Matthieu Lemerre 
  
Sébastien Bardin 
  
Abstract Interpretation using a Language of Symbolic Approximation

come    

Introduction

Context The usual lattice-based structuring of abstract interpreters for imperative programs by Cousot and Cousot [START_REF] Cousot | Abstract interpretation: a unied lattice model for static analysis of programs by construction or approximation of xpoints[END_REF] consists in associating, to each program point, the element of a lattice representing the over-approximation of the set of possible states at that point. The interface of abstract domains then consists in transfer functions that interpret the syntax of the program to compute the lattice element corresponding to the next program point; as well as lattice operations such as inclusion ( ), join ( ), and widening (∇). This approach has been highly successful in both laying the theoretical foundation of software analysis techniques, and applying them in industrial applications [START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF][START_REF] Fähndrich | Static contract checking with abstract interpretation[END_REF][START_REF] Kirchner | Frama-c: a software analysis perspective[END_REF].

Problem Despite these successes the design of industrial-strength analyzers is still a challenging art. We highlight two problems, detailed in Section 2. First, the abstract state at each program point contains a mapping of the whole memory; yet the abstract state between nearby program points is nearly identical. Consequences include a high memory consumption and expensive operations. For instance, memory join is costly, because every memory location is joined, instead of only the few that dier. Mitigating this problem requires implementation tricks such as using functional data structures [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF], possibly with hash-consing [START_REF] Kirchner | Frama-c: a software analysis perspective[END_REF]; essentially the implementation tries to share what was duplicated by the theoretical framework.

Another important limitation is the handling of symbolic relations. Symbolic abstract domains are necessary in practical lattice-based static analyzers [START_REF] Gange | An Abstract Domain of Uninterpreted Functions[END_REF][START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF][START_REF] Chang | Abstract Interpretation with Alien Expressions and Heap Structures[END_REF][START_REF] Djoudi | Recovering high-level conditions from binary programs[END_REF][START_REF] Logozzo | On the Relative Completeness of Bytecode Analysis Versus Source Code Analysis[END_REF][START_REF] Jourdan | A formallyveried c static analyzer[END_REF], notably to handle the case where an intermediate computation is put in a temporary variable (like cond in Figure 1). These abstract domains are limited by the fact that they must t in the lattice-based framework; in particular, their join and widening operations are always very imprecise.

Goal, challenge and proposal Because these limitations are hard to x in the standard lattice-based framework, our goal is to design an alternative framework that xes these issues; but also encompasses the lattice-based framework, so as to reuse previous work.

We propose a new term-based framework, based on a language of symbolic expressions (Section 3); which can be used both as the abstract state inside the abstract domain (i.e. replacing the lattice elements) or as the input of the abstract domain (e.g. replacing the program itself). Abstract domains are functions, that evaluate a symbolic expression to an abstract value, that can be concretized into a set of possible values for the variables of the expression (Section 4).

Contributions Our main contribution is the design of a new term-based abstract interpretation framework. Key ingredients include the Language of Approximation and Fixpoint (LAF) logic (Section 3) with nondet and µ operators replacing join and widening; its collecting semantics; and the denition of abstract domains as abstract interpreter of LAF terms (Section 4.1).

Our second contribution is specic instances of term-based abstract domains: we show how to lift lattice-based abstract domains to term-based abstract domains (Section 4.2) (and demonstrate improved complexity in the case of nonrelational abstract domains); we provide new abstract domains based on term rewriting (Section 4.3). In Section 5 we combine term rewriting and lattice-based abstract interpretation in a new domain, that performs backward and forward constraint propagation across the whole program.

Our last contribution is the evaluation of an early implementation of the approach (Section 6), but that already works on industrial case studies and large SVComp benchmarks. Term-based abstract interpretation allows to decompose the analyzer as a succession of transformation over LAF terms, each individually simple, but that mutually rene one another to provide a precise result. A rst experiment demonstrates the interest of whole-program constraint propagation.

A second shows how we leverage the production of approximate LAF terms by the term-based abstract domains, to export simplied formula to a Horn-based model checker. [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF] Motivation and key ideas

Our method can be summarized as using a special language of symbolic expressions; used both as the abstract state inside an abstract domain, or as the program that the abstract domain analyze. We rst cover the challenges of maintaining a precise symbolic abstraction, and why we require a new framework for doing so; the benets of performing abstract interpretation over these symbolic expressions; and the organization of an analyzer structured using "translator abstract domains", both inputting and outputting symbolic expressions. Right: mapping from variables to abstract values, according to some conditions.

let c3 (abs = -nabs) let xdiv x/9 let c2 abs ≤ 8 let c4 (xdiv = 0) in c4 x →      true [-∞; +∞] c1 [-∞; -1] ¬c1 [0; +∞] c1 ∧ c2 [-8; -1] ¬c1 ∧ c2 [0; 8] nx →      true [-∞; +∞] c1 [1; +∞] ¬c1 [-∞; 0] c1 ∧ c2 [1; 8] ¬c1 ∧ c2 [-8; 0] abs → true [0; +∞] c2 [0; 8] nabs → true [1; +∞] c1 →   true {true; f alse} c1 {true} ¬c1 {f alse} c3 → true {true; f alse} c2 → true {true; f alse} c2 {true} xdiv → c2 [0; 0] c4 → c2 {true}
Figure 1 illustrates the use of our language as an abstraction of the program (in the middle), and as the language on which abstract interpretation is performed (on the right). This example is explained in detail in Section 5.

Computing symbolic abstractions

Symbolic abstract domains compute abstractions represented by a term (expression) in some language. Existing symbolic abstract domains lose precision when assignment, join or widening is performed [START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF][START_REF] Gange | An Abstract Domain of Uninterpreted Functions[END_REF][START_REF] Djoudi | Recovering high-level conditions from binary programs[END_REF]. Indeed, having a fully precise symbolic abstract domain cause major diculties, that cannot be solved using the standard interface to abstract domains.

Variables for values, not for locations In usual A.I. of imperative programs, a precision loss may occur when a variable x is overwritten: relations such as y = 2 * x have to be "killed" (if x cannot be substituted). This aects relational abstract domains [START_REF] Karr | Ane relationships among variables of a program[END_REF], including symbolic domains [START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF][START_REF] Gange | An Abstract Domain of Uninterpreted Functions[END_REF][START_REF] Djoudi | Recovering high-level conditions from binary programs[END_REF].

But this issue only occurs because variables represent (mutable) memory locations. When variables represent (immutable) values, formula remain valid regardless of which memory cell gets overwritten. In LAF (but also in [START_REF] Chang | Abstract Interpretation with Alien Expressions and Heap Structures[END_REF][START_REF] Chang | Modular Construction of Shape-Numeric Analyzers[END_REF]), variables denote values, thus there is no need to kill any relation.

Symbolic join is not a least upper bound Usual A.I. requires abstract domains to have a lattice structure. We believe that this requirement does not t well symbolic abstraction, and explain why below.

Intuitively, two expressions e 1 and e 2 can be "joined" using a new expression "nondet(e 1 , e 2 )", representing a non-deterministic choice between e 1 and e 2 . But to avoid loosing precision, the resulting expression should be given a name. For instance, "nondet(2, 7) -nondet(2, 7)" represents any value in {-5, 0, 5}, as both "nondet(2, 7)" expressions may evaluate to dierent values; while "let v = nondet(2, 7) in v -v" always evaluate to 0. In LAF (Section 3), we give a fresh name to every sub-expression, even if only the result of nondeterministic operations do require a name.

However, the necessity of giving new unique names to the result of joining expressions mean that this "symbolic expression abstraction" cannot have a lattice structure: each "join" of two terms generates a dierent least upperbound of these two expressions.

We solve this issue simply by not requiring abstract domains to have a lattice structure. This choice allows us to handle join (and loops) precisely while existing lattice-based domains [START_REF] Gange | An Abstract Domain of Uninterpreted Functions[END_REF][START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF][START_REF] Chang | Abstract Interpretation with Alien Expressions and Heap Structures[END_REF][START_REF] Djoudi | Recovering high-level conditions from binary programs[END_REF][START_REF] Logozzo | On the Relative Completeness of Bytecode Analysis Versus Source Code Analysis[END_REF][START_REF] Jourdan | A formallyveried c static analyzer[END_REF] cannot. While this is very unusual, abstract interpretation is not necessarily lattice-based [START_REF] Cousot | Abstract interpretation frameworks[END_REF]: the core of abstract interpretation is to compute an abstract state which is sound with regards to the collecting semantics of the program, which is what our framework does (Section 4).

Widening does not t symbolic abstract domains LAF introduces a µ operator that allows to fold expressions, which is necessary to have a nite abstraction in the presence of loops. For instance, the contents of x in the program while(*) x = x + x; is represented in LAF by "(µx.x + x)(x 0 )", where x 0 represents the initial value of x. This expression represents a non-deterministic choice between "x 0 ", "x 0 + x 0 ", "let x 1 = (x 0 + x 0 ) in x 1 + x 1 ", etc.

However, the standard operator used to nd a nite abstraction in the presence of loops, widening, is not the right tool to nd this folding. In essence, widening amounts to guessing a loop invariant given (a computation using) the rst iterations of a loop. In the example above, the initial value of x is x 0 , and the one at the beginning of the second iteration is x 0 +x 0 . But there is an innity of possible foldings that match these two iterations, including (µx.x + x 0 )(x 0 ); (µx.x 0 + x 0 + 37 * (x -x 0 )); etc.; and this is even more dicult if expressions can be rewritten before widening!

The interface that we propose for xpoint computation, based on the evaluation of LAF terms, takes as input the value at the loop entry (the argument of the µ expression), together with the eect of the loop (the body of the µ expression). This way, we always succeed in computing the folding of an expression, in a single step. Moreover, it is suciently general to also allow widening-like xpoint computations; but also acceleration [START_REF] Gonnord | Abstract acceleration in linear relation analysis[END_REF], policy iteration [START_REF] Costan | A policy iteration algorithm for computing xed points in static analysis of programs[END_REF], inductive invariant generation [START_REF] De Oliveira | Polynomial invariants by linear algebra[END_REF]. . .

Benets of abstract interpretation over symbolic expressions

LAF terms are purely functional expressions: the values to which they can evaluate is independent of a program point. Consequently, there is no need to split semantic information by program points as in classical analysis. Instead, semantic information can be put in a single store, which enables more sharing.

For instance, in Figure 1, the semantic store (a map from LAF variables to their values, according to conditions of the program) is represented at the right of the gure. The possible values for nabs after the join are centralized in the store, instead of being duplicated in the abstract element corresponding to the following program points.

One consequence of this single-store architecture is that transfer functions are more ecient. For instance the semantic store of Figure 1 can be implemented by an extensible array, and computing the interval of a variable is an amortized O(1) operation. Moreover, nondet can be seen as a join targeting the variables that have changed (abs and nabs). This optimization is essential, as most conditionals impact a small number of memory locations [START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF]; targeted join (and targeted xpoint) alleviates the need for each abstract domain to detect the parts of the memory that have changed, improving the complexity of these operations (Section 4.2).

In the usual A.I., rening semantic information between statements is limited because the semantic information is split into program points. The single-store architecture removes this restriction. Section 5 details how, on Figure 1, the constraint propagation traverses the whole program to prove that x ∈ [-8; 8] at the end of the program (and the last assertion). The presence of nondet operation and its traversal are essential to relate x in the program to its absolute value abs. Moreover this constraint propagation is done using the LAF term, i.e. on the data dependencies of the program, automatically skipping statements unaected by the renement (like in sparse analyses [START_REF] Oh | Design and implementation of sparse global analyses for c-like languages[END_REF]).

Hierarchy of translator domains

Our abstract domains are able to both abstractly interpret LAF terms, and produce a program abstraction as a LAF term. This allows to implement translator domains. Translator domains perform a dynamic translation of an input term into a simplied, possibly approximated, output term, using semantic information computed during the analysis (on either the input or output term).

One can then structure an abstract interpreter as a combination of (simple) translator domains. Supercially, this resembles the structure of compilers; however translator domains are not just sequential passes, but abstract domains executing simultaneously, and mutually rening each other.

Example: translator abstract domain for low-level memory operations

Figure 2 shows how this can be applied to the static analysis of C programs with low-level memory manipulation such as pointer arithmetic, casts and biteld (similarly to Miné [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF]). The memory abstract domain represents memory regions as a contiguous sequence of slices. To each slice correspond the value that was last written. These values are represented as variables of a LAF term (in the theory of bitvectors). The right of the gure represents the memory region for r at dierent program points. Each write modies the region by replacing the slice with the corresponding oset, size, and value.

The memory domain has to know the possible values for array indices. This is done by querying the underlying abstract domain for the possible values of union { struct { uint8 l; uint8 h; } b; uint16 w; } r [START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF]; these indices. If there is more than one possible value (e.g. 1/X ∈ {-1; 0; 1}), the abstract domain performs a weak update, i.e. the corresponding slice is mapped to a non-deterministic choice between the new and old value (R 4 ). On program joins, the slices are compared: only the cells that do not contain syntactically equal variables are "joined", which targets the join on memory cells that have been modied by the conditional.

r[0].w = X; if(*) { r[1].b.h = r[0].b.h; r[1].b.l = r[0].b.l; r[1/X].w = r[1].w; } assert(r[0].w == X); let X l X[7..0] let X h X[15..8] let X concat(X h , X l ) let X nondet(X, X ) let X nondet(X , X ) let t then X , X [7..0], X [15..8] let t else X, r l 1 , r h 1 let t nondet(t then , t else ) let assertion (t[0] = X) r l 0 r h 0 r l 1 r h 1 r l 2 r h 2 R0 X r l 1 r h 1 r l 2 r h 2 R1 X r l 1 X h r l 2 r h 2 R2 X X l X h r l 2 r h 2 R3 X X r l 2 r h 2 R4 t[0] t[1] t[2] r l 2 r h 2 R5
Proving the assertion with symbolic reasoning Now, there are several ways to solve the nal assertion. The rst is to insert between these domains a syntactic rewrites abstract domains. Applying the following four simple rewriting rules suces to prove the assertion (all primed versions of X are equal):

concat(x[a..b], x[b -1..c]) → x[a..c] x[0..c] when sizeof(x) = c → x nondet(x, x) → x x == x → true
Another mean is to output the corresponding formula to a specialized SMT solver, which is necessary for the most complex assertions. Contrary to the original program, the simplied LAF formula does not require memory operators: it only needs operator from the bitvector theory, that many SMT solver under-stand. Thus, the memory abstract domain can be viewed as a translator from the source program to a simpler, approximate program, directly suitable for export to specialized solvers.

LAF: syntax and collecting semantics

The Logic of Approximation and Fixpoint (LAF) is the language we designed to be used both as a symbolic abstraction in abstract domains, and as an input for abstract domains. LAF can be viewed as a non-deterministic, functional language representing the possible results of a computation.

C is a context (∈ Context), x a variable (∈ V ar), S a sort, t a term

C ::= [] | let x opn(x, . . . , x) in C | let x nondet(x, x) in C | let x (µxs. C[xe])(xi) in C | let x assume(xc, xv) in C | let x unknownS() in C t ::= C[x]
Notation for theories: Γ is an environment (∈ Env). Γ [x → v] and Γ [x] respectively denote environment extension and lookup.

[] (Γ ) = {Γ } let x opn(x1, . . . , xn) in C (Γ ) = C (Γ [x → op(Γ [x1], . . . , Γ [xn])]) let x nondet(x1, x2) in C (Γ ) = C (Γ [x → Γ [x1]]) ∪ C (Γ [x → Γ [x2]]) let x unknownS() in C (Γ ) = v∈S C (Γ [x → v]) let x assume(xc, xv) in C (Γ ) = C (Γ [x → ⊥]) if Γ [xc] = false C (Γ [x → Γ [xv]]) if Γ [xc] = true let x (µx. C b [x ])(x0) in C (Γ ) = let fix(S) = let S b = v∈S C b (Γ [x → v]) in let S = {Γ b [x ] : Γ b ∈ S b } in Se ∪ {Γ [x0]} in let S = lfp(fix) in v∈S C (Γ [x → v])
Fig. 3: Syntax (top) and collecting semantics (bottom) of LAF Syntax A LAF term (Figure 3) is essentially a sequence of variable denitions, followed by a single variable (the result). A variable is dened as the result of calling a primitive operation over previously-dened variables: i.e. every intermediary computation is named, and the sequence of denitions is ordered.

The terms need to be built incrementally; i.e. we want to extend a term with new denitions. We represent this formally using evaluation contexts C [START_REF] Wright | A syntactic approach to type soundness[END_REF], i.e. a "term with a hole". The hole [] can be substituted with a variable x (to form a complete term) or with a context

C 2 (to form a new context). For instance, if C = "let x 12; let y x + 1; []" then C[y] is a term evaluating to 13; C["let z x + y in []"
] is a context appended with a new denition (to improve readability, we usually write the latter "C[let z x + y]").

The primitive operations are those of a logical theory, (e.g. integer, oating point or real arithmetic; array; bitvectors; uninterpreted functions): there are many LAF languages, that depend on the theories in use. Two theories are always present: the theory of Boolean operations, and the theory of tuples.

Collecting Semantics Because variable denitions are ordered, we can dene an operational semantics of LAF terms. LAF can be thus seen as a nondeterministic, functional language. A semantics of LAF given as a small-step structural operational semantics [START_REF] Plotkin | A structural approach to operational semantics[END_REF] exists (see Appendix A). But giving the collecting semantics for the term directly is actually simpler (see Figure 3); this illustrates the fact that LAF is a logic adequate for a symbolic description of a collecting semantics.

The semantics is dened using a collecting evaluation function • : Context × Env → P(Env). It takes a context C ∈ Context remaining to be evaluated, an environment Γ ∈ Env corresponding to a possible evaluation so far (more precisely, Γ should contain a mapping for all the free variables in C); and returns all the possible corresponding environments when C is fully evaluated. To evaluate a closed context (with no free variables), we pass the empty environment ε.

The collecting semantics essentially computes the set of all possible environments using meet-over-all-paths [START_REF] Nielson | Principles of program analysis[END_REF]. For non-deterministic constructs (nondet, unknown, and µ), every possible choice is fully evaluated in isolation, before taking the union of the possible outcomes. µ denes a local xpoint of all the values obtained by an arbitrary number of iterations of the loop body C b [x ], before making a nondeterministic choice of one of these values. In other words, µ is as an operator executing the loop body a nondeterministic number of times.

Intuitively, "assume(false,x)" is used to "kill" a part of the evaluation. A particularity of LAF is that the same evaluation can have some parts killed and some live (e.g. only one of the branch of a conditional is live). For instance, the desired result of evaluating the term "let x assume(f alse, 1); let y 2; y" is 2. This is achieved using a special ⊥ value to represent "killed" values. ⊥ propagates throughout theory operations: e.g. ⊥ + 3 = ⊥.

Abstract evaluation

Denition

We name abstract evaluation the abstract interpretation of functional LAF terms. An abstract domain is mainly composed of an abstract evaluation function • that evaluates contexts into abstract states; and a concretization function γ that gives a meaning to an abstract state as a set of environments. The main soundness rule is that the abstract state is always a superset of the set of possible environments of the context, as dened by the collecting semantics.

To allow the incremental building of the abstract value, the abstract evaluation function takes as an argument the abstract value computed so far, which overapproximates the set of environments containing the free variables of the context that remains to be evaluated. More formally: Denition 1 (Abstract Domain). An abstract domain is given by a quadruple Env , • , ε , γ : Env → P(Env) where:

Env is a set, the set of abstract states (also called abstract environments); 

• ∈ Context × Env →
Γ ∈γ(Γ ) C (Γ ) ⊆ γ( C (Γ ))
Note how these denitions have replaced the traditional lattice-based structure of abstract domains by the sole evaluation of operators in the logic. Section 4.2 shows that traditional abstract domains t into this denition; while Section 4.3 shows how the denition allows to also incorporate techniques not traditionally seen as abstract domains, for instance term rewriting.

Numerical abstract interpretation

A non-relational abstract domain is a mapping from variables to an abstraction of the value of this variable, that we call abstract value. Example of abstract values include intervals, congruences [START_REF] Granger | Static analysis of arithmetical congruences[END_REF], the at lattice of constants, the powerset of {true, false}. . . They have a lattice-based structure and can be combined using the operators of the LAF theories (e.g. + denotes the addition of two intervals).

Denition 3 (Abstract value). An abstract value V is a pair L V , γ V where: -1. L V is a lattice, equipped with join ( ˙ ), inclusion ( ˙ ), widening ( ∇) operations, as well as abstractions of theory operations ȯp -2. γ V : L V → P(V alues) concretizes elements of the lattice into a set of values; -3. For every n-ary operation ȯp over lattice elements:

γ V ( ȯp(L 1 , . . . , L n )) ⊇ {op(x 1 , . . . , x n ) : x 1 ∈ γ V (L 1 ), . . . , x n ∈ γ V (L n )} -4. γ V (L 1 ˙ L 2 ) ⊇ γ V (L 1 ) ∪ γ V (L 2 )
Figure 4 presents a non-relational abstract domain equipped with such an abstract value, i.e. a concretization and an abstract evaluation algorithm which computes the over-approximation of the possible values of a LAF term.

ε = ε [] (Γ ) = Γ let x opn(x1, . . . , xn) in C (Γ ) = C (Γ [x → ȯp(Γ [x1], . . . , Γ [xn])]) let x nondet(x1, x2) in C (Γ ) = C (Γ [x → Γ [x1] ˙ Γ [x2]]) let x unknown() in C (Γ ) = C (Γ [x → ˙ ]) let x assume(xc, xv) in C (Γ ) = C (Γ [x → Γ [xv]]) let x (µxs. C b [xe])(xi) in C (Γ ) = let Li = Γ [xi] in let rec fix(L) = let Γ s = Γ [xs → L] in let Γ b = C b (Γ s ) in let L = Γ b [xe] ˙ Li in if (L ˙ L) then L else fix(L ∇L ) in C (Γ [x → fix(Li)]) Γ ∈ γ(Γ ) ⇔ ∀(x → v) ∈ Γ : v ∈ γV (Γ [x]) Env = V ar → LV
Fig. 4: A non-relational abstract domain, parametrized by an abstract value V Theorem 1. Given that V is an abstract value, the quadruple Env , • , ε , γ of Figure 4 is a sound abstract domain.

The algorithm is quite straightforward: the abstract value is a standard mapping from program variables to an abstract value representing their possible values. Every evaluation step applies a lattice operation ȯp, except nondet which requires a join, and µ for which we do a local xpoint computation. assume is ignored (for more precision, we could map x to ⊥ when we detect that the condition cannot be true); Section 5 explains how the domain can be extended to handle assume.

The complexity of this implementation is optimal. Indeed, the Γ environment can be implemented using a single array (using variables as the indices), which means that environment update and lookup have O(1) complexity. If we assume that the abstract value of tuple values is represented as a tuple of scalar abstract values, and operations on scalar abstract values (e.g. interval) have O(1) complexity, then all operations have O(1) complexity, except joining and widening tuples of length n, which have O(n) complexity. Now, the length of the tuple depends on how it was generated; but if it was generated so that it contains only the variables that dier, then the complexity of these operations is O(∆), where ∆ is the number of variables modied in a loop or in a conditional.

This improves on the complexity of analyzers using the traditional interface, for which the complexity of these operations depends (logarithmically) on the number of variables [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF].

Theorem 2. It is possible to lift traditional, lattice-based relational abstract domains to sound abstract domains following Denition 1.

With minor modications, the non-relational abstract domain of the previous section can be used to lift traditional abstract domains to our framework: it suces to map memory variables to the usual lattices representing the entire memory. For instance, we can evaluate the denition "let M = store(M, "x", load(M, "x") + 1)" using the ane equality abstract domain [START_REF] Karr | Ane relationships among variables of a program[END_REF], associating elements of this domain to M and M .

It is also possible to use traditional abstract domains to relate variables of a (numeric) LAF term; Appendix B details how this lifting is done. It follows the same pattern as the non-relational lift: evaluation of "nondet" corresponds to join, and evaluation of µ corresponds to inclusion testing and widening.

Rewriting-based abstract interpretation

This section provides a simple example of an abstract domain whose abstract state is based on a LAF context, instead of a lattice.

The abstract domain is based on term rewriting. It performs a dynamic translation from a source term to a destination term, used as the abstract state; the concretization of this state is simply its collecting semantics. The domain is parametrized by a set of term rewriting rules R.

ε = [] [] (C ) = C let x op(x1, . . . , xn) in C (C ) = C (C [let x R(op(x1, . . . , xn))]) let x nondet(x1, x2) in C (C ) = C (C [let x R(nondet(x1, x2))]) let x unknownS() in C (C ) = C (C [let x R(unknownS ())]) let x assume(xc, xv) in C (C ) = C (C [let x R(assume(xc, xv))]) let x (µxs. C b [xe])(xi) in C (C ) = let C b = C b ([]) in C (C [let x R((µxs. C b [xe])(xi))]) Γ ∈ γ(C ) ⇔ Γ ∈ C (ε)
Fig. 5: Rewriting abstract domain parametrized by a term rewriting system R

We give term rewriting rules using pattern matching, on a representation of terms where let bindings have been inlined. Simple term rewriting rules include x ∧ x → x, 1 * x → x, 2 + x + 3 → x + 5. However, as is, rules such as 0 * x → 0 or x -x → 0 are not correct for this domain. Indeed, consider the terms:

"let u unknown Z in let v assume(u = 3, u) in let s 0 * v in s". and the result of applying the rule 0 * x → 0 to it:

"let u unknown Z in let v assume(u = 3, u) in let s 0 in s". The possible environment [u → 3, v → ⊥, s → ⊥] for the rst term has been replaced by the environment [u → 3, v → ⊥, s → 0] in the second. One way to deal with this issue is to propagate the "assume" conditions in the replacement. Another is to accept these "over-approximating rewrites", by changing the denition of γ to:

Γ ∈ γ(C ) ⇔ ∃Γ ∈ C (ε) : ∀x ∈ Γ : Γ [x] = Γ [x] ∨ Γ [x] = ⊥ (1)
The latter allows very aggressive rewrites, such as x/x → 1 or 1/x < 2 → true, that disregard side conditions, usually a major diculty of term-rewriting.

The soundness of both "exact" and "over-approximating" abstract domains is established by considering only the term rewriting rules: Denition 4. A term rewriting rule l → r is an exact rewrite if, for any substitution σ of the free variables of l, the evaluation of lσ equals the evaluation of rσ. It is over-approximating if they are equal when the evaluation of lσ does not return ⊥.

Theorem 3. If every term rewriting rule in R is exact, then the abstract domain of Figure 5 is sound. If every term rewriting rule in R is over-approximating, then the abstract domain of Figure 5, with γ given by equation 1, is sound.

The term rewriting and non-relational domain represent very dierent domains, one semantic in nature, the other more symbolic. We will now see a more complex domains that combine and extend theses two models: the constraint propagation abstract domain.

A constraint propagation abstract domain

The constraint domain is a good example of the advantages of our approach: beneting from the structure of LAF terms (including targeted join and widening) that allows a single store implementation, it can propagate and combine semantic information across the whole program, in an ecient way. It is made of three elements:

A LAF context C , called the constraints (middle of Figure 1). It can be seen as a rewrite of the input LAF context with particular locations for assume denitions.

Two mappings Γ c and Γ v from variables of the input context to variables of the constraints. This mapping is made such that x and "assume(Γ c (x), Γ v (x))" evaluate to the same values (the mapping and input term are not shown on Figure 1).4

A mapping M from each variable of the constraints to a condition map, representing the possible values for the variable according to some conditions (right of Figure 1). How these conditions are chosen depends on a strategy; ours is detailed below.

Generation of constraints

The construction of the constraints, Γ c and Γ v is pretty straightforward (Figure 6). The general idea is that the constraints could represent the input term stripped from assume expressions; the condition is instead stored in the Γ c map. Actually we do not strip the assume statements entirely, but delay them until the end of loops, or just before a "nondet", so that the term used as the constraints does not lose information with regards to the input term. Constraint propagation When an assume(c, x) denition is evaluated in the input term, we perform a constraint propagation. It consists in reevaluating denitions such as "let c x < 0", rening and using the information attached to the variables corresponding to the result and arguments of the operator. The algorithm is similar to constraint satisfaction algorithms such as AC-3 [START_REF] Mackworth | Consistency in networks of relations[END_REF]; but we maintain, together with the worklist of variables whose abstract value has changed, the condition for which they have changed. The constraint propagation of condition c is initiated by adding the binding c → c {true}. In Figure 1, a rst chain of constraints propagation is the addition of the bindings

ε = [] (x is fresh) [] (C , Γ v , Γ c ) = C , Γ v , Γ c let x op(x1, . . . , xn) in C (C , Γ v , Γ c ) = C ( C [let x op(Γv[x1], . . . , Γv[xn])], Γ v [x → x ], Γ c [x → Γ c [x1] ∧ . . . ∧ Γ c [xn]]) let x nondet(x1, x2) in C (C , Γ v , Γ c ) = C ( C [let x nondet( assume(Γ c [x1], Γ v [x1]), assume(Γ c [x2], Γ v [x2]))], Γ v [x → x ], Γ c [x → Γ c [x1] ∨ Γ c [x2]]) let x unknownS() in C (C , Γ v , Γ c ) = C ( C [let x unknownS()], Γ v [x → x ], Γ c [x → true]) let x assume(xc, xv) in C (C , Γ v , Γ c ) = C ( C , Γ v [x → Γ v [xv]], Γ c [x → Γc[xc] ∧ Γc[xv] ∧ Γv[xc]]) let x (µxs. C b [xe])(xi) in C (C , Γ v , Γ c ) = let C b , Γ v , Γ c = C b ([], Γ v , Γ c ) in let E = "assume(Γ c [xe], Γ v [xe])" in C ( C [let x (µxs. C b [E])(Γ v [xi]))], Γ v [x → x ], Γ c [x → Γ c [xi]])
c 1 → c 1 {true}, then x → c 1 [-∞; -1].
When an assume(c , . . .) constraint is traversed, the c condition is added as a conjunct to the condition being propagated. This is seen in the addition of

c 1 in the constraint propagation chain c 2 → c 2 {true}, abs → c 2 [0; 8], nx → c 1 ∧ c 2 [1; 8], x → c 1 ∧ c 2 [-8; -1].
The constraint propagation phase terminates if the lattices used in the abstract value cannot be indenitely rened (e.g. rening y ≤ y/2 using an interval of rational numbers). But it is always sound to limit the number of propagation, and we evaluate dierent heuristics in Section 7.

Loops are handled like in the non-relational analysis of Section 4.2; the condition map, seen as a function lattice from conditions to abstract values, is used to join, widen and test for inclusion the loop input and output. The only dierence is that the conditions dened inside the loop body do not have any meaning in the next iteration, or outside of the loop; thus as soon as the loop body has been fully evaluated, these conditions are removed by existential quantication.

Concretization The concretization is best dened as the composition of two parts. The rst relates the input term to the generated constraints, and is similar to the one of rewriting-based abstract domains of Section 4.3.

Γ ∈ γ 1 ( C , Γ c , Γ v ) ⇔ ∃Γ ∈ C (ε) : ∀x → v ∈ Γ : Γ [Γ c [x]] = true ∧ Γ [Γ v [x]] = v if v = ⊥ Γ [Γ c [x]] = false if v = ⊥
The second part relates the term in the constraints to the values contained in the map M . This amounts to seeing constraint generation as a mere preprocessing of the input. It is similar to that of the non-relational abstract domain of 4.2, but taking conditions into account.

Γ ∈ γ 2 (M ) ⇔ ∀x ∈ Γ, c v ∈ M [x] : Γ [c] = true ⇒ Γ [x] ∈ γ V (v )
The combination consists in replacing, in the denition of γ 1 , the set of possible environments C (ε), by the approximation of this set γ 2 (M ).

Theorem 4. The constraint propagation abstract domain is sound. [START_REF] Costan | A policy iteration algorithm for computing xed points in static analysis of programs[END_REF] An abstract interpreter of embedded C programs This section demonstrates the practical applicability of our approach, by describing the implementation of a complete analyzer for embedded C programs (including low-level memory manipulation such as casts and bitelds, but currently excluding recursion and dynamic memory allocation). The system is composed as a succession of simple abstract domain "passes" communicating with one another. Figure 7 presents a high-level view of the analyzer. Each rectangular node is an abstract domain, that inputs a LAF term, and possibly outputs a simplied one. Input and output terms may use operators of dierent theories. Especially, the LAF term obtained from the translation of the C program contains load and store memory operators; while the LAF term used as input of the leaves abstract domains do not. This allows 1. to translate this term to SMT solvers that only understand bitvector theory, and 2. to implement a numeric constraint propagation domain that is unaware of memory operations.

The translation from C to LAF is standard (similar to e.g. Cytron et al. [START_REF] Cytron | Eciently computing static single assignment form and the control dependence graph[END_REF]).

Appendix D presents the full translation rules for the simpler While language.

Region and cell separation The region separation functor splits the memory into independent, non-overlapping memory regions, where a region corresponds to the memory allocated for a C variable (local or global). The cell separation functor partitions a memory region into contiguous slices of known size, and was informally described in Section 2.3. Both are currently quite naive; but better memory representations functors (e.g. [START_REF] Chang | Modular Construction of Shape-Numeric Analyzers[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF]) could be adapted to become translator domains. The output of these successive translator domains is a LAF term that does not contain memory operations, and whose variables correspond to the values contained in memory. This term is analyzed numerically by the later domains; the result of this analysis is itself used by the memory translator domains to know which memory locations are being read and written.

Purely syntactic term rewriting Our prime use of term rewriting is to simplify the bitvector concatenation and extraction operations. This happens notably when the program performs byte per byte copies (e.g. using memcpy). It plays the same role as the memory equality predicate domain of Miné [START_REF] Miné | Field-sensitive value analysis of embedded C programs with union types and pointer arithmetics[END_REF], but the implementation is very dierent, as equality between values is provided by syntactic equality between LAF variables. Constraint propagation was already described in section 5 Generation of proof obligations as rst-order and Horn formulas translate LAF terms into a set of clauses, such that satisability testing allows to test if a variable can have a specic value. Appendix C details the formal translation of LAF term into 1st-order and Horn clauses; the translation to Horn clauses is exact, while the translation to rst-order clauses is an over-approximation.

Note that this results in a true combination of abstract domains, and not just a rst static analysis pass followed by generation of proof obligations. The benet is that an abstract domain can be combined with others so that the combination is mutually benecial. In particular:

1. The generation of proof obligation domain benets from the simplication of translator domains. In the analyzer, the generated SMT formula only refers to bitvector operations, and never to memory operations; this is benecial since SMT solvers are much better at handling integers and bitvectors than at handling memory operations. 2. The domain also indirectly benets from the numeric constraint propagation domain, as it is used by the translator domains to perform simplications. It could also use the invariants computed by that domain to increase precision or speed up resolution. 3. In turn, the domain can be used to simplify complex boolean expressions into the true or false constants, allowing for a precision increase in the other domains. It can also be used e.g. to rene the bounds of intervals.

7

Experimental evaluation

This section presents preliminary benchmarks of our analyzer. Please keep in mind that it is still a prototype; it lacks some of the features of C (dynamic memory allocation, recursion, function pointers and longjmp); the handling of function calls (by recursive inlining) is still naive; no optimization of hot code path was performed. #LOC = lines of code; #expr = live expressions; #A = total alarms to be proved; UP = alarms left unproved; improv. = % of expressions more precise than the preceding propagation limit. Analyzing embedded industrial applications Table 1 demonstrates the benets of using constraint propagation on a variety of real benchmarks. The rst columns give the number of expressions of the program that are not dead, and the number of memory-related alarms that must be proved (i.e. pointers are valid and indices are in bounds). Then, for dierent limits on the constraint propagation, we give the analysis time (in seconds); the number of alarms that remain unproved; and the number (and percentage) of expressions for which we compute a more precise set of possible values, wrt. the preceding propagation limit. The rst three benchmarks are open-source (2048 is a game; adpcm a lter; papabench0.4 represents code embedded in typical UAVs). All the other benchmarks are automatic control systems coming from various industries (the last is made of 7 independent threads).

The benchmarks demonstrate that constraint propagation has a real impact on the precision of the analysis. Going from 0 to 2 variables being propagated leads to rening most of the expressions (and alarms) of the programs, while decreasing the analysis time. This can be explained by the fact that less dead code is visited, but also in our case that memory updates are more precise and concern less locations. Going for unlimited backward propagation (or backward + forward, not shown in the table) also keep on being faster and more precise, but to a lesser degree. Note that the number of alarms is still high, but can be reduced to almost 0 by standard tricks such as loop unrolling and user annotations.

Generation of Horn clauses Another way to discharge unproved assertions is

to send the remaining ones to a solver which focuses on a single goal. We made an experiment with benchmarks of the SVComp 2016 competition [START_REF] Beyer | Reliable and reproducible competition results with benchexec and witnesses[END_REF], whose goal is to prove the validity of an assertion in a program which range from few to tens of KLOCS. Most of these assertions are out of the reach of our abstract domain using intervals. However, the structure of out interpreter allows to build a LAF term, which is equivalent to the original program, but stripped from any memory operations. This property allows to leverage (after conversion, see Appendix C) the Z3 horn checker µZ [START_REF] Hoder | Generalized Property Directed Reachability[END_REF], which does not support array theory, only bitvectors or integers. On the two rst categories and with a 10s timeout, the abstract interpreter combined with µZ is already competitive 1 (would rank 3rd/18 on Loops, and 3rd/16 on ControlFlow). This is despite all the shortcomings of our current implementation: some C features are not supported (e.g. variable length arrays), and we do not yet export the invariants we found to help in the Horn clauses. [START_REF] Cousot | Abstract interpretation frameworks[END_REF] Related work

Lines of code

The closest relatives to our term-based abstract interpretation framework are existing symbolic abstract domains in the traditional lattice-based framework.

The symbolic constant domain of Miné [START_REF] Miné | Symbolic methods to enhance the precision of numerical abstract domains[END_REF] maps program variables to expressions on other program variables, and provides a solution to the loss of precision induced by storing intermediate computations in temporary variables. Logozzo and Fähndrich [START_REF] Logozzo | On the Relative Completeness of Bytecode Analysis Versus Source Code Analysis[END_REF] and Djoudi et al. [START_REF] Djoudi | Recovering high-level conditions from binary programs[END_REF] implement similar domains, and insists on the need of these methods for low-level languages, in which every computation makes use of temporary variables.

Chang and Leino [START_REF] Chang | Abstract Interpretation with Alien Expressions and Heap Structures[END_REF] introduces a symbolic abstract domain where variables represent values, instead of memory locations. This avoids loosing precision when program variables are overwritten. Numeric abstract domains are used to compute relations between these symbolic variables. Chang and Rival [START_REF] Chang | Modular Construction of Shape-Numeric Analyzers[END_REF] shows the importance of having variables representing values when designing precise memory abstractions. In term-based abstract interpretation, base abstract domains compute relations between LAF variables (which represent values); these variables are referred to by our memory abstraction. The main dierence is that all the LAF variables are linked together in a term which is an abstraction of the whole program, i.e. we never lose any symbolic information, even on loops and control-ow joins.

Gange et al. [START_REF] Gange | An Abstract Domain of Uninterpreted Functions[END_REF] combines their symbolic abstract domain with constraint propagation over non-relational domains. As LAF terms represent loops and conditionals precisely, our constraint propagation abstract domain extends this work with the ability to propagate the constraints across the whole program.

All these domains belong to the traditional lattice-based framework; thus none of them leverage the fact that variables represent values by sharing all the information about them in a single store.

Conclusion

We have presented a term-based abstract interpretation framework, whose main ingredients are: a logic, that can be used as the abstract state in an abstract domain, and can represent the relations between values in the program without loss of precision; and the denition of abstract domains as abstract interpreters over this logic, allowing the denition of abstract domains as a combination of translations. We have demonstrated the applicability of the framework by describing several abstract domains combining numeric and symbolic reasoning; and we used these domains to build a complete analyzer for C programs. We now plan on applying the technique on languages where symbolic reasoning is very important, such as Static Single Assignment or binary analysis.

A Small-step operational semantics of LAF A small-step operational semantics also exists for LAF terms:

Σ :: Γ, let x = op n (x 1 , . . . , x n ) in t → Σ :: Γ [x → op n (Γ [x 1 ], . . . , Γ [x n ])], t Σ :: Γ, let x = nondet(x 1 , x 2 ) in t → Σ :: Γ [x → Γ [x 1 ]], t Σ :: Γ, let x = nondet(x 1 , x 2 ) in t → Σ :: Γ [x → Γ [x 2 ]], t Σ :: Γ, let x = assume(x c , x v ) in t → Σ :: Γ [x → Γ [x v ]], t when Γ [x c ] = true Σ :: Γ, let x = assume(x c , x v ) in t → Σ :: Γ [x → ⊥], t when Γ [x c ] = f alse Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t → (do not enter loop) Σ :: Γ [x → Γ [x i ]], t Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t → (enter loop) Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t :: Γ [x s → Γ [x i ]], t b [x e ] Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t :: Γ , x e → (loop exit) Σ :: Γ [x → Γ [x e ]], t Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t :: Γ , x e → (loop again) Σ :: Γ, let x = (µx s . t b [x e ])(x i ) in t :: Γ [x s → Γ [x e ]], t b [x e ]
The semantics is nondeterministic because of the constructors nondet and µ. The semantics uses a stack, whose depth represents the level of loop nesting in which we are. The stack is used to save the context when entering a loop. Elements of the stack are pairs of an environment and a term, respectively representing the values already computed, and the term that remains to be computed, for each loop nesting level. Most step just update the head of the stack, by updating the environment and the term. Execution "blocks" when an assume expression is encountered, with a value of false for its rst argument. This is represented by adding to all sorts a special ⊥ symbol. Note that assume delimits the part of the term which is blocked; execution of other subterms continue without any problem.

Theorem 5 (Alternative denition of the collecting semantics). We note by → * the transitive closure of →. Then

C (ε) = { Γ : ε, C → * Γ, [] } B Lifting traditional relational abstract domains
When generating constraints (Figure 6), for each input variable x we extracted a condition Γ c [x], corresponding to the necessary condition for x to evaluate to a value dierent from ⊥. The idea here is similar: we associate to each input variable, an element D of a traditional abstract domain; this element corresponds to environments that match the condition Γ c [x], and describes the relations between x and all the variables on which it depends transitively (where a depends on b means that b is an argument of the operator used to dene a). We note by γ t the concretization of the traditional domain. The concretization is dened as follows: for every binding x → v of possible environments Γ , every abstract domain element in Γ must agree that this binding is indeed possible.

Γ ∈ γ(Γ ) ⇔ ∀(x → v) ∈ Γ : ∀(y → D) ∈ Γ : ∃Γ ∈ γ t (D) : Γ [x] = v
Theorem 6. If the original abstract domain is sound with regards to its concretization γ t , then its lifting is also sound.

Because this lifting relates all the variables of a LAF term; LAF terms can contain a large number of variables; most operations on numerical abstract domains have a complexity supra-linear in the number of variables, a naive application of this technique would probably be very slow. However, this can be mitigated by exploiting the fact that most variables would be unrelated [START_REF] Gange | Exploiting sparsity in dierence-bound matrices[END_REF], or limiting relations by packing variables together [START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF][START_REF] Venet | Precise and ecient static array bound checking for large embedded C programs[END_REF]. We begin by this translation, as it is easier Intuitively, the translation associates to each LAF variable x a pair of SMT variables c x , v x , where c represents the necessary condition for x to be dierent from ⊥ v represents the value to which x evaluates.

ε = ε let x = op(x1, . . . , xn) in C (Γ ) = let D = 1≤i≤n Γ [xi] in let D = {|x ← op(x1, . . . , xn)|}(D) in C (Γ [x → D ]) let x = nondet(x1, x2) in C (Γ ) = let D1 = {|x ← x1|}(Γ [x1]) in let D2 = {|x ← x2|}(Γ [x2]) in let D = D = D1 D2 in C (Γ [x → D ]) let x = unknown() in C (Γ ) = C (Γ [x → ]) let x = assume(xc, xv) in C (Γ ) = let D = Γ [xc] Γ [xv] in let D = {|assume xc|}(D) in let D = {|x ← xv|}(D ) in C (Γ [x → D ]) killall([], D) = D killall(let x = ... in C, D) = killall(C, {|x ← unknown()|}(D)) let x = (µxs. C b [xe])(xi) in C (Γ ) = let Di = {|x ← xi|}(Γ [xi]) in let rec fix(D) = let Ds = {xs ← x}(D) in let Γ s = Γ [xs → Ds] in let Γ b = C b (Γ s ) in let De = {|x ← xe|}(Γ b [xe]) in let D s = Di killall(De) in if (D s Ds) then D s else fix(Ds∇D s ) in let D = fix(Di) in C (Γ [x → D ])
Thus if x has value ⊥, then c x has value f alse and v x can be anything; if x has value 33, then c x is true and v x is also 33.

More formally, the translation • creates a rst-order formula ϕ and a mapping M from LAF variables x to SMT variables c x , v x ; such that if x ⇓ u, then the formula ϕ ∧ c x ∧ v x = u is satisable. The converse is not true, because the translation of loops is over-approximated, as done in weakest-precondition computation. This is "xed" by generating Horn clauses instead of SMT, which extends this translation to handle loops. 

Empty and Result

[] (M, ϕ) = M, ϕ Theory op M[x 1 ] = c 1 , v 1 . . . M[x n ] = c n , v n c fresh v fresh let x = op n (x 1 , . . . , x n ) in C (M, ϕ) = C (M[x → c, v ], ϕ ∧ (c = c 1 ∧ . . . ∧ c n ) ∧ (v = op n (v 1 , . . . , v n ))) Unknown v fresh let x = unknown S () in C (M, ϕ) = C (M[x → true, v ], ϕ) Assume M[x 1 ] = c 1 , v 1 M[x 2 ] = c 2 , v 2 c fresh v fresh let x = assume(x 1 , x 2 ) in C (M, ϕ) = C (M[x → c, v ], ϕ ∧ (c = c 1 ∧ c 2 ∧ v 1 ) ∧ (v = v 2 ))
∃Γ ∈ C (ε) : Γ [x] = ⊥ ⇒ ϕ ∧ ¬c x is satisable ∃Γ ∈ C (ε) : Γ [x] = u = ⊥ ⇒ ϕ ∧ c x ∧ (v x = u) is satisable
Proof. The proof is by induction: at each step of the algorithm, the ϕ, M produced verify the property for the variables already translated (which are in M).

For each construct, we show how a model of the formula M for ϕ can be extended to also satisfy the new constraints.

Corollary 1. If ϕ ∧ c x ∧ (v x = u) is unsatisable, then ∀Γ ∈ C (ε), we have

Γ [x] = u
Proof. This is just the contrapposite.

Thus in practice this translation allows to prove that a variable can never be equal to some value. In particular in the case of boolean values, it can be used to prove that some condition can never be false, i.e. is always true; this allows to prove assertions about the program.

Note that the translation is linear in the size of the term, notably because we create new SMT variable for every LAF variable. Because the translation is linear, we can see the translation to LAF term + conversion to SMT formula as another implementation of the ecient weakest precondition technique of Leino [START_REF] Leino | Ecient weakest preconditions[END_REF].

C.2 Translation to Horn

The translation is relatively similar, except that we make use of Horn clauses to handle the recursion in the µ term. The only real issue is that in LAF term, the body of the µ can use variables dened outside of the body; this is called environment capture in functional language. This is xed by explicitly passing the contents of these captured variables in the translation of the body. better translation would remove useless terms such as M 1 and x 0 , and would realize that n is not modied in the loop (and thus does not need to be in the loop tuple).

Fig. 1 :

 1 Fig. 1: Applying the constraint propagation abstract domain on a C program (left). Middle: term abstraction built by the domain; x represents the value of x. Right: mapping from variables to abstract values, according to some conditions.

Fig. 2 :

 2 Fig. 2: A hierarchy of abstract domains handling low-level memory operations. The right part contains the abstract representation of the memory region for r at dierent program points. This representation contains variables of the LAF term (with bitvector theory) on the left. •[b..a] denotes substring extraction of a bitvector.

  Booleans (B): ∧, ∨ : B × B → B; true,false: B; ¬ : B → B Integers (Z): 0,1,...: Z; +, * , -, / : Z × Z → Z; <, ≤: Z × Z → B; Tuples: πi : S1, . . . , Si, . . . , Sn → Si; . . . : S1 × . . . × Sn → S1, . . . , Sn ;

Fig. 6 :

 6 Fig. 6: Generation of the constraints C and the maps Γ c and Γ v .

Fig. 7 :

 7 Fig. 7: High-level view of the analyzer. Gray rectangles represent abstract domains, and ellipses other processes. × represents abstract domain product: both domains have the same input term.

Fig. 8 :

 8 Fig. 8: Algorithm: Evaluating LAF terms with usual abstract domains. {|x ← expr|} denotes the transfer function for the assignment x ← e.

Nondet M[x 1 ]

 1 = c 1 , v 1 M[x 2 ] = c 2 , v 2 c fresh v fresh let x = nondet(x 1 , x 2 ) in C (M, ϕ) = C (M[x → c, v ], ϕ ∧ c ⇒ ((c 1 ∧ v = v 1 ) ∨ (c 2 ∧ v = v 2 )) ∧ (c = c 1 ∨ c 2 )) Mu M[x 0 ] = c 0 , v 0 v fresh let x = (µx s . t b [x e ])(x i ) in C (M, ϕ) = C (M[x → c 0 , v ], ϕ) Theorem 7. Let ϕ, M = C . Let Γ ∈ C . Let x be a variable of C. Then,x is in M and we choose c x , v x = M[x]. Then we have:

D

  Translation from WhileThe translation is relatively standard. The memory state corresponding to each statement is represented by the tuple of the values of each variable; | • | is the constant mapping from variables to indices. We have used "[M except i → x]" as a syntactic sugar for "M [0], M [1], . . . , M [i -1], x, M [i + 1], . . . , M [n] ".The translation is quite naive; in particular the operations on tuples get/set, and nondet of tuples, should be simplied.

(Fig. 9 : 1 letFig. 10 :

 9110 Fig. 9: Translation from the While language to LAF terms

Table 1 .

 1 Benets of constraint propagation.

Table 2 .

 2 Number of programs proved buggy or correct, in some SVComp categories, with a 10s timeout. We count 2 points for every correct program proved correct, and 1 for buggy program proved buggy. Our tool never provides a wrong (unsound) answer.

		Buggy programs	Correct programs		
	SVComp category min avg max total proved unsound total proved unsound points
	Product lines	838 1943 3789 265	92	0 332 262	0 616
	Loops	14 46 1644 48	18	0 93	42	0 102
	ControlFlow	94 634 2152 18	3	0 30	15	0	33

https://sv-comp.sosy-lab.org/2016/results/results-verified/