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Superconducting Coils Quench Simulation, the
Wilson’s Method Revisited
Vincent Picaud, Patrick Hiebel, and Jean-Marie Kauffmann

Abstract—This paper describes a new numerical method which
analyzes adiabatic quench of superconducting coils. The method
is a generalization of the Wilson’s older method. With this new
method the resistive front is not restricted to be an ellipsoid and
can evolve with an arbitrary velocity at its border. The evolution
of the resistive front is efficiently controlled by the introduction of
the level-set method. The two-dimensional version presented here
leads to a fast simulation code of the quench process.

Index Terms—Level-set method, quench, superconducting
magnet, superconductor.

I. INTRODUCTION

T HE PREDICTION of the behavior of a superconducting
coil during a transition from the superconducting state

to the normal state is important because this phenomenon
can lead to the destruction of the device. Historically the
Wilson’s QUENCH [1] program was the first published code
allowing quench simulation of a superconducting coil on a
computer. Despite its simplicity, this approach gives globally
correct results [3]–[5]. Another approach is to treat the coil as
a anisotropic solid and solve the nonlinear heat equation gov-
erning the quench process with methods like the finite-element
method. But due to the existence of very strong temperature
gradients such simulation required a large computing effort [2]
(they use a Cray). We propose here an intermediate method
which is more powerful than the Wilson’s method but which
is still very fast compared with finite-element method oriented
approaches. This method can be very interesting during the
design process where a lots of configurations have to be tested
with a moderate accuracy.

II. THE WILSON’S METHOD REVISITED

A. The Wilson’s Method

The basic idea of the Wilson’s method is to introduce a front
separating the resistive part from the superconducting part of
the winding. This resistive front is an ellipsoid that grows with
speed in the conductor direction and with speed

between the layers. The speedis the adiabatic propaga-
tion speed for an isolated conductor, whereas the coefficientis
the ratio of the propagation speed between layers of the winding
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Fig. 1. Definition of
 and� using the level-set of a function�. Evolution
of �: merging of two normal zones.

to the propagation speed along the conductor. The temperature
rise in the normal zone is computed assuming local adiabaticity.
This method has several drawbacks. It is difficult to control sev-
eral fronts and to manage their intersections with the winding
borders. Due to the imposed ellipsoidal shape of the normal zone
the space variation of the speed cannot be taken into account.

B. Generalization

To generalize the Wilson’s method we consider an arbitrary
resistive front evolving under an arbitrary velocity. Introducing
the winding domain the normal zone can be modeled by a
volume evolving under the action of a propagation speed
imposed on its border . The normal zone cannot be connex
(transition in several points of the winding) and change of
topology in the course of time. The behavior of the resistive
front is managed using the level-set method [8]. The principle
of this method rests on the introduction of a functioncon-
taining all the information on the resistive front. The normal
zone and its border are defined by the level set of
(Fig. 1). Introducing the cylindrical coordinates system we get

(1)

(2)

To find, in a formal way, the equation governing the evo-
lution of we can use ideas from the method of characteris-
tics. Assume that at time, the interface is parameterized by

0018-9464/02$17.00 © 2002 IEEE



1254 IEEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002

then the evolution of is determined
by the equation

(3)

Since is defined to be zero for all ,
we must have

(4)

So, we get the classical convection equation which modelize
the flow of in the velocity field . The previous calculus are
rather formal and rigorous justifications of this approach can be
found in [10]. Using the initial condition (8) it can be shown that
(4) accurately moves the zero level set according to the velocity
field even through the merging and breaking up of the volume

.
In our case, for a positive propagation speed, the front always

expands. So the speed has to be chosen such that it is always in
the direction of the gradient . This yields to the equation of
motion of the normal zone

(5)

Putting this in a more general framework the previous equa-
tion is a Hamilton–Jacobi equation

(6)

where the Hamiltonian is:

(7)

and the initial condition is:

(8)

where

is the signed distance between

and negative if

Solutions of Hamilton–Jacobi equations can develop disconti-
nuities in their derivatives. The numerical resolution of such
equations requires the use of appropriate schemes in order to
avoid spurious oscillations of the numerical solution [6], [7].

C. Space Discretization

We use a structured grid over the winding domain

and note and the forward and backward finite-differ-
ence operators. The Hamiltonian (7) is not strictly convex so
we use the classical nonconvex Lax–Friedrichs scheme. We use
a second-order essentially nonoscillating (ENO) upwind ap-
proximation of the derivatives [6], [7]. Assuming the speeds
and stay positive we get the following simplified numerical
scheme:

(9)

Fig. 2. Finite-element simulation of the conductor transition.

where and are the second-order ENO construction
of the derivatives

(10)

where denotes the ENO switch function

if
if

if

if
(11)

D. Time Discretization

In order to avoid oscillations of the solution the time numer-
ical scheme must satisfied the total variation diminishing (TVD)
property. We use a second-order TVD-Runge–Kutta scheme:
the Heun method

(12)

The previous scheme is stable if the Courant–Friedrich–Lewy
condition (13) is satisfied. This condition with a security coeffi-
cient is also used to dynamically adjust the time step during the
simulation

(13)

III. PROPAGATION SPEEDS

A. Longitudinal Propagation Speed

We use the classical one-dimensional quasilinear equation
governing the temperature distribution in the conductor [14],
[11], [13], [15]

(14)

Starting from (14), several expressions for the normal zone
propagation speed exist. In order to choose an analytical expres-
sion we have developed a numerical simulation tool using the
finite-element method (Fig. 2). In the light of the results, we use
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(15) [13] because it agrees very well with our numerical simu-
lations.

(15)

B. Transverse Propagation Speed

To find the transverse propagation speed between the winding
layers we introduce an elementary cell of the winding structure.
This cell is constituted by conductors and epoxy resin. We note

the ratio between the surface of conductors to the sur-
face of the elementary cell

Following [12] we introduce a 1-D approximation of the
winding structure constituted by two conductors of length
separated by an epoxy layer of length. The calculation of
the propagation speed between layers leads to the transverse
propagation velocity

(16)

IV. EVOLUTION OF THE OTHER QUANTITIES

The magnetic field and the inductance are evaluated using
the Biot–Savart law. An analytical integration is performed for
the and variables [17] while an adaptative Gauss–Kronrod
integration rule [18] is used when analytical expressions are not
accessible.

At time the total quench resistance of the coil is evaluated
by numerical integration over the normal zone

(17)

The temperature rise in the winding is evaluated assuming
local adiabaticity. The resulting first order differential equation
is integrated using the second-order Runge–Kutta scheme (12).

(18)

The electrical quantities are calculated using the same
Runge–Kutta scheme. Like in the Wilson’s method we neglect
the influence of the voltage drop induced by the mutual
induction between the normal and the superconducting zone.

TABLE I
DESCRIPTION OF THETESTCOILS

(a) (b)

Fig. 3. Zero level set of� showing the normal zone propagation in coil B
(�t = 0:0075 s). (a) Quench starts at the bottom of the coil. (b) Quench starts
at the middle of the inner radius.

Fig. 4. (Solid line) Quench starts at the bottom of the coil. (Dashed line)
Quench starts at the middle of the inner radius.

For the case of a single coil transition we get (19) whereas for
the transition of a coil protected by subdivision we get (20).

(19)

(20)

V. APPLICATIONS

We consider here the simulation of quench process in small
NbTi coils. The dimensions of the structured rectangular grid
used for each coil are and . Thus, the com-
puting effort to solve (6) on this grid is very light. The coil B is
initially energized with a current A, creating a mag-
netic field of 3 T and a stored energy of 3207 J. To upgrade the
magnetic field up to 4.3 T we add a second coil A. The coils A
and B are protected by subdivision [11], [12]. (See Table I for a
description of the test coils.)
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(a) (b)

Fig. 5. Protection by subdivision of the coils A and B.(a) Electrical circuit. (b)
Quench process (I = 200 A, �t = 0:0075 s.)

Fig. 6. (Solid line) Coil A. (Dashed line) Coil B.

A. Mass Transition of the Coil B Alone

In Figs. 3 and 4 examine the quench process of the coil B
alone. The magnetic field inhomogeneity causes the normal
zone to propagate faster near the inner radius of the coil. In the
case of a quench starting at the bottom of the coil, a lower speed
yields the final temperature to be higher than in the classical
case where the quench starts at the middle of the inner radius.
The Wilson’s method with ellipsoidal normal zone is not well
suited to study these potentially more dangerous cases whereas
our method allows us to catch the behavior of the evolving
normal zone.

B. Magnet Subdivision Protection: Coils A and B

We show the influence of the initial current in a more complex
example where two coils A and B are protected by subdivision
(Figs. 5 and 6).

VI. CONCLUSION

We have presented a two-dimensional generalization of the
Wilson’s method. This method avoids several drawbacks of the
Wilson’s one using the level-set method. The method is inter-
esting in the context of complex normal zone motion. The corre-
sponding quench resistance and hot spot temperature are taken
into account better than with the classical Wilson’s method. In
future works, the ability of the method to make fast simulations
will be used for superconducting coils design and protection op-
timization.
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