to-leading-order contributions appearing in form of a kurto-
sis and a second-order correction to the variance. Appendix B1.2
presents the next-to-leading-order results (including the kurtosis
and a second-order correction to the variance) for a local model
including both f 2

NL and gNL.
For the two-point statistics, the leading-order mixed cumulant

κ12(r) is also needed; it is obtained as

κ12(r) = 〈δR,NG(x + r)δ2
R,NG(x)〉 (12)

= 2fNL

(2π)6

∫∫
d3k1d3k2αR(k1)αR(k2)αR(k)

× P�(k1) [P�(k2) + 2P�(k)] exp[ik · r], (13)

where r is the separation between the two points and k = k1 + k2.
Integrating over the angle between k and r yields

κ12(r) = fNL

4π4

∫
dk k2αR(k) sinc(kr)

∫
dk1 k2

1αR(k1)P�(k1)

×
∫ 1

−1
dμk αR(k2) [P�(k2) + 2P�(k)] , (14)

where k2 = |k − k1| =
√

k2
1 + k2 − 2k1kμk and μk is the cosine

of the angle between k and k1. For a generalization of the formula
for arbitrary bispectra see Appendix B1.1, in particular equation
(B5). Naturally, when evaluating the leading-order mixed cumu-
lant at zero separation, one correctly recovers the skewness from
equation (9).

4 C O N S T RU C T I O N S O F T H E D E N S I T Y P D F S

Let us first briefly present the large deviation principle that al-
lows us to obtain one-point statistics for the density in a sphere of
fixed final radius, focusing on the extension to non-Gaussian initial
conditions. Readers already familiar with the formalism for Gaus-
sian initial conditions may skip to the extension to pNG given in
Section 4.2.2 and then proceed with the phenomenological effects in
Section 4.6.
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4.1 Large deviation statistics in spheres

When considering a highly symmetric observable such as the den-
sity in spheres, one can argue that the most likely dynamics (amongst
all possible mappings between the initial and final density field)
is the one respecting the symmetry (Valageas 2002a).4 Spherical
symmetry allows us to take advantage of the fact that non-linear so-
lutions to the gravitational dynamics are known explicitly in terms
of the spherical collapse model.

Let us denote ρSC(τ ) is the non-linear transform of an initial
fluctuation with linear density contrast, τ , in a sphere of radius Rini,
to the final density ρ (in units of the average density) in a sphere of
radius R according to the spherical collapse model

ρ = ρSC(τ ), with ρR3 = R3
ini, (15)

where the initial and final radii are connected through mass conser-
vation. An explicit possible fit for ρSC(τ ) is given by

ρSC(τ ) = (1 − τ/ν)−ν ⇔ τSC(ρ) = ν(1 − ρ−1/ν), (16)

where ν can be adjusted to the actual values of the cosmological
parameters (ν = 21/13 provides a good description of the spherical
dynamics for an Einstein-de Sitter background for the range of τ

values of interest).
Thanks to this analytic spherical collapse model, the one-point

PDF and bias functions of cosmic densities in concentric spheres,
brought about by non-linear gravitational evolution, can be
predicted explicitly from the given (close-to Gaussian) initial
conditions.

4.2 Initial one-point PDF and decay-rate function

The large-deviation principle yields a formula for the PDF of finding
a certain density in a sphere of a given radius given the statistics of
the initial conditions. The initial decay-rate function � ini

Rini
encodes

the exponential decay of the initial PDF with increasing density
contrast given the cumulants of the initial field. While in general
the initial PDF is related to the cumulant generating function via an
inverse Laplace transform, this relation is well approximated by a
saddle-point approximation for close-to-Gaussian initial conditions.
Then, the initial PDF can be written as

P ini
Rini

(τ ) =
√√√√∣∣∣∣∣∂

2� ini
Rini

∂τ 2

∣∣∣∣∣ exp
[−� ini

Rini
(τ )
]

(2π )1/2
. (17)

4.2.1 Gaussian initial conditions

For Gaussian initial conditions, the initial decay-rate function is
simply given by a quadratic form in the initial density contrast τ

in a sphere of radius Rini where the linear variance σ 2
lin encodes

all dependency with respect to the initial power spectrum for the
Gaussian field

� ini
Rini

(τ ) = 1

2

τ 2

σ 2(Rini)
, (18)

σ 2
lin(Rini) =

∫
dk

2π2
k2 Plin(k)W 2

3D(kRini). (19)

4 This is a result of the so-called contraction principle in the context of large
deviation theory as explained in Bernardeau & Reimberg (2016), which
formalizes the idea that amongst all unlikely fates (in the tail of the PDF)
the least unlikely one (i.e. the spherical collapse solution) dominates.

Note that in this case, equation (17) is merely an unusual rewriting of
a Gaussian distribution, emphasizing the central role of the decay-
rate function (18). The next step involves obtaining a suitable form
of the initial decay-rate function for non-Gaussian initial conditions
based on a cumulant expansion whose result is given in equation (21)
below. For this analysis, the key ingredient of the decay-rate function
is the scale-dependent skewness of the smoothed density field which
can be computed for a local model using equation (9) and for any
given bispectrum shape according to equation (B4).

4.2.2 Non-Gaussian initial conditions: cumulant expansions

The complete series of cumulants of a PDF is related to the cumulant
generating function whose successive derivatives give back the cu-
mulants. Taking the modifications in the cumulants of the smoothed
density up to quadratic order in non-Gaussianity (including skew-
ness, kurtosis and second-order variance) into account leads to the
following truncated cumulant generating function

ϕ̃Rini (λ) = λ2

2

[
κ

(0)+(2)
2,Rini

+ λ

3
κ3,Rini + λ2

12
κ4,Rini

]
, (20)

where (0) and (2) refer to the zeroth and next-to-leading order in fNL,
respectively. Note that this equation only holds for local quadratic
pNG as is assumed throughout the main text. Performing a Legendre
transformation of the cumulant generating function then gives the
initial rate function

�Rini (τ ) � τ 2

2σ (Rini)2

[
1 − ε3(Rini)

3

τ

σ (Rini)
− ε

(2)
2 (Rini)

+
(

ε3(Rini)2

4
− ε4(Rini)

12

)
τ 2

σ (Rini)2

]
, (21)

using equation (9) to express the leading-order term ε3, and equa-
tions (B7) and (B9) for the next-to-leading-order terms in terms
of the underlying power spectrum and fNL; see also equations 50
and 58 in Matarrese et al. (2000) and Valageas (2010), respectively.
Since ε are the dimensionless initial cumulants, the linear growth
cancels out in this quantity but does enter in the variance σ . Since
the focus is in the tails while not relying on perturbation theory, τ/σ r

need not be small. This is the main difference of our analysis which
hence complements the perturbation-theory-based analysis for the
expansions for the mass function in D’Amico et al. (2011a). Hence,
the cumulant-expanded form of the rate function in equation (21)
is to be preferred over an Edgeworth expansion around a Gaussian
PDF that is discussed in Appendix B2. In order for the truncation
in the series of primordial cumulants to be accurate, one must have
that 1 � ε3τ/σ � ε4(τ/σ )2. This in principle limits how far into
the tails one is allowed to probe when just considering primordial
skewness. To obtain an estimate for the allowed range given an fNL,
one can use the spherical collapse solution (16) to obtain the initial
overdensity τ → τ (ρ) and the radius Rini = Rρ1/3 connected to a
final density ρ in a sphere of radius R. For fNL � 100, higher cu-
mulants are still suppressed by one order of magnitude for typical
densities ρ ∈ [0.1, 10] and hence it will be sufficient to account for
the primordial skewness for our analysis.

4.3 One-point PDF for an evolved non-Gaussian field

The final decay-rate function is obtained from re-expressing the
initial decay-rate (21) in terms of the final densities and radii

τRini = τSC(ρR), Rini = Rρ1/3, (22)
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Large-deviation statistics with primordial non-Gaussianity 2859

using the spherical collapse mapping equation (16), which corre-
sponds to a saddle-point approximation5 and rescaling the linear
variance at scale R to its correct non-linear value

σlin(Rini) → σ (Rini) � σ (R)

σlin(R)
σlin(Rρ1/3). (23)

Altogether the decay-rate function reads

�R(ρ) = � ini
Rini=Rρ1/3

(
σlin(R)

σ (R)
τSC(ρ)

)
, (24)

where � ini
Rini

is given by equation (21). From that decay-rate func-
tion, one can obtain the cumulant generating function and from
there the PDF. Appendix A provides a concise explanation of the
cumulant generating function and its relation to the decay-rate func-
tion and the PDF. As discussed in Uhlemann et al. (2016), one can
use a saddle point approximation to accurately evaluate the corre-
sponding expressions and obtain a direct relation between the final
decay-rate function and the PDF. This requires a suitable choice
of variable such that the final decay-rate function is convex, i.e.
� ′′

R > 0 for all densities of interest. One particularly advantageous
choice is the logarithmic density μ = log ρ for which one can apply
the saddle-point approximation to predict the PDF of the logarith-
mically mapped density and translate this to the PDF of the density
field via a simple change of variables

PR(ρ) = Pμ,R[μ(ρ)]

∣∣∣∣∂μ

∂ρ

∣∣∣∣ =
√

∂2�R

∂μ2

∣∣∣∣∂μ

∂ρ

∣∣∣∣ exp [−�R]

(2π)1/2

=
√

� ′′
R(ρ) + � ′

R(ρ)/ρ

2π
exp[−�R(ρ)]. (25)

Note that since the decay-rate function �R appearing here has been
written down for the log-density, the variance σ (R) = σμ(R) that is
entering equation (24) is the variance of the log-density μ = log ρ.
To ensure a unit mean density after the mapping, one has to shift
the log-density appropriately which is equivalent to considering
the renormalized density ρ̃ = ρ/〈ρ〉 with the shorthand notation
〈f (ρ)〉 = ∫ ∞

0 dρ f (ρ)PR(ρ). Furthermore, since the saddle-point
method yields only an approximation to the exact PDF, the PDF
obtained from equation (25) is not necessarily perfectly normalized
(although this effect is usually subpercent). In practice, one can
account for both effects by considering the normalized PDF

P̂R(ρ) = PR

(
ρ

〈ρ〉
〈1〉

) 〈ρ〉
〈1〉2

. (26)

Equations (20)–(26) yield the general evolved non-Gaussian PDF
of the density field.

4.4 Initial two-point PDF and sphere bias

The initial sphere bias used in previous works on densities in
spheres (see e.g. Bernardeau 1996; Codis et al. 2016b; Uhlemann
et al. 2017b) is defined as the ratio between the conditional mean
density induced by an initial density contrast τ in a sphere of radius
Rini at separation r and the average correlation

bini(τ, r) = 〈τ ′(x + r)|τ (x)〉
〈τ̃ ′(x + r)τ̃ (x)〉 =

∫
dτ ′ τ ′ PRini (τ, τ

′; r)

PRini (τ )ξlin(Rini, r)
, (27)

5 Note that according to Valageas (2010) the effect of a realistic |fNL| � 100
on the density profile of the saddle point is negligible such that also the onset
of shell-crossing remains practically unchanged compared to the Gaussian
case presented in Valageas (2009).

and can be expressed in terms of the joint PDF of densities in
spheres of radius Rini at separation r and their correlation function.
The initial correlation function is obtained from the linear power
spectrum as

ξlin(Rini, r) =
∫

dk

2π2
k2Plin(k)W 2

3D(kRini) sinc(kr). (28)

Note that this expression only depends on the density τ , the radius of
the spheres Rini and their separation r while the densities {τ ′, τ̃ ′, τ̃ }
are dummy variables for the evaluation of the spatial expectation
values. The sphere bias can be used to express the joint PDF of
densities in spheres of radius R at large separation r � R

PRini (τ, τ
′; r)

PRini (τ )PRini (τ ′)
� 1 + ξlin(Rini, r)bini(τ, r)bini(τ

′, r). (29)

4.4.1 Gaussian initial conditions

To derive the initial bias, let us follow the procedure described in
appendix C of Uhlemann et al. (2017b). The covariance matrix of
(τ , τ ′) is given by

�lin =
(

σ 2
lin(Rini) ξlin(Rini, r)

ξlin(Rini, r) σ 2
lin(Rini)

)
, (30)

where the linear variance is given by (19) and the correlation func-
tion by (28). This covariance matrix can be diagonalized by trans-
forming (τ , τ ′) to a set of independent variables (ν, ζ )

ν = τ

σ
, ζ = σ 2τ ′ − ξτ

σ
√

σ 4 − ξ
, (31)

which are built to be decorrelated 〈νζ 〉 = 0 and have unit variance
〈ν2〉 = 〈ζ 2〉 = 1. For Gaussian initial conditions, thanks to diago-
nalization, (ν, ζ ) now follow a standard normal distribution, such
that it is easy to check that the sphere bias reads

bG
ini(τ ) =

〈
τ ′(ζ, ν)|ν = τ/σ

〉
ξ (r)

= τ

σ 2
lin(Rini)

, (32)

which is proportional to the initial overdensity τ as expected from
Kaiser (1984). Furthermore, it is independent of r such that the sep-
aration and density dependence in equation (29) can be factorized.

4.4.2 Non-Gaussian initial conditions: cumulant expansions

For initially non-Gaussian fields, one has to redo the computa-
tion for the conditional mean that defines the initial bias function,
equation (27), which now might acquire a dependence of the separa-
tion that was not present for Gaussian initial conditions. To obtain an
expression for the two-point correlation for initially non-Gaussian
fields, the joint cumulant generating function was expanded fol-
lowing equation (20). The leading-order correction to a bivariate
Gaussian PDF will be the first term of a bivariate Edgeworth expan-
sion (Chambers 1967; McCullagh 1984; Kendall, Stuart & Ord
1987) given in terms of third-order cumulants, the skewness
κ3 = 〈δ3〉 given in equation (9) and the mixed cumulant
κ12 = 〈δ′δ2〉 = κ21 given in equation (12).6 In the decorrelated
variables ν and ζ introduced in equation (31), this expansion
is given in terms of products of Hermite polynomials (see e.g.

6 Note that this treatment resembles what is performed in Chongchitnan &
Silk (2011), where the scale-dependence of the bias is computed based on a
bivariate Edgeworth expansion for models with pure gNL.
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Barndorff-Nielsen & Cox 1979), which for the first non-Gaussian
correction gives

P(ν, ζ ) ≈
exp

(
− ν2

2 − ζ 2

2

)
2π

[
1 + 1

6

(〈ν3〉H3(ν) + 〈ζ 3〉H3(ζ )
)

+ 1

2
(〈νζ 2〉H1(ν)H2(ζ ) + 〈ν2ζ 〉H2(ν)H1(ζ )

)]
, (33)

with H1(x) = 1, H2(x) = x2 − 1 and H3 = x3 − 3x. For an Edgeworth
expansion up next-to-leading order that includes the joint kurtosis
see Appendix B2.2 and Appendix B1.2 for the associated cumulants
induced by f 2

NL and gNL. The conditional mean that determines the
sphere bias is

〈τ ′|τ 〉 =

∫
dν

∫
dζ τ ′(ν, ζ )P(ν, ζ )δD(τ (ν, ζ ) − τ )∫

dν

∫
dζ P(ν, ζ )δD(τ (ν, ζ ) − τ )

,

where inverting equation (31) gives

τ = νσ, τ ′ = νξ + ζ
√

σ 4 − ξ 2

σ
. (34)

After some algebra and using the properties of Hermite polynomials,
and expressing the moments of ν, ζ back via the moments of τ , τ ′,
the sphere bias at leading order in fNL becomes

bNG
ini (τ, r) = τ

σ 2

[
1 + 1

2

τ

σ 2

(
κ12(r)

ξ (r)
− κ3

σ 2

)]

− 1

2σ 2

(
κ12(r)

ξ (r)
− κ3

σ 2

)
, (35)

where the cumulants κ3, κ12, σ and ξ from equations (9), (14), (19)
and (28), respectively, are computed with smoothing radius Rini and
the term in the second row ensures a zero mean bias 〈b(τ )〉 = 0.
For an analogous result for a pure gNL model, see equation (B16) in
Appendix B2.2 and for the generalization of cumulants to arbitrary
primordial bispectra, see Appendix B1.1. In contrast to the result for
Gaussian initial conditions, the result is now separation dependent
and the average two-point correlation function explicitly appears.
Let us observe that the non-Gaussian sphere bias is a sum of the
Gaussian sphere bias and a separation-dependent correction term

bNG
ini (τ, r) = bG

ini(τ ) + �bNG
ini (τ, r). (36)

This expression shows that in analogy to the strong scale-dependent
bias for overdense regions (haloes), one expects an analogous scale-
dependent bias for underdense regions (voids). This could be a
promising idea for constraining pNG; while it has been mentioned
in Sekiguchi & Yokoyama (2012), no exhaustive study of this effect
has been performed yet, but is underway.7

4.5 Two-point sphere bias for an evolved non-Gaussian field

The two-point sphere bias for the time-evolved density field is de-
fined in complete analogy to equation (27) as

bR(ρ, r) = 〈ρ ′|ρ; r〉 − 1

〈ρ̃ρ ′; r〉 − 1
, (37)

where the numerator is the conditional mean sphere density given a
sphere density ρ at separation r and the denominator is the average
sphere correlation function. As was done for the one-point PDF, a

7 Private communication with Hamaus N. and Chan K.

replacement rule for the initial density and radius is used following
the spherical collapse (22), and the variance is rescaled according
to equation (23). For Gaussian initial conditions and at large sepa-
rations, this recovers the separation-independent expression given
in Uhlemann et al. (2017b)

bG
R(ρ) = σ 2

lin(R)τSC(ρ)

σ 2(R)σ 2
lin(Rρ1/3)

, (38)

where the redshift dependence is encoded in the non-linear variance
σ 2(z, R) and hence bias grows like D−2(z). The pNG-induced extra
terms of equation (35) can be rewritten in terms of reduced cu-
mulants giving the combination C̃12−S̃3, where C̃12 = κ12/(ξσ 2).
Those reduced cumulants are robust against non-linearities such that
no further rescaling is needed. Due to the power of (linear) densities
appearing in the reduced cumulants, the redshift dependence of this
term is ∝D−1(z). For Gaussian initial conditions, the sphere bias is
scale independent, meaning that there is no residual dependence on
pair separation. For non-Gaussian initial conditions, the situation
is different and one needs to relate separation-dependent quantities
at early and late times, more precisely the initial (Lagrangian) and
final (Eulerian) separation of the two spheres (of identical density).
Valageas (2010) suggest to treat each sphere as a test particle that
falls into the potential well caused by another sphere and hence to
use the mass conservation mapping for both positions to obtain

rini � r

(
1 + 2

3
τprofile(ρ,Rini, r)

)
, (39)

where τ profile is the linear density contrast within radius r around
the sphere of radius Rini with density ρ. It probes the radial density
profile of the spherical saddle point which has been obtained in
Bernardeau (1994b) and Valageas (2009),

τprofile(ρ,Rini, r) = τSC(ρ)
σlin(Rini, r)2

σlin(Rini)2
. (40)

For large separations r � 60 Mpc h−1 and the range of radii R �
15 Mpc h−1 and densities of interest here ρ ∈ [0.5, 3], the density
contrast according to this profile is at the 5–10 per cent level. While
there are in principle modifications of the density profile in the
presence of pNG (as calculated in Valageas 2010), their effect is
negligible to leading order. Altogether the non-Gaussian bias is
now given as

bNG
R (ρ, r) = bG

R(ρ)

[
1 + τSC(ρ)

2
(C̃12 − S̃3)(Rini, rini)

]
, (41)

where the result is normalized to ensure 〈bNG
R (ρ, r)〉 = 0 and

〈ρbNG
R (ρ, r)〉 = 1 as follows:

b̂NG
R (ρ, r) = bNG

R (ρ, r) − 〈bNG
R (ρ, r)〉

〈(ρ − 1)bNG
R (ρ, r)〉 . (42)

4.5.1 Scale-dependent halo bias in Fourier space

In Fourier space, scale-dependent halo bias has been derived using
several approaches, as summarized in Grossi et al. (2009); this in-
cludes peak theory (Dalal et al. 2008), the bispectrum (Matarrese &
Verde 2008), peak-background split (Slosar et al. 2008), ellipsoidal
collapse (Afshordi & Tolley 2008), perturbation theory (McDon-
ald 2008; Taruya, Koyama & Matsubara 2008) and excursion sets
(Adshead et al. 2012). All of them lead to consistent results for
the scale-dependent correction to the linear bias factor induced by
leading-order local non-Gaussianity

bh,NG(k) = bh,G + �bh,NG(k), (43)
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�bh,NG(k) = 2(bh,G − 1)fNLδc
3	m

2D(z)r2
Hk2

, (44)

where rH is the Hubble radius, δc is the critical threshold for collapse
and D(z) is the growth rate. A benchmark of theoretical predictions
against numerical simulations has been performed in Desjacques
et al. (2009), Pillepich, Porciani & Hahn (2010), Giannantonio &
Porciani (2010) and Smith, Desjacques & Marian (2011). The pres-
ence of an extra term, corresponding to the term proportional to
the initial skewness ε3 in equation (41), has been noted in Slosar
et al. (2008) and Afshordi & Tolley (2008). While it was argued
in Slosar et al. (2008) that this scale-independent contribution does
not cause a problem when fitting the bias to LSS data, Desjacques
et al. (2009) found that it leads to substantial improvement when
comparing theoretical prediction to simulations.

In this context, the generalization to other types of pNG can be
done by promoting the constant fNL to a scale-dependent function
fNL(k) ∝ (kRL,h)� where � = 0 gives back local pNG, � = 2
corresponds to equilateral pNG and � ∈ [0, 2] includes quasi-
single field inflation and some of its modifications. For a discussion
of scale-dependent bias for bispectrum templates beyond local pNG,
see e.g. Scoccimarro et al. (2012) and Gleyzes et al. (2017).

4.5.2 Scale-dependent halo bias in real space

In real space, which is more natural for the treatment of densi-
ties in spheres, the scale dependence of halo bias has been derived
in Matarrese & Verde (2008) based on an expansion of the two-
point correlation for peaks as regions above a certain (high) thresh-
old using a path-integral approach in Grinstein & Wise (1986),
Matarrese, Lucchin & Bonometto (1986) and in Valageas (2010)
with a steepest decent approach for leading-order local non-
Gaussianity fNL.

According to Matarrese & Verde (2008), the equal density two-
point correlation for initially non-Gaussian fields in the limit of
high peaks and large separations is given by the result for Gaussian
initial conditions, ξh,G = ξh(r)bh,G

ini (τ )2, and a correction term, also
called scale-dependent bias, is given by

�ξNG
h (rini, τ ) = κ12(rini)b

G
ini(τ )3, (45)

with r = |x2 − x1| and with the leading-order mixed cumulant
κ12(r) given by equation (14). Hence, this yields to a bias function
with only the first two terms in equation (35). However, follow-
ing the arguments in Valageas (2010), one has to include another
(separation-independent) term proportional to ε3σ that stems from
the skewness of the initial PDF and leads to the first line of (35),
but is missing the constant terms.

As explained in Desjacques et al. (2009), a contribution from
the non-Gaussian modification to the (linear) power spectrum is
also expected; it is however much smaller than the terms presented
before and will therefore be neglected, as was done in Matarrese &
Verde (2008) and Valageas (2010).

4.6 Phenomenological effect of primordial non-Gaussianities

Fig. 1 shows a comparison of the theoretical predictions for a fixed
value of fNL = 100 when varying the underlying non-linear variance
in a way that corresponds to time evolution σ (z) = σ 15D(z) with
σ 15 � 0.5 and D(z) the linear growth function. Note that although
the non-linear variance does not agree with the linearly evolved
variance at late times, the late-time non-linear variance on the scales
of interest grows approximately with the linear growth function.

Figure 1. (upper panel) The PDF of the log density μ = log ρ in a sphere of
radius R = 15 Mpc h−1 comparing a Gaussian model (solid lines) with one
with local pNG according to equation (1) for the gravitational potential �p

with f �
NL = ±100 (dashed and dotted lines) for variances from σμ = 0.05

(blue inner lines) to 0.5 (red outer lines) in steps of 0.05 (lower panel). The
corresponding ratio of the PDFs with and without pNG as a function of the
density.

Figure 2. The ratio of the one-point PDFs with fNL = 0 and fNL = +100
for variances from σμ = 0.05 (blue) to 0.5 (red) in steps of 0.05 as a
function of the rarity of the event for overdensities (dashed upper lines) and
underdensities (dotted lower lines).

One can see that the overall effect of pNG in the PDF is very weak
except for the tails of the distribution. Note also that the apparent
asymmetry between over and underdensities hints at a deviation
from lognormality for high variances. Fig. 2 shows the relative
effect of pNG on the PDF at early (low variances, blue curves) and
late times (high variances, red curves) when fixing the probability of
the to-be-found density value and looking at overdensities (dashed
upper lines) and underdensities (dotted lower lines). Note the three
properties as follows.
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2862 C. Uhlemann et al.

Figure 3. Density dependence of the scale-dependent two-point sphere bias
bR(ρ, r) at redshift z = 1 with radius R = 15 Mpc h−1 (where σμ � 0.31)
and separations r = 32, 64, 96 Mpc h−1 (solid, dotted, dashed lines) induced
by pNG with fNL = ±100 (lower blue and upper red lines, respectively).

(i) For low variances corresponding to early times, the effect of
pNG is significantly stronger for overdensities.

(ii) For high variances corresponding to late times, the effect of
pNG is slightly stronger for underdensities.

(iii) The time (or variance) dependence is very mild for under-
densities but substantial for overdensities. This is in line with the
usual claim that underdensities are more pristine objects and better
preserve the initial conditions.

While those observations are interesting from a theory point of
view, they should not be naively translated to practical applications
for which several complications (in particular possible inaccuracies
of the PDF in the tails, the limited available volume and a discrete
sampling of the density field in observations) need to be considered.

Fig. 3 displays a schematic picture of the scale dependence of the
sphere bias bR(ρ, r) that is induced by pNG and describes density-
dependent clustering. The scale-dependent sphere bias correction
given in equation (41) scales like �bR(ρ, r, fNL) ∝ fNLbR,G(ρ)r2

such that it increases quadratically with separation r (see Fig. B2),
the bias of the density ρ in the sphere (hence the rarity of the event)
and the amplitude of primordial skewness fNL. As discussed before,
the redshift dependence of scale-dependent spheres bias correction
is roughly �bR ∝ 1/D(z).

5 VA L I DATI O N O N SI M U L ATI O N S

Let us now compare the prediction of equation (25) to density-in-
spheres measurements in dark matter simulation encoding primor-
dial non-Gaussianities.

5.1 Simulation

The simulations contain 20483 particles in a box of length
4096 Mpc h−1 and a given realization has been run for models with
fNL = +100, 0, −100. The relevant cosmological parameters of
the simulations (based on WMAP5) are summarized in Table 1
and snapshots are created at redshifts z = 3, 2, 1, 0.35. The non-
Gaussian initial condition generator was developed in Nishimichi
(2012) based on a parallel code by Valageas & Nishimichi (2011),

Table 1. Cosmological parameters of the simulation.

	m 	� h As(k0 = 0.002/h Mpc−1) ns σ 8

0.279 0.721 0.701 2.486 × 10−9 0.96 0.8157

Table 2. Parameters of the simulation that characterize primordial skewness
in terms of fNL and the non-linear variance of the log-density μ = log ρ

for R = 15 Mpc h−1 at redshifts z = 0.35, 1 and 2 as measured from the
simulation and as fitted using the PDF template from equation (25). Note
that differences in the non-linear variance between different non-Gaussian
models are subpercent.

z 0.35 1.00 2.00

fNL −100 0 +100 −100 0 +100 −100 0 +100
σ̂ PDF

μ 0.419 0.418 0.417 0.315 0.314 0.313 0.218
σ̂μ 0.415 0.414 0.413 0.312 0.312 0.311 0.218
Ŝ

μ
3 0.231 0.294 0.358 0.198 0.286 0.374 0.148 0.277 0.406

−Ŝ
μ
4 0.421 0.367 0.293 0.529 0.461 0.354 0.631 0.547 0.376

σ̂ρ 0.441 0.442 0.444 0.323 0.323 0.324 0.222
Ŝ

ρ
3 3.31 3.40 3.5 3.24 3.34 3.45 3.16 3.30 3.45

Ŝ
ρ
4 19.6 20.9 22.3 18.4 19.8 21.4 17.3 19.2 21.2

which computes the particle displacements using the second-order
Lagrangian perturbation theory (e.g. Scoccimarro 1998; Crocce,
Pueblas & Scoccimarro 2006). The gravitational evolution is fol-
lowed using the Tree-PM code GADGET2 (Springel, Yoshida &
White 2001; Springel 2005).

Table 2 provides the values for the variance, the driving parame-
ter of the theory, measured in the simulation for both the log-density
μ = log ρ and the density ρ. The differences in the variances mea-
sured at R = 15 Mpc h−1 are at the subpercent level which is in
qualitative agreement with the finding in Mao et al. (2014).

The PDF was measured with a top-hat filter of radius
R = 15 Mpc h−1 using an FFT-based method with a clouds-in-cells
mass assignment. The convergence against the mass assignment
schemes [either nearest grid point (NGP) or clouds-in-cells (CIC)
with different number of grid points] has been tested yielding stable
results for intermediate and large densities ρ where the difference
between the two schemes is less than 1 per cent and potential prob-
lems in the highly underdense regions with ρ < 0.4, where there
is a difference between the results obtained with NGP and CIC.
The results shown are based on a CIC mass assignment with 12803

grid points, with both window and aliasing corrections implemented
before multiplying the top-hat function in k-space.

To measure the sphere bias, encoding the excess correlation be-
tween densities in spheres according to equation (37), a given sepa-
ration r is chosen, giving a grid of non-overlapping spheres. In that
grid, the densities of the neighbouring spheres with right separation
r are then collected in bins of width �ρ = 0.1; precise formulas are
given by equations 19 and 20 in Uhlemann et al. (2017b).

5.2 Comparison of analytical predictions against simulations

5.2.1 One-point PDF

Fig. 4 shows a comparison of the theoretical predictions for the
one-point PDF PR(ρ) against the simulations when plugging in the
correct values of fNL and the measured non-linear log-variance σμ

that is given in Table 2. It shows that the prediction is in excellent
agreement with the measurements, in particular it is accurate at the
1 per cent level between densities of 0.5 and 2.5 and therefore can
access a mildly non-linear regime that is inaccessible to perturbative
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Figure 4. (Upper panel) Comparison between measurement in the simula-
tion (data points) for fNL = −100, 0, +100 (blue, green, red) and the saddle
point prediction (lines) at redshifts z = 0.35, 1, 2 (solid, dotted, dashed)
for the PDF with variances σ PDF

μ as given in Table 2. (Lower panel) Corre-
sponding residuals between the prediction and the measurements. For better
visibility the ρ-values for fNL = ±100 have been displaced from the ones
of fNL = 0 by ±0.02.

methods. Note that, while the values of fNL probed here are rather
large, the per cent-level accuracy is expected to extend to all values
between fNL = −100 and fNL = 100, in particular to values around
fNL = 0 (previously also tested in Uhlemann et al. 2016, 2017b).
Fig. 5 shows the ratio of the Gaussian and non-Gaussian PDFs as
predicted and measured in the simulation; an exquisite agreement
is found that shows that the inaccuracy of our PDF template acts
the same way on the Gaussian and non-Gaussian version and hence
comparing their ratio is in even better agreement with the measure-
ments than what one would naively expect from the accuracy of the
PDF which degrades for densities beyond what is shown in Fig. 4.
Based on this observation, the constraining power of the one-point

Figure 5. Residuals between the PDFs with pNG fNL = ±100 (red and
blue) and the fiducial PDF with fNL = 0 as measured in the simulation (data
points with error bars) and predicted from the saddle point approximation
(lines) at redshifts z = 0.35, 1, 2 (solid, dotted, dashed). The grey horizontal
lines indicate pNG-induced deviations from the fiducial PDF at the 1 per cent
(solid) and 5 per cent (dashed) level.

Figure 6. Two-point sphere bias for local pNG fNL = ±100 (upper red
and lower blue) and the fiducial PDF with fNL = 0 (middle green) as
measured in the simulation (data points with error bars) and predicted from
the saddle point approximation (lines) at redshift z = 1 for spheres of radii
R = 15 Mpc h−1 at separation r = 64 Mpc h−1.

density PDF for fNL is determined in Section 6 based on a maximum
likelihood (ML) approach.

5.2.2 Two-point sphere bias

Fig. 6 shows a comparison of the theoretical prediction for the
density- and separation-dependent two-point sphere bias bR(ρ, r).
It appears clearly that the effect of pNG is strongest in the low- and
high-density tails, in good agreement with the theoretical prediction
from equations (41) and 42. The predictions shown are evaluated
using the approximation rini � r giving very similar results to the
approximation from equation (39) and only shows differences in
the extreme density regions which are however within the error
bars. The differences between the measurements with fNL = ±100
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and fNL = 0 indicating the impact of pNG on the clustering of
certain density environments are in excellent agreement with the
theoretical expectation. Note that, since the simulations have been
run from the same realization, error bars for the differences between
non-Gaussian and Gaussian models are displayed as the individual
error bars rather than their sum.

6 N ON-GAU SSIANITY PARAMETER
E STIMATO RS

6.1 Maximum likelihood with one-point statistics

Having validated that the functional form of the one-point PDF
(equation 25) against simulations, let us now use it to do an ML
estimate of the amount of pNG. The density PDF P(ρ|σ, fNL) at
a given redshift depends on two parameters, the (gravitationally
induced) non-linear variance, σ , and the amplitude of pNG encoded
in fNL.

Let us conduct the following fiducial experiment, following the
assumptions of Codis et al. (2016a) where the approximately linear
growth of the non-linear variance was used to constrain dark energy
that changes the growth of fluctuations. Here, one can also take
advantage of the fact that the non-linear variance, when measured
for spheres of radii R > 10 Mpc h−1, evolves with the linear growth
to a good approximation but keep the fiducial cosmology fixed ex-
cept for allowing for pNG and changes in the overall amount of
clustering. In order to mimic a Euclid-like survey, let us consider
redshifts between zmin = 0.6 and zmax = 2.08 binned so that the
comoving distance of one bin is d = 40 Mpc h−1. For every red-
shift bin, a number of spheres that correspond to regularly drawn
spheres of radius R = 15 Mpc h−1 separated by d = 40 Mpc h−1 are
considered.9 For a 15 000 square degree survey, it yields 55 bins
of redshift (zi) with a number of spheres ranging from about N1 �
7000 (at z1 = 0.6) to N55 � 40 000 (at z55 = 2.0) for a total of about
1.2 million supposedly independent spheres. In this experiment,
note that samples are drawn directly from the PDF, hence assum-
ing that the model for the density PDF is exact, meaning that the
local amplitude fNL well parametrizes the amount of pNG in terms
of skewness and non-linear variance σ well describes the outcome
of non-linear gravitational evolution from close to Gaussian initial
conditions.

Note that the present analysis is conservative with respect to the
number of spheres one can get given a certain volume, but opti-
mistic with respect to the modelling assuming no theoretical error.
On the one hand, shrinking the radius R of the spheres increases the
available information and hence tightens constraints. On the other
hand, the accuracy of the theoretical prediction decreases with the
radius such that the theoretical error becomes relevant. Hence, a
good balance of the two must be struck. One possible improve-
ment on the following analysis would be to decrease the radius
of the spheres with increasing redshift (for example using linear

8 Limiting the redshift range to zmax = 2 also ensures that the effect of shot
noise, which essentially cuts off the signal at high z (see e.g. fig. 3 in Welling
et al. 2016) but is neglected here, is not too extreme.
9 At high redshifts, the flat-sky approximation is not used; instead the volume
of spherical shells of thickness d is computed for all redshifts. To estimate
the number of non-overlapping spheres that can be fit in the shells, the
average cut surface of the cosmic volume is divided by the cut surface of
cubes with side length d. This estimate is close to the one obtained from
assuming a hexagonal close packing with a density of η = π/(3

√
2) � 0.74

which is the densest possible packing of equal spheres.

Table 3. Collection of mean ML results determined from 10 samples for
fNL parametrizing the amount of primordial skewness fNL when keeping the
non-linear variance σ 15 fixed at its fiducial value and vice versa.

fid ML 1σ 2σ 3σ

fNL 0.0 − 2.5 ± 9.5 ± 16.5 ± 24.5
σ 15 0.514 50 0.514 45 ± 0.0004 ± 0.0007 ± 0.001

growth) to keep the variance, which controls the theoretical accu-
racy, constant over the redshift slices. In practice, the chosen treat-
ment to scale the number of drawn spheres with the available volume
(and hence not probing the deep PDF tails, especially at low red-
shifts) ensures that the PDFs entering the ML estimation are within
their regime of validity (as determined from the comparison with
simulations).

6.1.1 Estimate of primordial skewness

In order to get constraints on the parameter fNL of pNG, let us com-
pute the log-likelihood of 10 randomly samples for the 1.2 million
measured densities {ρi,j }1≤i≤Nj ,1≤j≤55 given models for which fNL

varies

L({ρi,j }|fNL) =
55∑

j=1

Nj∑
i=1

logP(ρi,j |zj , fNL), (46)

where P(ρ|zj , fNL) is the theoretical density PDF at redshift zj

for a primordial non-Gaussianity model parametrized by fNL. Opti-
mizing the probability of observing densities {ρi,j }1≤i≤Nj ,1≤j≤55 at
redshifts {zj}1 ≤ j ≤ 55 with respect to fNL, yields a ML estimate for
the primordial non-Gaussian parameter.

The resulting mean ML values (averaged over 10 samples) and
the corresponding α = 1σ , 2σ , 3σ confidence intervals given
in Table 3 correspond to the models for which L({ρi,j }|fNL) =
maxfNL L({ρi,j }|fNL) + log(1 − Erf(α/

√
2)). Modulo our assump-

tions, this ML method allows us to detect non-Gaussianity with
σ (fNL) � 10.

6.1.2 Joint estimate of primordial skewness and variance

In order to get joint constraints on primordial skewness parametrized
through fNL and the non-linear log-variance at given radius at present
time σ 15 = σμ(R = 15 Mpc h−1, z = 0) (hence equivalent to σ 8),
let us re-compute the log-likelihood of the 1.2 million measured
densities {ρi,j }1≤i≤Nj ,1≤j≤50 given models for which both fNL and
σ 15 vary

L({ρi,j }|σ15, fNL) =
50∑

j=1

Nj∑
i=1

logP(ρi,j |zj , σ15, fNL). (47)

Fig. 7 depicts the result for the joint ML estimate computed for
10 different samples. It shows that the joint estimation of fNL and
σ 15 shows no degeneracy, hence the signature of pNG is qualita-
tively different from a change in the normalization of the density
fluctuation field, associated with σ 8 (or in our case σ 15). Having
access to both (overdense and underdense) wings of the PDF is
what helps distinguishing these two effects that essentially have
different symmetry signatures (variance versus skewness). Indeed,
the marginalization over σ 15 decreases the accuracy that can be
obtained for fNL only marginally compared to the run where σ 15

was kept fixed at its fiducial value. Our analysis probes a range
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Figure 7. Result of joint ML for non-linear variance σ 15 = σ (R = 15, z = 0)
and pNG fNL with the mean of the maximum (point) and the corresponding
1σ , 2σ and 3σ contours (dark blue to cyan) averaged over 10 samples drawn
from the PDF at different redshift with fiducial values (σ 15, fNL) = (0.5145,
0) (dashed cross).

of matter densities that (a) is symmetric around mean density in
the probability of finding them and (b) increases with redshift due
to the larger cosmic volume available for the sampling. While the
dependence on the choice of observable tracers in surveys has not
been examined yet, the inclusion of tracer bias (proceeding along
Uhlemann et al. 2017a) is not expected to qualitatively change the
most relevant region of the density PDF.

6.2 Observational effects

Tracer bias. It has been demonstrated recently in Uhlemann et al.
(2017a) that tracer bias can be incorporated in densities-in-spheres
statistics by a local mapping between average densities in spheres.
Based on mass-weighted halo densities in both real and redshift
space, a local one-to-one mapping has been shown to provide
accurate predictions for one- and two-point densities-in-spheres
statistics. The relationship between dark matter and mass-weighted
halo densities has been observed to admit a quadratic model in
the log-densities as efficient parametrization. The main effect of
tracer bias is to cause a strong degeneracy between the dark mat-
ter variance and bias parameters for the one-point PDF which can
only be lifted using two-point statistics. Since, however, the dark
matter variance has been shown not to be degenerate with a lo-
cal fNL, bias is not expected to diminish the constraints except
for finite sampling effects. This is in line with the finding in Se-
fusatti & Komatsu (2007) that for a bispectrum analysis, a local
fNL is not degenerate with (local) galaxy bias. Even discreteness
should be reasonably controlled, given that for typical tracer number
densities of order n � 10−4 (h Mpc−1)3 (as expected for Euclid)
spheres of radius R = 15 Mpc h−1 should contain a sufficient num-
ber of objects. In Mao et al. (2014), the signal of pNG in the first
three one-point cumulants of the smoothed non-linear density field
has been studied on numerical simulations and mock galaxy cata-
logues resembling LRGs. For dark matter densities, it was shown
that the pNG signal in the skewness and kurtosis of the dark matter
densities is much larger than that induced by the non-linear variance.
Note that in the present formalism, given that the one-point PDF
includes all cumulants, the skewness and kurtosis are both taken
into account when jointly constraining the dark matter variance and
fNL via the ML approach, which does improve the accuracy of the
parameter estimation compared to sample variance (as shown in
Codis et al. 2016a). However, for number-weighted galaxy densi-
ties from mocks, the finding in Mao et al. (2014) is in stark contrast,
and the variance almost completely dominates the pNG signal. Re-
cently, Gleyzes et al. (2017) investigated the scale-dependent halo
bias for equilateral and quasi-single field inflation generated pNG,
and looked at how they can or cannot be distinguished from a gen-

eral biasing model. For local (and some quasi-single field) shapes,
they found that significant improvements over Planck are achievable
with scale-dependent bias for a large volume LSS surveys, while
the sensitivity to equilateral non-Gaussianity is heavily suppressed
by marginalizing over a general halo biasing model.

Redshift space distortions. The effect of redshift space distortions
has been assessed in Mao et al. (2014) where it has been found
that they affect the variance and skewness very similarly in the
Gaussian and non-Gaussian case and therefore do not affect the
detectability of non-Gaussianity from these measurements, see fig.
4 in Mao et al. (2014). Recently, Uhlemann et al. (2017a) showed
that redshift space distortions can be incorporated naturally in a
mean local bias model for densities-in-spheres statistics such as
one-point PDF and the two-point sphere bias.

GR effects. There are also GR effects that generate non-Gaussianity.
According to Bruni, Hidalgo & Wands (2014), the non-linear re-
lation between the spatial curvature and the metric perturbation
translates into a specific non-Gaussian contribution to the initial
comoving matter density. Note also that there are subtleties in the
definition of bias depending on rest frames and relativistic effects
can enter through projection or past light-cone effects (see section
9 of Desjacques, Jeong & Schmidt 2016, for a review). Relativistic
effects are most important on the very large scales that are relevant
for the scale-dependent bias in Fourier space (Camera et al. 2015),
while the intermediate separations probed here should not be af-
fected as much. However, in Yoo et al. (2012) it has been shown
that the GR effect is not degenerate with the pNG signature in galaxy
bias, and the ability to detect pNG is little compromised.

6.3 Outlook

For local pNG, one should eventually constrain pNG using
jointly the one-point PDF and two-point sphere bias statistics.
This could in particular be interesting for distinguishing between
fNL and gNL which lead to a very similar signature in scale-
dependent halo bias (Desjacques & Seljak 2010a; Giannantonio &
Porciani 2010; Desjacques, Jeong & Schmidt 2011a,b; Smith, Fer-
raro & LoVerde 2012), see the extensions discussed in Appendix B.
Indeed, joint analyses of abundances and clustering have been
performed for galaxy clusters in Sartoris et al. (2010) and Mana
et al. (2013) and shown to improve constraints based on individ-
ual probes. The prospects of constraining fNL from sphere bias
and disentangling fNL from gNL will be explored in a forthcoming
work. To render densities-in-spheres statistics applicable to counts-
in-cells measurements in galaxy surveys, one should furthermore
include tracer bias and redshift space distortions. While this is be-
yond the scope of this paper, the present procedure to include pNG
in densities-in-spheres statistics can be combined with the biased
tracer formalism described in Uhlemann et al. (2017a) which also
demonstrates a joint parameter estimation using the one-point PDF
and the two-point sphere bias function.

Recently, Chiang et al. (2015) introduced the position-dependent
correlation function (or equivalently power spectrum) as the corre-
lation between two-point functions of galaxy pairs within different
(large) subvolumes with a given (small) mean density contrast at
their location. Based on this, it has been demonstrated that for lo-
cal fNL the position-dependent correlation function can yield com-
parable constraints to the full bispectrum, despite its inability to
distinguish between linear and quadratic bias. This is encouraging
because the spirit of the position-dependent correlation function is
to capture the density dependence of two-point clustering and hence
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similar to sphere bias that relies on different (small) spheres with a
potentially large average density contrast.

For non-local pNG such as the equilateral and orthogonal types,
the expected signal in sphere bias is much smaller than in the local
case, see Fig. B2. Hence, one has to rely on the one-point PDF for
which achievable constraints on fNL should be of the same order
than for the local case because the main qualitative change is in the
scale dependence of the skewness, see Fig. B1.

7 C O N C L U S I O N

Relying on analytical predictions for the one-point PDF and the two-
point bias of spherically averaged cosmic densities, we disentangled
dynamically generated non-Gaussianity from primordial ones. The
pNG is encoded in the form of a small initial skewness (controlled
by fNL) with a scale dependence that in general depends on the
bispectrum of the underlying model and is very small for local pNG.

We successfully benchmarked the analytical predictions for
the one-point PDF from local non-Gaussianity in a range from
fNL = −100 to +100 against numerical simulations finding ex-
cellent agreement, achieving 1 per cent accuracy within the central
density region ρ ∈ [0.5, 2.5] and about 5 per cent for the adjacent
high-/low-density tails. Similarly, we have tested the predicted im-
pact of pNG on two-point statistics encoded in the scale dependence
of the sphere bias against the simulation finding very good agree-
ment within the error bars of the simulation. Most notably, we have
observed a scale-dependent sphere bias in extreme density environ-
ments that includes overdensities – a well-known result for halo
bias – but also underdensities suggesting that void bias could be
used to constrain pNG as well.

Using a simple joint ML estimator for the amplitude of the non-
linear variance σ 8 and local primordial skewness fNL, we obtained
an estimate for the constraining power of the one-point density-in-
spheres PDFs for a Euclid-like survey finding σ (fNL) � 10. We then
discussed the influence of tracer bias, redshift space distortions and
relativistic effects and provided an outlook for constraining pNG
jointly using the one-point PDF and two-point bias while including
bias. Given the clear scale-dependent bias signal, we observed for
both high- and low-density spheres, one can hope to improve upon
pNG constraints obtained from halo bias alone in the near future
and better disentangle between fNL and gNL.
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APPENDI X A : O BTAI NI NG THE D ENSI T Y PDF
FROM LARGE D EVI ATI ON STATI STI CS

Considering the one-point PDF of densities in spheres, P(ρ), a
highly symmetric configuration allows us to take advantage of the
spherical collapse model for gravitational dynamics. To obtain the
PDF, we use the cumulant generating function of densities in spher-
ical cells, ϕ(λ), defined via a Laplace transform of the density PDF

ϕ(λ) = log

[∫
dρ exp(λρ)P(ρ)

]
. (A1)
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This relationship is useful because, in the limit of zero variance,
the cumulant generating function is obtained analytically from the
decay-rate function �(ρ) via a Legendre transformation

ϕ(λ) = λρ − �(ρ), λ = � ′(ρ), (A2)

where the conjugate variable λ is a function of the density ρ via the
stationary condition on the decay-rate function. This is a key result
in large deviation statistics, which can heuristically be understood in
terms of a steepest decent method and more formally derived from
the Gärtner–Ellis theorem. The final decay-rate function can then be
obtained from the initial decay-rate function by a simple remapping
according to spherical collapse as described in equation (24), as
a result of the so-called contraction principle. For a pedagogical
introduction to large deviation statistics we refer to Touchette (2011)
and Touchette (2009); Bernardeau & Reimberg (2016) for a more
detailed and thorough discussion of its underlying principles and
theorems. The PDF of the density is then given as an inverse Laplace
transform of the cumulant generating function ϕ(λ)

P(ρ) =
∫

dλ

2πi
exp [−λρ+ϕ(λ)] . (A3)

Hence, the PDF can be obtained from a numerical integration in the
complex plane as done in Bernardeau et al. (2014) and Bernardeau,
Codis & Pichon (2015) or analytically evaluated using a saddle point
approximation for the log-density (which has a close-to-optimal
range of validity) as described in Uhlemann et al. (2016).

A P P E N D I X B: B E YO N D L E A D I N G - O R D E R A N D
L O C A L

This appendix generalizes the formalism presented for leading-
order local pNG to general primordial bispectra and next-to-leading-
order local pNG. As prime example for arbitrary primordial bis-
pectra, it will consider equilateral and orthogonal pNG and show
how the model ingredients vary compared to local pNG. For
next-to-leading-order local pNG, the clear hierarchy of primordial
rescaled cumulants that is relevant for the validity of the Edgeworth-
expansions for the primordial statistics used in the main text will be
exhibited.

B1 Scale dependence of primordial cumulants

B1.1 Non-Gaussianity beyond local shape

Beyond the local non-Gaussianity, whose bispectrum is a simple
product of two power spectra

B loc
� (k1, k2, k3) = 2f loc

NL

[
P�(k1)P�(k2) + 2 perm.

]
, (B1)

there are many other shapes of the primordial bispectrum, for ex-
ample of equilateral and orthogonal type

B
eq
� (k1, k2, k3) = 6f

eq
NL

[
− [P�(k1)P�(k2) + 2 perm.]

− 2P
2/3
� (k1)P 2/3

� (k2)P 2/3
� (k3)

+ P�(k1)P 2/3
� (k2)P 1/3

� (k3) + 5 perm.
]
, (B2)

Borth
� (k1, k2, k3) = 6f orth

NL

[−3[P�(k1)P�(k2) + 2 perm.]

− 8P
2/3
� (k1)P 2/3

� (k2)P 2/3
� (k3)

+ 3[P�(k1)P 2/3
� (k2)P 1/3

� (k3) + 5 perm.]
]
.

(B3)

Note that, in contrast to the strictly local case, for the equilateral bis-
pectrum there is no a priori reason for f

eq
NL to be scale-independent

(see e.g. LoVerde et al. 2008). While single-field inflationary models
generically predict the local-type, single-field models generate pre-
dominantly other forms. Local non-Gaussianity peaks for squeezed
configurations k1 � k2 � k3, while equilateral peaks for k1 � k2 � k3,
note that a fair comparison of the amplitudes f loc

NL and f
equi
NL requires

careful normalization that takes the different shape-dependence into
account, as argued in Fergusson & Shellard (2009).

Extending the leading-order mixed cumulant given in equations
(9) and (12) to a general form for the primordial bispectrum, B�

yields

κ3,NG =
∫

d3k1

(2π)3
αR(k1)

∫
d3k2

(2π)3
αR(k2)

× αR (|k1 + k2|) B�(k1, k2, −(k1 + k2)), (B4)

and

κ12,NG(r) =
∫

d3k1

(2π)3
αR(k1)

∫
d3k

(2π)3
αR(k)

× αR(|k − k1|)B�(k1, −k1 − k, k) exp[ik · r]. (B5)

Since the present formalism does not make any assumption on the
scale-dependence of the primordial cumulants, it can be applied to
any known bispectrum shape and naturally incorporates models of
fixed shape with running non-Gaussianity parameter as discussed in
LoVerde et al. (2008). Note that for identical scale-independent pre-
factors f loc

NL = f
equi
NL , the relative amplitude of the skewness differs

κ loc
3 � 3κ

equi
3 � −5κorth

3 for radii around 10–15 Mpc h−1, while the
density scale-dependence is shown in Fig. B1. The separation scale-
dependence of the leading-order mixed cumulant is compared in
Fig. B2, which shows that the orthogonal model has a sign opposite
to the local and equilateral models. This figure shows that the signal
of scale-dependent bias is largest for the local model, suppressed

Figure B1. Scale-dependence of the rescaled skewness for different pri-
mordial bispectra: local (flat purple line), equilateral (ascending blue line)
and orthogonal (descending red line). All models are close to having a
scale-invariant skewness which is best achieved for a local model.
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Figure B2. Scale-dependence of the ratio of the leading-order mixed cu-
mulant κ12, R(r) and the linear correlation function ξR(r) that enters the two-
point sphere bias b(ρ) evaluated at redshift z = 1 with radius R = 15 Mpc h−1

as a function of separation r [Mpc h−1] normalized by the amplitude pNG
given by fNL for different primordial bispectra: local (upper purple line),
orthogonal (middle red line) and equilateral (lower blue line).

roughly by a factor 3 for the orthogonal model, but by one to two
orders of magnitude for the equilateral model.

B1.2 Next-to-leading-order local non-Gaussianity

One can also consider cubic local pNG that can be written as

�NG = �G + f �
NL

(
�2

G − 〈
�2

G

〉) + g�
NL

(
�3

G − 3�G

〈
�2

G

〉)
,

(B6)

with an extra constant g�
NL compared to (1). The corresponding

kurtosis is

κ4(R) ≡ 〈δ4
R,NG〉c

� 48f 2
NL

(2π)9

∫
d3k1 αR(k1)P�(k1)

∫
d3k2 αR(k2)P�(k2) (B7)

×
∫

d3k3 αR(k3)P�(k13)αR(k123),

= 3f 2
NL

2π6

∫
dk1 k2

1αR(k1)P�(k1)
∫

dk2 k2
2αR(k2)P�(k2)

×
∫

dk3 k2
3αR(k3)

∫ 1

−1
dμ13 P�(k13)

∫ 1

−1
dμ132 αR(k123),

(B8)

where k13 = |k1 + k3| =
√

k2
1 + k2

3 + 2k1k3μ13 and k123 = |k1 +
k2 + k3| = k2

13 + k2
2 + 2k13k2μ123. Note that at next-to-leading or-

der also the variance receives a contribution from pNG

σ 2
NG(R) ≡ κ2(R) ≡ 〈δ2

R,NG〉

� σ 2
G(R) + f 2

NL

2π4

∫
dk1 k2

1 P�(k1)
∫

dk2 k2
2 P�(k2)

×
∫ 1

−1
dμαR

(√
k2

1 + k2
2 + 2k1k2μ

)2

. (B9)

Roth & Porciani (2012) remark that non-zero fNL and gNL might
cancel for the scale-dependent bias case and that the assumption of a
one-parameter model (setting either fNL or gNL to 0) can significantly
bias the estimation of the pNG parameters when both fNL and gNL

do not vanish and the typically expected ordering gNL � f 2
NL does

not hold.
Let us now consider the effect of the cubic term in the local

transformation (1) that is parametrized by gNL which is usually
assumed to be of second-order gNL � f 2

NL but can be generated
independently of fNL (see e.g. Bernardeau & Uzan 2003). Again,
such a cubic term can be accounted for by the modifications it
induces in the lowest order cumulants, see Matarrese et al. (2000).

The subleading term of the variance would in fact be modified by
the addition of a gNL�3 term but is cancelled by the extra term
included in the bracket in equation (B6). The subleading skewness
would get an extra contribution that is however of third order and
hence will be ignored. The kurtosis is already modified to leading
order, gaining the extra piece

κ
fNL,gNL
4 = κ

fNL
4 + 1

2

gNL

f 2
NL

κ
fNL
4 (B10)

which still has the nice feature of appearing as a renormalization
of the previously calculated leading-order kurtosis. For two-point
statistics, the two joint kurtosis terms κ22 and κ13 are needed, given
by the formulas 53) and 54 in Chongchitnan & Silk (2011) and
reducing to A5 and A6 in Desjacques & Seljak (2010a) for pure
gNL. The full expressions read

κ31(r) = 〈δR,NG(x)3δR,NG(x + r)〉c
� 6

(2π)9

∏
i

(∫
dki k2

i α(ki)P�(ki)
∫ 1

−1
dμi

∫ 2π

0
dφi

)

(B11)

× α(k123) exp[ir(k1μ1 + k2μ2 + k3μ3)]

×
[
gNL

(
1 + P�(k123)

P�(k3)

)

+ 4f 2
NL

P�(k12)

P�(k2)

(
1 + P�(k2)P�(k123)

P�(k1)P�(k3)

)]
(B12)

and

κ22(r) = 〈δR,NG(x)2δR,NG(x + r)2〉c
� 2

(2π)9

∏
i

(∫
dki k2

i α(ki)P�(ki)
∫ 1

−1
dμi

∫ 2π

0
dφi

)

× α(k123) exp[ir(k1μ1 + k2μ2)]{
3gNL

(
1 + 2

P�(k123)

P�(k1)
+ P�(k123)

P�(k3)

)

+ 4f 2
NL

[
P�(k13)

P�(k3)

(
1 + P�(k3)P�(k123)

P�(k1)P�(k2)

)

+ P�(k12) + P�(k23)

P�(k2)

(
1 + P�(k2)P�(k123)

P�(k1)P�(k3)

)]}
(B13)

with μi = cos ∠(r, ki) and k123 = |k1 + k2 + k3| = (k2
1 +

k2
2 + k2

3 + 2k1k2μ12 + 2k1k3μ13 + 2k2k3μ23)1/2, where μi,j =
cos ∠(ki , kj ) = [(1 − μ2

i )(1 − μ2
j ) cos(φi − φj ) + μiμj ]1/2.

B2 Edgeworth expansion

B2.1 Univariate Edgeworth expansion for one-point PDF

Since pNG is small, one typically systematically expands the ini-
tial PDF of the smoothed density field in an Edgeworth expansion
(Bernardeau & Kofman 1995; Juszkiewicz et al. 1995) around a
Gaussian distribution. The Edgeworth series En is an asymptotic
expansion to approximate a probability distribution using its cumu-
lants κn. With the Gaussian distribution as reference function it can
be written as, see equation (43) in Blinnikov & Moessner (1998),
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Figure B3. The scale dependence of the rescaled cumulants εn = κn/σ
n

divided by the appropriate power of the amplitude of pNG fNL in the relevant
region for different radii that are relevant for typical densities in spheres of
radii R � 10–15 Mpc h−1.

En(x) = 1√
2πκ2

exp

(
− (x − κ1)2

2κ2

)

×
⎡
⎣1 +

n∑
s=1

s∑
r=1

Bs,r (λ3, ..., λs−r+3)

s!
Hs+2r

(
x − κ1√

κ2

)⎤⎦,

(B14a)

where λn are the normalized and rescaled cumulants

λn ≡ εn

n(n − 1)
, (B14b)

Bs, r are the Bell polynomials and Hn are the probabilists’ Hermite
polynomials. Up to second order, the relevant Bell polynomials are

B1,1(λ3) = λ3, B2,1(λ3, λ4) = λ4, B2,2(λ3) = λ2
3, (B14c)

and the higher order Hermite polynomials read

H4(x) = x4 − 6x2 + 3,

H6(x) = x6 − 15x4 + 45x2 − 15. (B14d)

When the Edgeworth expansion is evaluated up to next-to-leading
order and expressed through the reduced primordial cumulants S̃n

the PDF reads

P(τ ) = 1√
2πσ (r)

exp

(
− τ 2

2σ 2(r)

)[
1 + ε3(r)

3!
H3

(
τ

σ (r)

)

+ ε4(r)

4!
H4

(
τ

σ (r)

)
+ ε3(r)2

72
H6

(
τ

σ (r)

)]
. (B15)

While the Edgeworth expansion is usually accurate in the region that
is close to the peak, it leads to bigger deviations in the tails. Indeed,

at least to next-to-leading order the Edgeworth expansion can be
obtained from the saddle-point approximation by expanding the
exponential with the non-quadratic part of the rate function given in
equation (21). Note that the modification of the variance at second
order should in principle be included here by further expanding
1/σ 2(r) = (1 − ε2(r))/σ 2

G(r) in the Gaussian term when the next to
leading order in fNL, or the leading order gNL, is considered, but in
practice turns out to be further suppressed; see Fig. B3.

B2.2 Bivariate Edgeworth expansion for two-point sphere bias

The extension of the bivariate Edgeworth expansion for the two-
point PDF from the leading order given in equation (33) to next-to-
leading order is

P(ν, ζ ) ≈
exp

(
− ν2

2 − ζ 2

2

)
2π

[
1 + 1

3!
(ε30H3(ν) + ε03H3(ζ ))

+ 1

2
(ε12H1(ν)H2(ζ ) + ε21H2(ν)H1(ζ ))

+ 1

4!
(ε40H4(ν) + ε04H4(ζ )) + 1

4
ε22H2(ν)H2(ζ )

+ 1

3!
(ε31H3(ν)H1(ζ ) + ε13H1(ν)H3(ζ ))

+ 1

72
(ε2

30H6(ν) + ε2
03H6(ζ )) + 1

4
ε12ε21H3(ν)H3(ζ )

+ 1

12
(ε30ε21H5(ν)H1(ζ ) + ε12ε03H1(ν)H5(ζ )

+ ε30ε12H4(ν)H2(ζ ) + ε21ε03H2(ν)H4(ζ ))

+ 1

8
(ε2

21H4(ν)H2(ζ ) + ε12H2(ν)H4(ζ ))

]
,

using the notation εij = 〈ν iζ j〉c for the joint cumulants.
Note that the initial sphere bias for a pure gNL model where

κ3 = κ12 = 0, in complement to equation (35) for pure fNL, is given
as

bNG,gNL
ini (τ, r) = τ

σ 2

{
1 + 1

6

[( τ

σ

)2
− 3

](
κ13(r)

σ 2ξ (r)
− κ4

σ 4

)}
.

(B16)

Interestingly, gNL predicts an antisymmetric signature of the sphere
bias for high and low densities, meaning that the sign of the sphere
bias changes when comparing overdensities and underdensities.
This is in contrast to the result for fNL from equation (35) which has
the same sign for both high and low densities. Hence, sphere bias
for both high and low densities is promising to disentangle fNL and
gNL, which appear degenerate when looking at halo bias alone.
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