
HAL Id: cea-01673275
https://cea.hal.science/cea-01673275

Preprint submitted on 28 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstract Interpretation using a Language of Symbolic
Approximation

Matthieu Lemerre, Sébastien Bardin

To cite this version:
Matthieu Lemerre, Sébastien Bardin. Abstract Interpretation using a Language of Symbolic Approx-
imation. 2017. �cea-01673275�

https://cea.hal.science/cea-01673275
https://hal.archives-ouvertes.fr

Abstract Interpretation using a Language of

Symbolic Approximation

Matthieu Lemerre and Sébastien Bardin

CEA, LIST

Abstract. The traditional abstract domain framework for imperative
programs su�ers from several shortcomings; in particular it does not al-
low precise symbolic abstractions. To solve these problems, we propose
a new abstract interpretation framework, based on symbolic expressions
used both as an abstraction of the program, and as the input analyzed
by abstract domains. We demonstrate new applications of the frame-
work: an abstract domain that e�ciently propagates constraints across

the whole program; a new formalization of functor domains as approxi-

mate translation, which allows the production of approximate programs,
on which we can perform classical symbolic techniques. We used these to
build a complete analyzer for embedded C programs, that demonstrates
the practical applicability of the framework.

1 Introduction

Context The usual lattice-based structuring of abstract interpreters for impera-
tive programs by Cousot and Cousot [7] consists in associating, to each program
point, the element of a lattice representing the over-approximation of the set
of possible states at that point. The interface of abstract domains then consists
in transfer functions that interpret the syntax of the program to compute the
lattice element corresponding to the next program point; as well as lattice oper-
ations such as inclusion (v), join (t), and widening (∇). This approach has been
highly successful in both laying the theoretical foundation of software analysis
techniques, and applying them in industrial applications [3, 12, 20].

Problem Despite these successes the design of industrial-strength analyzers is
still a challenging art. We highlight two problems, detailed in Section 2.

First, the abstract state at each program point contains a mapping of the
whole memory; yet the abstract state between nearby program points is nearly
identical. Consequences include a high memory consumption and expensive op-
erations. For instance, memory join is costly, because every memory location
is joined, instead of only the few that di�er. Mitigating this problem requires
implementation tricks such as using functional data structures [2], possibly with
hash-consing [20]; essentially the implementation tries to share what was dupli-
cated by the theoretical framework.

Another important limitation is the handling of symbolic relations. Symbolic
abstract domains are necessary in practical lattice-based static analyzers [13, 25,

4, 11, 22, 18], notably to handle the case where an intermediate computation
is put in a temporary variable (like cond in Figure 1). These abstract domains
are limited by the fact that they must �t in the lattice-based framework; in
particular, their join and widening operations are always very imprecise.

Goal, challenge and proposal Because these limitations are hard to �x in the
standard lattice-based framework, our goal is to design an alternative framework
that �xes these issues; but also encompasses the lattice-based framework, so as
to reuse previous work.

We propose a new term-based framework, based on a language of symbolic
expressions (Section 3); which can be used both as the abstract state inside the
abstract domain (i.e. replacing the lattice elements) or as the input of the ab-
stract domain (e.g. replacing the program itself). Abstract domains are functions,
that evaluate a symbolic expression to an abstract value, that can be concretized
into a set of possible values for the variables of the expression (Section 4).

Contributions Our main contribution is the design of a new term-based ab-
stract interpretation framework. Key ingredients include the Language of Ap-
proximation and Fixpoint (LAF) logic (Section 3) with nondet and µ operators
� replacing join and widening; its collecting semantics; and the de�nition of
abstract domains as abstract interpreter of LAF terms (Section 4.1).

Our second contribution is speci�c instances of term-based abstract domains:
we show how to lift lattice-based abstract domains to term-based abstract do-
mains (Section 4.2) (and demonstrate improved complexity in the case of non-
relational abstract domains); we provide new abstract domains based on term
rewriting (Section 4.3). In Section 5 we combine term rewriting and lattice-based
abstract interpretation in a new domain, that performs backward and forward
constraint propagation across the whole program.

Our last contribution is the evaluation of an early implementation of the
approach (Section 6), but that already works on industrial case studies and large
SVComp benchmarks. Term-based abstract interpretation allows to decompose
the analyzer as a succession of transformation over LAF terms, each individually
simple, but that mutually re�ne one another to provide a precise result. A �rst
experiment demonstrates the interest of whole-program constraint propagation.
A second shows how we leverage the production of approximate LAF terms by
the term-based abstract domains, to export simpli�ed formula to a Horn-based
model checker.

2 Motivation and key ideas

Our method can be summarized as using a special language of symbolic ex-
pressions; used both as the abstract state inside an abstract domain, or as the
program that the abstract domain analyze. We �rst cover the challenges of main-
taining a precise symbolic abstraction, and why we require a new framework for
doing so; the bene�ts of performing abstract interpretation over these symbolic
expressions; and the organization of an analyzer structured using "translator
abstract domains", both inputting and outputting symbolic expressions.

void main(int x){

int abs,nabs;

bool cond = x < 0;

if(cond)

{ abs = -x;

nabs = x; }

else

{ abs = x;

nabs = -x; }

assert(abs == -nabs);

if(!(abs <= 8))

while(1);

assert(x/9 == 0);

}

let c1 , x < 0

let nx , −x

let t1 , 〈nx, x〉

let t′1 , assume(c1, t1)

let t2 , 〈x, nx〉

let t′2 , assume(¬c1, t2)

let t3 , nondet(t′1, t
′
2)

let abs , t3[0]

let nabs , t3[1]

let c3 , (abs = −nabs)

let xdiv , x/9

let c2 , abs ≤ 8

let c4 , (xdiv = 0)

in c4

x 7→


true
 [−∞; +∞]
c1
 [−∞;−1]
¬c1
 [0; +∞]
c1 ∧ c2
 [−8;−1]
¬c1 ∧ c2
 [0; 8]

nx 7→


true
 [−∞; +∞]
c1
 [1; +∞]
¬c1
 [−∞; 0]
c1 ∧ c2
 [1; 8]
¬c1 ∧ c2
 [−8; 0]

abs 7→
[
true
 [0; +∞]
c2
 [0; 8]

nabs 7→
[
true
 [1; +∞]

c1 7→

 true
 {true; false}
c1
 {true}
¬c1
 {false}

c3 7→
[
true
 {true; false}

c2 7→
[
true
 {true; false}
c2
 {true}

xdiv 7→
[
c2
 [0; 0]

c4 7→
[
c2
 {true}

Fig. 1: Applying the constraint propagation abstract domain on a C program
(left). Middle: term abstraction built by the domain; x represents the value of x.
Right: mapping from variables to abstract values, according to some conditions.

Figure 1 illustrates the use of our language as an abstraction of the pro-
gram (in the middle), and as the language on which abstract interpretation is
performed (on the right). This example is explained in detail in Section 5.

2.1 Computing symbolic abstractions

Symbolic abstract domains compute abstractions represented by a term (expres-
sion) in some language. Existing symbolic abstract domains lose precision when
assignment, join or widening is performed [25, 13, 11]. Indeed, having a fully
precise symbolic abstract domain cause major di�culties, that cannot be solved
using the standard interface to abstract domains.

Variables for values, not for locations In usual A.I. of imperative programs,
a precision loss may occur when a variable x is overwritten: relations such as
y = 2 ∗ x have to be "killed" (if x cannot be substituted). This a�ects relational
abstract domains [19], including symbolic domains [25, 13, 11].

But this issue only occurs because variables represent (mutable) memory
locations. When variables represent (immutable) values, formula remain valid
regardless of which memory cell gets overwritten. In LAF (but also in [4, 5]),
variables denote values, thus there is no need to kill any relation.

Symbolic join is not a least upper bound Usual A.I. requires abstract
domains to have a lattice structure. We believe that this requirement does not
�t well symbolic abstraction, and explain why below.

Intuitively, two expressions e1 and e2 can be "joined" using a new expres-
sion "nondet(e1, e2)", representing a non-deterministic choice between e1 and
e2. But to avoid loosing precision, the resulting expression should be given
a name. For instance, "nondet(2, 7) − nondet(2, 7)" represents any value in
{−5, 0, 5}, as both "nondet(2, 7)" expressions may evaluate to di�erent values;
while "let v = nondet(2, 7) in v − v" always evaluate to 0. In LAF (Section 3),
we give a fresh name to every sub-expression, even if only the result of nonde-
terministic operations do require a name.

However, the necessity of giving new unique names to the result of joining
expressions mean that this "symbolic expression abstraction" cannot have a
lattice structure: each "join" of two terms generates a di�erent least upper-
bound of these two expressions.

We solve this issue simply by not requiring abstract domains to have a lattice
structure. This choice allows us to handle join (and loops) precisely while existing
lattice-based domains [13, 25, 4, 11, 22, 18] cannot. While this is very unusual, ab-
stract interpretation is not necessarily lattice-based [8]: the core of abstract inter-
pretation is to compute an abstract state which is sound with regards to the col-
lecting semantics of the program, which is what our framework does (Section 4).

Widening does not �t symbolic abstract domains LAF introduces a µ
operator that allows to fold expressions, which is necessary to have a �nite ab-
straction in the presence of loops. For instance, the contents of x in the program
while(*) x = x + x; is represented in LAF by "(µx.x + x)(x0)", where x0
represents the initial value of x. This expression represents a non-deterministic
choice between "x0", "x0 + x0", "let x1 = (x0 + x0) in x1 + x1", etc.

However, the standard operator used to �nd a �nite abstraction in the pres-
ence of loops, widening, is not the right tool to �nd this folding. In essence,
widening amounts to guessing a loop invariant given (a computation using) the
�rst iterations of a loop. In the example above, the initial value of x is x0, and
the one at the beginning of the second iteration is x0+x0. But there is an in�nity
of possible foldings that match these two iterations, including (µx.x + x0)(x0);
(µx.x0 + x0 + 37 ∗ (x − x0)); etc.; and this is even more di�cult if expressions
can be rewritten before widening!

The interface that we propose for �xpoint computation, based on the evalu-
ation of LAF terms, takes as input the value at the loop entry (the argument of
the µ expression), together with the e�ect of the loop (the body of the µ expres-
sion). This way, we always succeed in computing the folding of an expression,
in a single step. Moreover, it is su�ciently general to also allow widening-like
�xpoint computations; but also acceleration [15], policy iteration [6], inductive
invariant generation [28]. . .

2.2 Bene�ts of abstract interpretation over symbolic expressions

LAF terms are purely functional expressions: the values to which they can eval-
uate is independent of a program point. Consequently, there is no need to split
semantic information by program points as in classical analysis. Instead, seman-
tic information can be put in a single store, which enables more sharing.

For instance, in Figure 1, the semantic store (a map from LAF variables to
their values, according to conditions of the program) is represented at the right
of the �gure. The possible values for nabs after the join are centralized in the
store, instead of being duplicated in the abstract element corresponding to the
following program points.

One consequence of this single-store architecture is that transfer functions are
more e�cient. For instance the semantic store of Figure 1 can be implemented by
an extensible array, and computing the interval of a variable is an amortizedO(1)
operation. Moreover, nondet can be seen as a join targeting the variables that
have changed (abs and nabs). This optimization is essential, as most conditionals
impact a small number of memory locations [3]; targeted join (and targeted
�xpoint) alleviates the need for each abstract domain to detect the parts of
the memory that have changed, improving the complexity of these operations
(Section 4.2).

In the usual A.I., re�ning semantic information between statements is limited
because the semantic information is split into program points. The single-store
architecture removes this restriction. Section 5 details how, on Figure 1, the
constraint propagation traverses the whole program to prove that x ∈ [−8; 8] at
the end of the program (and the last assertion). The presence of nondet operation
and its traversal are essential to relate x in the program to its absolute value abs.
Moreover this constraint propagation is done using the LAF term, i.e. on the
data dependencies of the program, automatically skipping statements una�ected
by the re�nement (like in sparse analyses [27]).

2.3 Hierarchy of translator domains

Our abstract domains are able to both abstractly interpret LAF terms, and pro-
duce a program abstraction as a LAF term. This allows to implement translator
domains. Translator domains perform a dynamic translation of an input term
into a simpli�ed, possibly approximated, output term, using semantic informa-
tion computed during the analysis (on either the input or output term).

One can then structure an abstract interpreter as a combination of (sim-
ple) translator domains. Super�cially, this resembles the structure of compilers;
however translator domains are not just sequential passes, but abstract domains
executing simultaneously, and mutually re�ning each other.

Example: translator abstract domain for low-level memory operations
Figure 2 shows how this can be applied to the static analysis of C programs with
low-level memory manipulation such as pointer arithmetic, casts and bit�eld
(similarly to Miné [24]). The memory abstract domain represents memory regions
as a contiguous sequence of slices. To each slice correspond the value that was
last written. These values are represented as variables of a LAF term (in the
theory of bitvectors). The right of the �gure represents the memory region for
r at di�erent program points. Each write modi�es the region by replacing the
slice with the corresponding o�set, size, and value.

The memory domain has to know the possible values for array indices. This
is done by querying the underlying abstract domain for the possible values of

union { struct { uint8 l; uint8 h; } b;

uint16 w; } r[3];

r[0].w = X;

if(*) {

r[1].b.h = r[0].b.h;

r[1].b.l = r[0].b.l;

r[1/X].w = r[1].w;

}

assert(r[0].w == X);

let Xl , X[7..0]

let Xh , X[15..8]

let X ′ , concat(Xh, Xl)

let X ′′ , nondet(X,X ′)

let X ′′′ , nondet(X ′, X ′)

let tthen , 〈X ′′, X ′′′[7..0], X ′′′[15..8]〉
let telse , 〈X, rl1, rh1 〉
let t , nondet(tthen, telse)

let assertion , (t[0] = X)

rl0 rh0 rl1 rh1 rl2 rh2 R0

X rl1 rh1 rl2 rh2 R1

X rl1 Xh rl2 rh2 R2

X Xl Xh rl2 rh2 R3

X ′′ X ′′′ rl2 rh2 R4

t[0] t[1] t[2] rl2 rh2 R5

Fig. 2: A hierarchy of abstract domains handling low-level memory operations.
The right part contains the abstract representation of the memory region for r
at di�erent program points. This representation contains variables of the LAF
term (with bitvector theory) on the left. ·[b..a] denotes substring extraction of a
bitvector.

these indices. If there is more than one possible value (e.g. 1/X ∈ {−1; 0; 1}), the
abstract domain performs a weak update, i.e. the corresponding slice is mapped
to a non-deterministic choice between the new and old value (R4). On program
joins, the slices are compared: only the cells that do not contain syntactically
equal variables are "joined", which targets the join on memory cells that have
been modi�ed by the conditional.

Proving the assertion with symbolic reasoning Now, there are several
ways to solve the �nal assertion. The �rst is to insert between these domains a
syntactic rewrites abstract domains. Applying the following four simple rewriting
rules su�ces to prove the assertion (all primed versions of X are equal):

concat(x[a..b], x[b− 1..c]) → x[a..c] x[0..c] when sizeof(x) = c → x

nondet(x, x) → x x == x → true

Another mean is to output the corresponding formula to a specialized SMT
solver, which is necessary for the most complex assertions. Contrary to the orig-
inal program, the simpli�ed LAF formula does not require memory operators:
it only needs operator from the bitvector theory, that many SMT solver under-

stand. Thus, the memory abstract domain can be viewed as a translator from the
source program to a simpler, approximate program, directly suitable for export
to specialized solvers.

3 LAF: syntax and collecting semantics

The Logic of Approximation and Fixpoint (LAF) is the language we designed
to be used both as a symbolic abstraction in abstract domains, and as an input
for abstract domains. LAF can be viewed as a non-deterministic, functional
language representing the possible results of a computation.

C is a context (∈ Context), x a variable (∈ V ar), S a sort, t a term

C ::= []

| let x , opn(x, . . . , x) in C

| let x , nondet(x, x) in C

| let x , (µxs. C[xe])(xi) in C

| let x , assume(xc, xv) in C

| let x , unknownS() in C

t ::= C[x]

Notation for theories:
Booleans (B): ∧,∨ : B× B→ B; true,false: B; ¬ : B→ B
Integers (Z): 0,1,...: Z; +, ∗,−, / : Z× Z→ Z; <,≤: Z× Z→ B;
Tuples: πi : 〈S1, . . . , Si, . . . , Sn〉 → Si; 〈. . .〉 : S1 × . . .× Sn → 〈S1, . . . , Sn〉;

Γ is an environment (∈ Env). Γ [x 7→ v] and Γ [x] respectively denote environment
extension and lookup.

J[]K(Γ) = {Γ}
Jlet x , opn(x1, . . . , xn) in CK(Γ) = JCK(Γ [x 7→ op(Γ [x1], . . . , Γ [xn])])

Jlet x , nondet(x1, x2) in CK(Γ) = JCK(Γ [x 7→ Γ [x1]]) ∪ JCK(Γ [x 7→ Γ [x2]])

Jlet x , unknownS() in CK(Γ) =
⋃

v∈S JCK(Γ [x 7→ v])

Jlet x , assume(xc, xv) in CK(Γ) =

{
JCK(Γ [x 7→ ⊥]) if Γ [xc] = false
JCK(Γ [x 7→ Γ [xv]]) if Γ [xc] = true

Jlet x , (µx. Cb[x
′])(x0) in CK(Γ) = let fix(S) =

let Sb =
⋃

v∈S JCbK(Γ [x 7→ v]) in
let S′ = {Γb[x

′] : Γb ∈ Sb} in
Se ∪ {Γ [x0]}

in
let S = lfp(fix) in⋃

v∈S JCK(Γ [x 7→ v])

Fig. 3: Syntax (top) and collecting semantics (bottom) of LAF

Syntax A LAF term (Figure 3) is essentially a sequence of variable de�nitions,
followed by a single variable (the result). A variable is de�ned as the result of
calling a primitive operation over previously-de�ned variables: i.e. every inter-
mediary computation is named, and the sequence of de�nitions is ordered.

The terms need to be built incrementally; i.e. we want to extend a term
with new de�nitions. We represent this formally using evaluation contexts C
[31], i.e. a "term with a hole". The hole [] can be substituted with a variable x
(to form a complete term) or with a context C2 (to form a new context). For
instance, if C = ”let x , 12; let y , x + 1; []” then C[y] is a term evaluating
to 13; C[”let z , x + y in []”] is a context appended with a new de�nition (to
improve readability, we usually write the latter ”C[let z , x+ y]”).

The primitive operations are those of a logical theory, (e.g. integer, �oating
point or real arithmetic; array; bitvectors; uninterpreted functions): there are
many LAF languages, that depend on the theories in use. Two theories are
always present: the theory of Boolean operations, and the theory of tuples.

Collecting Semantics Because variable de�nitions are ordered, we can de�ne
an operational semantics of LAF terms. LAF can be thus seen as a nondetermin-
istic, functional language. A semantics of LAF given as a small-step structural
operational semantics [29] exists (see Appendix A). But giving the collecting
semantics for the term directly is actually simpler (see Figure 3); this illustrates
the fact that LAF is a logic adequate for a symbolic description of a collecting
semantics.

The semantics is de�ned using a collecting evaluation function
J·K : Context× Env → P(Env). It takes a context C ∈ Context remaining to
be evaluated, an environment Γ ∈ Env corresponding to a possible evaluation
so far (more precisely, Γ should contain a mapping for all the free variables in
C); and returns all the possible corresponding environments when C is fully
evaluated. To evaluate a closed context (with no free variables), we pass the
empty environment ε.

The collecting semantics essentially computes the set of all possible environ-
ments using meet-over-all-paths [26]. For non-deterministic constructs (nondet,
unknown, and µ), every possible choice is fully evaluated in isolation, before tak-
ing the union of the possible outcomes. µ de�nes a local �xpoint of all the values
obtained by an arbitrary number of iterations of the loop body Cb[x′], before
making a nondeterministic choice of one of these values. In other words, µ is as
an operator executing the loop body a nondeterministic number of times.

Intuitively, "assume(false,x)" is used to "kill" a part of the evaluation. A
particularity of LAF is that the same evaluation can have some parts killed and
some live (e.g. only one of the branch of a conditional is live). For instance,
the desired result of evaluating the term ”let x , assume(false, 1); let y , 2; y”
is 2. This is achieved using a special ⊥ value to represent "killed" values. ⊥
propagates throughout theory operations: e.g. ⊥+ 3 = ⊥.

4 Abstract evaluation

4.1 De�nition

We name abstract evaluation the abstract interpretation of functional LAF terms.
An abstract domain is mainly composed of an abstract evaluation function J·K]
that evaluates contexts into abstract states; and a concretization function γ that
gives a meaning to an abstract state as a set of environments. The main sound-
ness rule is that the abstract state is always a superset of the set of possible
environments of the context, as de�ned by the collecting semantics.

To allow the incremental building of the abstract value, the abstract evalu-
ation function takes as an argument the abstract value computed so far, which
overapproximates the set of environments containing the free variables of the
context that remains to be evaluated. More formally:

De�nition 1 (Abstract Domain). An abstract domain is given by a quadru-
ple 〈Env], J·K], ε], γ : Env] → P(Env)〉 where:
� Env] is a set, the set of abstract states (also called abstract environments);
� J·K] ∈ Context× Env] → Env] is the abstract evaluation function;
� ε] ∈ Env] is the initial abstract state;
� γ ∈ Env] → P(Env) is the concretization function.

De�nition 2 (Soundness of Abstract Domains). An abstract domain
〈Env], J·K], ε], γ : Env] → P(Env)〉 is sound if the following rules apply:

1. Soundness of the initial state: ε ∈ γ(ε])
2. Soundness of abstract evaluation: ∀C, Γ] :

⋃
Γ∈γ(Γ])

JCK(Γ) ⊆ γ(JCK](Γ]))

Note how these de�nitions have replaced the traditional lattice-based structure
of abstract domains by the sole evaluation of operators in the logic. Section 4.2
shows that traditional abstract domains �t into this de�nition; while Section 4.3
shows how the de�nition allows to also incorporate techniques not traditionally
seen as abstract domains, for instance term rewriting.

4.2 Numerical abstract interpretation

A non-relational abstract domain is a mapping from variables to an abstraction of
the value of this variable, that we call abstract value. Example of abstract values
include intervals, congruences [16], the �at lattice of constants, the powerset of
{true, false}. . . They have a lattice-based structure and can be combined using
the operators of the LAF theories (e.g. +̇ denotes the addition of two intervals).

De�nition 3 (Abstract value). An abstract value V is a pair 〈LV , γV〉 where:
- 1. LV is a lattice, equipped with join (ṫ), inclusion (v̇), widening (∇̇) opera-
tions, as well as abstractions of theory operations ȯp
- 2. γV : LV → P(V alues) concretizes elements of the lattice into a set of values;
- 3. For every n-ary operation ȯp over lattice elements:
γV(ȯp(L1, . . . , Ln)) ⊇ {op(x1, . . . , xn) : x1 ∈ γV(L1), . . . , xn ∈ γV(Ln)}
- 4. γV(L1 ṫ L2) ⊇ γV(L1) ∪ γV(L2)

Figure 4 presents a non-relational abstract domain equipped with such an
abstract value, i.e. a concretization and an abstract evaluation algorithm which
computes the over-approximation of the possible values of a LAF term.

ε] = ε

J[]K](Γ]) = Γ]

Jlet x , opn(x1, . . . , xn) in CK](Γ]) = JCK](Γ][x 7→ ȯp(Γ][x1], . . . , Γ
][xn])])

Jlet x , nondet(x1, x2) in CK](Γ]) = JCK](Γ][x 7→ Γ][x1] ṫ Γ][x2]])

Jlet x , unknown() in CK](Γ]) = JCK](Γ][x 7→ >̇])
Jlet x , assume(xc, xv) in CK](Γ]) = JCK](Γ][x 7→ Γ][xv]])

Jlet x , (µxs. Cb[xe])(xi) in CK](Γ]) = let Li = Γ][xi] in
let rec fix(L) =

let Γ]
s = Γ][xs 7→ L] in

let Γ]
b = JCbK](Γ]

s) in

let L′ = Γ]
b [xe] ṫ Li in

if (L′ v̇ L) then L else fix(L∇̇L′)
in

JCK](Γ][x 7→ fix(Li)])

Γ ∈ γ(Γ]) ⇔ ∀(x 7→ v) ∈ Γ : v ∈ γV(Γ][x])

Env] = V ar → LV

Fig. 4: A non-relational abstract domain, parametrized by an abstract value V

Theorem 1. Given that V is an abstract value, the quadruple 〈Env], J·K], ε], γ〉
of Figure 4 is a sound abstract domain.

The algorithm is quite straightforward: the abstract value is a standard map-
ping from program variables to an abstract value representing their possible val-
ues. Every evaluation step applies a lattice operation ȯp, except nondet which
requires a join, and µ for which we do a local �xpoint computation. assume is
ignored (for more precision, we could map x to ⊥ when we detect that the con-
dition cannot be true); Section 5 explains how the domain can be extended to
handle assume.

The complexity of this implementation is optimal. Indeed, the Γ] environ-
ment can be implemented using a single array (using variables as the indices),
which means that environment update and lookup have O(1) complexity. If we
assume that the abstract value of tuple values is represented as a tuple of scalar
abstract values, and operations on scalar abstract values (e.g. interval) have
O(1) complexity, then all operations have O(1) complexity, except joining and
widening tuples of length n, which have O(n) complexity. Now, the length of
the tuple depends on how it was generated; but if it was generated so that it
contains only the variables that di�er, then the complexity of these operations is
O(∆), where ∆ is the number of variables modi�ed in a loop or in a conditional.

This improves on the complexity of analyzers using the traditional interface,
for which the complexity of these operations depends (logarithmically) on the
number of variables [2].

Theorem 2. It is possible to lift traditional, lattice-based relational abstract do-
mains to sound abstract domains following De�nition 1.

With minor modi�cations, the non-relational abstract domain of the previous
section can be used to lift traditional abstract domains to our framework: it
su�ces to map memory variables to the usual lattices representing the entire
memory. For instance, we can evaluate the de�nition
”let M ′ = store(M, "x", load(M, "x") + 1)” using the a�ne equality abstract
domain [19], associating elements of this domain to M and M ′.

It is also possible to use traditional abstract domains to relate variables of
a (numeric) LAF term; Appendix B details how this lifting is done. It follows
the same pattern as the non-relational lift: evaluation of "nondet" corresponds
to join, and evaluation of µ corresponds to inclusion testing and widening.

4.3 Rewriting-based abstract interpretation

This section provides a simple example of an abstract domain whose abstract
state is based on a LAF context, instead of a lattice.

The abstract domain is based on term rewriting. It performs a dynamic
translation from a source term to a destination term, used as the abstract state;
the concretization of this state is simply its collecting semantics. The domain is
parametrized by a set of term rewriting rules R.

ε] = []

J[]K](C]) = C]

Jlet x , op(x1, . . . , xn) in CK](C]) = JCK](C][let x , R(op(x1, . . . , xn))])
Jlet x , nondet(x1, x2) in CK](C]) = JCK](C][let x , R(nondet(x1, x2))])
Jlet x , unknownS() in CK](C]) = JCK](C][let x , R(unknownS())])
Jlet x , assume(xc, xv) in CK](C]) = JCK](C][let x , R(assume(xc, xv))])
Jlet x , (µxs. Cb[xe])(xi) in CK](C]) = let C]

b = JCbK]([]) in
JCK](C][let x , R((µxs. C]

b [xe])(xi))])

Γ ∈ γ(C]) ⇔ Γ ∈ JC]K(ε)

Fig. 5: Rewriting abstract domain parametrized by a term rewriting system R

We give term rewriting rules using pattern matching, on a representation of
terms where let bindings have been inlined. Simple term rewriting rules include
x ∧ x→ x, 1 ∗ x→ x, 2 + x+ 3→ x+ 5. However, as is, rules such as 0 ∗ x→ 0
or x− x→ 0 are not correct for this domain. Indeed, consider the terms:

”let u , unknownZ in let v , assume(u 6= 3, u) in let s , 0 ∗ v in s”.
and the result of applying the rule 0 ∗ x→ 0 to it:

”let u , unknownZ in let v , assume(u 6= 3, u) in let s , 0 in s”.
The possible environment [u 7→ 3, v 7→ ⊥, s 7→ ⊥] for the �rst term has been

replaced by the environment [u 7→ 3, v 7→ ⊥, s 7→ 0] in the second. One way
to deal with this issue is to propagate the "assume" conditions in the replace-
ment. Another is to accept these "over-approximating rewrites", by changing
the de�nition of γ to:

Γ ∈ γ(C]) ⇔ ∃Γ ′ ∈ JC]K(ε) : ∀x ∈ Γ : Γ [x] = Γ ′[x] ∨ Γ [x] = ⊥ (1)

The latter allows very aggressive rewrites, such as x/x→ 1 or 1/x < 2→ true,
that disregard side conditions, usually a major di�culty of term-rewriting.

The soundness of both "exact" and "over-approximating" abstract domains
is established by considering only the term rewriting rules:

De�nition 4. A term rewriting rule l → r is an exact rewrite if, for any sub-
stitution σ of the free variables of l, the evaluation of lσ equals the evaluation
of rσ. It is over-approximating if they are equal when the evaluation of lσ does
not return ⊥.

Theorem 3. If every term rewriting rule in R is exact, then the abstract do-
main of Figure 5 is sound. If every term rewriting rule in R is over-approximating,
then the abstract domain of Figure 5, with γ given by equation 1, is sound.

The term rewriting and non-relational domain represent very di�erent do-
mains, one semantic in nature, the other more symbolic. We will now see a more
complex domains that combine and extend theses two models: the constraint
propagation abstract domain.

5 A constraint propagation abstract domain

The constraint domain is a good example of the advantages of our approach:
bene�ting from the structure of LAF terms (including targeted join and widen-
ing) that allows a single store implementation, it can propagate and combine
semantic information across the whole program, in an e�cient way. It is made
of three elements:

� A LAF context C], called the constraints (middle of Figure 1). It can be seen
as a rewrite of the input LAF context with particular locations for assume
de�nitions.

� Two mappings Γ]c and Γ]v from variables of the input context to variables of
the constraints. This mapping is made such that x and ”assume(Γ]c (x), Γ

]
v(x))”

evaluate to the same values (the mapping and input term are not shown on
Figure 1).4

� A mapping M from each variable of the constraints to a condition map,
representing the possible values for the variable according to some conditions
(right of Figure 1). How these conditions are chosen depends on a strategy;
ours is detailed below.

Generation of constraints The construction of the constraints, Γ]c and Γ]v
is pretty straightforward (Figure 6). The general idea is that the constraints
could represent the input term stripped from assume expressions; the condition
is instead stored in the Γ]c map. Actually we do not strip the assume statements
entirely, but delay them until the end of loops, or just before a "nondet", so that
the term used as the constraints does not lose information with regards to the
input term.

ε] = [] (x′ is fresh)

J[]K](C], Γ]
v , Γ

]
c) = 〈C], Γ]

v , Γ
]
c 〉

Jlet x , op(x1, . . . , xn) in CK](C], Γ]
v , Γ

]
c) = JCK](C][let x′ , op(Γv[x1], . . . , Γv[xn])],

Γ]
v [x 7→ x′], Γ]

c [x 7→ Γ]
c [x1] ∧ . . . ∧ Γ]

c [xn]])

Jlet x , nondet(x1, x2) in CK](C], Γ]
v , Γ

]
c) = JCK](C][let x′ , nondet(assume(Γ]

c [x1], Γ
]
v [x1]),

assume(Γ]
c [x2], Γ

]
v [x2]))],

Γ]
v [x 7→ x′], Γ]

c [x 7→ Γ]
c [x1] ∨ Γ]

c [x2]])

Jlet x , unknownS() in CK](C], Γ]
v , Γ

]
c) = JCK](C][let x′ , unknownS()],

Γ]
v [x 7→ x′], Γ]

c [x 7→ true])

Jlet x , assume(xc, xv) in CK](C], Γ]
v , Γ

]
c) = JCK](C], Γ]

v [x 7→ Γ]
v [xv]],

Γ]
c [x 7→ Γc[xc] ∧ Γc[xv] ∧ Γv[xc]])

Jlet x , (µxs. Cb[xe])(xi) in CK](C], Γ]
v , Γ

]
c) = let 〈C]

b , Γ
′]
v , Γ

′]
c 〉 = JCbK]([], Γ]

v , Γ
]
c) in

let E = ”assume(Γ ′]c [xe], Γ
′]
v [xe])” in

JCK](C][let x′ , (µxs. C
]
b [E])(Γ]

v [xi]))],

Γ]
v [x 7→ x′], Γ]

c [x 7→ Γ]
c [xi]])

Fig. 6: Generation of the constraints C] and the maps Γ]c and Γ]v .

Initial evaluation We now describe the construction of the mapping M of
condition maps. An initial evaluation of an input variable x is done concurrently
with constraints generation: the possible values for Γ]v [x] is computed using its
de�nition, for the condition Γ]c [x]. For instance in Figure 1, the initial evaluation
of xdiv is done with condition c2; we �rst retrieve the abstract value for x with
condition c2 (which is [−8;−1]ṫ[0; 8] = [−8; 8]); then the value for 9 (which is
[9; 9]); then create the binding xdiv 7→ c2
 [0; 0], where [0; 0] = [−8; 8]/̇[9; 9].

Constraint propagation When an assume(c, x) de�nition is evaluated in
the input term, we perform a constraint propagation. It consists in reevaluating
de�nitions such as ”let c , x < 0”, re�ning and using the information attached
to the variables corresponding to the result and arguments of the operator. The
algorithm is similar to constraint satisfaction algorithms such as AC-3 [23]; but
we maintain, together with the worklist of variables whose abstract value has
changed, the condition for which they have changed. The constraint propagation
of condition c is initiated by adding the binding c 7→ c
 {true}. In Figure 1, a
�rst chain of constraints propagation is the addition of the bindings c1 7→ c1

{true}, then x 7→ c1
 [−∞;−1].

When an assume(c′, . . .) constraint is traversed, the c′ condition is added as
a conjunct to the condition being propagated. This is seen in the addition of

c1 in the constraint propagation chain c2 7→ c2
 {true}, abs 7→ c2
 [0; 8],
nx 7→ c1 ∧ c2
 [1; 8], x 7→ c1 ∧ c2
 [−8;−1].

The constraint propagation phase terminates if the lattices used in the ab-
stract value cannot be inde�nitely re�ned (e.g. re�ning y ≤ y/2 using an interval
of rational numbers). But it is always sound to limit the number of propagation,
and we evaluate di�erent heuristics in Section 7.

Loops are handled like in the non-relational analysis of Section 4.2; the condi-
tion map, seen as a function lattice from conditions to abstract values, is used to
join, widen and test for inclusion the loop input and output. The only di�erence
is that the conditions de�ned inside the loop body do not have any meaning in
the next iteration, or outside of the loop; thus as soon as the loop body has been
fully evaluated, these conditions are removed by existential quanti�cation.

Concretization The concretization is best de�ned as the composition of two
parts. The �rst relates the input term to the generated constraints, and is similar
to the one of rewriting-based abstract domains of Section 4.3.

Γ ∈ γ1(〈C], Γ]c , Γ]v〉) ⇔
∃Γ ′ ∈ JC]K(ε) : ∀x 7→ v ∈ Γ :

{
Γ ′[Γ]c [x]] = true ∧ Γ ′[Γ]v [x]] = v if v 6= ⊥
Γ ′[Γ]c [x]] = false if v = ⊥

The second part relates the term in the constraints to the values contained
in the map M . This amounts to seeing constraint generation as a mere pre-
processing of the input. It is similar to that of the non-relational abstract domain
of 4.2, but taking conditions into account.

Γ ∈ γ2(M) ⇔ ∀x ∈ Γ, c
 v] ∈M [x] : Γ [c] = true ⇒ Γ [x] ∈ γV(v])

The combination consists in replacing, in the de�nition of γ1, the set of
possible environments JC]K(ε), by the approximation of this set γ2(M).

Theorem 4. The constraint propagation abstract domain is sound.

6 An abstract interpreter of embedded C programs

This section demonstrates the practical applicability of our approach, by de-
scribing the implementation of a complete analyzer for embedded C programs
(including low-level memory manipulation such as casts and bit�elds, but cur-
rently excluding recursion and dynamic memory allocation). The system is com-
posed as a succession of simple abstract domain "passes" communicating with
one another.

Figure 7 presents a high-level view of the analyzer. Each rectangular node is
an abstract domain, that inputs a LAF term, and possibly outputs a simpli�ed
one. Input and output terms may use operators of di�erent theories. Especially,
the LAF term obtained from the translation of the C program contains load

and store memory operators; while the LAF term used as input of the leaves
abstract domains do not. This allows 1. to translate this term to SMT solvers

Static
translation

Region
separation

Array
separation

Bitvector
simpli�cation

Constraint
propagation

Generation of
proof obligation

SMT solver

×

C program

LAF
(memory +
bitvector)

LAF
(array +
bitvector) LAF

(bitvector)

LAF
(bitvector)

SMT

Fig. 7: High-level view of the analyzer. Gray rectangles represent abstract do-
mains, and ellipses other processes. × represents abstract domain product: both
domains have the same input term.

that only understand bitvector theory, and 2. to implement a numeric constraint
propagation domain that is unaware of memory operations.

The translation from C to LAF is standard (similar to e.g. Cytron et al. [10]).
Appendix D presents the full translation rules for the simpler While language.

Region and cell separation The region separation functor splits the memory
into independent, non-overlapping memory regions, where a region corresponds
to the memory allocated for a C variable (local or global). The cell separation
functor partitions a memory region into contiguous slices of known size, and
was informally described in Section 2.3. Both are currently quite naive; but
better memory representations functors (e.g. [5, 9]) could be adapted to become
translator domains.

The output of these successive translator domains is a LAF term that does
not contain memory operations, and whose variables correspond to the values
contained in memory. This term is analyzed numerically by the later domains;
the result of this analysis is itself used by the memory translator domains to
know which memory locations are being read and written.

Purely syntactic term rewriting Our prime use of term rewriting is to
simplify the bitvector concatenation and extraction operations. This happens
notably when the program performs byte per byte copies (e.g. using memcpy). It
plays the same role as the memory equality predicate domain of Miné [24], but
the implementation is very di�erent, as equality between values is provided by
syntactic equality between LAF variables.

Constraint propagation was already described in section 5

Generation of proof obligations as �rst-order and Horn formulas trans-
late LAF terms into a set of clauses, such that satis�ability testing allows to test
if a variable can have a speci�c value. Appendix C details the formal translation
of LAF term into 1st-order and Horn clauses; the translation to Horn clauses is
exact, while the translation to �rst-order clauses is an over-approximation.

Note that this results in a true combination of abstract domains, and not
just a �rst static analysis pass followed by generation of proof obligations. The

bene�t is that an abstract domain can be combined with others so that the
combination is mutually bene�cial. In particular:

1. The generation of proof obligation domain bene�ts from the simpli�cation of
translator domains. In the analyzer, the generated SMT formula only refers
to bitvector operations, and never to memory operations; this is bene�cial
since SMT solvers are much better at handling integers and bitvectors than
at handling memory operations.

2. The domain also indirectly bene�ts from the numeric constraint propagation
domain, as it is used by the translator domains to perform simpli�cations. It
could also use the invariants computed by that domain to increase precision
or speed up resolution.

3. In turn, the domain can be used to simplify complex boolean expressions
into the true or false constants, allowing for a precision increase in the other
domains. It can also be used e.g. to re�ne the bounds of intervals.

7 Experimental evaluation

This section presents preliminary benchmarks of our analyzer. Please keep in
mind that it is still a prototype; it lacks some of the features of C (dynamic
memory allocation, recursion, function pointers and longjmp); the handling of
function calls (by recursive inlining) is still naive; no optimization of hot code
path was performed.

Propagation limit 0 1 2 ∞ (backward)

Bench #LOC #expr #A time UP time UP improv. time UP improv. time UP improv.

adpcm 610 499 1249 1.12 39 0.94 39 56% 1.04 22 18% 1.06 22 0.0%
2048 435 617 8778 38.5 314 32.9 314 19% 33.19 100 94% 32.56 100 0.6%
papabench0.4 4983 8286 6415 84.4 412 78.2 412 0.9% 82.14 83 30% 80.96 83 0.0%
transport 13294 10674 11064 213 100 182 100 8.3% 61.41 14 16% 63.04 14 0.1%
robotics #0 13353 161 306 1.95 18 1.74 18 26% 1.79 18 0.0% 1.80 18 3.7%
robotics #1 13353 1454 1978 4.06 80 3.61 80 1.9% 2.85 51 14% 2.77 51 0.7%
robotics #2 13353 22 125 0.88 0 0.78 0 0.0% 0.84 0 0.0% 0.85 0 0.0%
robotics #3 13353 872 860 0.97 0 0.85 0 1.1% 0.94 0 0.0% 0.94 0 0.0%
robotics #4 13353 298 620 3.24 106 2.76 106 8.1% 1.46 62 76% 1.37 21 22%
robotics #5 13353 2372 375 98.2 221 85.9 221 3.2% 77.68 167 27% 74.70 165 0.9%
robotics #6 13353 280 481 0.96 6 0.85 6 0.0% 0.94 6 0.0% 0.92 6 0.0%

#LOC = lines of code; #expr = live expressions;
#A = total alarms to be proved; UP = alarms left unproved;
improv. = % of expressions more precise than the preceding propagation limit.

Table 1. Bene�ts of constraint propagation.

Analyzing embedded industrial applications Table 1 demonstrates the
bene�ts of using constraint propagation on a variety of real benchmarks. The
�rst columns give the number of expressions of the program that are not dead,

and the number of memory-related alarms that must be proved (i.e. pointers
are valid and indices are in bounds). Then, for di�erent limits on the constraint
propagation, we give the analysis time (in seconds); the number of alarms that
remain unproved; and the number (and percentage) of expressions for which we
compute a more precise set of possible values, wrt. the preceding propagation
limit. The �rst three benchmarks are open-source (2048 is a game; adpcm a
�lter; papabench0.4 represents code embedded in typical UAVs). All the other
benchmarks are automatic control systems coming from various industries (the
last is made of 7 independent threads).

The benchmarks demonstrate that constraint propagation has a real impact
on the precision of the analysis. Going from 0 to 2 variables being propagated
leads to re�ning most of the expressions (and alarms) of the programs, while
decreasing the analysis time. This can be explained by the fact that less dead
code is visited, but also in our case that memory updates are more precise and
concern less locations. Going for unlimited backward propagation (or backward
+ forward, not shown in the table) also keep on being faster and more precise, but
to a lesser degree. Note that the number of alarms is still high, but can be reduced
to almost 0 by standard tricks such as loop unrolling and user annotations.

Generation of Horn clauses Another way to discharge unproved assertions is
to send the remaining ones to a solver which focuses on a single goal. We made
an experiment with benchmarks of the SVComp 2016 competition [1], whose
goal is to prove the validity of an assertion in a program which range from few
to tens of KLOCS. Most of these assertions are out of the reach of our abstract
domain using intervals. However, the structure of out interpreter allows to build
a LAF term, which is equivalent to the original program, but stripped from
any memory operations. This property allows to leverage (after conversion, see
Appendix C) the Z3 horn checker µZ [17], which does not support array theory,
only bitvectors or integers.

Lines of code Buggy programs Correct programs
SVComp category min avg max total proved unsound total proved unsound points

Product lines 838 1943 3789 265 92 0 332 262 0 616
Loops 14 46 1644 48 18 0 93 42 0 102
ControlFlow 94 634 2152 18 3 0 30 15 0 33

Table 2. Number of programs proved buggy or correct, in some SVComp categories,
with a 10s timeout. We count 2 points for every correct program proved correct, and 1
for buggy program proved buggy. Our tool never provides a wrong (unsound) answer.

On the two �rst categories and with a 10s timeout, the abstract interpreter
combined with µZ is already competitive1 (would rank 3rd/18 on Loops, and
3rd/16 on ControlFlow). This is despite all the shortcomings of our current

1 https://sv-comp.sosy-lab.org/2016/results/results-verified/

https://sv-comp.sosy-lab.org/2016/results/results-verified/

implementation: some C features are not supported (e.g. variable length arrays),
and we do not yet export the invariants we found to help in the Horn clauses.

8 Related work

The closest relatives to our term-based abstract interpretation framework are
existing symbolic abstract domains in the traditional lattice-based framework.

The symbolic constant domain of Miné [25] maps program variables to ex-
pressions on other program variables, and provides a solution to the loss of
precision induced by storing intermediate computations in temporary variables.
Logozzo and Fähndrich [22] and Djoudi et al. [11] implement similar domains,
and insists on the need of these methods for low-level languages, in which every
computation makes use of temporary variables.

Chang and Leino [4] introduces a symbolic abstract domain where variables
represent values, instead of memory locations. This avoids loosing precision when
program variables are overwritten. Numeric abstract domains are used to com-
pute relations between these symbolic variables. Chang and Rival [5] shows the
importance of having variables representing values when designing precise mem-
ory abstractions. In term-based abstract interpretation, base abstract domains
compute relations between LAF variables (which represent values); these vari-
ables are referred to by our memory abstraction. The main di�erence is that all
the LAF variables are linked together in a term which is an abstraction of the
whole program, i.e. we never lose any symbolic information, even on loops and
control-�ow joins.

Gange et al. [13] combines their symbolic abstract domain with constraint
propagation over non-relational domains. As LAF terms represent loops and
conditionals precisely, our constraint propagation abstract domain extends this
work with the ability to propagate the constraints across the whole program.

All these domains belong to the traditional lattice-based framework; thus
none of them leverage the fact that variables represent values by sharing all the
information about them in a single store.

9 Conclusion

We have presented a term-based abstract interpretation framework, whose main
ingredients are: a logic, that can be used as the abstract state in an abstract
domain, and can represent the relations between values in the program without
loss of precision; and the de�nition of abstract domains as abstract interpreters
over this logic, allowing the de�nition of abstract domains as a combination
of translations. We have demonstrated the applicability of the framework by
describing several abstract domains combining numeric and symbolic reasoning;
and we used these domains to build a complete analyzer for C programs. We
now plan on applying the technique on languages where symbolic reasoning is
very important, such as Static Single Assignment or binary analysis.

Bibliography

[1] Beyer, D.: Reliable and reproducible competition results with benchexec
and witnesses (report on sv-comp 2016). In: International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp.
887�904. Springer (2016)

[2] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded software.
The Essence of Computation: Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones 2566, 85�108 (Oct 2002), http://www.di.ens.
fr/~mine/publi/BlanchetCousotEtAl-LNCS-v2566-p85-108-2002.pdf

[3] Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: A static analyzer for large safety-critical software.
In: Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI'03). pp. 196�207. ACM Press,
San Diego, California, USA (June 7�14 2003)

[4] Chang, B.Y.E., Leino, K.R.M.: Abstract Interpretation with Alien Expres-
sions and Heap Structures, pp. 147�163. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

[5] Chang, B.Y.E., Rival, X.: Modular Construction of Shape-Numeric Analyz-
ers. In: Banerjee, A., Danvy, O., Doh, K.G., Hatcli�, J. (eds.) Festschrift for
Dave Schmidt. Festschrift for Dave Schmidt, vol. 129. EPTCS, Manhattan,
Kansas, United States (Sep 2013)

[6] Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A policy
iteration algorithm for computing �xed points in static analysis of programs.
In: Computer aided veri�cation. pp. 462�475. Springer (2005)

[7] Cousot, P., Cousot, R.: Abstract interpretation: a uni�ed lattice model for
static analysis of programs by construction or approximation of �xpoints.
In: Conference Record of the Fourth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 238�252. ACM
Press, New York, NY, Los Angeles, California (1977)

[8] Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of
Logic and Computation 2(4), 511�547 (auf 1992)

[9] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor
for fully automatic and scalable array content analysis. In: Conference
Record of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 105�118. ACM Press, New York,
Austin, Texas (jan " 26-28" 2011)

[10] Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: E�-
ciently computing static single assignment form and the control dependence
graph. ACM Trans. Program. Lang. Syst. 13(4), 451�490 (oct 1991)

[11] Djoudi, A., Bardin, S., Goubault, É.: Recovering high-level conditions from
binary programs. In: FM 2016: Formal Methods - 21st International Sym-

http://www.di.ens.fr/~mine/publi/BlanchetCousotEtAl-LNCS-v2566-p85-108-2002.pdf
http://www.di.ens.fr/~mine/publi/BlanchetCousotEtAl-LNCS-v2566-p85-108-2002.pdf

posium, Limassol, Cyprus, November 9-11, 2016, Proceedings. pp. 235�253
(2016)

[12] Fähndrich, M., Logozzo, F.: Static contract checking with abstract inter-
pretation. In: Proceedings of the 2010 International Conference on Formal
Veri�cation of Object-oriented Software. pp. 10�30. FoVeOOS'10, Springer-
Verlag, Berlin, Heidelberg (2011)

[13] Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: An
Abstract Domain of Uninterpreted Functions, pp. 85�103. Springer Berlin
Heidelberg, Berlin, Heidelberg (2016)

[14] Gange, G., Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Ex-
ploiting sparsity in di�erence-bound matrices. In: Proceedings of the 23rd
Static Analysis Symposium (SAS 2016) (2016)

[15] Gonnord, L., Schrammel, P.: Abstract acceleration in linear relation analy-
sis. Science of Computer Programming 93, 125�153 (2014), author version
: http://hal.inria.fr/hal-00787212/en

[16] Granger, P.: Static analysis of arithmetical congruences. International Jour-
nal of Computer Mathematics 30(3-4), 165�190 (1989)

[17] Hoder, K., Bjørner, N.: Generalized Property Directed Reachability, pp.
157�171. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[18] Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-
veri�ed c static analyzer. ACM SIGPLAN Notices 50(1), 247�259 (2015)

[19] Karr, M.: A�ne relationships among variables of a program. Acta Infor-
matica 6, 133�151 (1976)

[20] Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c: a software analysis perspective. Formal Aspects of Computing
27(3), 573�609 (2015)

[21] Leino, K.: E�cient weakest preconditions. Information Processing Letters
93(6), 281�288 (2005)

[22] Logozzo, F., Fähndrich, M.: On the Relative Completeness of Bytecode
Analysis Versus Source Code Analysis, pp. 197�212. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008)

[23] Mackworth, A.K.: Consistency in networks of relations. Arti�cial Intelli-
gence 8(1), 99 � 118 (1977)

[24] Miné, A.: Field-sensitive value analysis of embedded C programs with union
types and pointer arithmetics. In: Proc. of the ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES'06). pp. 54�63. ACM (Jun 2006), http://www.di.ens.fr/~mine/
publi/article-mine-lctes06.pdf

[25] Miné, A.: Symbolic methods to enhance the precision of numerical abstract
domains. CoRR (2007)

[26] Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis.
Springer-Verlag New York Incorporated (1999)

[27] Oh, H., Heo, K., Lee, W., Lee, W., Yi, K.: Design and implementation of
sparse global analyses for c-like languages. In: Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 229�238. PLDI '12, ACM, New York, NY, USA (2012)

http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf
http://www.di.ens.fr/~mine/publi/article-mine-lctes06.pdf

[28] de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear
algebra. In: Automated Technology for Veri�cation and Analysis - 14th
International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings. pp. 479�494 (2016)

[29] Plotkin, G.: A structural approach to operational semantics. Tech. rep.,
Aarhus University (1981)

[30] Venet, A., Brat, G.P.: Precise and e�cient static array bound checking for
large embedded C programs. In: Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation 2004,
Washington, DC, USA, June 9-11, 2004. pp. 231�242 (2004)

[31] Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Infor-
mation and computation (1994)

A Small-step operational semantics of LAF

A small-step operational semantics also exists for LAF terms:

Σ :: 〈Γ, let x = opn(x1, . . . , xn) in t〉 →
Σ :: 〈Γ [x 7→ opn(Γ [x1], . . . , Γ [xn])], t〉

Σ :: 〈Γ, let x = nondet(x1, x2) in t〉 →
Σ :: 〈Γ [x 7→ Γ [x1]], t〉

Σ :: 〈Γ, let x = nondet(x1, x2) in t〉 →
Σ :: 〈Γ [x 7→ Γ [x2]], t〉

Σ :: 〈Γ, let x = assume(xc, xv) in t〉 →
Σ :: 〈Γ [x 7→ Γ [xv]], t〉 when Γ [xc] = true

Σ :: 〈Γ, let x = assume(xc, xv) in t〉 →
Σ :: 〈Γ [x 7→ ⊥], t〉 when Γ [xc] = false

Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 → (do not enter loop)

Σ :: 〈Γ [x 7→ Γ [xi]], t〉
Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 → (enter loop)

Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 :: 〈Γ [xs 7→ Γ [xi]], tb[xe]〉
Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 :: 〈Γ ′, xe〉 → (loop exit)

Σ :: 〈Γ [x 7→ Γ ′[xe]], t〉
Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 :: 〈Γ ′, xe〉 → (loop again)

Σ :: 〈Γ, let x = (µxs. tb[xe])(xi) in t〉 :: 〈Γ [xs 7→ Γ ′[xe]], tb[xe]〉

The semantics is nondeterministic because of the constructors nondet and
µ. The semantics uses a stack, whose depth represents the level of loop nesting
in which we are. The stack is used to save the context when entering a loop.
Elements of the stack are pairs of an environment and a term, respectively
representing the values already computed, and the term that remains to be
computed, for each loop nesting level. Most step just update the head of the
stack, by updating the environment and the term.

Execution "blocks" when an assume expression is encountered, with a value
of false for its �rst argument. This is represented by adding to all sorts a special
⊥ symbol. Note that assume delimits the part of the term which is blocked;
execution of other subterms continue without any problem.

Theorem 5 (Alternative de�nition of the collecting semantics). We
note by →∗ the transitive closure of →. Then

JCK(ε) = { Γ : 〈ε, C〉 →∗ 〈Γ, []〉 }

B Lifting traditional relational abstract domains

When generating constraints (Figure 6), for each input variable x we extracted
a condition Γ]c [x], corresponding to the necessary condition for x to evaluate
to a value di�erent from ⊥. The idea here is similar: we associate to each input
variable, an elementD of a traditional abstract domain; this element corresponds
to environments that match the condition Γ]c [x], and describes the relations
between x and all the variables on which it depends transitively (where a depends
on b means that b is an argument of the operator used to de�ne a).

We note by γt the concretization of the traditional domain. The concretiza-
tion is de�ned as follows: for every binding x 7→ v of possible environments
Γ , every abstract domain element in Γ] must agree that this binding is indeed
possible.

Γ ∈ γ(Γ]) ⇔ ∀(x 7→ v) ∈ Γ : ∀(y 7→ D) ∈ Γ] : ∃Γ ′ ∈ γt(D) : Γ ′[x] = v

Theorem 6. If the original abstract domain is sound with regards to its con-
cretization γt, then its lifting is also sound.

Because this lifting relates all the variables of a LAF term; LAF terms can
contain a large number of variables; most operations on numerical abstract do-
mains have a complexity supra-linear in the number of variables, a naive ap-
plication of this technique would probably be very slow. However, this can be
mitigated by exploiting the fact that most variables would be unrelated [14], or
limiting relations by packing variables together [3, 30].

ε] = ε

Jlet x = op(x1, . . . , xn) in CK](Γ]) = let D =
d

1≤i≤n Γ
][xi] in

let D′ = {|x← op(x1, . . . , xn)|}(D) in

JCK](Γ][x 7→ D′])

Jlet x = nondet(x1, x2) in CK](Γ]) = let D1 = {|x← x1|}(Γ][x1]) in

let D2 = {|x← x2|}(Γ][x2]) in
let D′ = D′ = D1 tD2 in

JCK](Γ][x 7→ D′])

Jlet x = unknown() in CK](Γ]) = JCK](Γ][x 7→ >])

Jlet x = assume(xc, xv) in CK](Γ]) = let D = Γ][xc] u Γ][xv] in
let D′ = {|assume xc|}(D) in
let D′′ = {|x← xv|}(D′) in
JCK](Γ][x 7→ D′′])

killall([], D) = D
killall(let x = ... in C,D) = killall(C, {|x← unknown()|}(D))

Jlet x = (µxs. Cb[xe])(xi) in CK](Γ]) = let Di = {|x← xi|}(Γ][xi]) in
let rec fix(D) =
let Ds = {xs ← x}(D) in

let Γ]
s = Γ][xs 7→ Ds] in

let Γ]
b = JCbK](Γ]

s) in

let De = {|x← xe|}(Γ]
b [xe]) in

let D′s = Di t killall(De) in
if (D′s v Ds) then D

′
s else fix(Ds∇D′s)

in
let D′ = fix(Di) in

JCK](Γ][x 7→ D′])

Fig. 8: Algorithm: Evaluating LAF terms with usual abstract domains.
{|x← expr|} denotes the transfer function for the assignment x← e.

C Translation to SMT and Horn

C.1 Translation to SMT

We begin by this translation, as it is easier
Intuitively, the translation associates to each LAF variable x a pair of SMT

variables 〈cx, vx〉, where
� c represents the necessary condition for x to be di�erent from ⊥
� v represents the value to which x evaluates.

Thus if x has value ⊥, then cx has value false and vx can be anything; if x
has value 33, then cx is true and vx is also 33.

More formally, the translation L·M creates a �rst-order formula ϕ and a map-
ping M from LAF variables x to SMT variables 〈cx, vx〉; such that if x ⇓ u,
then the formula ϕ∧ cx ∧ vx = u is satis�able. The converse is not true, because
the translation of loops is over-approximated, as done in weakest-precondition
computation. This is "�xed" by generating Horn clauses instead of SMT, which
extends this translation to handle loops.

Empty and Result

L[]M(M, ϕ) = 〈M, ϕ〉

Theory op

M[x1] = 〈c1, v1〉 . . . M[xn] = 〈cn, vn〉 c fresh v fresh

Llet x = opn(x1, . . . , xn) in CM(M, ϕ) =
LCM(M[x 7→ 〈c, v〉], ϕ ∧ (c = c1 ∧ . . . ∧ cn) ∧ (v = opn(v1, . . . , vn)))

Unknown

v fresh

Llet x = unknownS() in CM(M, ϕ) = LCM(M[x 7→ 〈true, v〉], ϕ)

Assume

M[x1] = 〈c1, v1〉 M[x2] = 〈c2, v2〉 c fresh v fresh

Llet x = assume(x1, x2) in CM(M, ϕ) =
LCM(M[x 7→ 〈c, v〉], ϕ ∧ (c = c1 ∧ c2 ∧ v1) ∧ (v = v2))

Nondet

M[x1] = 〈c1, v1〉 M[x2] = 〈c2, v2〉 c fresh v fresh

Llet x = nondet(x1, x2) in CM(M, ϕ) =
LCM(M[x 7→ 〈c, v〉], ϕ ∧

(
c⇒ ((c1 ∧ v = v1) ∨ (c2 ∧ v = v2))

)
∧ (c = c1 ∨ c2))

Mu

M[x0] = 〈c0, v0〉 v fresh

Llet x = (µxs. tb[xe])(xi) in CM(M, ϕ) = LCM(M[x 7→ 〈c0, v〉], ϕ)

Theorem 7. Let 〈ϕ,M〉 = LCM. Let Γ ∈ JCK. Let x be a variable of C. Then,
x is inM and we choose 〈cx, vx〉 =M[x]. Then we have:

{
∃Γ ∈ JCK(ε) : Γ [x] = ⊥ ⇒ ϕ ∧ ¬cx is satis�able
∃Γ ∈ JCK(ε) : Γ [x] = u 6= ⊥ ⇒ ϕ ∧ cx ∧ (vx = u) is satis�able

Proof. The proof is by induction: at each step of the algorithm, the ϕ,M pro-
duced verify the property for the variables already translated (which are inM).
For each construct, we show how a model of the formula M for ϕ can be extended
to also satisfy the new constraints.

Corollary 1. If ϕ ∧ cx ∧ (vx = u) is unsatis�able, then ∀Γ ∈ JCK(ε), we have
Γ [x] 6= u

Proof. This is just the contrapposite.

Thus in practice this translation allows to prove that a variable can never be
equal to some value. In particular in the case of boolean values, it can be used
to prove that some condition can never be false, i.e. is always true; this allows
to prove assertions about the program.

Note that the translation is linear in the size of the term, notably because
we create new SMT variable for every LAF variable. Because the translation is
linear, we can see the translation to LAF term + conversion to SMT formula
as another implementation of the e�cient weakest precondition technique of
Leino[21].

C.2 Translation to Horn

The translation is relatively similar, except that we make use of Horn clauses
to handle the recursion in the µ term. The only real issue is that in LAF term,
the body of the µ can use variables de�ned outside of the body; this is called
environment capture in functional language. This is �xed by explicitly passing
the contents of these captured variables in the translation of the body.

D Translation from While

The translation is relatively standard. The memory state corresponding to each
statement is represented by the tuple of the values of each variable; 〈| · |〉 is the
constant mapping from variables to indices. We have used "[M except i 7→ x]"
as a syntactic sugar for "〈M [0],M [1], . . . ,M [i− 1], x,M [i+ 1], . . . ,M [n]〉". The
translation is quite naive; in particular the operations on tuples get/set, and
nondet of tuples, should be simpli�ed.

(|var|)(C,M) = 〈C[let x′ =M [〈|var|〉]], x′〉
(|opn(e1, . . . , en)|)(C,M) = let 〈C1, x1〉 = (|e1|)(C,M) in

let 〈C2, x2〉 = (|e2|)(C1,M1) in
...

let 〈Cn, xn〉 = (|en|)(Cn−1,Mn−1) in

〈C[let x′ = opn(x1, . . . , xn)], x
′〉

{|var:= e|}(C,M) = let 〈C′, x〉 = (|e|)(C,M) in

〈C′, [M except 〈|var|〉 7→ x]〉
{|s1; s2|}(C,M) = let 〈C1,M1〉 = {|s1|}(C,M) in

{|s2|}(C1,M1)

{|if e then sthen else selse|}(C,M) = let 〈C1, x〉 = (|e|)(C,M) in

let C2 = C1[let nx = ¬x] in
let 〈C3,Mthen〉 = {|sthen|}(C2,M) in

let 〈C4,Melse〉 = {|selse|}(C3,M) in

let C5 = C4[let M
′
then = assume(x,Mthen)] in

let C6 = C5[let M
′
else = assume(nx,Melse)] in

let C7 = C6[let M
′ = nondet(M ′then,M

′
else)] in

〈C7,M
′〉

{|while e do s done|}(C,M) = let M = fresh() in

let 〈C1, x〉 = (|e|)(C,M) in

let C2 = C1[let M2 = assume(x,M)] in

let 〈C3,M3〉 = {|s|}(C2,M2) in

let C4 = C[let M ′ = (µM.C3[M3])(M) in

let 〈C5, x
′〉 = (|e|)(C4,M

′) in

let C6 = C5[let nx
′ = ¬x′] in

let C7 = C6[let M
′′ = assume(nx′,M ′)] in

〈C7,M
′′〉

Fig. 9: Translation from the While language to LAF terms

x := 0;

y := 0;

while(x < n) {

x := x + 1;

y := y + 1;

}

assert(x == y);

1let x0 , unknownZ() in

1let y0 , unknownZ() in

1let n , unknownZ() in

1let M0 , 〈x0, y0, n0〉 in
1let M1 , 〈0, y0, n0〉 in
1let M2 , 〈0, 0, n0〉 in
1let 〈x3, y3〉 = (µM.

1let x1 ,M [0] in

1 let c1 , x < n in

1 let M3 , assume(c,M) in

1 let x1 ,M3[0] in

1 let y1 ,M3[1] in

1 let n1 ,M3[2] in

1 let x2 , x1 + 1 in

1 let y2 , y1 + 1 in

1 let M4 , 〈x2, y2, n1〉 in
1 M4)(M2) in

1let x3 ,M4[0] in

1let c2 , x3 < n in

1let nc , ¬c2 in
1let M5 , assume(nc,M4) in

1let x6 ,M5[0] in

1let y6 ,M5[1] in

1let c3 , x6 = y6 in
1c

Fig. 10: Full (naive) translation of the assertion in the program on the left. A
better translation would remove useless terms such as M1 and x0, and would
realize that n is not modi�ed in the loop (and thus does not need to be in the
loop tuple).

	Abstract Interpretation using a Language of Symbolic Approximation

