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This paper presents a general formalism that allows the derivation of the cumulant generating
function and one-point Probability Distribution Function (PDF) of the aperture mass (M̂ap), a
common observable for cosmic shear observations. Our formalism is based on the Large Deviation
Principle (LDP) applied, in such cosmological context, to an arbitrary set of densities in concentric
cells. We show here that the LDP can indeed be used for a much larger family of observables than
previously envisioned, such as those built from continuous and nonlinear functionals of the density
profiles. The general expression of the observable aperture mass depends on reduced shear profile
making it a rather involved function of the projected density field. Because of this difficulty, an
approximation that is commonly employed consists in replacing the reduced shear by the shear in
such a construction neglecting therefore non-linear effects. We were precisely able to quantify how
this approximation affects the M̂ap statistical properties. In particular we derive the corrective term

for the skewness of the M̂ap and reconstruct its one-point PDF.

I. INTRODUCTION

Gravitational lensing has been shown to be a very effi-
cient way of exploring the properties of the mass distribu-
tion at large scale. It indeed provides information about
the gravitational potential that light rays go through,
from sources to observer. Although it is fair to say that
the most spectacular consequences of such phenomena
are the strong lensing effects, with the occurrences of
multiple images and large arc-like deformation of images
of background objects, the most fruitful regime in the
context of cosmological observation is the one of the cos-
mic shear: weak lensing effects are indeed ubiquitous and
are induced by the large-scale structure of the universe as
a whole. The first evidences that large-scale structure can
coherently affect the shape of background galaxies have
been presented in year 2000 in a series of compelling re-
sults, [1–3]. The evidence is based on the fact that such
deformations are expected to obey a specific geometri-
cal property, namely the absence of parity-odd contribu-
tions (i.e. negligible B-modes). These results opened the
way to a systematic use of such observations to map the
large-scale structure of the universe and explore its sta-
tistical properties. To be more specific, in such a regime
(in the absence of critical region), the information pro-
vided by cosmic shear observations are encoded in the
elements of a deformation matrix, the convergence and
shear fields, that describe the magnification and deforma-
tion of the shape of light beams. The reconstruction of

∗Electronic address: reimberg@iap.fr

such maps from background galaxy shapes would provide
in principle direct information about the projected mass
[4–6]. This is key to a large part of the core programs
of projects such as the CFHTLenS1, the Dark Energy
Survey (DES)2, LSST3, and Euclid4.

Cosmic shear observations are usually exploited with
the help of the shear two-point correlation function (or
equivalently its power spectrum). This is what the ap-
proach which is usually adopted such as in [7] for the
CFHTLenS survey and in [8] for the DES survey. There
exist however alternative approaches that give comple-
mentary information. This is in particular the case of the
convergence one-point Probability Distribution Function
(PDF) or rather the PDF of the aperture mass (which
is a specific filtering of the convergence map we define
below) and its first few moments as exploited in [9] for
the CFHTLS or in [10] for the DES survey.

This paper is in this line of investigation. It does not
aim at quantifying the efficiency of such measurements
in constraining the cosmological models but at showing
the one-point PDF of the aperture mass can be computed
from first principles in a given cosmological context. Such
a computation makes use of the Large Deviations Princi-
ple (LDP), that is the central definition on the theory of
large deviations, and that we will describe more specifi-
cally in the following. In broad terms, the theory of large
deviations [11–13] is a branch of probability theory that

1 www.cfhtlens.org
2 www.darkenergysurvey.org
3 www.lsst.org
4 www.euclid-ec.org
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deals with rate at which probabilities of certain events
decay as a natural parameter of the problem varies [14],
and is applied in variety of domains in mathematics and
theoretical physics, specially in statistical physics both
for equilibrium and non-equilibrium systems (see for in-
stance [15] for a review paper on the subject, or App. B
for a short introduction). The application of the LDP
to Large Scale Structure cosmology has been formalized
in the last few years [16–19] and will be employed here
in the context of cosmic shear observations. This is not
the first time that arguments related to the theory of
large deviations is used in this context, and we highlight
[20–23] in particular.
In this paper we focus on aperture mass statistics and

extend the results that had been obtained in two ways:
the aperture mass is defined with the help of more realis-
tic filters, and we show that one can take into account the
fact that only the reduced shear can be measured, not the
shear itself. Cosmic shear observations are indeed based
on the measurements of background galaxy shapes, more
specifically on the amplitude and direction of their defor-
mation, and what we have access to are ratios of the de-
formation matrix elements, i.e; the reduced shear which is
then the ratio (shear)/(1-convergence). Moreover, from
such observation one can easily build the Laplacian of
the associated (reduced) convergence field. But it is not
possible to unambiguously recover the convergence field
itself. For circular symmetric filters, the convergence can
only be recovered in compensated filters (which filter out
constant fields and fields with constant gradients) which
can be viewed as projected mass maps in aperture5, that
is aperture mass (Map) [24, 25].
In general observations should then be viewed as non

local, non linear transformation of the convergence field.
In the literature the reduced shear is usually replaced by
the shear itself arguing that the convergence ought to
be generally small for cosmic shear observations. It dra-
matically simplifies the problem as the observed Map is
made a linear transformation of the projected mass field.
This is however an a priori unjustified simplification in
the context of the theory of large deviations. It can be
shown that the statistical properties of quantities that
respect certain symmetries (which here will be the cir-
cular symmetry) can be computed in the small variance
limit even though some events strongly depart form the
variance. What the LDP can account for is precisely the
impact of excursions of large values of the convergence.
The general techniques for computing one-point PDF

of densities filtered with top-hat filters has been devel-
oped in a long series of papers [17, 26–28]. The derivation
of exact results for continuous filters escaped however this
formalism6. The central ingredient of the developments

5 Conversely it can be shown that such Map fields can be written
in terms of integrals of well chosen components the reduced shear
field.

6 The derivation of the skewness when gaussian filtering is em-

presented here is the construction of general symmetric
filtering of the density field as the continuous limit of a
weighted composition of concentric top-hat filters, as in-
troduced in [18]. The second main point of this paper
is to show that the LDP can be applied to a non-linear
functional of the density profile and namely to the one-
point PDF of the observed Map. Again this construction
will make use of the general formulation developed in
[18]. Our work therefore extends previous results in two
fundamental ways.
The application of the LDP is based on a number of

ingredients we will detail in section II. The line of rea-
soning we follow (similar to [20]) is based on the fact
that cosmic shear observations are akin to observation
in long cylindrical cells. In the following we will simply
assume that the fluctuations along the radial direction
have simply been integrated out. The LDP is then based
on the assumption that the leading configurations in the
initial field that lead, after nonlinear evolution, to a given
circular constraint obey the same circular symmetry. Un-
der this assumption (and before shell crossing) it is then
possible to map the initial configuration to the final one.
The setting of the LDP is then based on the following
ingredients:

• One should first define the rate function of the vari-
ables that define the initial field configuration. We
will assume here Gaussian initial condition to de-
fine their covariance matrix.

• One should then specify the mapping between the
initial field configuration (mass profile) and the fi-
nal mass profile. It will make use of the 2D cylin-
drical collapse (or rather one approximation of it).

• We are then in position to write the observable –
say the Map defined with a specific filter – as a func-
tional form of the final and therefore initial mass
profile.

The rate function of the Map variable is then obtained
through a minimization procedure we detail in section
III. The results are discussed in section IV and in par-
ticular we comment on the impact of the differences be-
tween Map and observed Map statistics at the level of
the rate function, the cumulant generating function and
the resulting one-point PDF.

II. THE LDP APPLIED TO THE

CONVERGENCE FIELD

The aim of this section is to introduce the necessary
ingredients required for the implementation of the LDP.
We first review the nature of the observable we are inter-
ested in.

ployed, for example, was a remarkable tour de force [29].
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A. The convergence

Lensing effects are generally classified in strong and
weak. On the first case arcs and multiple images are
observable as consequence of caustics and cusps on the
observers past-light cone due to gravitation. Weak grav-
itational lensing is associated to smooth deformations
on the observers past-light cone and the effects are less
dramatic. Gravitational lensing on distant galaxies can
be observed through the distortion of shape and size of
the light sources parametrized by the shear γ and con-
vergence κ, respectively. For scalar, linear perturba-
tions of the FLRW spacetime, convergence and shear
can be expressed as derivatives of a lens potential (see
App. A). The convergence, in particular, is given by
2κ = (▽1▽1 + ▽2▽2)φL, where ▽1,2 are derivatives on
a spacelike plan perpendicular to the direction of prop-
agation of the light beam. If we assume Born approx-
imation, neglect lens-lens couplings and extrapolate the
2D Laplacian that appears on the definition of κ to the
3D Laplacian, we can use the Poisson’s equation to link
convergence and matter density fluctuations as (see for
instance [5]):

κ(θ) =

∫ χ
S

0

dχ
L
w(χ

S
, χ

L
)δ(D0(χL

)θ, χ
L
) . (1)

Here χ
S
is the comoving distance to the sources, and

w(χ
S
, χ

L
) :=

3

2
Ωm

H2
0

c2
D0(χS

− χ
L
)D0(χL

)

a(χ
L
)D0(χS

)
(2)

with D0 is defined in Eq. (A3). We observe that
w(χ

S
, χ

L
) is a positive function, and therefore by the

integral Mean-Value theorem, there exists χ∗
L
, 0 < χ∗

L
<

χ
S
, such that

κ(θ) = weff(χS
) δ2D(D0(χS

)θ, χ
S
) (3)

we will not keep the dependence on χ
S
explicitly in κ(θ)

to make the notation shorter. We define weff(χS
) explic-

itly as:

weff(χS
) :=

3

2
Ωm

H2
0

c2
D0(χS

− χ∗
L
)D0(χ

∗
L
)

a(χ∗
L
)D0(χS

)
. (4)

This corresponds effectively to existence os a lens plan at
χ∗

L
where all the lensing mass would be concentrated. We

could have defined a projected density contrast instead, as
in [20], but the assumption of a lens plan does not weaken
our present argument. In Einstein-de Sitter universe, the
possible values of weff(zS

) are shown in Fig. 1 as function
of the possible z∗

L
s.

The quantity δ2D(D0(χS
)θ, χ

S
) is given by:

δ2D(D0(χS
)θ, χ

S
) =

∫ χ
S

0

dχ′δ(D0(χ
′)θ, χ′) , (5)

and plays the role of projected density contrast. We will
also assume a small angle approximation and consider
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FIG. 1: Projection factor w(z
L
, z

S
) defined in Eq. (2) in

Einstein- de Sitter universe for z
S

= 1. The effective value
weff is the particular values of w(z

L
, z

S
) at z

L
= z∗

L
corre-

sponding to the redshift of the effective lens plan.

that the integral on Eq. (5) is performed in a cylindrical
region instead of a conic one. We refer to [20, 28, 30] to a
detailled discution of the approximations assumed here.
For reasons that will be explicit in the next paragraph

we are led to consider the smoothed convergence over
cylindrical regions with aperture scales θi:

κ
<
(θi) :=

∫ θi

0

d2θ

πθ2i
κ(θ) (6)

for a given sequence of scales θ1, θ2, . . . , θN of particular
interest. We observe that, except for a multiplicative
factor, this corresponds to the smoothing of the surface
density δ2D. We shall, then, define

κ̂
<
(θ) =

κ
<
(θ)

weff(χS
)

(7)

as a normalized convergence.

B. The rate function of the initial field

configuration

We will consider the evolution of the effective 2D den-
sity field on the lens plane: as a first step, a Gaussian
distributed density field τ2D is set, and for this field we
define κ̂lin

<
(θ) as in Eq. (7), but using τ2D in Eq. (3). We

want to compute the elements Σij := 〈κ̂lin
<

(θi)κ̂
lin
<

(θj)〉,
1 ≤ i, j ≤ N of the covariance matrix Σ for this gaussian
field. On small-angle approximation one obtains [28]:

Σij =

∫ ∞

0

dk⊥k⊥
2π

P (k⊥)W (D0θik⊥)W (D0θjk⊥) (8)

where

W (x) =
2J1(x)

x
(9)

is the Fourier transform of the top-hat filter in two di-
mensions. We normalize D+ to be unity at current time.
We assume here P (k⊥) = Akn⊥, −2 ≤ n ≤ 1.
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As observed in appendix B, the collection
{κ̂lin

<
(θi)}1≤i≤N of correlated gaussian random variables

obeys the LDP with rate function:

I(κ̂lin
<

(θ1), . . . , κ̂
lin
<

(θN )) =
σ2(θN )

2

∑

ij

Ξij κ̂
lin
<

(θi) κ̂
lin
<

(θj)

(10)
where Ξ = Σ−1, and σ2(θN ) = ΣNN . When we take the
limit σ2(θN ) → 0, the rate function determines the ex-
ponential decay rate for the probability density function
associated to the random variables.

C. The mapping between the initial configuration

and the final configuration

We assume now that the τ2D is a density fluctuation
produced by a gas of non-interacting particles obeying
continuity, Euler and Poisson equations with azimuthal
symmetry, i.e., a cylindrical collapse. If this dynamics
can be solved, a map connecting linear and non-linear
overdensities can be established. If we consider matter
contained in a cylindrical region, Gauss theorem will pro-
vide us the relation of the radii given initial and final
density. For what concerns this work, it is sufficient to
know that the normalized non-linear density can be ap-
proximated in terms of the linear density as [28]:

ζ(τ2D) =
1

(

1− τ2D
ν

)ν , ν =

√
13− 1

2
. (11)

We can therefore construct a new family of random
variables to describe the convergence produced by the
non-linear evolution of τ2D:

κ̂
<
(ϑi) = ζ(κ̂lin

<
(θi))− 1 ϑi = θi/ζ(κ̂

lin
<

(θi))
1/2 .
(12)

Since we assume no shell-crossings, the angular scales
ϑi are related to the initial scales θi by the constraint
of mass conservation inside a given shell. The fam-
ily of random variables {κ̂

<
(ϑi)}1≤i≤N is obtained from

{κ̂lin
<

(ϑi)}1≤i≤N by the continuous function ζ, and there-
fore new family of random variables also obeys the LDP
as a consequence of the contraction principle in Large
Deviations Theory (see appendix B).

D. The rate function of the final field configuration

The contraction principle states that the rate function
for the new family will be given by (see Eq. (B4)):

Ψ(κ̂
<
(ϑ1), . . . , κ̂<

(ϑN )) = inf
κ̂lin

<

I(κ̂lin
<

(θ1), . . . , κ̂
lin
<

(θN )) ,

(13)
where inf κ̂lin

<

stands for the infimum taken over the collec-

tion {κ̂lin
<

(θi)}(1≤i≤N) such that κ̂
<
(ϑi) = ζ(κ̂lin

<
(θi))−1.

In the domain in which ζ is bounded we can perform the
inversion κ̂lin

<
(θi) = ζ−1[1 + κ̂

<
(ϑi)], that we may also

write as κ̂lin
<

(κ̂
<
(ϑi)). We can therefore write,

Ψ(κ̂
<
(ϑ1), . . . , κ̂

<
(ϑN )) =

σ2(ϑN )

2

×
∑

ij

Ξij κ̂
lin
<

(κ̂
<
(ϑi))κ̂

lin
<

(κ̂
<
(ϑj)) . (14)

Again Ξ = Σ−1, Σ being the matrix whose elements are
given in Eq. (8).
The Legendre-Fenchel transform of the rate function

is the scaled cumulant generating function (SCGF), from
which all the cumulants can, in principle, be derived (see
appendix B).

E. The single cell case

In order to summarize and illustrate the rate function,
SCGF, their relations and role on the derivation of ob-
servable quantities, we will consider the convergence fil-
tered at one given scale, i.e., we take N = 1 in (14). The
rate function in this case will be given by

Ψ(κ̂
<
(ϑ)) =

σ2(ϑ) (κ̂lin
<

(κ̂
<
(ϑ)))2

2σ2(ϑ ζ1/2(κ̂lin
<

(θ)))
. (15)

If P (k) ∝ kn, then σ2(x) ∝ x−(n+2) in 2D dynamics. We
observe from the graph of the function Ψ(κ̂

<
) shown in

Fig. 2 that this function is not globally convex. Indeed
there is a critical value κ̂c

<
where there is a change of

convexity. For −2 ≤ n ≤ 1, however, κ̂c
<
> 0 indicating

that the rate function is convex in a neighborhood of the
origin.

-1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Κ
`
<

Y
HΚ` <
L

FIG. 2: The rate function given in Eq. (15) for n = −1.5.
The rate function is convex around the origin but changes the
convexity for κ̂

<
≈ 0.8.

When σ2 → 0, the scaled cumulant generating function
is the Legendre-Fenchel transform of the rate function,
i.e,

ϕ(λ) = sup
κ̂
<

[λ κ̂
<
−Ψ(κ̂

<
)] . (16)
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The quantities ϕ and Ψ are said to be convex conjugate,
and Eq. (16) is written simply as ϕ = Ψ∗ in some refer-
ences. If Ψ is globally convex, then Ψ = ϕ∗ = Ψ∗∗ (i.e.,
convex conjugation is involutive on the space of convex
functions). If Ψ is not globally convex, then Ψ∗∗ pro-
duces only the convex envelope of Φ. Moreover, ϕ = Ψ∗

has points of non-differentiability when Ψ loses convexity.
Our rate function, as observed, is not globally convex for
all values of the spectral index n, what requires careful
analysis on the inversion of ϕ to obtain the PDF [17, 19].
On the strictly convex domain of Ψ, however, the

Legendre-Fenchel transform reduces to the classical Leg-

endre transform and therefore λ =
∂Ψ(κ̂

<
)

∂κ̂
<

. If the scaled

cumulant generating function is C∞ around the origin,
then all the (scaled) cumulants can be obtained from the
Taylor expansion of ϕ(λ):

ϕ(λ) =

∞
∑

p=1

ŝp
λp

p!
. (17)

Here ŝp = 〈κ̂p
<
〉c/〈κ̂2

<
〉p−1
c . Since p-th cumulant is an ho-

mogeneous functions of degree p, sp := 〈κp〉c/〈κ2〉p−1
c =

weff(χS
)2−pŝp. For the skewness (p = 3) we have:

s3(ϑ) =
1

weff(χS
)

[

36

7
− 3

2
(n+ 2)

]

(18)

from where we can depict the inversely proportional de-
pendence of the skewness on Ωm. As it was shown in [30],
s3 ≈ 42Ωm

−0.8 for z
S
≈ 1.

III. THE LDP FORMULATION APPLIED TO

THE OBSERVED APERTURE MASS

We have considered until now a family of random
variables produced by filtering the convergence field
with a family of top-hat filters associated to scales
D0ϑ1, . . . ,D0ϑN for a given lensing configuration. More
general filtering schemes can be proposed, and a very con-
venient example is the so called aperture mass, which is
produced by the convolution of the convergence field with
a compensated filter U(x), i.e., a filter with the property
∫

dxxU(x) = 0. In order to keep working with normal-
ized quantities, we shall define the normalized aperture
mass as in [20]:

M̂ap = U ∗ κ̂ . (19)

The scale on which the convergence field is filtered here
is determined by a parameter on the definition of U(x).
We will compute the aperture mass at the origin here.

A. Filters for convergence and shear

We should first remark that the aperture mass is de-
fined in terms of a filtering of the convergence field. We

would like, instead, to use the top-hat filtered quantity
κ̂

<
on the definition. We remark that the differentiation

of Eq. (6) yields κ̂(ϑ) = κ(ϑ)/w = κ̂
<
(ϑ) + ϑ

2 κ̂
′
<
(ϑ). We

can thus use integration by parts to write

M̂ap =

∫

dϑϑU(ϑ) κ̂(ϑ) =

∫

dϑ Ũ(ϑ) κ̂
<
(ϑ) (20)

where Ũ(ϑ) = −ϑ2

2 U ′(ϑ). The filter Ũ satisfies
∫

dϑ Ũ(ϑ) = 0. Going one step further, we can express

the M̂ap in terms an specific filter acting on the shear
[25]. For axially symmetrical lenses, we can relate κ̂, κ̂

<
,

and γ̂ (= γ/w) as:

γ̂(ϑ) = κ̂
<
(ϑ)− κ̂(ϑ) = −ϑ

2
κ̂′

<
(ϑ) . (21)

Assume that there exists a filter Q̃ such that

M̂ap =

∫

dϑ Q̃(ϑ) γ̂(ϑ)

=

∫

dϑ
Q̃(ϑ) + ϑ Q̃′(ϑ)

2
κ̂

<
(ϑ) , (22)

where the second line was obtained by integration by
parts. The relation between the filters Ũ and Q̃ is, there-
fore,

Ũ(ϑ) =
1

2

(

Q̃(ϑ) + ϑ Q̃′(ϑ)
)

. (23)

As before, Q̃(ϑ) = −ϑ2

2 Q′(ϑ). For analytical conve-

nience, we will focus on the filter Q(ϑ) = e−ϑ2/2. Other
possible compensated filters can be found in the litera-
ture [20, 25, 31].

B. Conveniences and limitations of the aperture

mass

The convergence field can only be obtained through
inversion problem and is non-local. Shear field is more
directly observed. As discussed in appendix A1, obser-
vation of ellipticity fields yields a measure of the reduced
shear (g = γ/(1 − κ)), from which the shear is usually
obtained by assuming κ ≪ 1 for weak lensing [5, 6]. This
leads us to define the observed aperture mass as:

M̂g
ap :=

∫

dϑ ĝ(ϑ) Q̃(ϑ) ≈ M̂ap (24)

where M̂ap is given in Eq. (22). The (theoretical) aper-

ture mass M̂ap has therefore the good analytical property
of being expressible in terms of the shear or convergence,
but the observable quantity is M̂g

ap. The theoretical and
observable aperture masses should agree as long as the
convergence is small. Being defined as the filtering of a
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random field, however, the convergence can exhibit sta-
tistical large fluctuations, and therefore the statement
κ ≪ 1 is not well defined on itself.
We seek, then, to quantify the role of large deviations

on the reconstruction of statistical properties of the aper-
ture mass.

C. General filter and the M̂ap statistics

We have presented in Sec. II C the formalism based
on the Large Deviations Theory to derive the SCGF as-
sociated to the top-hat filtering of the convergence field
for a finite number of filtering scales. A general filter-
ing can be approximated by a weighted composition of
top-hat filters as introduced in [18], and we will develop

this generalization to produce the SCGF for the M̂ap and

M̂g
ap.

We shall assume that the M̂ap can be approximated
by a finite collection of the top-hat filtered convergence
κ̂

<
(ϑi) weighted by the series of coefficients Ũi, 1 ≤ i ≤ N

as:

M̂ap ≈
N
∑

i=1

Ũi(ϑi) κ̂<
(ϑi) . (25)

If this is the case, the M̂ap is a linear combination of the
κ̂

<
(ϑi)’s and therefore, by the contraction principle, the

rate function for the M̂ap is given in terms of the initial
rate function I(θ1, . . . , θN ) through a composition of con-
tinuous bounded functions. By the contraction principle
(see Eq. (B4)),

Ψ(M̂ap) = inf
κ̂lin

<
(θi)

[

I(κ̂lin
<

(θ1), . . . , κ̂
lin
<

(θN ))

+α

(

M̂ap −
N
∑

i=1

Ũi(ϑi) κ̂<
(ϑi)

)]

(26)

where α is a Lagrange multiplier and κ̂
<
(ϑi) is given in

terms of κ̂lin
<

(θi) by Eq. (12).

The weights Ũi are defined on the image of ζ,
i.e., on the filtered non-linear field, but the inf has
to be computed over the initial random variables
κ̂lin

<
(θ1), . . . , κ̂

lin
<

(θN ), both being related by the map ζ
defined on Eqs. (11), (12).
We assume now that refinements in the partition de-

fined by the filtering scales will eventually lead to the
corresponding continuous limit,

N
∑

i=1

Ũi(ϑi) κ̂<
(ϑi) →

∫

dϑ Ũ(ϑ) ζ(κ̂lin
<

(θ))

=

∫

dθ
dϑκ̂lin

<

dθ
Ũ [ϑκ̂lin

<

(θ)] ζ(κ̂lin
<

(θ)) (27)

where we stress the dependence of ϑ on κ̂lin
<

(θ) by writing
Eq. (12) as:

ϑκ̂lin

<

(θ) = θ ζ−1/2(κ̂lin
<

(θ)) . (28)

D. The Scaled Cumulant Generating Functions

Our next goal is write the SCGF on the continuous
limit. By the Varadhan’s lemma given in Eq. (B5) the
scaled cumulant generating function will be the continu-
ous limit of

ϕ(λ) = sup
κ̂lin

<

[

λ

N
∑

i

Ũi(ϑi) κ̂<
(ϑi)− I(κ̂lin

<
(θ1), . . . , κ̂

lin
<

(θN ))

]

.

(29)
In order to write the continuous limit of the rate func-

tion I(κ̂lin
<

(θ1), . . . , κ̂
lin
<

(θN )) given in Eq. (10), we have
to give a continuous limit to the matrix Ξ. Let us as-
sume, for this sake, the existence of an object ξ(θ′, θ′′)
such that

∫

dθ′ σ2(θ, θ′) ξ(θ′, θ′′) = δD(θ − θ′′) (30)

where σ2(θ, θ′) is given by Eq. (8) computed over con-
tinuous domains.
The desired continuous limit for the SCGF is, there-

fore,

ϕ(λ) = sup
κ̂lin

<

[

λ

∫

dθ Ũ(ϑκ̂lin

<

(θ))
dϑκ̂lin

<

dθ
ζ(κ̂lin

<
(θ))

−σ2
F

2

∫

dθ dθ′ κ̂lin
<

(θ) κ̂lin
<

(θ′) ξ(θ, θ′)

]

. (31)

Here σ2
F =

∫

dθ dθ′ σ2(θ, θ′) Ũ(θ) Ũ(θ′).
As already observed, the normalized aperture mass

M̂ap can be obtained as in Eq. (20) through the convo-

lution of κ̂
<

and Ũ , or as in Eq. (22) by convolving γ̂

and Q̃, and the two different expressions are related by
an integration by parts. Integrations by parts can also be
applied on Eq. (31) to re-express it explicitly in terms of
the convergence or shear with corresponding filters. Al-
though equivalent, the different expressions of ϕ allows
us perform distinct numerical implementations and check
the performance of the solutions. A second need for a
rewriting of Eq. (31) in terms of γ̂ and Q̃ is to extend

the SCGF for M̂ap into the SCGF of M̂g
ap. We will call

the different arrangement of variables representations of
the SCGF.

1. SCGF on the convergence representation

The SCGF for M̂ap in Eq. (31) is already given in

terms of κ̂
<

and Ũ , but it can be expressed in a more
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numerically suitable form. Let the filter Ṽ (x) be defined
by:

Ṽ (x) =

∫ x

0

dy Ũ(y) . (32)

It follows by integration by parts that:

∫ ∞

0

dθ

(

Ũ(ϑκ̂lin

<

(θ))
dϑκ̂lin

<

dθ

)

ζ(κ̂lin
<

(θ))

= −
∫ ∞

0

Ṽ (ϑκ̂lin

<

(θ))
∂ζ(κ̂lin

<
(θ))

∂κ̂lin
<

κ̂lin′

<
(θ) (33)

as long as the surface term Ṽ (ϑκ̂lin

<

)ζ(κ̂lin
<

(θ))|∞0 = 0,

what is the case if U(x) is a compensated filter. The
SCGF on the convergence representation is therefore:

ϕκ(λ) = − inf
κ̂lin

<

[

λ

∫

dθ Ṽ (ϑκ̂lin

<

(θ′))
∂ζ(κ̂lin

<
(θ′))

∂κ̂lin
<

κ̂lin′

<
(θ′)

+
σ2
F

2

∫

dθ dθ′ κ̂lin
<

(θ) κ̂lin
<

(θ′) ξ(θ, θ′)

]

. (34)

2. SCGF on the shear representation

As a direct consequence of Eq. (22) applied to Eq.
(31), the SCGF on the shear representation is given by:

ϕγ(λ) = − inf
κ̂lin

<

[

λ

∫

dθ Q̃(ϑκ̂lin

<

(θ))
ϑκ̂lin

<

2

dζ(κ̂lin
<

(θ))

dθ

+
σ2
F

2

∫

dθ dθ′ κ̂lin
<

(θ) κ̂lin
<

(θ′) ξ(θ, θ′)

]

. (35)

We recall that γ̂ = −
ϑ
κ̂lin
<

2

dζ(κ̂lin

<
(θ))

dϑ
κ̂lin
<

.

3. SCGF on the reduced shear representation

We want now to extend the SCGF ϕγ(λ) to the SCGF

for the observed aperture mass M̂g
ap given in Eq. (24).

For this sake, we remember that the (normalized) re-
duced shear can be expressed as:

ĝ(κ̂lin
<

(θ), weff) =
γ̂

1− κ

= −1

2

ϑ κ̂
<
(ϑ)′

1− weff [κ̂<
(ϑ)− 1

2ϑ κ̂
<
(ϑ)′]

(36)

in terms of the variables ϑ, κ̂
<
(ϑ), and the projection fac-

tor weff . The contraction principle allows us to extend

the LDP to any continuous functional of the initial pro-
file, and we can invoke it to replace γ̂ by ĝ in Eq. (35) and
obtain the SCGF on the reduced shear representation:

ϕg(λ) = − inf
κ̂lin

<

[

λ

∫

dθ Q̃(ϑκ̂lin

<

(θ)) ĝ(κ̂lin
<

(θ), weff)

+
σ2
F

2

∫

dθ dθ′ κ̂lin
<

(θ) κ̂lin
<

(θ′) ξ(θ, θ′)

]

. (37)

4. Summary

The SCGFs ϕκ(λ) and ϕγ(λ) are two (equivalent) ex-

pressions the SCGF for M̂ap given respectively in the
convergence and shear representations. The SCGF ϕg(λ)
is the extension of ϕγ(λ) where the reduced shear is used
as central observable quantity, and therefore corresponds
to the SCGF for the physical M̂g

ap.
If the infs in Eqs. (34), (35), and (37) can be com-

puted, the statistical properties of M̂ap and M̂g
ap will

follow. It should be stressed that the infimum of a func-
tional doesn’t need to agree with a minimum of that func-
tional, but we will only focus here on the determination
of minima of our functionals of interest.

IV. PRACTICAL IMPLEMENTATIONS

The actual resolution of the minimization problems ob-
tained in the previous section is not straightforward with
no guarantee that it actually converges. We present in
the following the different approaches that we effectively
employed to solve the minimization problem and check
that we have consistent results. Details on the numerical
tests can be found in the appendix C.

A. Extremization with the help of the

Euler-Lagrange equations

An extremum of the functional ϕκ(λ) given in Eq. (34)
can be obtained by imposing

δϕκ(λ)

δκ̂lin
<

(θ)
= 0 . (38)

Indeed, it follows from Eqs. (33), (34), and (38) that
the linear profile has to obey the equation:

κ̂lin
<

(θ) = − λ

σ2
F

∫

dθ′σ2(θ, θ′)
δ

δκ̂lin
<

[

Ṽ (ϑκ̂lin

<

(θ′))

×
∂ζ(κ̂lin

<
(θ′))

∂κ̂lin
<

κ̂lin′

<
(θ′)
]

(39)
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where

δ

δκ̂lin
<

=
∂

∂κ̂lin
<

− d

dθ

∂

∂κ̂lin′

<

(40)

is the Euler-Lagrange operator. The term inside squared
brackets in Eq. (39) has the nice property of being linear

on κ̂lin′

<
, what leads to great simplifications. Indeed, the

use of the explicit form of ϑκ̂lin

<

given in Eq. (28) and the

definition of Ṽ given in Eq. (32) lead directly to:

κ̂lin
<

(θ) =
λ

σ2
F

∫

dθ′ σ2(θ, θ′)
[

Ũ(ϑκ̂lin

<

(θ′))

× ζ−1/2(κ̂lin
<

(θ′))
∂ζ(κ̂lin

<
(θ′))

∂κ̂lin
<

]

. (41)

Also from Eq. (38) it follows that:

σ2
F

2

∫

dθ dθ′ κ̂lin
<

(θ) κ̂lin
<

(θ′) ξ(θ, θ′) =
λ

2

∫

dθdθ′κ̂lin
<

(θ)

×
[

Ũ(ϑκ̂lin

<

(θ′))ζ−1/2(κ̂lin
<

(θ′))
∂ζ(κ̂lin

<
(θ′))

∂κ̂lin
<

]

(42)

showing that the actual knowledge of ξ(θ, θ′) assumed in
Eq. (30) is not necessary to the solution of the extrem-
ization problem.
We obtain, finally,

ϕκ(λ) = −λ

∫

dθ Ṽ (ϑκ̂lin

<

(θ;λ))
∂ζ(κ̂lin

<
(θ;λ))

∂κ̂lin
<

κ̂lin′

<
(θ;λ)

−λ

2

∫

dθ dθ′ κ̂lin
<

(θ;λ)
[

Ũ(ϑκ̂lin

<

(θ′;λ))

× ζ−1/2(κ̂lin
<

(θ′;λ))
∂ζ(κ̂lin

<
(θ′;λ))

∂κ̂lin
<

]

(43)

where κ̂lin
<

(θ;λ) is a solution of the integral equation (41)

for each value of λ, and ϑκ̂lin

<

(θ;λ) = θ ζ−1/2(κ̂lin
<

(θ;λ)).

From one side, the linearity of our action in κ̂lin′

<
al-

lows to obtain the simple expression for κ̂lin
<

(θ) given in
Eq. (41). From the other side, the same linearity of the

action in κ̂lin′

<
forbids us of exploring the stability of the

extremum through second variations of the action. We
will assume that κ̂lin

<
(θ) conducts to a maximum of the

SCGF on the interval on which it is defined.
The SCGF is given by Eq. (43) as long as Eq. (41)

can be solved uniquely for each value of λ. In order to
study the existence of unique solutions for this equation,
we take the first variation of Eq. (41), obtaining:

σ2(θ, θ′)

σ2
F

δ

δκ̂lin
<

(θ)

[

Ũ(ϑκ̂lin

<

(θ′))

× ζ−1/2(κ̂lin
<

(θ′))
∂ζ(κ̂lin

<
(θ′))

∂κ̂lin
<

]

=
δD(θ − θ′)

λ
(44)

from which we can determine critical values of λ on the
solution of Eq. (41).

B. Skewness

Expanding ϕ(λ) given in Eq. (31) around λ = 0 leads
to the expression of cumulants. For the skewness we have
[18]:

ŝκ3 = 3ν2

∫

dx Ũ(x)Σ2(x)

[
∫

dx Ũ(x)Σ(x)]2
+ 3

∫

dxx Ũ (x)Σ(x)Σ′(x)

[
∫

dx Ũ(x)Σ(x)]2

(45)
with

Σ(x) =

∫

dy σ2(x, y) Ũ(y) . (46)

(Note that the coefficient in front of the second term in
Eq. (45) is 6/d, where d is the dimension of space in
which spherical collapse is considered). It is worth to
recall that the reduced skewness of the aperture mass is
then

sκ3 =
1

weff
ŝκ3 (47)

We can do the same exercise by expanding ϕg(λ)
around λ = 0. At lowest order, the correction on the
skewness introduced by the use of the reduced shear is:

ŝg3 − ŝκ3 = 6weff

∫

dx Q̃(x) x
2 Σ

′(x)
(

Σ(x) + x
2 Σ

′(x)
)

[
∫

dx Ũ (x)Σ(x)]2

(48)
and

sg3 − sκ3 =
1

weff
(ŝg3 − ŝκ3 ) . (49)

As expected the expression of sκ3 and sg3 depend on
the choice of power spectrum and for a sake of simplic-
ity we illustrate our results for power law spectra. More
specifically we can analyse the relative importance of the
correction term given in Eq. (48) by computing the ra-
tio (sg3 − sκ3 )/(weffs3) which is then independent of weff .
As shown in Fig. 3, the impact on the skewness of the
distribution of M̂g

ap has a few percent deviation from the

skewness for M̂ap as function of the spectral index n.

C. The SCGF and the rate functions

The Euler-Lagrange equations presented in Sec. IVA
can be used to obtain ϕκ but the action becomes con-
siderably more involved when we are interested in ϕg.
We treated the problem numerically in two alternative
ways: the implementation of Eqs. (41) and (43), or the
direct extremization methods available in Mathematica
[32] such as the FindMinimum routine. As shown in ap-
pendix C, direct extremization and the Euler-Lagrange
methods agree to high precision on the range of λ of our
interest and for the discretizations of the interval consid-
ered.



9

-1.5 -1.0 -0.5 0.0 0.5
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

n

1

w
e
ff
Hz

S
L

Js
3g
-

s
3Κ
N

s
3Κ

FIG. 3: Deviation of the skewness for M̂g

ap and M̂ap normal-
ized by weff . Since 0 ≤ weff ≤ 0.3 in Einstein-de Sitter for
z
S

= 1, we see that the highest possible correction to the
skewness in this case is of order of 10%.

The general output from the numerical solutions can
be seen in Fig. 4. On this plot ϕκ(λ) is computed using
the Euler-Lagrange strategy and ϕγ(λ) and ϕg(λ) derive
from direct extremization. We should remark that al-
though displayed in two different representations we have
ϕκ(λ) = ϕγ(λ), and this is recovered in the numerical re-
constructions (see Sec. C 1 for more details). We note
that moving from the shear to the reduced shear induces
some changes on the SCGF and also moves the critical
points closer to the origin. The critical points for ϕκ can
be also obtained from Eq. (44).
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0.008

0.010
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FIG. 4: The SCGFs ϕκ(λ), ϕγ(λ), and ϕg(λ) for n = −1.5.
The curves for ϕκ(λ) and ϕγ(λ) coincide as they should. The

SCGF for M̂g

ap is however slightly different and has different
critical points. We use weff = 0.1 here.

The SCGF is always a convex function, the same is
not true for the rate function. As already noted, and
discussed in appendix B, SCGF and rate function can
be obtained from each other by Legendre transform as
long as the rate function is convex. If the rate function
ceases to be convex, the SCGF will still be given by the
Legendre-Fenchel transform of the rate function, but will
present points of non-differentiability. We then note that
the Legendre-Fenchel transform of such a SCGF will pro-
duce the convex envelope of the rate function only, and

not the rate function itself7.

D. The One-point PDF

We complete our investigations by evaluating the im-
pact of those changes on the shape of the one-point PDF
of the M̂ap values. The calculation is based on the com-
putation of the inverse Laplace transform of the cumulant
generating function (see for instance [17] for details). For
a sake of simplicity we perform this calculation using an
effective form for the SCGF (as in [20]). Such an effective
form is based on an effective vertex generating function
ζeff(κ̂

lin
<

) satisfying:

ϕeff(λ) = λ ζeff(κ̂
lin
<

)− 1

2
λ κ̂lin

<
ζ′eff(κ̂

lin
<

) (50a)

κ̂lin
<

= λ ζ′eff(κ̂
lin
<

) . (50b)

where ζeff(κ̂
lin
<

) is adjusted so that ϕeff(λ) provides a
good fit to the SCGF we computed, in particular repro-
ducing its critical behaviors. In practice one can get a
very good fit with a fifth order polynomial for ζeff .
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0.000

0.001

0.002

0.003
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0.005

0.006

Λ

j
e
ff
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FIG. 5: The effective cumulant generating functions ϕκ

eff and
ϕ

g

eff
satisfying Eq. (50). The projection factor weff = 0.1 is

used on the ϕ
g

eff
data.

The effective cumulant generating function obtained
this way reproduces extremely accurately the global be-

7 A duality property connects features of the SCGF and the convex
envelope of the rate function [15]: if the SCGF goes to infinity
at critical points, then the convex envelope of the rate function
will have segments of constant derivative beyond critical points.
The location of the critical points of the SCGF give the inclina-
tion of the affine segments of the rate function, while the lateral
derivatives of the SCGF at the critical points give the location of
its critical points. We can understand from the LDP that linear
segments on the rate function implies exponential decay for the
probability density function. Unless we know the geometry of
the space of solutions for the minimization problem, we cannot
know the rate function globally for our problem. All we can ac-
cess from our method is therefore the segment that corresponds
to the non-affine segment of the convex envelope just described.
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havior obtained previously in particular for its critical
points.
The reconstruction of the one point PDF of M̂ap is

then obtained from the following form,

P (M̂ap) =

∫ i∞

−i∞

dλ

2π
exp[−λ κ̂

<
+ ϕκ̂

<
(λ)] . (51)

where the function ϕκ̂
<
(λ) is built from the SCGF,

ϕκ̂
<
(λ) =

1

σ̂2
ϕκ(λ σ̂2) (52)

in such a way that σ̂2 matches the expected variance of
M̂ap. The actual computation of such inverse Laplace
transforms has been described in referenced papers and
is based on the integration along the imaginary axis.
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FIG. 6: PDFs obtained from the inverse Laplace transfor-
mation of ϕκ and ϕg for σ̂ = 0.4 (top two curves) and

σ̂ = 0.7 (bottom two curves). The M̂g

ap is reconstructed for

weff = 0.1. In each case P (M̂g

ap) is sightly larger than P (M̂ap)

for M̂ap ≈ 0 exhibiting slightly stronger non-Gaussianities.
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FIG. 7: Difference of the PDFs shown on Fig. 6 for σ̂ = 0.4
(blue curve), σ̂ = 0.5 (red curve) and σ̂ = 0.7 (yellow curve).

The resulting PDFs, P (M̂ap) and P (M̂g
ap) built respec-

tively from the shear field and the reduced shear field
are shown in Fig. 6. For these ranges of M̂ap and this
value of weff the relative errors are about a few percent as

shown on Fig. 7 consistent with our findings concerning
the skewness. What these results show however is that
the extra non-linearities contained in the reduced shear
expression have little effects on the global shape of the
PDFs.

V. CONCLUSION

In this paper we present the derivation of the cumu-
lant generating function and the corresponding one-point
PDF of the aperture mass, M̂ap, in a general framework.
In particular we take into account that aperture mass
can only be built in practice from the measured reduced
shear (=shear/(1-convergence)) and will be built in gen-
eral from a variety of filter shapes. So, although it is still
not a realistic prediction since we did not take into ac-
count the exact conical geometry of the observations, our
result extends previous computations in two fundamental
ways: regarding the shape of the filter and by lifting the
usual identification of the shear and the reduced shear.

On a more fundamental level it shows that it is now
possible to explore a whole new class of problems, namely
the derivation of statistical properties of quantities ob-
tained by general (symmetric) filtering of functionals of
the density profiles8. That alone illustrates the reach of
the Large Deviation Principle formalism and the fact that
it can be exploited in much more elaborate situations
than previously thought from direct PT resummations
(as pioneered in [26, 33] and extended in [17]).

What we found is that the results that were previ-
ously obtained, specifically in [20], are robust with re-
spect to these extensions. In that study the compen-
sated filter was indeed assumed to be simply built from
the difference of two top-hat filters applied to the con-
vergence field. Our construction is much more elaborate.
We find however that the general properties of the cumu-
lant generating functions are left unchanged: they exhibit
for instance critical values for both positive and negative
values of the parameters whether the M̂ap is built from
the shear of the reduced shear. Differences can be noted
however regarding the position of the critical points: as
expected the critical values are closer to the origin as
large excursions in κ lead to stronger non-linear effects.
The impact of this effect is however rather mild. We have
expressed it in terms of the M̂ap skewness and the M̂ap

one-point PDF.

The differences we found are of the few percent range
and would require therefore extremely good measure-
ments to be of significant impact.

8 We note that finding a profile satisfying a given condition can be
re-expressed in terms of a condition on a non-Markovian random
walk. Whether it has a connection to the computation of halo
mass functions in a Press and Schechter like approach is largely
an open problem.
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Formally the construction of the scaled cumulant gen-
erating function is based on the minimization of the a
functional form of the density in concentric cells, that is
of the whole density profile once we are in the continuous
limit. In our study we did not explore in much details
how to do such minimization efficiently but checked that
our results were correct from different approaches (that
are equivalent in the continuous limit) leaving room for
further improvements.
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Appendix A: Lensing in Cosmology

Null vectors in Lorentzian geometry are orthogonal to
themselves: let γ be a null geodesic, then 〈γ′, γ′〉 = 0
(here 〈 · , · 〉 means contraction with the spacetime met-
ric, and the prime indicated derivative with respect to
the affine parameter). Given γ′, a four dimension or-
thogonal basis at each point will be completed by another
null vector orthogonal to γ′ and two space-like vectors.
The geometry of a thin light beam will be described by
γ′, that gives its direction of propagation, and by a vec-
tor orthogonal to it describing the distance of each null
geodesic on the beam. Removing the second null vector
by taking the quotient by an equivalence relation [34],
the separation of the geodesics with respect to the fidu-
cial one is described in terms of the so called Jacobi fields,
i.e., vectors on a two-dimensional space-like screen. The
history of the light beam’s deformations can be told by
the evolution of its sections by successive screens, and the
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differential equation governing this geometrical evolution
is known as Jacobi equation:

D′′ + T D = 0 . (A1)

The object T is the optical tidal matrix that depends on
the Ricci and Weyl tensors:

T =

(

R+ReF ImF
ImF R− ReF

)

, (A2)

where, in components, R = 1
2Rµνk

µkν and F =
1
2ǫ

αǫβCαµβνk
µkν (if E1, E2 are the orthonormal basis

vectors on the space-like screen, then ǫ = E1 + iE2. Also
k = γ′). The initial conditions to be provided to Eq.
(A1) are D(0) = 0, D′(0) = 1. The transport problem
is solved once one knows D for all values of the affine
parameter [35].
We want here solve this problem on a perturbed

Friedmann-Lemaitre-Robertson-Walker (FLRW) space-
time. Let φ be the gravitational potential that
parametrizes the scalar perturbations on FLRW. If φ = 0
the Weyl tensor vanishes and the optical tidal matrix
is T0 = K1, where K is the sectional curvature of the
space-time. The solution of Eq. (A1) in this case is
D(χ) = D0(χ)1, with

D0(χ) =
c/H0√

1− Ωm − ΩΛ

sinh

(

√

1− Ωm − ΩΛ
H0χ

c

)

(A3)
that corresponds to the Jacobi fields in spaces of constant
curvature, or the comoving angular diameter as function
of the comoving radial distance χ.
To take into account the contributions of the gravita-

tional potential φ we should go at least to the first order
correction on T1, which includes the Ricci and Weyl ten-
sors associated to the linear perturbations on the metric.
We will assume that the lens effect is computed along a
null geodesic of the unperturbed space-time, what corre-
sponds to the Born approximation. It can be shown that
the first order correction on D is [36, 37]:

(D1

D0

)

ab

(θ, χ) = −▽a▽bφL
(θ, χ) (A4)

where a, b = 1, 2, and φ
L
is the lens potential :

φ
L
(θ, χ) =

2

c2

∫ χ

0

dχ′D0(χ− χ′)D0(χ
′)

D0(χ)
φ(D0(χ

′)θ, χ′) .

(A5)
The deformation of the beam’s sections relative to its

spreading on unperturbed spacetime is:

D
D0

= 1+
D1

D0
=

(

1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)

(A6)

where we make a decomposition in trace and traceless
contributions by defining convergence κ := 1

2 (▽1▽1 +

▽2▽2)φL
and shear γ := (γ1, γ2), with γ1 = 1

2 (▽1▽1 −
▽2▽2)φL

, and γ2 = ▽1▽2φL
.

The determinant of the matrix presented in Eq. (A6)
vanishes at points corresponding exactly to conjugate
points along the fiducial geodesic. Since the presence
of conjugate points along the fiducial geodesic is a suf-
ficient condition for multiple imaging [38], the vanishing
of the determinant roughly indicates the transition from
weak to strong lensing.

1. Lens Map and reduced shear

The lens map is the map whose differential is the de-
formation matrix given in Eq. (A6). Instead of writing
vectors in R2, we will use here complex objects. Let
z = x+ iy ∈ C and f(z) = u(x, y)+ iv(x, y) a function of
z. Using this notation we conclude that:

f(z) = u(x, y) + iv(x, y) :=

(

x− ∂φL

∂x

)

+ i

(

y − ∂φL

∂y

)

(A7)
is the lens map. It follows from the definitions of shear
and convergence that:

1

2

[(

∂u

∂x
+

∂v

∂y

)

+ i

(

∂v

∂x
− ∂u

∂y

)]

= 1− κ (A8a)

1

2

[(

∂u

∂x
− ∂v

∂y

)

+ i

(

∂v

∂x
+

∂u

∂y

)]

= −γ (A8b)

where we write γ = γ1 + iγ2. This system of equations
is equivalent to Beltrami’s equation with Beltrami coeffi-
cient γ/(1− κ) [39], and the lens map is therefore quasi-
conformal. We observe that if γ = 0, then Eqs. (A8) are
the Cauchy-Riemann equations.
Eqs. (A8) imply that infinitesimal ellipses are trans-

formed into circles by the lens map. Indeed,

p(x, y) :=
1 + |γ|

1−κ

1− |γ|
1−κ

(A9)

is the ratio of the axes of that ellipse. The quantity

g :=
|γ|

1− κ
(A10)

defines the reduced shear.
The argument of the major axis of the infinitesimal

ellipses allows to determine the phase of the Beltrami
coefficient [40].

Appendix B: Large Deviation Theory

Convergence (or divergence) is one of the most central,
and most studied concepts in mathematics. In probabil-
ity theory different kinds of convergence can be defined.
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A sequence of random variables Xn converges strongly to
X if Pr[limn→∞ Xn = X ] = 1. Alternatively, a sequence
is said to converge in probability to a given element X if
limn→∞ Pr[|Xn −X | ≥ ε] = 0, for any ε > 0 given. We
can define also the weak convergence (or convergence in
law) by saying that a sequence of probability measures
αn converges weakly to a limiting probability measure α
if

lim
n→∞

∫

f(x)dαn =

∫

f(x)dα

for every bounded function f(x) on R. Equivalently, if
φn and φ are respectively the characteristic functions of
αn and α, limn→∞ φn(t) = φ(t). The portmanteau theo-
rem in probability theory [41] states that if αn converges
weakly to α on R, and C ∈ R is a closed set, then

lim sup
n→∞

αn(C) ≤ α(C)

while for open sets G ∈ R,

lim inf
n→∞

αn(G) ≥ α(G) .

If A ∈ R is such that α(Ā−Ao) = 0 (Ā is the closure of
A and Ao its interior), then

lim
n→∞

αn(A) = α(A) .

We may think of a class of problems for which a typ-
ical value exists, and events far from this typical value
will be classified as rare. This would be the case for a
process described by a probability density function with
exponentially decaying tails. Events on the tails are the
prototype of rare events. The definition of large devi-
ation principle builds on the portmanteau theorem to
include the idea that probability measure associated to
rare events are exponentially suppressed, and introduces
the rate function that modulates the exponential decay.
We say that {Pε} obeys the Large Deviation Principle

(LDP) with a rate function I if there exists a function
I( · ) : R → [0,∞] lower semicontinuous with compact
level sets such that:

i) For each closed set C ∈ R

lim sup
ε→0

ε logPε(C) ≤ − inf
x∈C

I(x)

ii) For each open set G ∈ R

lim inf
ε→0

ε logPε(G) ≥ − inf
x∈G

I(x)

If infx∈Ao I(x) = infx∈A I(x) = infx∈Ā I(x), then

lim
ε→0

ε logPε(A) = − inf
x∈A

I(x) . (B1)

The parameter ε has to be identified as some limiting
parameter on each problem of interest. For collections of

identical, identically distributed random variables (i.i.d.),
for instance, ε = 1/n. This definition is general enough
to allow Large Deviations Theory to be applied to a large
variety of problems of different levels of abstraction, and
in general we can replace R for any complete separable
metric space (Rn, for instance) on the definition. We
can rephrase the LDP in terms of a family of random
variables {Xi}, by writing limε→0 ε logPε({Xi} ∈ A) =
− infx∈A I(x), where we concentrate on Eq. (B1) because
it can be taken as the definition of the Large Deviation
Principle for our needs.
We may ask now two questions: i) are there families

of random variables that obey the LDP? ii) What are
the most immediate consequences of LDP? To answer the
first question, we can quote the famous Cramer’s theorem
[13]: Let {Xi} be a sequence of i.i.d. random vectors on

Rn, and Sk/k :=
∑k

i=1 Xi/k its the sample mean. The
sequence of sample means Sk/k satisfies the LDP with
rate function I(x) = supλ∈Rn [λx − c(λ)], where c(λ) =
logE[eλx] is the cumulant generating function. To have
an idea of the origin of the theorem, take x > E[X1],
λ > 0,

Pr(Sk/k ∈ [x,∞)) = Pr(λSk ≥ kλx)

≤ exp[−kλx]E[eλSk ]

= exp[−kλx]

k
∏

i=1

E[eλXi ]

= exp[−kλx]
(

E[eλX1 ]
)k

= exp[−kλx+ k logE[eλX1 ]]

= exp[−k(λx− c(λ))] (B2)

Where we use Chebyshev’s inequality, independence of
Xi and the fact that they are identically distributed to
derive this upper bound. This argument does not demon-
strate the theorem, but gives a simple illustration of
its origins. It points out that rate function and cumu-
lant generating function are related by Legendre-Fenchel
transform.
The requirement of independence can be weakened for

gaussian random variables. Indeed, for a vector x with
mean µ and covariance matrix Σ, the rate function is

I(x) =
1

2

∑

ij

(x− µ)i Ξij (x − µ)j (B3)

where we denote Ξ = Σ−1.
Going back to the second question, we will list two

consequences of the LDP: the contraction principle and
the Varadhan’s lemma. The contraction principle affirms
that the image under a continuous map F of families of
random variables satisfying the LDP will also satisfy the
LDP with rate function:

J(y) = inf
x:F (x)=y

I(x) . (B4)

If F is not injective, the contraction principle encodes
the idea that “any large deviation is done in the least
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unlikely of all unlikely ways” [12]. If F is a bijection,
on the other hand, J(y) = I(F−1(y)). The direct ver-
ification of the definition of LDP for a given sequence
of probability measures (or random variables) may be
prohibitively complicated, and therefore the contraction
principle is a powerful tool.
The second important consequence of the LDP that we

want to list is the Varadhan’s lemma: Consider a family
of random variables {Xε

i }, i = 1, . . . , n as a vector in
Rn whose components are Xε

i . If this family of random
variables satisfy the LDP with rate function I( · ), and
F : Rn → R is bounded, then

lim
ε→0

ε logE

[

exp

(

F (Xε)

ε

)]

= sup
x∈Rn

[F (x)− I(x)] .(B5)

To have an idea of why is this so, we should re-

member that, because of the LDP, E
[

exp
(

F (Xε)
ε

)]

≈
exp [supx[F (x)− I(x)]/ε], and use the Laplace method
to give an approximative answer to the integral. At the
limit ε → 0 we have the equality. If we consider the
simple case where F (Xε) =

∑

i λiX
ε
i , (i.e., the scalar

product of Xε with a vector λ ∈ Rn) we recognize

lim
ε→0

ε logE

[

exp

(∑

i λiX
ε
i

ε

)]

=: ϕ(λ) = sup
x∈Rn

[λx−I(x)]

(B6)
that is the scaled cumulant generating function (SCGF).
All the (scaled) cumulants can be obtained from ϕ(λ) by
partial differentiation.
The Eq. (B6) also states that the SCGF and the rate

function are convex conjugates of each other, or that
are related by a Legendre-Fenchel transformation. The
Legendre-Fenchel transformation reduces to the classical
Legendre transformation when the supremum is realized
on a maximum of the function under consideration. On
the set of convex functions the convex transformation is
an involution, and therefore not only the SCGF can be
obtained from the rate function by convex transforma-
tion, but also the rate function can be obtained from
the SCGF. If the rate function is not globally convex,
the SCGF is still the Legendre-Fenchel transform of the
rate function, but only the convex envelope of the rate
function can obtained from the SCGF. Indeed, points of
non-differentiability of the SCGF will be associated to
points where the rate function loses convexity.

Appendix C: Numerical evaluations

Our search for the scaled cumulant generating func-
tions for the aperture mass and physical aperture mass
conducted us to ϕκ, ϕγ , and ϕg given in Eqs. (34), (35),
(37) respectively. We must now obtain solutions for the
minimization problems.
One possible strategy to approach the solution of the

minimization problem is presented in Sec. IVA. The

relative simplicity of the functional conducts to ϕκ(λ) in
Eq. (43), once on solves Eq. (41) for each value of λ in
a range of interest. We will refer to it as Euler-Lagrange
(EL) strategy.

A second possible path is the direct search for minima
using the numerical algorithms such as FindMinimum in
Mathematica [32], that we will call Direct Extremization
(DE) strategy.

On both cases we will look for numerical solutions
initially close to the linear extrapolation (κ̂lin

<
)init(θ) =

1
σ2

F

∫

dθ′ σ2(θ, θ′)Ũ(κ̂lin
<

(θ′)).

We should also remark that the non-linear density
given in Eq. (11) is singular at τ2D = ν. The numer-
ical search for solutions may not find good converging
paths because of this divergence and in order to circum-
vent this limitation, we propose a regularization to the
non-linear density:

ζreg(τ2D) =
(1 + ǫ)ν/2

(

1−
(

τ2D
ν

)2
+ ǫ
)ν/2

(C1)

where ǫ is a small parameter (we choose ǫ = 0.00001).

1. Comparison between Euler-Lagrange and Direct

Extremization strategies for ϕκ

We start comparing the performances of the Euler-
Lagrange and Direct Extremization strategies for the re-
construction of the same object ϕκ(λ).

a. The SCGF

In order to compare the two numerical strategies on
the solution of the equation (34), we take the difference
of the SCGFs obtained by the EL and DE strategies, as
displayed in Fig. 8. The small departure of the solutions
validate the DE strategy.
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FIG. 8: ϕκ

EL
(λ)− ϕκ

DE
(λ)for n = −1.5.
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b. Skewness

Given the numerical solution ϕκ
EL

(λ), we can compute
numerically the skewness and compare with the theoret-
ical prediction given in Eq. (45).
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FIG. 9: Theoretical prediction from Eq. (45) and numerical
values for the reduced skewness as function of the spectral
index.

We can also compare the performance of the EL and
DE strategies on the calculation of the skewness on Fig.
10.
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FIG. 10: The difference of the skweness obteined in EL and
DE strategies divided by the theoretical prediction given in
Eq. (45). We see that the DE tends to give systematically
smaller values for the cumulants for higher values of the spec-
tral index.

The DE strategy has the tendency to copy the initial
linear guess on small neighborhoods of the origin, im-
pacting the calculation of the derivatives of the SCGF at
the origin. This explains the 1% to 10% error.

2. The skewness for M̂g

ap

If the use of two different strategies was possible for
solving ϕκ(λ), the same is no longer true if we want to
obtain ϕg(λ). In this case the functional is no longer

linear on κ̂lin′

<
and the simplifications obtained on the

Sec. IVA have no parallel. We are constrained in this
case to use direct extremization.

We can verify the numerical values to the theoretical
prediction given in Eq. (48). For this sake we compute
ŝg3 − ŝκ3 using the DE strategy for weff = 0.1. The result
is shown in Fig. 11. As discussed in Fig. 10, the DE
strategy induces to 1−10% error on the skweness, mainly
for higher values of n, what also impacts the comparison
between numerical points and theoretical prediction in
Fig. 11.
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FIG. 11: Theoretical prediction from Eq. (48) and numeri-
cal values for the difference of reduced skewness ŝ
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− ŝκ3 as

function of the spectral index for weff = 0.1.


