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Abstract—The integration of memristive nanodevices within
transistor-based electronic systems offers the potential for com-
puting structures smaller, lower power and cheaper than tra-
ditional high-performance systems. Among emerging memris-
tive technologies, a novel device based on organic materials
distinguishes itself, in that it can feature several threshold
voltages on the same die, and possesses unipolar behavior. In this
work, we highlight that these two features can be beneficial for
neural network-inspired learning systems. An on-chip supervised
learning method for hybrid memristors / CMOS systems – an
analogue synaptic array paired with a hybrid learning cell – is
extended to the case of this novel organic memristor device. The
organic device can be trained with only one pulse per row (two
for the entire array) per presentation of input- as compared
to four for a bipolar memristor array. The device also works
universally- in both the synaptic grid as well as learning cell-
paving the way to single die integration. The proposed scheme
learns successfully, even while incorporating non-ideal circuit
phenomena such as a wide range of parasitic wire resistances and
associated sneak paths. These encouraging first results suggest
that these multi-threshold, unipolar organic memristive devices
are a useful species for inclusion in adaptive next generation
electronic systems.

Index Terms—memristor, organic memristor, neural network,
nanoscale crossbar, on-chip learning, supervised learning

I. INTRODUCTION

Memristor arrays may enable new power-saving frontiers

in computing, as they require zero power in standby mode.

Moreover, since memristor elements are reminiscent of bio-

logical synapses, a natural opportunity exists for them to store

the synaptic weights of neural network structures at ultrahigh

density [1], [2]. The transfer of data between physically

separate memory and computing cells could be obviated in

such a unified, reconfigurable structure. Yet wiring schemes

at the nano-scale come with trade-offs, in particular stateful

access issues and sneak paths [3]. These issues highlight

the importance of hybrid approaches that combine memristor

arrays with partner CMOS access device cells or layers [4].

These arrays have the capacity to be trained rather than di-

rectly programmed, using learning rules. Several technological

options have been considered in this context. The present paper

focuses on a recently developed organic memristor device. Pre-

viously considered as nonvolatile memories, organic switching

media have recently come under consideration as candidates in

adaptive circuits [5], [6]. In this context, their strengths include

rich analog behavior with multi-level read/ write operation,

and highly tunable Ron / Roff ratios and retention times.

From the fabrication perspective, the combination of nano-

imprint lithography and electro-grafted active polymer layers

scales readily below 25 nm feature size at high throughput,

low cost, and already achieved 3D integration; when roll-

to-roll printed on a flexible substrate, this may offer a path

towards adaptive embedded electronics and sensors [7], [8].

We show that our particular organic memristor device- which

follows a unipolar, multi-threshold conductance evolution with

no required compliance current- can elegantly implement such

an adaptive learning system.

Several learning approaches have been considered with

memristive devices, including the bioinspired spike-timing

dependent plasticity (STDP) [2], [9], [10] and the algorithm of

back-propagation from artifical neural networks [11]. Here, we

focus on the single-layer perceptron, a canonical supervised

neural network, capable of learning linearly-separable logic

functions [12]. This allows us to assess the lower level ques-

tions relating to using organic memristors as synapses. Ad-

ditionally, small perceptron blocks trained with the Widrow-

Hoff’s Delta rule [13] might act as “Neural Logic Blocks”

(NLBs) the equivalent of configurable logic blocks (CLBs) in

reinvented Field Programmable Gate Arrays (FPGAs) capable

of harnessing the benefits of the memristive synaptic array

approach [14]. Recent work has compacted the learning cell

further with the use of memristive elements in addition to

CMOS [15], [16]. It has been shown already on other tech-

nologies that successful on-chip learning is possible with the

perceptron [17]–[19]. Yet our device- a unipolar, two-threshold

model- trains differently than the supervised learning scheme

required for past devices. Notably, we find that only one

pulse per cycle per row is required; in the case of 2 input

logic functions, 4 for an epoch. This compares favorably to

the bipolar scheme of 4 (16). A novel scheme using analog

instead of binary latches that allows all-organic devices is

also introduced; this could improve integration of this system

onto a single die. Nevertheless, both cases are considered and

compared for completeness. Transient electrical simulations

confirm that both organic memristor on-chip schemes suc-

cessfully learn several linearly separable Boolean functions

simultaneously, and are remarkably resistant to sneak paths at

a wide range of parasitic wire resistances.
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II. NANODEVICE CHARACTERIZATION AND MODELING

A. Experimental Details

The organic memristor studied herein has as its active layer

a polymeric film electro-grafted in between metal contacts; an

applied current implements memristive behavior as conductive

filaments are created or destroyed between the two electrodes

above or below given critical thresholds. The electro-chemistry

of the polymer used as well as the metal type and work

function of the electrodes determine the respective thresholds

and conductance evolution graph. Chemically, the switching

media is a thin-film polymer of tris-bipyridine iron complexes

(TBFe), where memory effects emerge as a dynamic redox

system [20], [21]. Each molecular complex Fe(bpy)3
2+ con-

tains three bi-pyridine ligands surrounding a central iron core

and three diazonium functions that allow for the covalent

binding between molecular complexes and between the com-

plexes and the electrodes. As described in greater detail in

[21], planar junctions were fabricated by depositing robust thin

films (height ≈ 10nm) of these complexes by electro-grafting

into the gap between gold electrodes (gap size ≈ 30nm)

on a SiO2 insulating substrate. Altogether, this robust thin

film consists of about 6-7 molecules in the vertical direction

and 20 molecules along the gap direction. TBFe cations are

counterbalanced by PF6- anions. Upon bias application, the

electrochemical characteristics of the grafted molecular layer

allows for a dynamic filamentary behavior as conductive paths

are formed or destroyed. A schematic of the individual TBFe

complexes surrounded by negative anions and their connection

through both "azo" bridges and carbon bonds is visible in

Figure 1 panel B, while in panel C a schematic evolution

of conductive filaments is presented. We hypothesize that the

change in conductivity within filaments arises from reversible

charge separation between the iron core, the ligands and the

azo-bridges. At the bottom most image roughly corresponding

to Goff, some TBFe complexes connect but none provide a

clear path between the electrodes; some parts of the films form

conductive domains but none provide a effective path between

the electrodes; in the intermediate states, the domains develop;

finally, in the top-most state corresponding to Gon, many

conductive filaments exist between the two electrodes. A high

voltage reversibly disrupts these conductive filaments. Note

that the precise elucidation of the electrochemical switching

mechanism is outside the scope of this study and will be

presented separately.

Electrical characterization reveals two distinct voltage

thresholds and three operating modes. In the range of V = 0V
to V = 3V , the device’s conductance is stable and does not

change (READ mode). Above V = 3V (Vth1) and below

V = 5V (Vth2), the conductance increases as a product of

the applied bias (SET/WRITE mode). Finally, above Vth2,

the device’s conductance decreases (RESET/ERASE mode).

These thresholds are visible in the panel A of Figure 1; note

that this depicts a forming cycle (first application of current,

hence the change in conductance within READ. Conductance

evolution is symmetrical (the memristor is unipolar), so that

Fig. 1. A) Electrical characterization results for a single TBFe nanodevice
in the positive voltage domain. Behavior in the negative voltage domain
is symmetrical (flipped across the y-axis). B) Schematic of molecules that
comprise the thin-film C) Filamentary development within the thin-film as
current is applied between the two electrodes; conductive areas shaded in
green. Source: [20]

Fig. 2. Current as a function of voltage at the forming stage, measured for
different device size (inter-electrode distance L). Source: [20]

negative and positive biases applied in the given ranges have

the same effect. This behavior is inverse of most other unipolar

devices, where the Erase mode is at lower voltages than the

Set. Importantly, our device does not require a compliance

current in the ’Set’ mode, which is a decisive asset from

a circuit point of view. Note that the numerical values of

the thresholds just referenced are not singular; tunability

exists as a function of the selected molecular compounds,

grafted parameters and device geometry as shown for example
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for the initial (forming) step in Figure 2. On-chip learning

tasks benefit from such a modularity in thresholds. Values of

Vth1=1.2V and Vth2=2.5V were chosen for the analog array

memristor; a larger device is used in the learning cell, and its

threshold values Vth1 = 3.3V , Vth2 = 4.8V , closely correspond

to the experimental values from Figure 1 A.

B. Mapping Conductance Evolution to a Compact Model

In a simple bipolar memristor model, conductance does not

vary when the device is exposed to a given voltage value

in between the thresholds (below the positive threshold Vth
and yet above −Vth); else, it increments at a voltage above

the positive threshold or decrements at a voltage below the

negative threshold. A unipolar two-threshold device such as

the organic TBFe species evolves its conductance by a notably

different scheme. When a given voltage value applied at time

t: V (t) = VM has an absolute value greater than first threshold

Vth1 and smaller than the second threshold Vth2 an increment

to conductance occurs (WRITE mode); when its absolute value

is greater than Vth2 a decrement occurs (ERASE); and when

its absolute value is less than Vth1, no conductance change

occurs (READ). Mathematically:

dG

dt
=

⎧
⎪⎨

⎪⎩

Vth2 > |VM | > Vth1 α(|VM − Vth1|)
|VM | > Vth2 −β(|VM − Vth2)

|VM | < Vth1 0.

(1)

Constants |α| and |β| are adjusted to match experimental

results with the organic memristor; integrating over a small

time window, 10−8s for instance, is equivalent to a positive

conductance change of 4×10−8S in the write mode. Following

a linear approximation, absolute voltage values at the top of

each range produce maximal effect. While a maximal conduc-

tance increment voltage value is given at the absolute voltage

value just below |Vth2|, the maximum value for decrement

is given at an absolute voltage value just about 0.5V above

|Vth2|, and saturates at this maximum rather than linearly

scaling at even higher voltages. Based on these analytical

insights and with additional benchmarking for experimental

values (Goff=150nS, Gon= 100μS), a simple model for the

unipolar organic memristor was implemented in verilog-A

for electrical simulations. This model captures the essential

features observed in experiments without requiring intense

computations. It is used for all simulations of our unipolar

organic memristors in the following sections.

III. IMPLEMENTATION IN NEURAL CROSSBAR SCHEME

A. Learning Principles

Taking the perceptron as a starting point, we wire a crossbar

such that each row (neuron) can learn a logically separable

function given an arbitrary number of logic inputs (bits). This

can be achieved in a neural crossbar scheme, which operates

as follows: for n logic inputs, 2n + 2 physical wires are

required, as each input requires a negative and positive wire

to separate states along with separate negative and positive

bias lines to configure the entire row’s weights. A given input

Fig. 3. Schematic for an all-unipolar neural crossbar setup (all constituent
memristors follow conductance evolution graph in inset). Each row takes a
separate programming pulse per cycle so SWprg is now SWPrgJ for each row.
No input polarity Ip. Parasitic resistances are materialized by the R and Rin

variables. Adapted from [22]

Xi, then, will have two nanowires (Xi+, Xi−) at whose

intersection with row j, two memristors (Mij+, Mij−) will

encode a unique synaptic weight pairs as a difference function

(Gij+−Gij−) for all input/neuron combinations in the entire

array, as follows:

Wij = Kj(Gij+ −Gij−) (2)

where Kj is a normalizing factor for that row. This is visual-

ized in Figure 3 as blue, red and green pairs corresponding to

Input 2, Input 1, and Bias respectively. Summing the weights

for all pairs along the row produces a post-synaptic potential

Vj ; once inverted at a simple neuron inverter with ground as

the threshold, we obtain the final output state Oj which is high

(+1) or low (-1):

Vjb = Oj = sign(Vj) (3)

When the output state Oj is the same as the target function

Yj that we wish to converge to, there is no error; but when

the sign is different, configuration is required to increase the

weights along the row appropriately. The subset of the truth

table for all combinations of sign on the input Xi, sign of

initial output state Vjb = Oj , and sign of target function Yj in

which Yj �= Oj , produces the four active configuration steps

given in the following table:

Xi Yj Oj ΔWij Step

-1 -1 1 1 S1
-1 1 -1 -1 S2
1 -1 1 -1 S3
1 1 -1 1 S4

TABLE I
ACTIVE PROGRAMMING STEPS THAT SOLVE THE DELTA RULE.

As shown above, these four active configurations can im-

plement a Boolean version of Widrow-Hoff’s ’Delta’ rule:

ΔWij = αXi(Yj − Vj) (4)
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Fig. 4. A): reset, configuration, and programming scheme for bipolar devices. Altogether, 3 gate pulses, one very long gate programming pulse during which
4 individual pulses sent, and a pulse to invert inputs is required. B): hybrid approach (unipolar synapse, bipolar neuron latch) with only 4 smaller gate voltage
pulses and one programming pulse required. C): all-organic scheme. It requires only three gate pulses, one programming pulse, but a slightly longer gate
voltage and larger magnitude reset pulse.

Explicitly, all successful steps implement negative or positive

increments (where α = 1) towards the correct configuration.

The steps lower conductances on a differential memristor

pair if they are too high, or raise them if they are too low.

In practice, these configurations are achieved through the

application of programming pulses Vp+ and Vp− which are

passed from the learning cell back along post-synaptic line.

B. Programming Pulse Schemes

Two memristor latches in combination with a state machine

can provide all the stateful logic necessary to implement all

active states by sending the appropriate pulses through the

signal lines, S+ and S−. In the bipolar scheme, these lines

control two anti-parallel memristor latches, while the other

four lines, SWVj, SWPR, SWRS and SWYj control the gate

voltages at each of the four control transistors needed to

connect or disconnect certain signal lines from each other

at various moments in the learning cycle. S+ and S− feed

into a line of memristor ’latches’ A1..Aj , B1..Bj respectively,

where each device is connected to the appropriate output line

Oj . By connecting this line to Vjb to get the output state

Vj and then target Yj sequentially, each latch is passively

programmed so a programming pulse sent through line S+
will reach all rows that are low while Yj is high (S2,S4) and

a pulse sent through S+ will reach the opposite (S1,S3) [16].

This scheme’s temporal implementation is visible in Figure 4

Pane A, along with the corresponding operation of the gate

voltages. To achieve a proper implementation of the delta rule,

this sequence is repeated in cycles of 1μs; depending on the

size of the logic function learned, this is 2n cycles per epoch,

or full presentation of the truth table; here, 1 epoch is 4μs.

Epochs repeat until the function is learned.

However, the bipolar programming method can not be

readily extended to a two-threshold unipolar device. Now,

the proper voltage level for programming pulses (Vp+, Vp−)

must sit at either second threshold (Vth2 or −Vth2), since

slight changes in either direction can induce an increment or

decrement. The polarity of the pulse must follow the sign

of the expected output for the row or function, Yj , with

the condition that Vp+ = −Vth2 and Vp− = +Vth2 (since

conductance drops along the second threshold) [22]. Given

this, a single pulse fed simultaneously to signal lines S+ and

S− can then implement learning with only one programming

pulse per cycle.

Explicitly, if Yj > 0, Vp− satisfies both S2 decrementing

conductance and S4 incrementing it depending on whether

the input line is low or high respectively; if Yj < 0, then Vp+
implements S3 decrementing or S1 incrementing conductance

when input is high or low respectively. This scheme is visible

in Figure 4 panes B and C, where the yellow bordered rows

show the appropriate case (only one pulse is sent of the two

options, (Vp+, Vp−). For many rows learning simultaneously

where both types of errors exist, a negative and positive pulse

can be applied sequentially to all rows; in this case, the gate

voltage level for each of the programming transistors SWPrgJ

ensures that each row only gets the pulse it needs. Thus, at

scale this approach requires two separate pulses per cycle (8

per epoch) yet only one is still sufficient to program each row.

This is more economical than the bipolar approach, which not

only requires four pulses but maintains a separate line for the

momentary inversion of all inputs to program successfully.

A novel scheme for unipolar device integration- in which

the same organic device class serves as analog array and latch-

is introduced in Pane C. As pictured in Figure 3, in this case

anti-parallelism is no longer required- the devices are arranged

exactly like in the normal analog array. As in the other cases

a large pulse is needed to unconditionally open the latch; here

it is the value just below Vth2 = 4.8V . Moreover, due to the
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analog nature of the latches, it was found that a large negative

pulse V = 5.5V was needed just before this to properly reset

states for each cycle due to gradually climbing conductance

levels. While conditionally closing and conditionally opening

the unipolar device latches is more or less synonymous in

polarity with the earlier approach, it requires the use of pulses

at both thresholds in order to function properly. Since the

programming pulse for the row devices must also sit at their

own second threshold voltage, the first threshold |Vth1-Latch| of

the latch must be greater than |Vth2-Array| so as to keep the

analog latch safely in its configured state while these pulses

are applied at the end of each cycle. This requirement has

motivated the use of two differently sized organic devices, a

possibility offered by organic memristors.

Finally, Pane B represents a hybrid case where the same

anti-parallel binary latches are used as in all past on-chip

learning papers. This middle case was considered as a contrast

to the all unipolar case to see if an analog latch adversely

affects performance; considering the high reset pulse values

needed in the all unipolar scheme (two pulses V = 5.5V ,

V1 = 4.7V required each cycle, compared to one of V = 4.0V
for the bipolar latch with Vth = 3.7V ), it also would require

the least energy expenditure per cycle of the three.

IV. LEARNING PERFORMANCE

In order to verify the validity of these neural crossbar ar-

chitectures, extensive transient simulations were performed on

the Cadence platform. CMOS elements were simulated using a

commercial 45nm low power design kit. Transient simulations

reveal that both unipolar programming pulse schemes B and C

introduced do learn successfully. Learning takes several epochs

(presentations of the target) to complete; it is finished around

19μs, or just before the end of the entire learning period in

both cases. For both hybrid and all-organic models it was seen

that final conductance values stay low overall, evolving from

150ns to somewhere in between 1μS − 10μS , one to two

orders of magnitude change but no where near the Gmax value.

Next we evaluated the ability of hybrid and all-organic neu-

ral crossbars alike to properly learn 8 functions simultaneously

over a wide variety of parasitic line resistances. Since metallic

nano-wire resistances can vary within orders of magnitude

depending on diameter, length, grain boundaries, scattering,

and contact resistance issues, resilience to non-negligible wire

resistance is an interesting topic for further exploration in

nano-device array design. The 8 functions chosen (in the left of

Panel A, Figure 6) are the 8 non-trivial and logically separable

options amongst 2-bit functions.

At lower wire resistances (for R < 5kΩ), all 8 functions are

learned simultaneously in both systems without any incident.

As depicted in Figure 6 B, above 5kΩ, the first breakdown

values are obtained with the NOR function in both systems.

Between 5kΩ to 20kΩ, functions drop off sequentially, with

2 or 3 still persisting in correct output far beyond the ceiling

value of 20kΩ. Overall, neither hybrid nor all organic perform

significantly better than the other- the lines closely resemble

each other despite some deviations. This indicates that the

Fig. 5. A) Waveforms depicting successful learning of the AND function in
the Hybrid (organic unipolar memristors, binary latch) case; target, output, 6
analog memristors being trained, and latches are depicted from top to bottom.
B) Equivalent waveforms for the All-unipolar organic memristor learning case.
As visible Latch behavior is now also analog.

single die scheme (moving from the previous binary latch

design to an analog latch design) entails no major trade-off

in learning performance.

Overall, both systems are very resilient to wire resistances.

This is due to the fact that in all simulations initial conductance

values are at Goff. As the final values exist within the range

1μS−10μS, this implies that even the most open memristors

are still relatively resistive as compared to the wires. Yet,

within the same order of magnitude (eg Rmem = 100kΩ while

R = 15kΩ ), the voltage pulse needed to switch certain critical

memristor devices may be attenuated enough that a threshold

is no longer reached and the increments needed to implement

supervised learning do not occur [14].

As seen in in Figure 6 C, some functions (eg NOR) break

down early while others (eg NAND and IMP) do not. Interest-

ingly, functions that are inverse of each other (IMP, N-IMP;

CONV, N-CONV) are the ones that survive to high values of

R. There is an underlying pattern: in the all-organic system

functions with 3 highs (1) and one low (0) survive longer- the

opposite is true for the hybrid system (functions with 3 low and

1 high survive longer). Close inspection of latch values reveals

an explanation: for the analog (organic) devices, conductance

varies each time but is overall higher (mean, Gon = 18μS,

Goff = 1.5μS), than the simple binary latch values, which

deterministically switch between G = 10μS and G = 100nS,

as visible in Figure 5.
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Fig. 6. A) All possible 2-bit functions. The 8 functions in the left box are
the non-obvious ones on which the system is trained. B) Rate of success at
learning these 8 functions for each variant system- hybrid and organic-, as a
function of horizontal and vertical nanowire resistance R ( 40 parametric
simulations), while Rin at the input wires is held constant at 500Ω. C)
’Breakdown’ value in R = kΩ: the given wire resistance at which the output
for one of the four cases of the truth table is incorrect.

V. CONCLUSION

In this paper we showed that a unipolar organic memristor

device with multiple thresholds offers advantages for on-chip

supervised learning. These advantages stem from the sym-

metry of conductance evolution, and reduce the complexity

of programming operations to one pulse per cycle for a

single function learned, and 2 per cycle in array. Moreover,

an all-unipolar, single die design has been introduced and

confirmed to learn successfully in a non-ideal circuit with

no significant tradeoffs relative to earlier architectures. While

an on-chip learning scheme previously proposed for bipolar

devices has been extended to new working frontiers, a head-

to-head comparison between this scheme and other learning

algorithms such as backpropagation and STDP using the same

device model could be fruitful. Additionally, while our organic

devices proved extremely resilient to parasitics and sneak

paths, it remains unclear if this is an intrinsic advantage or

an extrinsic effect due to smaller crossbar model systems

and low conductances. Providing larger organic memristor

crossbars with a richer learning task such as image recognition

in the face of device variation and random initial conductances

should clarify. If these simulations are similarly robust, then

a hardware demonstrator will provide the ultimate test.
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