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Superconducting Coils Quench Simulation, the
Wilson’s Method Revisited

Vincent Picaud, Patrick Hiebel, and Jean-Marie Kauffmann

Abstract—This paper describes a new numerical method which
analyzes adiabatic quench of superconducting coils. The method D(t, ,r,2z)
is a generalization of the Wilson’s older method. With this new
method the resistive front is not restricted to be an ellipsoid and
can evolve with an arbitrary velocity at its border. The evolution
of the resistive front is efficiently controlled by the introduction of
the level-set method. The two-dimensional version presented here
leads to a fast simulation code of the quench process.

n

Index Terms—tevel-set method, quench, superconducting
magnet, superconductor.

. INTRODUCTION

HE PREDICTION of the behavior of a superconductin

coil during a transition from the superconducting stat ¥
to the normal state is important because this phenomer
can lead to the destruction of the device. Historically th
Wilson’s QUENCH [1] program was the first published cods
allowing quench simulation of a superconducting coil on
computer. Despite its simplicity, this approach gives globally o , , _
correct results [3]-[5]. Another approach is to treat the coil g p :1r'n eng?rf]'g'g?gNofégrﬁ:‘;%ﬁj?g the level-set of a functioh. Evolution
a anisotropic solid and solve the nonlinear heat equation gov-
erning the quench process with methods like the finite-elem%t

. he pr ion long th n r. The temperatur
method. But due to the existence of very strong temperaturet © P opagatio spet_ad along the co duc_:to © te_ pe _a'Fu €
e in the normal zone is computed assuming local adiabaticity.

gradients such simulation required a large computing effort | f‘l's method has several drawbacks. It is difficult to control sev-

\(/;[I?]?gh uigem?)rgraz\)/;/evr\mfﬁl Ft);(;%otshz T/?/;zo?\?slmiihmoeddlt?;f vTh?ct:%or | fronts and to manage their intersections with the winding
N P . . orders. Due to the imposed ellipsoidal shape of the normal zone
is still very fast compared with finite-element method oriente:

! . . : variation of th nn kenin nt.
approaches. This method can be very interesting during t gspace ariation of the speed cannot be taken into account

design process where a lots of configurations have to be tesgedgeneralization

with a moderate accuracy. _ i i )
y To generalize the Wilson’s method we consider an arbitrary

resistive front evolving under an arbitrary velocity. Introducing
the winding domairt? the normal zone can be modeled by a
A. The Wilson’s Method volume(?,, evolving under the action of a propagation sp&ed

The basic idea of the Wilson’s method is to introduce a frofffiPosed on its border,,. The normal zone cannot be connex
separating the resistive part from the superconducting part(§@nsition in several points of the winding) and change of
the winding. This resistive front is an ellipsoid that grows witoPology in the course of time. The behavior of the resistive
speedV; in the conductor direction and with speed= v, = frontis managed using the level-set method [8]. The principle
aVy between the layers. The speBdis the adiabatic propaga- ©f this method rests on the introduction of a functibrcon-
tion speed for an isolated conductor, whereas the coefficient taining all the information on the resistive front. The normal

the ratio of the propagation speed between layers of the windié@€ 2. and its bordef’,, are defined by the level set df
(F1g. 1). Introducing the cylindrical coordinates system we get

Il. THE WILSON'S METHOD REVISITED
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s — (r(t,s), z(t, s)) then the evolution ofr, ») is determined T, K
by the equation 22.5
20
A (r(ts)\ _ [ Valr(ts),2(E ) 17.5 /NN
#(100)=GIEETED) @ TS 2N
Since®(¢,7(t, s), 2(t, s)) is defined to be zero for alk, s), 10 ///// ////////// \\\\\\\\\\ \\\\\
we must have 7.5
PR L ST .
T, 8), 2\ 8)) ¢ 0 0.05 0.1 0.15 0.2

P+ V,.0,9+ V. 0.2 =0. (4) Fig.2. Finite-element simulation of the conductor transition.
So, we get the classical convection equation which modelize
the flow of$2,, in the velocity fieldV'. The previous calculus are Where4, B, ¢, and D are the second-order ENO construction

rather formal and rigorous justifications of this approach can 96 the derivatives
found in [10]. Using the initial condition (8) it can be shown that

. . +7 -7 T
(4) accurately moves the zero level set according to the velocity A =Dy + (D D )
field V even through the merging and breaking up of the volume
Q. g ging gup B = D;{J—1 (D+1 —-r D+1+1)
In our case, for a positive propagation speed, the front always _ n _
L . ED‘—i- w(Déﬁpéﬁ)
expands. So the speed has to be chosen such that it is always in
the direction of the gradierit®. This yields to the equation of s taon phets
motion of the normal zone =Dy — (D » Dij ) (10)
P + V0.2 + V.|0.®| = 0. (5) wherew denotes the ENO switch function
_ Pl_Jtting this_ in a more general_ framework the previous equa- {377 ]f x| < |yl , ifay >0
tion is a Hamilton—Jacobi equation w(z,y) = y, if [z[ > y| B (11)
0, if xy <0
OH® + H(5,9,0.2)=0 (6)
where the Hamiltoniafiz, y) — H(x,y) is: D. Time Discretization
H({z,y) =V,.(r,2,1,B)|z| + V.(r, 2,1, B)|y]| @ In order to avoid oscillations of the solution the time numer-

ical scheme must satisfied the total variation diminishing (TVD)
property. We use a second-order TVD-Runge—Kutta scheme:

O(t = 0,7,2) = Dist((r, 2), Tn(t = 0)) 8) the Heun method

and the initial condition is:

¢y — AtH,

where
{¢"+1 o — 3 (Hj+ H)
Dist (x, I'n)is the signed distance between

andl’,, negative ifx € £2,,.

12)

The previous scheme is stable if the Courant—Friedrich—Lewy
condition (13) is satisfied. This condition with a security coeffi-
Solutions of Hamilton—Jacobi equations can develop discorftient is also used to dynamically adjust the time step during the
nuities in their derivatives. The numerical resolution of suctimulation
equations requires the use of appropriate schemes in order to AtV

avoid spurious oscillations of the numerical solution [6], [7]. min(Ar, A7) <1 (23)
C. Space Discretization
We use a structured grid over the winding dom@in [1l. PROPAGATION SPEEDS
(ri, 2;), (4,4) € [0, n,.[X[0, 7] A. Longitudinal Propagation Speed

and noteD* and D— the forward and backward finite-differ- Ve use the classical one-dimensional quasilinear equation
ence operators. The Hamiltonian (7) is not strictly convex gpverning the temperature distribution in the conductor [14],

we use the classical nonconvex Lax—Friedrichs scheme. We UsH: [13]; [15]

a second-order essentially nonoscillating (ENO) upwind ap- 4

proximation of the derivatives [6], [7]. Assuming the spe&ds Cea(T)AT = O:keq(T)I:T + QT). (14)
andV, stay positive we get the following simplified numerical

Starting from (14), several expressions for the normal zone
scheme:

propagation speed exist. In order to choose an analytical expres-
.- A+B C+D B - AV D - CV 9 sion we have developed a numerical simulation tool using the
v 2 7 92 T 9 T ©) finite-element method (Fig. 2). In the light of the results, we use
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(15) [13] because it agrees very well with our numerical simu- TABLE |
: DESCRIPTION OF THETESTCOILS
lations.
1 dk Coil A Coil B
1/2 e
V= J(peq(T)kieq(T1))" { [Ceq(Tt) ~ R Il Coil inner radius (mm) 38 56
4 Coil outer radius (mm) 56 68
T, T, —1/2 Coil height (mm) 71 71
X Ceq(T)dT Ceo(TYdT Coil 4, 0.7 0.7
Ty Th Conductor section (mm) 0.6 0.4
1 ) .
T, = Q(TC(B) +To(I,B)). (15) Conductor Cu / NbTi ratio 3 2
/ A
B. Transverse Propagation Speed —
To find the transverse propagation speed between the winding f
layers we introduce an elementary cell of the winding structure.

This cell is constituted by conductors and epoxy resin. We note
~, the ratio between the surface of conducté¢s,, to the sur-
face of the elementary ceficen

I
(@) (b)

Fig. 3. Zero level set ofd showing the normal zone propagation in coil B
(At = 0.0075 s). (a) Quench starts at the bottom of the coil. (b) Quench starts
at the middle of the inner radius.

Following [12] we introduce a 1-D approximation of thezégf\ P S
winding structure constituted by two conductors of length | N L7
separated by an epoxy layer of length The calculation of 100 \ 122 7
the propagation speed between layers leads to the transwi ‘\ 0,78 /A
propagation velocity 5 N 0,251+
s L 0.10.20.30.40.5 ©° 9.10.20.30.40.5 ¢ °
1402 80 gy Ry Py
2 120 7 BN 50 el
§i=R.[4/—-1-1 200k /
80| R /
Yr 60 ! * 40
2 2 40 ,'I// 3 zc/
6= R, — —4/——1}. (16) 20 Sl
Yy Vr .1 0.26.3 0.0 6.5 ©°® 5.1 0.2 0.3 0.4 0.5 ' °

IV. EVOLUTION OF THE OTHER QUANTITIES Fig. 4. (Solid line) Quench starts at the bottom of the coil. (Dashed line)
' Quench starts at the middle of the inner radius.

The magnetic field and the inductance are evaluated using
the Biot—Savart law. An analytical integration is performed faFor the case of a single coil transition we get (19) whereas for
ther andz variables [17] while an adaptative Gauss—Kronrothe transition of a coil protected by subdivision we get (20).
integration rule [18] is used when analytical expressions are not d

accessible. L@—’ +Rol =0 (19)
Attime t, the total quench resistance of the coil is evaluated La%s + Map4s + R1a5I8 4 Ry 14 =0 . (20)
by numerlcazl integration over the normal zone Lg% 4 Myp¥a + R,Io-14 4 R Ip =0
TYp
0= o5 Poc (T, 2, T, B™")dr dz. 17
? Sona /[b<07p alr 2 )dr dz (17 V. APPLICATIONS

The temperature rise in the winding is evaluated assumingyye consider here the simulation of quench process in small

local adiabaticity. The resulting first order differential equatiogyTi coils. The dimensions of the structured rectangular grid
is integrated using the second-order Runge—Kutta scheme (1g)q for each coil are.. = 10 andn. = 25. Thus. the com-

4 _ 7 Q(J, Tj, Bij) 1g) Puting effort to solve (6) on this grid is very light. The coil B is
dt™ " (1 = 9)Coepoxy(T) + 7¥-Ceq(T35, Bij) initially energized with a currenf = 200 A, creating a mag-

The electrical quantities are calculated using the sametic field of 3 T and a stored energy of 3207 J. To upgrade the
Runge—Kutta scheme. Like in the Wilson’s method we neglectagnetic field up to 4.3 T we add a second coil A. The coils A
the influence of the voltage drop induced by the mutuand B are protected by subdivision [11], [12]. (See Table | for a
induction between the normal and the superconducting zodescription of the test coils.)
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E} N B. Magnet Subdivision Protection: Coils A and B
c We show the influence of the initial current in a more complex
o v, < example where two coils A and B are protected by subdivision
T - (Figs. 5 and 6).
of 3
a - . VI. CONCLUSION
o] B
?' E We have presented a two-dimensional generalization of the
o © Wilson’s method. This method avoids several drawbacks of the
pum Wilson’s one using the level-set method. The method is inter-
Ip esting in the context of complex normal zone motion. The corre-

. sponding quench resistance and hot spot temperature are taken
@ ® into account better than with the classical Wilson’s method. In
Fig.5. Protection by srurbdivision ofthe coils A and B.(a) Electrical circuit. (bjyture works, the ability of the method to make fast simulations
Quench process'{ = 200 A, At = 0.0075 s will be used for superconducting coils design and protection op-

1, a 1, A timization.
200, 2o L

: 100p=s
150 80 N
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