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We show that out-of-equilibrium magnetically confined near-
marginal plasmas tend to naturally evolve towards a globally-
organised critical state of spatially segregated microbarriers 
for transport and sectors of strong avalanche-like transport. 
We call this global pattern of avalanching sectors interspersed 
with narrow confining microbarriers the ×E B staircase [1]. 
The present paper is concerned with discussing the factors that 
control this spatial segregation, the dynamics of this global 
organisation as well as its incidence on confinement.

The regime of near-marginality [2] is not merely academi-
cally-appealing for its rich dynamics and manifestations of self-
organisation. It is as well a likely operating regime for current and 
future magnetic confinement devices. Non-burning iter plasmas 
for instance, characterised by a large ratio of plasma volume over 
external heating are likely to reside close to marginal stability.

Relaxation through emission of fronts or avalanches [3–8] 
and turbulence regulation through zonal flow formation [9, 10] 
are natural trends of near-marginal drift-wave turbulence. One 
of the merits of ×E B staircase patterning is certainly to pro-
vide, whilst segregating regions where avalanching is domi-
nant from regions where zonal flow concentrates (forming the 
staircase microbarriers) a natural and dynamic means for both 
antagonistic trends to simultaneously exist.

Salient features of the ×E B staircase are represented in 
figures 1 and 2 and summarised below:

	(i)	 Ubiquitous signatures of staircase formation are mean 
profile corrugations, reflecting the propensity of an 

initially homogeneous near-marginal profile in a bath 
of drift-wave (or Rossby wave) turbulence to develop 
inhomogeneities that will tend to self-sharpen and 
endure. Self-sharpening relies upon positive feedback 
and may occur e.g. through negative viscosity-like argu-
ments [11–14], clustering instability [15–17] or electric 
field curvature [18]. Which mechanism is operative in 
what region of parameter space is still unclear and will 
be focused on elsewhere. The mean pressure profile 
corrugations lead to strong localised temperature 
gradients (the ‘risers’ in figure 1). The name staircase 
comes from the step-like idealised resulting pressure 
profile with, statistically, quasi-constant mesoscale step 
spacing ∆. Corrugations are shown in figure 2 on the 
mean ion temperature gradient ∇T  temporally-averaged 
over 0.53 ms between a c1030 s/  and a c1343 s/ . The step 
size ∆ is discussed below, item (v);

	(ii)	 Co-located with the mean profile corrugations are zonal 
mean flows (section 2.2) or vorticity jumps that define 
lasting (from a few collision times to [at least] fractions 
of the energy confinement time) ‘valleys’ in configu-
ration-time space of hindered transport. These zonal 
mean flows, of typical radial extent δ ρ∼ 10 s

flow  act as 
a set of weak or permeable transport barriers [19–21] 
that regulate the turbulent heat flux (section 2.3). They 
are thus also referred to as ‘microbarriers’ throughout 
the paper and are visible in figure 2 as coherent flux-
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surface averaged ×E B shear γ = ∂× r E rBr rE B ( / ). The 
flux-surface averaged poloidal θv vr⟨ ⟩ and toroidal ϕv vr⟨ ⟩ 
Reynolds stresses, the parallel momentum flux ∥M  and 
the poloidal θv  and toroidal flows ϕv  similarly display 
long-lived structuring close to the mean profile corruga-
tions. Regarding poloidal rotation, the turbulence-borne 
temperature corrugations at the staircase steps neoclas-
sically drive [22] localised poloidal rotation ∝ ∇T  
there, an example of synergistic interplay between 
collisions and turbulence [23];

	(iii)	 The ×E B staircase is a near-marginal pattern that 
progressively weakens and disappears with increasing 
distance to instability threshold (section 1.1);

	(iv)	 The ×E B staircase is a weakly collisional pattern, as 
expected from the fact that its microbarriers are zonal 
mean flows, hence sensitive to collisional damping [24] 
(section 1.2);

	(v)	 Avalanches, in low to moderately heat-driven plasmas 
are ubiquitous. They play an important role for stair-
case dynamics given the near-marginal character 
of the latter. Avalanching is the dominant transport 
mechanism in-between the staircase shear layers (the 
‘treads’ in figure  1), see item (vi) below. Avalanches, 
importantly, are statistically contained by the staircase 
steps (section 2.4.1) and rarely propagate across suc-
cessive staircase shear layers and over a significant 
fraction of the plasma volume. The size distribution of 
avalanches therefore closely follows the size distribu-
tion of ∆ (the ‘tread width’ or ‘step size’). The most 
probable step size ρ∆ ∼ 40 s

stat  is mesoscale (section 
2.4.2), implying a favourable mesoscale (and not a 
macro-scale) most probable scale length for avalanches. 
Interestingly, despite strongly non-Gaussian statistics 
the staircase mesoscale ∆stat reintroduces a favourable  
gyro-Bohm like scaling for heat confinement (section 2.4);

	(vi)	 Due to the avalanche activity, mixing in the ‘treads’ 
is strong. Profiles there are stiff and transport is non-
local and non-diffusive, best described by a Lévy or 
a Lorentzian transport kernel of width ∆ [1]. In the 
regions of the ‘risers’, heat transport is dominantly 
neoclassical [20], emphasising the fact that these 
regions are microbarriers for transport. ρ∆ ∼ 40 s

stat  is 

a natural ‘nonlocal’ scale for the system, in addition to 
the ‘local’ autocorrelation microscale of the turbulence 
� ρ∼ −5 8c s. These two micro- and mesoscales, shown 
in figure  3 echo the two-scale turbulence correlation 
length [25] recently measured in Asdex-Upgrade. The 
measured mesoscale is a possible experimental charac-
terisation of avalanche-staircase interplay;

	(vii)	 The flux-gradient relation is often multivalued and 
non-monotonic near marginal stability, in contrast to oft-
reported results in Ion Temperature Gradient turbulence 
[26]. In particular local values of the fluxes may not 
bijectively relate to local values of the gradients as dif-
ferent gradient drives may be associated to the same flux  
(multivalued) and larger gradient drives may be associ-
ated to lower fluxes (non-monotonic). Observation of 
coherent structures, as discussed here for the ×E B 
staircase is often indication of a breakdown of the local 

Figure 1.  The ×E B staircase, schematic view.

Figure 2.  Three general features of the plasma staircase are 
visible here: (i) the mean profile corrugations here displayed on 
the temperature gradient, (ii) the strong, long-lived and coherent 
shear flows defining ‘valleys’ of hindered transport—the mean 
radial ×E B shear profile is shown in figure 11 (left) and (iii) the 
radial transport dominated by avalanche-like events in-between the 
staircase steps.
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flux-gradient paradigm. This point is evoked in sec-
tion 2.3 and will be further discussed elsewhere;

	(viii)	The whole staircase pattern dynamically evolves and 
meanders, river-like over intermediate to long (col
lisional to confinement) timescales as the staircase steps 
show propensity to remain at constant ambient gradient 
drive (section 3.2);

	(ix)	 Where staircase steps (risers) nucleate does not rely 
upon special values of low-order safety factor q 
rationals, yet synergistic reinforcement of shear layers, 
as they meander, in proximity of a low-order q rational 
is sometimes observed (section 3.1). Passing electron 
dynamics may also modify turbulence organisation near 
low-order q rationals [27]. This is left for future work.

The results in this paper highlight robust properties 
of the ×E B staircase and their impact on transport in 
L-mode-like plasmas. The discussion is based upon tens of 
gyrokinetic calculations representative of varying plasma 
parameters in drift-wave ion temperature gradient (ITG) 
turbulence with Boltzmann electrons, using the gysela 
code [28, 29]. Different main ion species are considered: 
Hydrogen, Deuterium or Helium, different collision-
alities ν = 0�  and ν ∈ 0.005, 10,0 [ ]� , different plasma sizes 
ρ ∈− 128, 512,0

1 [ ]� , different gradient drives ∈R L 2, 12T/ [ ] or 
η = ∈L L 1, 6n T/ [ ], different heating mechanisms: thermal 
baths, gradient-driven and flux-driven and different 
boundary conditions. The subscript 0 stands for initial 
evaluation at mid-radius.

The main caveat of the present study lies in the assump-
tion of a Boltzmann electron response which may impact 
turbulence organisation, especially in the vicinity of rational 
q surfaces [27]. Realistic flux-driven computations including 
both kinetic ion and electron responses are required to assess 
the generic character of staircase organisation, especially as 
ion and electron channels may interplay [21]. Such compu-
tations are unfortunately beyond reach of today’s capabili-
ties. A confidence-building step in the direction discussed 
throughout the paper comes from the robust observation of 
such patterns in varieties of experimental plasma conditions 
[20, 21].

1.  Staircases in parameter space: near-marginal 
and low-collisional

Whilst exploring plasma parameters, distance to instability 
threshold (distance to marginality) and collisionality stand out 
as key for ×E B staircase organisation.

1.1.  A near-marginal pattern

Temperature profile corrugations are ubiquitous staircase sig-
natures. It is possible to systematically track in time the loca-
tion rstep of these corrugations. These locations are themselves 
function of the thermodynamic gradients: r L L,T nstep( ). Figure 4 
represents the PDF of staircase corrugations as a function of 
〈〈 / 〉〉R LT , i.e. the probability density of observing staircase 
microbarriers as a function of ambient gradient drive. This 
‘ambient drive’ ∇ ≡∇T T T T〈〈 / 〉〉 〈〈 〉〉/〈〈 〉〉 is the temperature 
gradient length at the location of the corrugation, should this 
corrugation not exist [20]. Practically, it is computed from the 
time-averaged and radially-smooth temperature profile 〈〈 〉〉T — 
hereafter referred to as ‘background’, or ‘ambient’ state—
with corrugations removed, i.e. smoothly interpolated at the 
location of corrugations from the temperature profile on both 
sides of the corrugation3.

The data in figure  4 is based on the flux-driven data of 
figure  2 during 6500 cs/a, with =c T ms e,0 i

1 2( / ) /  the sound 
speed evaluated at mid-radius, Te the electron temperature and 
mi the ion mass. In this dataset, 〈〈 / 〉〉R LT  varies with time and 
radius between =R L 3T〈〈 / 〉〉  close to the source region ρ∼ 0.3 
and 〈〈 / 〉〉 =R L 9T  near to the edge ρ∼ 0.85. Regardless of the 
precise choice for the selected computation, main features in 
figure 4 are robust.

Clearly, staircase organisation exists in a precise range of 
gradient drives, here: 〈〈 / 〉〉 [ ]∈R L 5, 8T . Let us call ‘marginality’ 

Figure 3.  Autocorrelation of the electrostatic potential. Two slopes 
are found: the local autocorrelation length � ρ∼ 6c s is microscale, 
the mesoscale is indicative of avalanches and therefore noted ∆  
(see section 2.4.1).

Figure 4.  Where the ×E B staircase exists as a function of the  
flux-driven normalised gradient drive R LT〈〈 / 〉〉. Marginality for these 
parameters is indicated.

3 Anticipating results below, in gradient-driven computations (see appendix 
A for definitions) as no corrugations may develop, by definition 〈〈 / 〉〉R LT  
coincides with the time-averaged R/LT. In the flux-driven case 〈〈 / 〉〉R LT  is 
very close to the time-averaged gradient-driven R/LT everywhere except in 
the vicinity of profile corrugations (staircase steps), as shown in figure 15(a), 
bottom panel.
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(or ‘criticality’) the normalised gradient at which the turbu-
lent heat flux becomes greater than the neoclassical heat flux. 
The turbulence-dominated regime starts at marginality. ×E B 
staircase onset is a near-marginal phenomenon, residing in 
the low-heating limit [20, 30] of flux-driven forcing. Some 
turbulence activity is indeed necessary to fuel the positive 
feedback between zonal mean flows and mean profile cor-
rugation (sections 1.2.1 and 2.2) and allow for the staircase 
onset. Starting at flux-driven marginality ≈R L 3.8T

F-D〈〈 / 〉〉  and 
increasing the gradient drive, a narrow region ∈R L 3.8, 5T〈〈 / 〉〉 [ ] 
of intermittent turbulence activity is thus first found before 
entering the ‘staircase regime’ ∈R L 5, 8T〈〈 / 〉〉 [ ]. In that region 
〈〈 / 〉〉 [ ]∈R L 3.8, 5T  avalanches carry a non-vanishing turbulent 
heat flux, even at vanishing collisionality [31]. The system is 
strongly intermittent, mean flows are rapidly destroyed and 
turbulence is regulated by fluctuating zonal disturbance flows 
(see appendix A for definitions). When entering the stair-
case regime, the flux-gradient relation is modified and heat 
transport is now controlled by the staircase shear layers, as 

illustrated in figure 15. Farther from marginality (here above 
〈〈 / 〉〉 ⩾R L 8T ), free energy is large, staircase organisation is 
progressively destroyed and flux- and gradient-driven trans-
port are expected to become more similar. Staircase organisa-
tion thus appears as a natural tendency for the near-marginal 
turbulent system.

To further illustrate this near-marginal character, the fol-
lowing numerical experiment is run, summarised in figure 5. 
Collisionality is moderate: ν = 0.1�  (see next section 1.2) and 
kept constant across the radius so that collisional damping of 
zonal flows is weak and comparable between core and edge. 
The safety factor is parabolic and monotonically increasing 
between q  =  1.16 at the centre and 2.4 at ρ = 0.9. A strong 
transient initial heat source centred around ρ = 0.3 (bottom 
figure) is incrementally decreased in amplitude and shifted 
radially at times =t a c553 s1 /  and =t a c1111 s2 / . The idea 
is to investigate in a test case with homogeneous zonal flow 
damping the dynamics of turbulence organisation as the 
temperature profile reorganises.

In the initial stage ∈t t0, 1[ ], driven by the strong source, 
the temperature gradient transiently increases far above mar-
ginality ∼ −R L 9 10T〈〈 / 〉〉  in the central region ρ = −0.3 0.5 
resulting in a strong avalanching activity clearly visible 
in figure  5 until a little after t2. Even though at time t1 the 
source is reduced, the system unsurprisingly responds with a 
time delay to the strong initial drive. Unsurprisingly also, the 
dominant mechanism through which the plasma disposes of 
its large free energy content is through the emission of heat 
avalanches, i.e. through intermittent mean profile relaxations. 
Through avalanching the system becomes stiff: this mech
anism is faster and more efficient than relying upon diffusion 
to mitigate developing strong gradients.

Whilst the supercritical core region intermittently responds 
to the strong energy injection, the edge region between 
ρ = −0.7 0.8 is close to criticality with gradient drives 

R LT〈〈 / 〉〉 in the range between 3 to 6 [the linear instability 
threshold is around 4.5]. Given these conditions the first stair-
case step is observed to nucleate around time =t a c830 s/  
and close to ρ = 0.8, a location uncorrelated to a low-order q 
rational (section 3.1). As the source decreases the temperature 
gradient reorganises, relaxing outside-in towards criticality. 
Following the relaxing temperature gradient (section 3.2), 
the staircase also builds up outside-in as larger regions of the 
plasma become near-critical.

The intermittent character of the system (generic even 
though especially visible in the early stages of this experi-
ment and close to the source region) is not deeply modi-
fied by the emergence of the staircase pattern. Intermittency 
remains through avalanche emission a key manifestation of 
the system, see e.g. [7, 32–34]. The onset of the staircase pat-
tern however does mitigate the radial extent of the propagating 
heat avalanches [1], allowing for better heat confinement as 
the pattern builds up. This point is specifically discussed in 
sections 2.3 and 2.4 and differently illustrates the somewhat 
counter-intuitive idea present in figure 15 that a system (flux-
driven) described by strongly non-Gaussian statistics may 
have better confinement properties than a related system  
(gradient-driven) that is statistically closer to Gaussianity.  

Figure 5.  A numerical experiment to illustrate the importance of 
proximity to marginality for staircase onset and development and 
the importance of avalanching for relaxation.

Nucl. Fusion 57 (2017) 066026
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The essential difference residing in the microbarrier pat-
terning, constitutive of the staircase.

1.2.  A low-collisionality pattern

Zonal flows are linearly damped through collisions alone [24]. 
Steps of an ×E B staircase constitute an organised pattern of 
zonal mean flows (see also section 2.2). An upper bound on 
collisionality (on the strength of collisional dissipation) is 
expected for this pattern to exist. Scans in collisionality, in 
varying plasma conditions are now discussed.

1.2.1.  Commonly observed at low collisionality.  In the low-
collisional banana regime [35] (normalised ion–ion col
lisionality ν 1⩽� ), extensive scans in collisionality in the 
range ν ∈ 0.001, 0.5[ ]�  have consistently shown a weak or 
negligible impact of this parameter on staircase organisation. 
An example is shown in figure 6 where two computations are 
compared, differing through a tenfold increase in collisional-
ity. In realistic cases collisionality significantly varies across 
the radius, following density n, temperature T, safety factor 
q and aspect ratio =− R r1 /ε  variations as typically shown in 
figure 9 (inset):

ν
ν

ν
π
π

= =
ΛqR

v

n e

m v
, with

4

3

log

4T

ii
ii

T

0
3 2

4

0
2 2 3

 
( )/ε ε

�� (1)

the ion–ion collision frequency, =v T mT
1 2( / ) /  the thermal 

velocity, R the major radius, 0ε  the permittivity of free space 
and Λ≈log 17 the Coulomb logarithm [36, 37]. In the com-
putations of figure  6, in contrast with the rest of the paper, 
collisionality is artificially set constant across the radius 
to precisely test the impact of collisional dissipation on the 
flow and profile organisation, disentangled from its profile 
variations.

Fluctuations of the temperature gradient are shown during 
respectively one collision time (ν = 0.5� ) and 0.6 collision 
time (ν = 0.05� ). As expected, the magnitude of shear at the 
staircase steps is slightly larger at weaker collisionality; cor-
rugations are also slightly more marked. The overall influence 
however of ν� on staircase organisation is weak in the low-
collisional banana regime.

Experimentally, core plasma main ions are typically in 
banana regime. Staircase signatures are common there, as 
shown from the Tore Supra data in figure  7, processed for 
staircase identification as detailed in [20, 21]. About 200 
experimental staircase signatures are shown. Interestingly, 
such signatures disappear at the banana-plateau transition 
(around ν ≈ 1� ) and none has been observed so far in the pla-
teau regime, ν 3⩾� –4, an indication confirmed by computa-
tions (see following section) that collisionality starts playing 
an important role at the banana-plateau transition (hence will 
play a role closer to the plasma edge region) through effective 
damping of the staircase microbarriers.

1.2.2.  Disappearance at higher (plateau) collisionality.  
Ubiquitous in the low-collisional banana regime, staircase 
organisation progressively disappears in the range ν ∈ 1, 5[ ]�  
at the banana-plateau transition. Identification of staircase-
like structures in plateau collisional regimes is hardly possible 
due to the increased collisional dissipation and hence short 
zonal mean flow lifetime. Figure  8 shows the behaviour of 
a step layer whilst crossing the banana-plateau transition. 
The low-collisional banana regime computation (left panel, 
ν = 0.15�  at ρ = 0.3) exhibits the typical staircase pattern 
discussed above. We show here the detail of one of its shear 
layers around ρ = 0.25, with complex merger and division 
dynamics. The right panel shows an otherwise identical com-
putation, except for a tenfold increase in collisionality (pla-
teau regime, ν = 1.5�  at ρ = 0.3). The time interval for which 
data is displayed and the colourbars are identical. As expected, 
both mean and disturbance ×E B shear are weaker in the pla-
teau regime. Interestingly, fluctuations in temperature remain 
mostly unchanged in magnitude by the tenfold increase in col
lisionality but as the shear pattern is collisionnally damped 
mean corrugations are weaker, emphasising the positive 
feedback that mean shear provides on profile corrugation.

The progressive weakening of staircase organisation as col
lisionality increases also translates into better confinement at 

Figure 6.  Staircase organisation is weakly affected by collisionality 
�ν  in the banana regime (weak zonal flow damping). Collisionality 

here is constant across radius.

Figure 7.  Experimental observation of staircase corrugations 
as a function of collisionality and radial location in Tore Supra. 
Staircases have only been observed so far in the low-collisional 
banana regime, supporting calculation predictions (see figure 8).

Nucl. Fusion 57 (2017) 066026
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low collisionality, as shown in figure 9 for the same dataset. 
Less collisional plasmas lead to stronger ×E B staircase pat-
terning. In the setup of figures 8 and 9 a tenfold decrease in 
collisionality leads to at least a 10% increase in central temper
ature (flux-equilibrium is not yet reached for the low ν� case: 
the temperature profile is still slowly building). The observed 
discrepancy in profiles between the two computations (banana 
versus plateau) overlaps with the region of staircase activity, 
i.e. from ρ = 0 to around ρ = 0.6, the outermost radial location 
of the low-collisional ×E B staircase step. Staircase onset with 
its successive microtransport barriers is thus directly respon-
sible for confinement improvement at low collisionality.

1.3.  Partial summary and outlook

The beneficial (see following sections) ×E B staircase 
patterning is primarily a core phenomenon because of 
the conjunction of both low collisional dissipation and 
proximity to marginal stability. However depending on 
the plasma parameters, ×E B staircase organisation may 
appear and develop anywhere within the plasma if the con-
ditions are right, as e.g. illustrated in figure 5. Also, as a 
near-marginal and low-collisional feature of magnetised 
plasma turbulence staircase organisation may be espe-
cially relevant for the confinement of current and next-
generation large (near-marginal) and hot (collisionless) 
fusion devices.

2.  Staircase organisation matters

Previous sections  have emphasised why global staircase 
organisation may be relevant to large machines and hot core 
plasma conditions. We now detail how such organisation, 
result of a balanced interplay between extended avalanches 

and localised microbarriers, impacts quantities relevant for 
confinement:

	 •	the organised pattern of microbarriers impacts heat  
transport;

	 •	the positive feedback between mean ×E B flow and mean 
profiles modifies the spatial distribution of shear and its 
temporal coherence in computations;

	 •	strength and steadiness of the staircase organisation (of 
its microbarriers) provides a favourable gyro-Bohm-like 
scaling for confinement; unsteadiness and weakening of 
this organisation (of the microbarriers) a route to gyro-
Bohm breaking.

To illustrate these points we compare with the same tool 
two modeling frameworks. ‘Flux-driven’ is first run as ref-
erence and is the usual running mode of gysela. Then  
‘gradient-driven’ computations are compared to this reference 
case; they only differ from the flux-driven framework through 
a constrained exploration of phase-space, the background  
(or ‘ambient’ in the sense defined on page 3) plasma param
eters are the same. In particular the flux-driven approach sets 
no constraints upon large-scale avalanche-type front propaga-
tion and allows for consistent feedback between flows, shear 
and mean profiles. Staircase organisation clearly depends on 
the latter, possibly on both. Details and further discussion can 
be found in appendices A and B.

2.1.  Staircase hindered in gradient-driven forcing

Space and time characteristics of the self-organised tur-
bulent state is compared in figures  10 and 11 for flux- and 
gradient-driven regimes with identical plasma parameters, in 
the banana collisional regime (ν = 0.2�  at ρ = 0.5). The flux-
driven computation is first run up to flux equilibrium. Based 

Figure 8.  Impact of collisional dissipation on the ×E B staircase. 
The pattern exists in the low-collisional banana ( �ν = 0.15) limit of 
magnetised plasma turbulence and starts disappearing at the plateau 
transition ( �ν = 1.5).

Figure 9.  Temperature and collisionality profiles of figure 8 
in banana and plateau regimes for the otherwise same plasma 
parameters. Confinement degrades and the central temperature 
drops by about 10% as the staircase pattern starts disappearing at 
higher collisionality.
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on the end state at 17.4 ms, the computation is then restarted 
in gradient-driven mode, details of the procedure are given in 
appendix A.

The staircase pattern visible in figure 11 that has built up 
and endures in the flux-driven computation is rapidly (in less 
than a millisecond) damped away and ultimately lost in the 
gradient-driven approach. The time interval and colourbars 
for which data is displayed in figure  11 are identical. The 
temperature corrugations and strong inhomogeneities in mean 
shear and poloidal flow, characteristic of the staircase pattern 
give way in the gradient-driven framework to a more homoge-
neous turbulence, with fluctuations more isotropic, flow and 
shear patterns more random in time and evenly distributed 
poloidally.

The fact that front propagation is also visible in the gra-
dient-driven framework emphasises its generic character as 

a means of transport. Yet major differences exist with the 
flux-driven avalanching behaviour: (i) fronts occur because 
mean profiles depart from equilibrium; the back-reaction 
however on the mean profiles that allows for nonlinear 
transport feedback is discarded in the gradient-driven con-
text due to the restoring force with strength γK in equa-
tion (A.2). This restoring force contributes to (ii) damping 
the fronts as they propagate through de-synchronisation 
of the profile fluctuations (the restoring force acts with a 
short time delay against the fluctuating dynamics). This 
randomness of the restoring force in both space and time 
(iii) implies a similar randomness for the fronts, in time as 
well as in size and in direction and extent of propagation. 
Section  2.4 further highlights a possible consequence of 
avalanches for transport.

2.2.  Staircase: a signature of modified zonal flow character-
istics

An important point for transport prediction is related to 
×E B shear. The total amount of shear that is actually gener-

ated is of course an important quantity but as well its spatial 
distribution and temporal coherence: the more concentrated 
and the longer-lived, potentially the more effective. We now 
show, comparing flux- and gradient-driven frameworks how 
the interplay of turbulence fluctuations and mean profiles has 
non-trivial consequences on the space–time distribution of 
zonal flow shear. This has an impact on heat transport which 
the following section 2.3 details.

Zonal flows (ZF) are the axisymmetric component of 
×E B flows [10]. They can be decomposed into mean and 

disturbance. ‘Mean’ is defined as the low frequency, slow-
evolving component of the zonal flows through sliding time 
averages of 0.3 ms or longer (0.3 ms corresponds to 1 collision 
time at ρ = 0.5). An unambiguous designation is as ‘zonal 
mean flows’ and ‘zonal mean flow shear’, often abbreviated 
to ‘mean flow’ (MF) and ‘mean shear’. The disturbance part 
(‘zonal disturbance flows’ and ‘zonal disturbance shear’) is 
simply defined as the remaining part of the zonal flows with 

Figure 10.  Comparing zonal disturbance (black) and zonal mean shear (red) averaged radially from ρ = 0.4 to 0.8 in flux- and gradient-
driven frameworks. Mean is defined through sliding time averages of 0.3 ms. For each case the steady-state zonal shear magnitude 
(disturbance plus mean, thick blue) is indicated (time averaged between 12 and 16 ms (left); between 17.9 and 18.5 ms (right)). 
Corresponding levels of turbulence ( ) /δΦ2 1 2 are shown in figure 26. The average gradient-driven zonal shear magnitude (resp. turbulence 
intensity) is 40% (resp. 15–20%) larger than its corresponding flux-driven counterpart.

Figure 11.  The mean ×E B shear, averaged over 0.3 ms (1 
collision time at ρ = 0.5) is shown in both flux- and gradient-driven 
computations that display comparable turbulence intensities (see 
figure 26). No perennial structures genuinely endure in the gradient-
driven approach, mean components are vanishing and the staircase 
pattern is lost.
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Figure 12.  Strength σstep of staircase shear layers as a function of 
gradient drive (distance to marginality).

dynamic evolution on shorter time scales than 0.3 ms. It is 
abbreviated to ‘disturbance flows’ and ‘disturbance shear’. 
Importantly, this definition holds without restriction to small-
amplitude disturbances. With a longer time averaging of 
0.6 ms, the coherence of mean shear is further reduced in 
the gradient-driven calculation whilst it remains essentially 
unchanged in the flux-driven case—figure 15 for instance, 
bottom panel, still shows staircase organisation after  ∼3 ms 
of temporal averaging despite its meandering behaviour illus-
trated in section 3.2.

2.2.1.  Prominence of zonal mean flows.  Figure 11 displays 
the radial profile of mean shear in both flux- and gradient-
driven frameworks whilst figure 10 shows the time evolution 
of radially-averaged absolute mean shear γ| |τ× rE B⟨ ⟨ ⟩ ⟩  (solid 
red) and disturbance (dotted black), with ⋅ τ⟨ ⟩  denoting the 
0.3 ms sliding time average and ⋅ r⟨ ⟩  the radial averaging from 
ρ = 0.4 to 0.8. The zonal shear magnitude (solid blue, sum 
of mean and disturbance) is indicated in steady-state, respec-
tively averaged between 12 and 16 ms and between 17.9 and 
18.5 ms. From both figures, several features stand out:

		 Gradient-driven:  The fluctuating, randomly varying 
disturbance shear is the dominant contribution to zonal 
shear in the gradient-driven approach. The disturbance 
shear is homogeneously distributed spatially. As expected 
from the restoring force in equation (A.2), beyond a few 
collision times the gradient-driven mean shear is damped 
and spatially homogenised. Gradient-driven zonal shear 
is thus spatially homogeneous (all radial locations are 
equivalent) beyond a few collision times;

		 Flux-driven:	 In contrast, the dominant contribution to 
zonal shear in the flux-driven approach is as coherent 
mean shear. For the staircase pattern to form and mean 
shear to endure, positive feedback between flow and 
gradient is required. Being uncorrelated at its inception to 
low-order q rationals (section 3.1) mean flow localisation 
is spatially equiprobable. Mean profile corrugation pro-
vides the seed for mean flow localisation through spatial 
symmetry breaking. The mean flow then locks-in the cor-
rugation through reduction of transport. Positive feedback 
between the zonal mean flow and the mean plasma gradient 
allows for strong spatial localisation of staircase microbar-
riers. There, locally, zonal shear is 2 to 8 times larger than 
in the gradient-driven case. In a staircasing flux-driven 
regime the dominant contribution to zonal shear thus comes 
from narrow regions of concentrated zonal mean shear. 
In-between staircase steps zonal shear is small, randomly 
fluctuating and dominantly carried by the disturbance part;

		  Confinement efficiency:	 The total magnitude of 
zonal shear (mean plus disturbance) generated in the 
gradient-driven framework is  ∼40% larger than in the 
reference flux-driven case. This may result from the 
15–20% larger gradient-driven turbulence intensity, see 
figure A3 (hence stronger zonal flow drive). However, as 
next section 2.3 highlights, stronger zonal flow magnitude 
does not translate into better confinement in the gradient-

driven case. The opposite is observed, suggesting that 
the rapidly varying zonal disturbance flows are less 
effective than zonal mean flows in regulating transport. 
An efficient confinement is thus best achieved for a given 
level of zonal flow activity through a staircase (mean flow 
dominated) type of organisation.

2.2.2.  Microbarrier strength and permability.  Further impor-
tant points regarding zonal shear organisation are how 
microbarriers are modified with varying gradient drive (with 
distance to marginality) and with varying machine size ρ�. To 
this end, as is done in figure 4, we track in time the location 
of the staircase steps rstep and compute there the zonal mean 
shear strength σstep:

∫σ
δ
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with δ ρ∼ 10 s
flow , as shown in [20, 21]. The integration interval 

in equation (2) corresponds to the radial width of the staircase 
microbarriers so physically σstep is a proxy for microbarrier 
strength, i.e. for how impermeable microbarriers are to radial 
transport or how effective they are as barriers for transport.

Since r L L,T nstep( ) is a function of the temperature and 
density gradients σstep can be displayed as a function of the 
ambient (see definition above, section  1.1) gradient drive 
〈〈 / 〉〉R LT , or to incorporate the effect of a varying density 
gradient as a function of 〈〈 〉〉 〈〈 / 〉〉η = L Ln T . This is shown in 
figure 12. Binning is applied, the colourscale represents how 
often a given binned σstep value is found (the most encountered 
value is normalised to 100). Interestingly, zonal mean shear 
strength increases with increasing gradient drive, but stability 
of the microbarriers decreases with increasing gradient drive. 
In other words, increasing gradient drive generates increas-
ingly strong microbarriers but with decreasing probability 
to endure, again emphasising the near-marginal character of 
staircase organisation.

Similarly, figure 13 displays σstep as a function of ρ−1
�  and 

predicts an unfavourable scaling of staircase microbarrier 
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strength with increasing ρ−1
� . This result suggests an increased 

permeability of the staircase microbarriers with ρ−1
� , i.e. 

a decreasing barrier strength with increasing plasma size. 
Interestingly, this result echoes recent experimental find-
ings—figure 3 in [21]—and may provide pathways to under-
stand the observed weakening of gyro-Bohm scaling [38] at 

relevant large ρ−1
� , although this weakening may be balanced 

by the mechanical increase of the number of staircase steps 

with increasing ρ−1
� . A critical question for transport scaling 

with ρ−1
�  is that of the trade-off between unfavourable micro-

barrier weakening and beneficial increase in the number of 
staircase steps. This topic is further discussed in section 2.4.

2.3.  Impact on profile stiffness and heat fluxes

Let us call local flux-gradient relation the often postulated 
instantaneous bijection that may exist between the local 
values of fluxes (of particle, heat, momentum) and the local 
values of the gradients (∇ ∇ ∇T T n, ,i e    ). In this framework, 
above a critical threshold:

1( )h  a given normalised gradient will drive a unique time-
averaged level of flux,

2( )h  a non-vanishing level of flux is in unique correspondence 
with a single linear combination of normalised gradients—
the flux-gradient relation is then called ‘single-valued’ and

3( )h  there is no time delay between modification of a normal-
ised gradient and response of the corresponding flux(es).

Known issues may lead to the breakdown of this repre-
sentation: (i) additional control parameters may enter the 
flux-gradient relation—e.g. zonal flow strength, sketched in 
figure 14 may introduce a nonlinear dependence on the gradi-
ents, induce a transport bifurcation [39, 40] or play a different 
role for transport depending on distance to marginal stability 
as illustrated through the observation of staircase organisa-
tion, (ii) nonlocal features appear—e.g. the local value of a 
flux depends on the state of the system in distant regions of 
space, or on its past history or (iii) a time delay appears in the 
response of a flux to a modification of the gradients—a weak 
form of temporal nonlocality.

The local flux-gradient relation is based on Fourier’s or 
Fick’s laws for transport and is a common rationale for drift-
wave turbulence, usually verified in gradient-driven modeling 
as e.g. explicit in [26]. From it stems the notion of stiffness 
which quantifies the (local) rate of change of a (local) flux 
with respect to the difference between its (local) driving nor-
malised gradient and the (local) instability threshold [41].

Even within validity of the local flux-gradient relation, 
structure formation and especially the onset of zonal flows 
is known to significantly impact stiffness [42]. Staircase pat-
terning is a signature of modified shear-gradient interplay. It 
is thus certainly natural to expect in its presence a modified 
flux-gradient relation as well. A precise discussion of these 
matters is left for future work. We focus here on an interme-
diate problem and show that despite similar ambient gradient 
drives, predicted heat fluxes are significantly different in a 

gradient-driven framework with no staircase organisation and 
in a flux-driven framework with staircase organisation.

In a flux-driven framework, the power ∝ rQP  flowing 
through successive flux surfaces is approximately constant at 
flux equilibrium, Q being the total heat flux, sum of a turbu-
lent flux (associated to the ×E B drift) and of a curvature flux 
(associated to the curvature and grad-B drifts). Though their 
sum is monotonically constrained at equilibrium, flux-driven 
turbulent and curvature fluxes may vary somewhat indepen-
dently. In a flux-driven context the total equilibrium heat flux 
is constrained by the (constant or slowly-varying) source. It 
is an essential difference with gradient-driven frameworks in 
which fluxes are not a priori bounded and respond to the time-
radius adaptive force equation  (A.2) that maintains ambient 
mean profiles—see figure A2 and appendix A for details. It is 
thus of special relevance to investigate flux responses in these 
two frameworks, especially close to marginal stability where 
transport is often reported to be stiff, i.e. where small varia-
tions in gradient drive may be responsible for large excursions 
of fluxes.

To this end we compare in figure  15 predictions for the 
turbulent heat fluxes at the same successive radial locations in 
both flux- and gradient-driven frameworks. The ambient gra-
dient drives are comparable in both cases and near-marginal. 
Staircase organisation is absent in gradient-drive and vis-
ible in the flux-driven case through its shear layers (steps  
1 to 3) marked as R/LT corrugations. The corresponding gra-
dient-driven R/LT profile with no staircase is non corrugated. 
Turbulence characteristics are quasi-steady—figure 15 displays 
results averaged over 2.95 ms ( c a1033 s/ ).

	 •	Location [0] is a region of low linear drive, prior to 
entering the staircase region located between ρ = 0.4 and 
0.8. The average flux-driven (black square) and gradient-
driven (blue circle) heat fluxes are small and comparable, 
yet with a marked intermittent character and a large 
statistical variability for the flux-driven turbulent heat 

Figure 13.  Strength (impermeability) σstep of staircase shear layers 
as a function of machine size �ρ

−1. The least-squares regression is 
shown in dotted black.
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flux, even at weak gradient drive ≈R L 5T/ . This is unlike 
common representation of near-marginal ITG transport 
[26] and will be discussed elsewhere;

	 •	Locations [1], [2] and [3] are respectively after 1, 2 and 
3 successive staircase steps. As more of the staircase bar-
riers are crossed computed heat fluxes start to significantly 
differ despite comparable ambient gradient drives. Both 
radial heat flux profiles are radially smooth, as expected. 
Where the gradient-driven flux monotonically increases 
with increasing gradient drive R/LT, the flux-driven flux 
does not and radially organises so as to satisfy the flux-
equilibrium condition ≈P  constant.

Several conclusions can be drawn:

	 (i)	the gradient-driven framework appears to be overly stiff: 
predicted flux levels are too large in gradient-driven mod-
eling, especially near marginal stability;

	(ii)	strong stiffness endangers predictive reliability in a model 
as large variations in predicted fluxes can be obtained from 
modest or even possibly indistinguishable differences in 
ambient mean profiles (within statistical fluctuations or 
experimental error bars). Reliability of gradient-driven 
predictions near marginal stability is thus questioned. 
The flux-driven framework is less stiff and appears less 
sensitive to details of the ambient mean profiles;

	(iii)	these observations may have implications for the so-
called ‘transport shortfall’ problem [43, 44]. Strong 
stiffness indeed impedes nonlocal turbulence propaga-
tion and especially turbulence spreading [45], a possibly 
important ingredient to the shortfall problem [46];

	(iv)	the fact that large though highly intermittent flux-driven 
fluxes are observed at low temperature gradient drives 
(location [0]) where both the gradient-driven flux and 
its statistical variations remain small tends to indicate 
clear sensitivity of the flux-gradient relation to temporal 
coarse-graining, despite the fact that the present results are 
flux-surface averaged and thus already strongly spatially 
coarse-grained. This result echoes results in [47, 48].  

The local flux-gradient relation is violated (becomes 
multivalued) in a flux-driven framework at short to 
intermediate (collisional) time scales, hence questioning 
hypothesis 2( )h  above;

	(v)	our understanding of near-marginal stiffness is clearly ques-
tioned and echoes the recent observation of an increased 
nonlinear upshift of the temperature gradient length 
threshold, attributed to ×E B staircase onset [30]. These 
questions point towards the role of staircase organisation 
and generally of structure formation near marginal stability 
in the possible breakdown of the local flux-gradient para-
digm, as sketched in figure 14. As such they may be seen as 
a generalisation of earlier heuristic models where e.g. the 
heat diffusivity χ = − ∇Q T/  is itself a nonlinear function 
of either zonal flow shear [13] or of ∇T itself.

Figure 15.  Turbulent heat fluxes before [0] and after [1], [2] and [3] 
staircase steps in the flux-driven approach, compared to turbulent 
heat fluxes at the same locations in the gradient-driven case, 
figure (a). Same data, shown as the ratio of gradient-driven to flux-
driven predictions for the heat flux as a function of ambient gradient 
drive, figure (b). The increasing discrepancy with R LT〈〈 / 〉〉 between 
both predictions illustrates issues with gradient-driven predictions 
of near-marginal transport and stiffness.

Figure 14.  Example of breakdown of local flux-gradient relation: 
as the system evolves (red arrows) the flux-gradient landscape is 
modified by a third control parameter (here zonal flow strength) 
from single-valued to multi-valued and back to single-valued at 
large normalised gradient drive.
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In the above respects, a local flux-gradient relation is a poor 
description of flux-driven near-marginal transport. Trying 
to describe through this simplified framework the variety 
of near-marginal transport processes is likely to increase 
complexity in the long run and be responsible for transport 
processes to become overly sensitive to details of the mean 
gradients. Stiffness may be an example of this increased com-
plexity since with no clear physical motivations, it is reported 
to strongly vary with plasma parameters [49] or regions of the 
plasma [50].

A paradigm change, or at least additional dimensions in the 
usual flux-gradient framework (as e.g. in figure 14) certainly 
appears desirable to restore simplicity in describing transport 
and encompassing the reality of structure formation (zonal 
flow, staircase, etc) near marginal stability. This question is 
left for future work.

2.4.  Possible routes to confinement improvement...  
or to gyro-Bohm breaking

Previous sections  have established staircase step layers as 
efficient microbarriers for transport. We now characterise 
transport in-between these microbarriers and investigate its 
possible consequences for global confinement.

2.4.1. The staircase steps contain the avalanche activity.  
In-between staircase steps the transport of heat or momentum 
dominantly occurs through avalanche-type processes. Ava-
lanches lead to strongly non-Gaussian statistics with a marked 
Lévy-type non-local, non-diffusive character [1]. In the absence 
of regulating mechanisms for avalanches a departure from 
favourable gyro-Bohm confinement scaling is thus expected. 
The ×E B staircase organisation is especially relevant because 
its microbarriers are efficient avalanche regulators. This was 
noted in [1], figure 2 and is further shown in figure 16.

To illustrate this point, we isolate a a c100 s/  time window 
during which the staircase organisation is steady. There we 
compute the Lagrangian space-time autocorrelation A of 
the turbulent heat flux in two distinct regions of the plasma 
chosen such that (i) both regions are bounded by steady 
staircase microbarriers and (ii) the radial width ∆ between 
these microbarriers is significantly different in both cases. 
Each of the two regions is a different ‘tread’ of the staircase 
as defined in figure 1; their width ∆ is practically measured 
as the distance between the bounding temperature corruga-
tions. The first region shown in figure 16(a) has a width of 

ρ∆ = 58 s, the second region in figure 16(b) a large width of 
ρ∆ = 153 s.

Individually, avalanches are hard to systematically track. 
Statistically, the radial extent of space-time autocorrelation 
measures the coherence of radial heat transport. The full width 
at half maximum of A (black contours) is thus an estimate 
for the avalanche size in both cases (a) and (b). Interestingly, 
the full width at half maximum of A closely tracks, in both  
significantly different cases (a) and (b) the local step size of 
the staircase. This leads to the following conclusions:

	 •	the staircase step size ∆ (easy to measure) is a good proxy 
for the radial extent of avalanches;

	 •	avalanche activity is a route to gyro-Bohm breaking: in 
two distinct regions of the plasma and at the same time, 
the turbulent heat flux has at least three different radial 
scalings: two mesoscale ones associated to staircase 
organisation  ∼ ρ50 s and  ∼ ρ150 s, in addition to the robust 
local � ρ∼ 6c s scale (see figure 3);

	 •	regardless of the step size (the ‘tread width’), avalanche 
transport fills-in the ‘treads’. Without staircase microbar-
riers avalanches would thus propagate unhindered across 
larger portions of the unstable plasma domain. As a 
consequence, stable staircase microbarriers are efficient 
regulators for the radial propagation of avalanches.

2.4.2.  Statistics of staircase step sizes.  The relative strength 
of beneficial microbarriers and detrimental avalanches 
evolves dynamically, as both interplay: avalanches are domi-
nantly emitted on both sides of temperature corrugations 
whilst larger avalanches cause microbarriers to meander (see 
section 3.2) or be destroyed. Determining which of the two 
dominates in what region of parameter space may open new 
routes to access and possibly control:

	 •	improved confinement: favoured in the case of strong, 
steady and closely packed microbarriers. An interesting 
perspective being that these microbarriers may coalesce 
[14, 21] into larger scale macrobarrier(s). Whether obser-
vations in [51] are a manifestation of such phenomena is 
yet unclear;

Figure 16.  Autocorrelation of the turbulent heat flux in two 
separate radial regions of the plasma, at the same time, during 

/a c100 s: case (a) in-between two staircase steps distant of ρ∆ = 58 s 
and case (b) distant of ρ∆ = 153 s (shown as white interval). In both 
cases the full width at half maximum (black contour), a measure of 
the radial coherence of heat transport, tracks well the local staircase 
step width.
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Figure 17.  Staircase microbarrier spacing ∆ normalised to the local ion Larmor radius as a function (a) and (b) of gradient drive (distance 
to marginality) and of (c) plasma size �ρ

−1. The statistics of step sizes ∆ is shown in (d ). The most probable microbarrier spacing is 
ρ∆ = ±40 2 s

stat . ∆ however can be large, displaying statistics of heavy-tailed distributions: a Fréchet distribution approximates it well, 
which is symptomatic of extreme value statistics.

	 •	degraded confinement: favoured in the case of weak or 
vanishing microbarriers or when avalanching dominates 
across a large portion of the plasma.

To investigate the relative strength of microbarriers and ava-
lanches, microbarrier shear strength equation (2) (as a measure 
of microbarrier permeability [21]) is a useful quantity—see 
section 2.2. From the above section 2.4.1 however, statistics 
of the step size of the staircase ∆ is possibly a more robust 
observable of microbarrier permeability. Avalanches indeed 
do not cross staircase microbarriers without perturbing them 
and possibly destroying them, either way leaving a footprint 
on ∆. ∆ is thus a measure of the least favourable radial trans-
port scale length in the system: larger values are indicative 
of degraded confinement and its systematic computation con-
veys information on the actual transport processes.

Gyro-Bohm scaling through successive staircase steps.  As 
in figure 12, since r L L,T nstep( ) is a function of temperature and 
density gradients, ∆ can be displayed as a function of ambi-
ent gradient drive as well as of ρ�. Its statistics are shown in  
figure 17. The colourscale in subplots (a) and (b) represent how 
often a given binned ∆ value is found (the most encountered 
value is normalised to 100) as a function of ambient drive. Sub-
plot (c) displays its behaviour with respect to ρ�. The larger ∆ 
values correspond to temporary destruction of staircase steps, 
often prior to their reconstruction elsewhere. As compared to 
our earlier results [1, 20], the present dataset is larger, encom-
passing steady-state weakly driven plasmas (mostly using 
thermal bath boundary conditions) as well as more strongly 
driven (hence less quiescent) plasmas. The rich dynamics 
of the staircase pattern is now also embedded in the dataset, 
hence a large distribution of step sizes visible in subplot (d) 
and a slightly larger most probable step size ρ∆ = ±40 2 s

stat  
(the uncertainty reflects a 95% confidence interval). The most 
probable staircase step spacing also appears quite independent 
of the ambient drive—subplots (a) and (b).

Interestingly, despite statistical variability, the ∆stat scale 
is approximately constant throughout the scanned ρ� values. 

This fact is strongly suggestive of a gyro-Bohm scaling for 
the heat transport, reintroduced in the system despite ava-
lanching, via the mesoscale and ρ� independent ρ∆ ∼ 40 s

stat  
scaling of the staircase step layers. In this regime of param
eters (near-marginal, low-collisional), heat transport tends to 
a gyro-Bohm scaling owing to the successive staircase steps. 
We note also that the physics of why a gyro-Bohm scaling may 
here be found, statistically, is significantly different from dif-
fusive/random walk arguments of turbulent transport scaling 
with the local microscale � ρ∼ 6c s (see figure 3).

Extreme deviations, physical interpretation.  A well defined 
scale ∆stat is observed with yet significant deviations from it. 
The distribution of step sizes in figure 17(d) is characteristic 
of fat-tailed distributions and is well described by a Fréchet 
distribution, a special case of Weibull (or generalized extreme 
value) distributions with lower bound:

⎛
⎝
⎜

⎞
⎠
⎟τ

σ
τ κ

µ
σ

∆ = = +
∆−κ

τ
κ+

−
−

e with 1
1 1

( )  
/

F� (3)

with respectively a scale parameter σ = 10, a location 
µ = 44 and a shape κ = 0.6. As also shown in figure 17(d ) 
a log-normal distribution, obtained through the multiplica-
tive product of many independent random positive variables 
decays too fast and inaccurately describes the right tail of 
steps sizes. Fréchet PDF tails naturally emerge from the prod-
ucts of a finite number of random correlated variables and is 
often used as a phenomenological description of relaxation in 
disordered systems [52].

The observation of Fréchet statistics illustrates interesting 
aspects of the physics of staircase organisation. Fréchet  
(or Weibull) statistics naturally arise in the description of wear 
and tear of a system that is said to fail when either wear and 
tear accumulates beyond an acceptable level or if a fatal shock 
occurs. If the occurrences of fatal shocks can be modeled by a 
Poisson process whose rate function is state-dependent and if 
a random process governs the system state, then wear and tear 
statistics are often well described by Weibull distributions.
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In analogy, if we postulate that the PDF of staircase step 
spacing emerges from disruptions of individual staircase steps, 
it is possible to connect the global statistics of ∆ to the statis-
tics of ‘wear and tear’ of individual steps. The state of indi-
vidual steps results from a random process: the organisation 
of turbulence. Through avalanching, a natural state-dependent 
disruptive process continuously happens within the system, 
the size distribution of avalanches closely obeying Poisson 
statistics. In such framework, Fréchet statistics for staircase 
step spacing naturally emerges through combined influence of 
both the turbulent generation of staircase steps and the disrup-
tive termination by avalanches.

Comparable statistics would certainly be observed if 
avalanches were to be understood not only as responsible 
for traumatic disruptions of individual staircase steps but 
also as active participants in the onset of individual shear 
layers. In the latter interpretation, both the life-time and 
the birth-rate [17] of staircase shear layers is influenced by 
avalanches and similar Fréchet statistics for ∆ would cer-
tainly be expected. Either way, the observation of a Fréchet 
distribution equation  (3) would then stand for a signature 
of avalanches in the global organisation of near-marginal 
plasma turbulence.

Lastly, it could be argued that a power law description 
could also fit the data in figure 17(d) rather than a stretched 
exponential [53]. A power law would characterise an absence 
of characteristic size for staircase step spacing. Clearly self-
similarity at all scales is not observed but self-similarity 
could be argued beyond ρ∆ ∼ 40 s

stat  as it is known that when 
accounting for finite size effects in a dataset a power law often 
crosses over to an exponential decay, hence leading to the cur-
vature in the log-log plot observed in figure 17(d). However, 
with the Fréchet interpretation above, there is little need to 
invoke finite size effects to explain the fact that ∆ statistics 
deviates from a power law.

What does it suggest for transport scaling?  Both observations 
above suggest a route as to how a system described by strongly 
non-Gaussian statistics may display favourable gyro-Bohm 
like transport provided, as the system increases in size, that 
enough staircase microbarriers are formed. In addition to 
microscale regulation via shear suppression [54–56], trans-
port can thus be directly regulated at mesoscales via modu-
lation of front propagation at the scale of the staircase step 
width.

Figure 13 predicts an unfavourable scaling of staircase 
microbarrier strength with decreasing ρ�. Recent experimental 
findings (see figure 3 in [21]) tend to display a comparable 
trend. No such behaviour is visible in figure  17(c). Further 
understanding the statistics of ∆ with decreasing ρ� is cer-
tainly a matter of importance to understand the ρ� scaling of 
heat transport. Improved confinement may reside in accessing 
regimes with faster decaying tails for the ∆ (avalanche) dis-
tribution, provided the staircase structure survives. An unfa-
vourable behaviour of the tail of the avalanche distribution 
on the other hand may provide a natural route to gyro-Bohm 
breaking.

3.  Robustness of staircase microbarriers...

We focus the discussion on the robustness of organised  
staircase patterns with varying plasma parameters.

3.1.  ...with respect to low-order q rationals

Localisation of spontaneous microbarriers for transport (i.e. 
the staircase steps) is an important question. In the case of 
developed so-called internal transport Barriers (ITBs), the con-
nection with low-order rational values of the safety factor as 
well as with the shape of its profile has been previously empha-
sised both experimentally and in early modeling attempts [57, 
58]. ITBs have been analysed to nucleate next to low-order 
rational q surfaces, especially at negative or vanishing magn
etic shear. Linearly indeed, turbulent modes tend to resonate 
on distinct q  =  m/n surfaces, their local growth rates being 
influenced both by the value of q and of its gradient. Two argu-
ments are usually invoked for internal transport barrier onset: 
(i) low wavenumber turbulence tends to generate a localised 
×E B shear flow in the vicinity of low-order rational q sur-

faces or (ii) low wavenumber resonant surfaces tend to rarefy 
in reversed shear plasmas in the vicinity of vanishing magnetic 
shear, favouring the onset of ×E B shear flows and the trig-
gering of a barrier.

We test both ideas, asking:

	 •	may staircase microbarriers form under similar influence 
of low-order q rationals?

	 •	may the dynamic evolution of staircase steps lead to the 
formation of macroscopic ITBs, and if so is it in connec-
tion with the shape of the q profile?

To this end different situations are tested where the 
safety factor profile is varied: either parabolic and mono-
tonically increasing—different cases are shown in figures 18 
through 21—or reversed as also shown in figure 21, the loca-
tion of vanishing magnetic shear corresponding to the low-
order q  =  3/2 rational. Anticipating on the results, the answer 
so far to both questions above is negative, yet might be worth 
considering anew with future inclusion of passing electron 
dynamics [27].

As previously shown [20, 21], neither the birth location 
of the staircase steps, nor their statistical localisation during 
nonlinear evolution seems to display clear correlations with 
low-order safety factor q rationals, in either monotonic or 
reversed q profiles. This is shown for the monotonic case in 
figures 18 and 19, with the possible exception of the q  =  2 
rational surface. Figure 20 records how often in the tem-
poral window ∈t a c500, 3900 s[ ] /  staircase microbarriers 
are found in the vicinity of given q values. From it, q  =  2 
could be defined as a ‘sticky’ location: staircase steps are 
not borne at this location but seem either attracted or prone 
to lingering in its vicinity. However, it is never the same 
staircase step but rather successive steps that linger near 
to q  =  2 nor does this behaviour lead to the formation of 
a macroscopic ITB. This behaviour may be reminiscent of 
some experimental observations—e.g. shown next to the 
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q  =  5/2 surface (labelled S0) in figure  3 of [20]—where 
measured wells in the radial correlation of turbulent fluc-
tuations (interpreted as staircase microbarriers) are espe-
cially marked only when they coincide with a low-order q 
rational.

No other low-order rational in figure 20 however seems to dis-
play a similar behaviour than q  =  2: the lifetime of temperature 
corrugations (i.e. microbarrier localisation) with respect to q 
locations is roughly evenly distributed. Possible synergies might 
thus exist between low-order q rationals and staircase microbar-
riers during their dynamic evolution but they seem rather weak. 
This observation may alert to the dubiety of quasilinear frame-
works to correctly address staircase onset and dynamics.

A monotonically increasing q profile is now compared 
to a reversed q profile in figure  21, other parameters kept 
identical. At mid radius ρ = 0.5 the two profiles cross the 
q  =  3/2 surface. This surface plays no noticeable role in 
the monotonically increasing q case. In the reversed shear 
case the central staircase step only, close to the minimum 
q  =  3/2 location appears to be weakly drawn to this loca-
tion. Furthermore, a limited steepening of the temperature 
gradient around the q reversal location is observed, visible 

through lower R/LT values before ρ = 0.5 and larger ones 
afterwards. Both effects however are modest: (i) the stair-
case step does not rigorously locate at the minimum q loca-
tion and even remains in the positive magnetic shear region 
during the computed evolution and (ii) the negative or van-
ishing magnetic shear does not lead to the formation of a 
macroscopic ITB either through an increased flow-gradient 
feedback or through coalescence of staircase microbarriers. 
Main conclusions are:

	 •	the birth of staircase microbarriers is not correlated to 
low-order q rationals;

	 •	correlation between staircase microbarriers and q 
rationals remains modest during nonlinear evolution 
despite observation of weak synergies;

	 •	these synergies have not been observed to lead to stair-
case microbarrier coalescence or macroscopic ITB onset, 
even at low or reversed magnetic shear.

3.2.  ...in time: staircase dynamics and meandering

The ×E B staircase undergoes dynamic evolution (i) on 
the short timescale of avalanche emission as propagating 

Figure 18.  Same data as in figure 2 where the fixed locations of 
low-order   /     /=q 1, 3 2, 2, 5 2 and 3 rationals are superimposed 
on top of the ×E B shear, marking the staircase steps. No 
clear connection between low-order q rationals and staircase 
microbarriers can be inferred.

Figure 19.  Gradient drive from figure 18 averaged between 2100 
and /a c2892 s.

Figure 20.  Statistics from figure 18 of the time staircase 
microbarriers (tracked as temperature corrugations) have spent in 
the vicinity of given q values, between t  =  500 and /a c3900 s.
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avalanches interact with its microbarriers. This point has been 
evoked in the previous section and is emphasised through 
observation in figure 17(d) of Fréchet (Weibull) statistics for 
the staircase step size. Staircase steps may then drift radially 
or be destroyed by rare and large-scale avalanches impinging 
on them but usually reform in their wake, possibly at dif-
ferent radial locations. This short timescale for local staircase 
dynamics depends on distance to marginality (figure 4): close 
as well as far above marginality, the staircase pattern is less 
robust and easily perturbed by front dynamics.

Corrugations also evolve (ii) on the longer timescale of 
mean profile (and hence gradient drive) evolution as it adapts 
to the heat source. Corrugations display a slow radial motion 
that roughly tracks the ambient gradient drive R LT〈〈 / 〉〉 evo
lution (see definition above, section  1.1). The radial loca-
tions of the staircase shear layers seem to remain at constant 
〈〈 / 〉〉R LT  values. This propensity of corrugations to remain 
at constant ambient gradient drive [20, 21] is referred to as 
‘meandering’. Corrugations may endure from milliseconds 
to tens of milliseconds (the current upper limit of large-scale 
flux-driven computations). Their meandering timescale how-
ever is usually shorter, as illustrated in figure 22. The gradient 
is computed through sliding profile averages of  ∼ a c312 s/  that 
roughly correspond to  ∼0.89 ms starting at time a c1030 s/ . For 
visualisation purposes, a negative offset of 0.002 is applied to 
each time-slice. Clearly the staircase pattern exists throughout 
the time slice displayed here yet a global averaging between 
1030 and a c2892 s/  would effectively smear it out.

Experimentally, staircase steps are tracked as local minima 
of the coherence length profile Lcoh F⟨ ⟩  of density fluctua-
tions, the procedure as described in [20, 21]. The meandering 
of the Lcoh F⟨ ⟩  wells is uneasy to characterise and seems to 
occur on long time scales. An example is shown in figure 23. 
Displacement of the Lcoh F⟨ ⟩  profile, not detectable during a 
single acquisition (6 ms) becomes more visible when com-
paring successive acquisitions separated by 5 to 10 s. The 

present data cannot allow to unambiguously determine whether 
the similarity of the coherence length waveforms measured 
during the successive acquisitions in figure 23 results from a 
single very long-lived staircase or rather from staircase pat-
terns that have repeatedly disappeared and reformed. The dis-
parity of time scales observed in experiments and simulations 
is yet a challenge to explain.

Figure 21.  Same data as in figure 5, averaged between 4000 and 
/a c4610 s. Two situations are compared: all other parameters being 

equal, the safety factor profile is either parabolic or reversed. A 
weak response of the central staircase step to the reversed magnetic 
shear is observed.

Figure 22.  How the meandering of the ×E B staircase leads to 
its seeming disappearance when time integration is large. Radial 
coarse-graining leads to the same result. This sets constrains on 
experimental time and space resolution in order to resolve the 
staircase structure. For clarity, the curves at different times have 
been vertically offset from each other.

Figure 23.  Experimental coherence length profiles ⟨ ⟩Lcoh F of 
density fluctuations at times t1 through t4.
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4.  Conclusions and outlook

The ×E B staircase of magnetised plasmas is a spontaneous 
global-scale organisation of localised microbarriers for trans-
port interspersed between regions of turbulent avalanching. 
Microbarriers coincide with long-lived corrugations of the 
mean plasma profiles. The ×E B staircase pattern spontane-
ously arises in near-marginal (section 1.1) and low-collisional 
(section 1.2) regimes, emphasising its possible relevance for 
forthcoming large-scale fusion experiments. The staircase 
pattern is a nonlinear feature of turbulence self-organisation. 
Linear properties of the system do not appear to play a visible 
role for its localisation, slow dynamics or fast reorganisation 
(sections 3.1 and 3.2).

Staircase organisation expresses a modification in the 
nature rather than in the overall magnitude of zonal flow shear 
as incoherent zonal disturbance flows (dominant in gradient-
driven approaches) coalesce into temporally coherent and 
spatially concentrated zonal mean flows (dominant in flux-
driven approaches) (sections 2.1 and 2.2). Positive feedback 
between zonal mean flows and mean plasma gradients is 
dynamically important to ×E B staircase onset (section 2.2).

The space-time coherence of zonal mean shear at the 
staircase steps (possible through the positive feedback on the 
mean gradients) impacts heat transport levels globally (sec-
tion 2.3). For a given level of zonal flow activity, staircase 
organisation results in better confinement than when absent, 
its successive shear layers being active barriers for transport. 
The flux-gradient relation is notably modified at the onset 
of staircase patterning: it becomes intrinsically multivalued, 
non-monotonic (regions of staircase existence can display a 
negative diffusion type of behaviour: heat accumulation with 
increasing gradient) and evolves dynamically. A consequence 
is that local fluxes may not be unambiguously estimated 
merely based on the knowledge of local profile values LT or 
Ln, in stark contrast with the rationale behind gradient-driven 
approaches.

As zonal mean flows concentrate spatially in the narrow 
regions of the staircase microbarriers, avalanche-type of 
events fill the space in-between microbarriers. These layers, 
of typical radial extent δ ρ∼ 10 s

flow  efficiently contribute to 
contain the avalanche-like transport (section 2.4.1). As the 
most probable staircase step spacing ρ∆ ∼ 40 s

stat  is mesoscale  
(the spacing between adjacent microbarriers), avalanching is 
also statistically contained to mesoscales. Despite avalanching 
and non-Gaussian transport statistics a favourable gyro-Bohm 
like scaling for transport is found provided that enough suc-
cessive staircase shear layers are formed (section 2.4.2).

It is worth noticing that the rationale here for gyro-Bohm 
scaling is based upon mesoscale ∆stat balance between ava-
lanches and staircase microbarriers. The physical picture is 
thus significantly different than diffusion or random walk at 
the scale of local turbulence autocorrelation length � ρ∝c s. 
This fact also suggests that in addition to the classical micro-
scale regulation via shear suppression, transport can be directly 
regulated at mesoscales via modulation of front propagation at 
the scale of the staircase step width (section 2.4.2).

This dynamic interplay between avalanches and microbar-
riers, two natural trends of the near-marginal plasma opens a 
natural route to understand the physics of either gyro-Bohm 
scaling or of gyro-Bohm breaking, in a unified framework. 
Given which one of (beneficial) staircase microbarriers or 
(detrimental) avalanches dominates may help explaining gyro-
Bohm breaking situations (avalanching dominant), gyro-Bohm 
scaling (mesoscale spaced microbarriers) or possibly improved 
confinement (microbarriers become impermeable or coalesce).

In this perspective the scaling of microbarrier shear 

strength σstep (a measure of microbarrier permeability) or of 

step spacing ∆ with system size ρ−1
�  may be key to understand 

the scaling of transport with ρ−1
�  [21]. The trend with ρ−1

�  for 
microbarrier shear strength seems unfavourable (section 2.2) 
whilst the trend for step spacing is favourable with the emer-

gence of scale ∆stat (section 2.4.2). An important question for 

transport scaling as ρ−1
�  increases towards iter values is that 

of the trade-off between this possibly unfavourable microbar-
rier weakening and the beneficial increase in the number of 
staircase steps.

Some concluding remarks:

	 (a)	Relatively new in magnetised plasma turbulence, 
staircases are however commonly observed in many 
geo- or astrophysical systems. The interested reader for 
non-magnetised plasma systems is referred (non exhaus-
tively) to [11, 12, 59–62];

	(b)	Turbulence regulation within the staircasing plasma 
depends dominantly on zonal mean shear patterning. 
This fact accredits the idea already in [63] of a system 
better described by one prey (the turbulence), two preda-
tors (zonal disturbance and zonal mean flows), with one 
predator (the mean flow) also preying on the other (the 
disturbance flow) flow). The added fact is that the system 
globally organises staircase-wise;

	 (c)	Staircases are identified in actual plasmas [20, 21] through 
observation of their successive shear layers, so far in ion 
drift-wave turbulence regimes using correlation analysis of 
density fluctuations from ultrafast-sweeping reflectometer 
data. When turbulence results from a mixture of free energy 
sources (ion and electron drift-wave) as is the case at the trans
ition between saturated ohmic confinement (SOC) and linear 
ohmic confinement (LOC), staircase signatures seem more 
complex to identify [21]. Correlation analysis performed as 
in above references but based upon high-resolution electron 
temperature fluctuations would appear as an important step to 
further assess the generic character of staircase organisation for  
drift-wave turbulence.
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Appendix A.  Same code, two frameworks: flux-  
versus gradient-driven forcing

The usual flux-gradient paradigm [26] relates local values 
for heat fluxes to local values of the gradients η—or R/LT 
in the case of ITG with low to moderate Ln, with fixed mean 
values for the turbulence drive, i.e. fixed mean profiles. This 
approach is referred to as ‘fixed-gradient’ or ‘gradient-driven’ 
(G-D) as opposed to ‘flux-driven’ (F-D) where both fluxes and 
profiles evolve consistently [64] and are unknown functions 
of the dynamics. Formally, the flux-driven gyrokinetic equa-
tion solved in gysela reads:

≡
∂
∂
− = +

f

t

f

t
H f f f

D

D
,[ ] ( ) ( )C S� (A.1)

where f represents the full ion distribution function, H the 
gyrokinetic Hamiltonian [65], C the collision operator [36, 37] 
and S the source [7]. The flux-driven computations throughout 
the paper are heat-driven only and a typical example is shown 
in figure A1.

Switching between a flux- and a gradient-driven framework 
is done whilst replacing the source term in equation (A.1) by 
a Krook-type operator that acts as both a source or a sink, 
depending on the dynamics (the sign of −f F-DF ) and driving 

a restoring force with strength γK towards the chosen mean 
profiles F-DF :
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with ∫ θ ϕ⋅ = ⋅vd d d v⟨ ⟩ J J , vJ  and J  being the velocity and 
space Jacobians. The adaptive dynamics of the source/sink 
equation (A.2) is shown in figure A2. The last term in equa-
tion  (A.2) is usual prescription for gradient-driven models 
[66] so as to prevent overdamping the zonal modes.

In practice, in order to compare flux- and gradient-driven 
approaches, the target distribution F-DF  in equation  (A.2) is 
constructed from a steady flux-driven distribution function. 
The following procedure is applied that allows gysela to 
mimic usual computations at fixed gradient:

	 (i)	a flux-driven computation is run until flux equilibrium. 
Mean density nF-D, temperature TF-D and flow profiles are 
computed;

	(ii)	corrugations are removed from the above flux-driven mean 
profiles resulting in smooth equivalent mean profiles;

	(iii)	an equivalent Maxwellian distribution F-DF  is built from 
these smooth profiles and imposed in equation (A.2);

	(iv)	linear stability is computed for the base state F-DF . 
Unusable global modes grow with a maximum growth 
rate γlin;

	(v)	the ‘spring constant’ γK in equation  (A.2) is chosen 
such that it has no notable effect on the linear instability 
growth of the ITG and nonlinearly such that the root 
mean square (RMS) of the electric potential fluctuations 
δΦ2 1 2( ) / , a measure of the turbulence intensity is compa-

rable in both flux-driven and gradient-driven approaches. 
This is shown in figure A3. γK has been varied between 
γ 3lin/  and γ 15lin/ . The results in the paper are qualitatively 

Figure A1.  Typical heat flux-driven setup.
Figure A2.  Evolution, as the temperature fluctuates, of the adaptive 
gradient-driven source/sink equation (A.2) from one time step t0 
to a next +∆t t0 . The gradient-driven forced profile (solid line) is 
computed from the flux-driven mean TF-D profile in figure 24 and 
coincides with the flux-driven ‘ambient mean profile’, as defined 
on page 3. For clarity, only a zoom between ρ = 0.37 and 0.57 is 
shown.
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independent of the precise choice of γK. Unless otherwise 
stated: γ γ= 10K

lin/ , consistently with [66];
	(vi)	the gradient-driven calculation is compared to the refer-

ence flux-driven computation at quasi steady-state for the 
flows and the fluctuations.

Through this procedure, flux- and gradient-driven compu-
tations have near-identical ambient mean gradients, as defined 
in section 1.1.

Note that the gradient-driven approach of equation  (A.2) 
contains additional physics as compared to usual gradient-
driven approaches. In the latter a scale separation is usu-
ally performed in the equations  so that formally the total 

δ= +f F f0  and δ= +H H h0  are divided into a background 
distribution F0 and equilibrium Hamiltonian H0, fixed in time 
and fluctuating parts δf  and δh. The mean evolution ∂ Ft 0 is 
discarded and so are nonlinear advection terms that con-
tribute to its evolution, formally written δ δh f,⟨[ ]⟩, with ⋅⟨ ⟩ 
representing an ensemble averaging. Only δf  dynamically 
evolves and the consistency of the performed separation of 
scales δ =f F O0/ ( )ε  has to be checked throughout the com-
putation. In gysela, the total f and H enter equation  (A.1) 
and evolve so that the ‘mean distribution’ f⟨ ⟩ (regardless of 
whether such a ‘mean’ is correctly approximated by an ana-
lytic (Maxwellian) F0) tends to change and corrugate due to 
the turbulent dynamics—essentially due to the back-reaction 
of the small turbulence scales δ δh f,⟨[ ]⟩ on the larger, slower 
mean ones. Then the Krook-type operator is applied, partly 
restoring the mean profiles. The gradient-driven approach of 
gysela described by equation  (A.2) thus contains features 
of turbulence self-organisation absent when a scale separa-
tion is performed. It is thus intermediate between flux-driven 
and more usual δf  global gradient-driven approaches. Actual 
differences between F-D and δf  G-D approaches, especially 
regarding structure formation are thus expected to be larger 
that the differences reported below.

Appendix B.  How generic are the results  
comparing flux- and gradient-driven computations?

As expected, the discrepancies highlighted above between 
flux-driven and gradient-driven systems regarding pattern for-
mation, shear flow generation and transport levels decrease 
with decreasing strength of γK in equation (A.2) and tend to 
(transiently) vanish in the limit γ 0K → . Mean profile cor-
rugations, mean shear patterns, more coherent avalanche-
type events and staircase organisation tend to appear in 
gradient-driven systems, as transients, at very low values of 
the restoring force e.g. γ γ∼ 100K

lin/ . However at such low 
values of γK the mean profiles relax and turbulence decays as 
its drive is no longer sustained. This remark however tends to 
emphasise ×E B staircase organisation as a natural tendency 
for the self-organising core plasma.

It is also worth noticing that both decaying turbulence 
computations as well as computations run with thermal baths 
at both radial boundaries (this represents a cruder and ear-
lier version of the heat flux-driven computations shown in 
the paper and illustrated in figure A1, as the amount of heat 
actually injected in the system is not controlled) also exhibit 
staircase organisation, though transiently in the decaying case. 
The robustness of this form of organisation with respect to 
forcing also tends to emphasise staircase-avalanche interplay 
as a natural tendency for such systems, as soon as consistent 
feedback between flows, shear and mean profiles is allowed.

References

	 [1]	 Dif-Pradalier G., Diamond P.H., Grandgirard V., Sarazin Y., 
Abiteboul J., Garbet X., Ghendrih Ph., Strugarek A., Ku S. 
and Chang C.S. 2010 On the validity of the local diffusive 
paradigm in turbulent plasma transport Phys. Rev. E 
82 025401

	 [2]	 Diamond P.H. and Hahm T.S. 1995 On the dynamics of 
turbulent transport near marginal stability Phys. Plasmas 
2 3640–9

	 [3]	 Hwa T. and Kardar M. 1992 Avalanches, hydrodynamics, 
and discharge events in models of sandpiles Phys. Rev. A 
45 7002–23

	 [4]	 Carreras B.A., Newman D., Lynch V.E. and Diamond P.H. 
1996 A model realization of self-organized criticality for 
plasma confinement Phys. Plasmas 3 2903–11

	 [5]	 Newman D.E., Carreras B.A., Diamond P.H. and Hahm T.S. 
1996 The dynamics of marginality and self-organized 
criticality as a paradigm for turbulent transport  
Phys. Plasmas 3 1858–66

	 [6]	 Sarazin Y. and Ghendrih Ph. 1998 Intermittent particle 
transport in two-dimensional edge turbulence  
Phys. Plasmas 5 4214–28

	 [7]	 Sarazin Y., Grandgirard V., Abiteboul J., Allfrey S., Garbet X., 
Ghendrih Ph., Latu G., Strugarek A. and Dif-Pradalier G. 
2010 Large scale dynamics in flux driven gyrokinetic 
turbulence Nucl. Fusion 50 054004

	 [8]	 Van Compernolle B., Morales G.J., Maggs J.E. and 
Sydora R.D. 2015 Laboratory study of avalanches in 
magnetized plasmas Phys. Rev. E 91 031102

	 [9]	 Rosenbluth M.N. and Hinton F.L. 1998 Poloidal flow driven 
by ion-temperature-gradient turbulence in tokamaks  
Phys. Rev. Lett. 80 724–7

Figure A3.  The ‘spring constant’ γK in equation (A.2) (here 
/γ ω γ= =−5.43 10 10c i

K 5
, lin ) is chosen such that it agrees with 

usual prescriptions for gradient-driven models /γ γ∼ 10K
lin . With 

this prescription, computed turbulence intensities ( ) /δΦ2 1 2 with 
gysela in flux- and gradient-driven approaches agree within 
15–20%.

Nucl. Fusion 57 (2017) 066026

https://doi.org/10.1103/PhysRevE.82.025401
https://doi.org/10.1103/PhysRevE.82.025401
https://doi.org/10.1063/1.871063
https://doi.org/10.1063/1.871063
https://doi.org/10.1063/1.871063
https://doi.org/10.1103/PhysRevA.45.7002
https://doi.org/10.1103/PhysRevA.45.7002
https://doi.org/10.1103/PhysRevA.45.7002
https://doi.org/10.1063/1.871650
https://doi.org/10.1063/1.871650
https://doi.org/10.1063/1.871650
https://doi.org/10.1063/1.871681
https://doi.org/10.1063/1.871681
https://doi.org/10.1063/1.871681
https://doi.org/10.1063/1.873157
https://doi.org/10.1063/1.873157
https://doi.org/10.1063/1.873157
https://doi.org/10.1088/0029-5515/50/5/054004
https://doi.org/10.1088/0029-5515/50/5/054004
https://doi.org/10.1103/PhysRevE.91.031102
https://doi.org/10.1103/PhysRevE.91.031102
https://doi.org/10.1103/PhysRevLett.80.724
https://doi.org/10.1103/PhysRevLett.80.724
https://doi.org/10.1103/PhysRevLett.80.724


G. Dif-Pradalier et al

19

	[10]	 Diamond P.H., Itoh S.-I., Itoh K. and Hahm T.S. 2005 Zonal 
flows in plasma—a review Plasma Phys. Control. Fusion 
47 R35–161

	[11]	 Phillips O.M. 1972 Turbulence in a strongly stratified fluid—is 
it unstable? Deep Sea Res. Oceanographic Abstr. 19 79–81

	[12]	 Balmforth N.J., Smith S.G.L. and Young W.R. 1998 Dynamics 
of interfaces and layers in a stratified turbulent fluid J. Fluid 
Mech. 355 329–58

	[13]	 Hinton F.L. 1991 Thermal confinement bifurcation and the l- 
to h-mode transition in tokamaks Phys. Fluids B 3 696–704

	[14]	 Ashourvan A. and Diamond P.H. 2016 How mesoscopic 
staircases condense to macroscopic barriers in confined 
plasma turbulence Phys. Rev. E 94 051202

	[15]	 Flynn M.R., Kasimov A.R., Nave J.-C., Rosales R.R. and 
Seibold B. 2009 Self-sustained nonlinear waves in traffic 
flow Phys. Rev. E 79 056113

	[16]	 Kosuga Y., Diamond P.H. and Gürcan Ö.D. 2013 How the 
propagation of heat-flux modulations triggers ×E B flow 
pattern formation Phys. Rev. Lett. 110 105002

	[17]	 Kosuga Y., Diamond P.H., Dif-Pradalier G. and Gürcan Ö.D. 
2014 ×E B shear pattern formation by radial propagation 
of heat flux wavesa Phys. Plasmas 21 055701

	[18]	 Itoh K. and Itoh S.-I. 2016 A structural bifurcation of 
transport in toroidal plasmas Plasma Phys. Control. Fusion 
58 045017

	[19]	 Ghendrih P. et al 2014 Phase space structures in gyrokinetic 
simulations of fusion plasma turbulence Eur. Phys. J. D 68 303

	[20]	 Dif-Pradalier G. et al 2015 Finding the elusive ×E B staircase 
in magnetized plasmas Phys. Rev. Lett. 114 085004

	[21]	 Hornung G., Dif-Pradalier G., Clairet F., Sarazin Y., Sabot R., 
Hennequin P. and Verdoolaege G. 2017 ×E B staircases 
and barrier permeability in magnetised plasmas  
Nucl. Fusion 57 014006

	[22]	 Helander P. and Sigmar D.J. 2005 Collisional Transport in 
Magnetized Plasmas (Cambridge: Cambridge University 
Press)

	[23]	 Dif-Pradalier G., Grandgirard V., Sarazin Y., Garbet X. 
and Ghendrih Ph. 2009 Interplay between gyrokinetic 
turbulence, flows, and collisions: Perspectives on transport 
and poloidal rotation Phys. Rev. Lett. 103 065002

	[24]	 Hinton F.L. and Rosenbluth M.N. 1999 Dynamics of 
axisymmetric ×E B and poloidal flows in tokamaks  
Plasma Phys. Control. Fusion 41 A653–62

	[25]	 Hennequin P. et al 2015 Comprehensive experimental study 
of plasma turbulence structure and its scaling with �ρ  42nd 
EPS Conf. (Lisbon, Portugal, 22–26 June 2016) (http://ocs. 
ciemat.es/EPS2015ABS/pdf/I1.102.pdf)

	[26]	 Dimits A.M. et al 2000 Comparisons and physics basis of 
tokamak transport models and turbulence simulations  
Phys. Plasmas 7 969–83

	[27]	 Dominski J., Brunner S., Aghdam S.K., Grler T., Jenko F. and 
Told D. 2012 Identifying the role of non-adiabatic passing 
electrons in itg/tem microturbulence by comparing fully 
kinetic and hybrid electron simulations J. Phys.: Conf. Ser. 
401 012006

	[28]	 Grandgirard V. et al 2007 Global full-f gyrokinetic simulations 
of plasma turbulence Plasma Phys. Control. Fusion 
49 B173–82

	[29]	 Grandgirard V. et al 2016 A 5d gyrokinetic full- global semi-
lagrangian code for flux-driven ion turbulence simulations 
Comput. Phys. Commun. 207 35–68

	[30]	 Rath F., Peeters A.G., Buchholz R., Grosshauser S.R., 
Migliano P., Weikl A. and Strintzi D. 2016 Comparison of 
gradient and flux driven gyro-kinetic turbulent transport 
Phys. Plasmas 23 052309

	[31]	 Lin Z., Hahm T.S., Lee W.W., Tang W.M. and Diamond P.H. 
1999 Effects of collisional zonal flow damping on turbulent 
transport Phys. Rev. Lett. 83 3645

	[32]	 Abiteboul J. et al 2013 Turbulent momentum transport in core 
tokamak plasmas and penetration of scrape-off layer flows 
Plasma Phys. Control. Fusion 55 074001

	[33]	 Idomura Y. and Nakata M. 2014 Plasma size and power 
scaling of ion temperature gradient driven turbulence  
Phys. Plasmas 21 020706

	[34]	 Norscini C. et al 2014 Turbulent transport close to marginal 
instability: role of the source driving the system out of 
equilibrium J. Phys.: Conf. Ser. 561 012013

	[35]	 Hinton F.L. and Hazeltine R.D. 1976 Theory of plasma 
transport in toroidal confinement systems Rev. Mod. Phys. 
48 239–308

	[36]	 Dif-Pradalier G. et al 2011 Neoclassical physics in full 
distribution function gyrokinetics Phys. Plasmas 18 062309

	[37]	 Estève D., Garbet X., Sarazin Y., Grandgirard V., Cartier-
Michaud T., Dif-Pradalier G., Ghendrih P., Latu G. and 
Norscini C. 2015 A multi-species collisional operator for 
full-f gyrokinetics Phys. Plasmas 22 122506

	[38]	 Nakata M. and Idomura Y. 2013 Plasma size and collisionality 
scaling of ion temperature gradient driven turbulence  
Nucl. Fusion 53 113039

	[39]	 Thom R. 1994 Structural Stability and Morphogenesis 
(Boulder, CO: Westview Press)

	[40]	 Diamond P.H., Lebedev V.B., Newman D.E., Carreras B.A., 
Hahm T.S., Tang W.M., Rewoldt G. and Avinash K. 
1997 Dynamics of transition to enhanced confinement 
in reversed magnetic shear discharges Phys. Rev. Lett. 
78 1472–5

	[41]	 Garbet X., Mantica P., Ryter F., Cordey G., Imbeaux F., 
Sozzi C., Manini A., Asp E., Parail V., Wolf R. and The 
JET EFDA Contributors 2004 Profile stiffness and global 
confinement Plasma Phys. Control. Fusion 46 1351

	[42]	 Lin Z., Ethier S., Hahm T.S. and Tang W.M. 2002 Size scaling 
of turbulent transport in magnetically confined plasmas 
Phys. Rev. Lett. 88 195004

	[43]	 Scott B.D., Biglari H., Terry P.W. and Diamond P.H. 1991 
Self-organization in sheared drift-wave turbulence  
Phys. Fluids B 3 51–67

	[44]	 Holland C. et al 2011 Advances in validating gyrokinetic 
turbulence models against l- and h-mode plasmas  
Phys. Plasmas 18 056113

	[45]	 Hahm T.S., Diamond P.H., Lin Z., Itoh K. and Itoh S.-I. 
2004 Turbulence spreading into the linearly stable zone 
and transport scaling Plasma Phys. Control. Fusion 
46 A323

	[46]	 Dif-Pradalier G., Caschera E., Ghendrih Ph., Asahi Y., 
Donnel P., Garbet X., Grandgirard V., Latu G., Narscini C. 
and Sarazin Y. 2017 Evidence for global edge-core 
interplay in fusion plasmas Plasma Fusion Res.  
12 1203012

	[47]	 Ghendrih Ph. et al 2012 Thermodynamical and microscopic 
properties of turbulent transport in the edge plasma J. 
Phys.: Conf. Ser. 401 012007

	[48]	 Idomura Y., Urano H., Aiba N. and Tokuda S. 2009 Study of 
ion turbulent transport and profile formations using global 
gyrokinetic full-f vlasov simulation Nucl. Fusion  
49 065029

	[49]	 Mantica P. et al 2009 Experimental study of the ion critical-
gradient length and stiffness level and the impact of rotation 
in the jet tokamak Phys. Rev. Lett. 102 175002

	[50]	 Sauter O. et al and TCV Team 2014 On the non-stiffness of 
edge transport in l-mode tokamak plasmas Phys. Plasmas 
21 055906

	[51]	 Hillesheim J.C., Delabie E., Meyer H., Maggi C.F., 
Meneses L., Poli E. and JET Contributors 2016 
Stationary zonal flows during the formation of the edge 
transport barrier in the jet tokamak Phys. Rev. Lett. 
116 065002

Nucl. Fusion 57 (2017) 066026

https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1088/0741-3335/47/5/R01
https://doi.org/10.1016/0011-7471(72)90074-5
https://doi.org/10.1016/0011-7471(72)90074-5
https://doi.org/10.1016/0011-7471(72)90074-5
https://doi.org/10.1017/S0022112097007970
https://doi.org/10.1017/S0022112097007970
https://doi.org/10.1017/S0022112097007970
https://doi.org/10.1063/1.859866
https://doi.org/10.1063/1.859866
https://doi.org/10.1063/1.859866
https://doi.org/10.1103/PhysRevE.94.051202
https://doi.org/10.1103/PhysRevE.94.051202
https://doi.org/10.1103/PhysRevE.79.056113
https://doi.org/10.1103/PhysRevE.79.056113
https://doi.org/10.1103/PhysRevLett.110.105002
https://doi.org/10.1103/PhysRevLett.110.105002
https://doi.org/10.1063/1.4872018
https://doi.org/10.1063/1.4872018
https://doi.org/10.1088/0741-3335/58/4/045017
https://doi.org/10.1088/0741-3335/58/4/045017
https://doi.org/10.1140/epjd/e2014-50210-8
https://doi.org/10.1140/epjd/e2014-50210-8
https://doi.org/10.1103/PhysRevLett.114.085004
https://doi.org/10.1103/PhysRevLett.114.085004
https://doi.org/10.1088/0029-5515/57/1/014006
https://doi.org/10.1088/0029-5515/57/1/014006
https://doi.org/10.1103/PhysRevLett.103.065002
https://doi.org/10.1103/PhysRevLett.103.065002
https://doi.org/10.1088/0741-3335/41/3A/059
https://doi.org/10.1088/0741-3335/41/3A/059
https://doi.org/10.1088/0741-3335/41/3A/059
http://ocs. ciemat.es/EPS2015ABS/pdf/I1.102.pdf
http://ocs. ciemat.es/EPS2015ABS/pdf/I1.102.pdf
https://doi.org/10.1063/1.873896
https://doi.org/10.1063/1.873896
https://doi.org/10.1063/1.873896
https://doi.org/10.1088/1742-6596/401/1/012006
https://doi.org/10.1088/1742-6596/401/1/012006
https://doi.org/10.1088/0741-3335/49/12B/S16
https://doi.org/10.1088/0741-3335/49/12B/S16
https://doi.org/10.1088/0741-3335/49/12B/S16
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1016/j.cpc.2016.05.007
https://doi.org/10.1063/1.4952621
https://doi.org/10.1063/1.4952621
https://doi.org/10.1103/PhysRevLett.83.3645
https://doi.org/10.1103/PhysRevLett.83.3645
https://doi.org/10.1088/0741-3335/55/7/074001
https://doi.org/10.1088/0741-3335/55/7/074001
https://doi.org/10.1063/1.4867379
https://doi.org/10.1063/1.4867379
https://doi.org/10.1088/1742-6596/561/1/012013
https://doi.org/10.1088/1742-6596/561/1/012013
https://doi.org/10.1103/RevModPhys.48.239
https://doi.org/10.1103/RevModPhys.48.239
https://doi.org/10.1103/RevModPhys.48.239
https://doi.org/10.1063/1.3592652
https://doi.org/10.1063/1.3592652
https://doi.org/10.1063/1.4937373
https://doi.org/10.1063/1.4937373
https://doi.org/10.1088/0029-5515/53/11/113039
https://doi.org/10.1088/0029-5515/53/11/113039
https://doi.org/10.1103/PhysRevLett.78.1472
https://doi.org/10.1103/PhysRevLett.78.1472
https://doi.org/10.1103/PhysRevLett.78.1472
https://doi.org/10.1088/0741-3335/46/9/002
https://doi.org/10.1088/0741-3335/46/9/002
https://doi.org/10.1103/PhysRevLett.88.195004
https://doi.org/10.1103/PhysRevLett.88.195004
https://doi.org/10.1063/1.859956
https://doi.org/10.1063/1.859956
https://doi.org/10.1063/1.859956
https://doi.org/10.1063/1.3574518
https://doi.org/10.1063/1.3574518
https://doi.org/10.1088/0741-3335/46/5A/036
https://doi.org/10.1088/0741-3335/46/5A/036
https://doi.org/10.1585/pfr.12.1203012
https://doi.org/10.1585/pfr.12.1203012
https://doi.org/10.1088/1742-6596/401/1/012007
https://doi.org/10.1088/1742-6596/401/1/012007
https://doi.org/10.1088/0029-5515/49/6/065029
https://doi.org/10.1088/0029-5515/49/6/065029
https://doi.org/10.1103/PhysRevLett.102.175002
https://doi.org/10.1103/PhysRevLett.102.175002
https://doi.org/10.1063/1.4876612
https://doi.org/10.1063/1.4876612
https://doi.org/10.1103/PhysRevLett.116.065002
https://doi.org/10.1103/PhysRevLett.116.065002


G. Dif-Pradalier et al

20

	[52]	 Rinne H 2008 The Weibull Distribution (London: Chapman 
and Hall)

	[53]	 Ghendrih Ph., Ciraolo G., Dif-Pradalier G., Norscini C., 
Sarazin Y., Abiteboul J., Cartier-Michaud T., Garbet X., 
Grandgirard V. and Strugarek A. 2014 Fusion plasma 
turbulence described by modified sandpile dynamics  
Eur. Phys. J. E 37

	[54]	 Biglari H.P., Diamond H. and Terry P.W. 1990 Influence of 
sheared poloidal rotation on edge turbulence Phys. Plasmas 
B 2 1

	[55]	 Waltz R.E. and Kerbel G.D. 1995 Advances in the simulation 
of toroidal gyro-landau fluid model turbulence  
Phys. Plasmas 2 2408–16

	[56]	 Hahm T.S. and Burrell K.H. 1996 ×E B flow shear effects 
on radial correlation length of turbulence and gyroradius 
scaling of confinement Phys. Plasmas 3 427–9

	[57]	 Garbet X. et al and JET EFDA Contributors 2003  
Micro-stability and transport modelling of internal  
transport barriers on jet Nucl. Fusion 43 975

	[58]	 Waltz R.E., Austin M.E., Burrell K.H. and Candy J. 2006 
Gyrokinetic simulations of off-axis minimum-q profile 
corrugations Phys. Plasmas 13 052301

	[59]	 Merryfield W.J. 2000 Origin of thermohaline staircases  
J. Phys. Oceanogr. 30 1046–68

	[60]	 Dritschel D.G. and McIntyre M.E. 2008 Multiple jets as  
PV staircases: the phillips effect and the resilience of  
eddy-transport barriers J. Atmos. Sci. 65 855–74

	[61]	 Marcus P.S. and Shetty S. 2011 Jupiter’s zonal winds: are they 
bands of homogenized potential vorticity organized as a 
monotonic staircase? Phil. Trans. R. Soc. A 369 771–95

	[62]	 Vallis G.K. 2006 Atmospheric and Oceanic Fluid Dynamics 
(Cambridge: Cambridge University Press)

	[63]	 Kim E.J. and Diamond P.H. 2003 Zonal flows and transient 
dynamics of the L–H transition Phys. Rev. Lett. 90 185006

	[64]	 Garbet X., Sarazin Y., Beyer P., Ghendrih Ph., Waltz R.E., 
Ottaviani M. and Benkadda S. 1999 Flux driven turbulence 
in tokamaks Nucl. Fusion 39 2063–8

	[65]	 Garbet X., Idomura Y., Villard L. and Watanabe T.H. 2010 
Gyrokinetic simulations of turbulent transport Nucl. Fusion 
50 043002

	[66]	 McMillan B.F., Jolliet S., Tran T.M., Villard L., Bottino A. 
and Angelino P. 2008 Long global gyrokinetic simulations: 
source terms and particle noise control Phys. Plasmas 
15 052308

Nucl. Fusion 57 (2017) 066026

https://doi.org/10.1140/epje/i2014-14027-0
https://doi.org/10.1063/1.859529
https://doi.org/10.1063/1.859529
https://doi.org/10.1063/1.871264
https://doi.org/10.1063/1.871264
https://doi.org/10.1063/1.871264
https://doi.org/10.1063/1.871814
https://doi.org/10.1063/1.871814
https://doi.org/10.1063/1.871814
https://doi.org/10.1088/0029-5515/43/9/323
https://doi.org/10.1088/0029-5515/43/9/323
https://doi.org/10.1063/1.2195418
https://doi.org/10.1063/1.2195418
https://doi.org/10.1175/1520-0485(2000)030<1046:OOTS>2.0.CO;2
https://doi.org/10.1175/1520-0485(2000)030<1046:OOTS>2.0.CO;2
https://doi.org/10.1175/1520-0485(2000)030<1046:OOTS>2.0.CO;2
https://doi.org/10.1175/2007JAS2227.1
https://doi.org/10.1175/2007JAS2227.1
https://doi.org/10.1175/2007JAS2227.1
https://doi.org/10.1098/rsta.2010.0299
https://doi.org/10.1098/rsta.2010.0299
https://doi.org/10.1098/rsta.2010.0299
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1103/PhysRevLett.90.185006
https://doi.org/10.1088/0029-5515/39/11Y/354
https://doi.org/10.1088/0029-5515/39/11Y/354
https://doi.org/10.1088/0029-5515/39/11Y/354
https://doi.org/10.1088/0029-5515/50/4/043002
https://doi.org/10.1088/0029-5515/50/4/043002
https://doi.org/10.1063/1.2921792
https://doi.org/10.1063/1.2921792

