Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres - CEA - Commissariat à l’énergie atomique et aux énergies alternatives Access content directly
Journal Articles Monthly Notices of the Royal Astronomical Society Year : 2018

Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

Abstract

Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function (PDF) and the two-point clustering of spherically-averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high and low density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale-dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured nonlinear dark matter variance as iNon-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function (PDF) and the two-point clustering of spherically-averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high and low density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale-dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured nonlinear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from $f_{NL}$ $=$ $−$100 to $+$100 they are found to agree within 2% or better for densities $\rho$ $\in$ [0.5, 3] in spheres of radius 15 Mpc/$h$ down to $z$ = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the nonlinear variance $\sigma _8$ and primordial skewness $f_{NL}$ are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.
Fichier principal
Vignette du fichier
stx2623.pdf (1.59 Mo) Télécharger le fichier
Uhl.pdf (1.88 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

cea-01677174 , version 1 (08-01-2018)

Licence

Attribution

Identifiers

Cite

C. Uhlemann, E. Pajer, C. Pichon, T. Nishimichi, S. Codis, et al.. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres. Monthly Notices of the Royal Astronomical Society, 2018, 474 (3), pp.2853 - 2870. ⟨10.1093/mnras/stx2623⟩. ⟨cea-01677174⟩
96 View
107 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More