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This work aims at reconsidering several interpretations coexisting in the recent literature concerning
nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene
carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature
dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism
responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us
[J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005)], where the growth of nonlinear susceptibilities
is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then
review several complementary and/or alternative models and show that the notion of cooperatively rearranging
glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments,
which should deepen our understanding of glasses.
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I. INTRODUCTION

Glassy materials represent a very wide class of everyday
materials ranging from molecular glasses to granular systems
and from polymers to colloids and foams. Yet the microscopic
mechanisms leading to the spectacular increase of their relax-
ation time with temperature or density are still controversial.
In particular, the existence of an underlying thermodynamic
critical point, which would explain why rigidity develops in
these systems, is a hotly debated issue [1].

In the past 15 years, however, some consensus has emerged
about the existence of a growing length scale accompanying
the slowing down of the dynamics of these various materials.
Although anticipated by Adam and Gibbs [2] more than
50 years ago, the status of this length scale has remained
elusive for a long time. For example, it was often argued that
within the mode-coupling theory of glasses the dynamical
arrest phenomena are purely local [3]. However, quite the
contrary was shown in [4–6]. The random first-order transition
(RFOT) theory provides a consistent framework in which to
understand the intuition of Adam and Gibbs: A supercooled
liquid should be thought of as a mosaic of locally rigid
but amorphous regions, the size of which increases as the
temperature is reduced [7]. The necessity of a growing length
scale in super-Arrhenius systems, an argument put forward
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by many, was finally proved by Montanari and Semerjian in
[8]. These theoretical breakthroughs have spurred a flurry of
experimental and numerical attempts to elicit this length scale,
directly or indirectly (see, e.g., [9]).

Among the different investigation tools, nonlinear effects
are especially interesting: The nonlinear susceptibility is
expected to have very different behavior when a genuine
amorphous order sets in, as within RFOT theory, in contrast
to the case of purely dynamical scenarios, such as that
provided by kinetically constrained models (KCMs) [10], for
which nontrivial thermodynamic correlations are absent. In
particular, based on an analogy with spin glasses where the
third-order static susceptibility χ3 is known to diverge at the
transition, two of us [Bouchaud and Biroli (BB)] proposed in
[11] that the nonlinear ac susceptibility of glasses should peak
at a frequency of the order of the inverse relaxation time, with
a peak height that increases as the number Ncorr of molecules
collectively involved in typical relaxation events. In the spirit
of the fluctuation-response theorem, the increase of the peak
of χ3 reveals the growth of quasistatic amorphous correlations
in the system [see Eqs. (4) and (7) below].

The predictions of BB have been broadly confirmed using
nonlinear dielectric response in several experimental setups,
first in glycerol [12], then in several other glass formers [13]
and in plastic crystals [14], as well as for various pressures
[15]. In all these studies, the temperature behavior of Ncorr

(inferred from the peak of χ3) is in reasonable agreement
with other, more indirect evidence [13–17]. These experiments
have recently been extended to the fifth-order nonlinear
susceptibility χ5 in glycerol and propylene carbonate [18] and
are again fully consistent with BB’s picture. In fact, the growth
of the peak of χ5 as the temperature is reduced is stronger
than that of χ3 and provides strong qualitative and quantitative
evidence for the existence of an underlying critical point that
drives the physics of supercooled liquids [18]. We also note
that the nonlinear mechanical response has also been studied
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in colloids [19,20], extending BB’s results [11,21] to that case
as well.

However, alternative theoretical interpretations have re-
cently been proposed [22,23], invoking other effects to explain
the nonlinear effects, seemingly unrelated to the growth of
Ncorr. In order to clarify this issue, in the present paper we
present additional experimental observations (Sec. II). We
show that all three independent cubic ac susceptibilities have
very similar frequency and temperature dependences, and their
phases are related to one another. As we will show (Sec. III),
this is very natural if the physical origin is the same and due
to the increase of Ncorr, but it is instead at odds with simple
phenomenological pictures. Furthermore, we show (Sec. IV)
that some of the alternative arguments can only explain the
experimental results if some cooperative effects are present, as
assumed by BB.

II. THREE KINDS OF χ3 AND THEIR
EMPIRICAL BEHAVIOR

A. Setup and definitions

We first recall the general formalism defining the third-order
susceptibilities by introducing the time-dependent kernel χ3,
relating polarization and electric field as follows:

P (t) − Plin(t)

ε0
=

∫∫∫
χ3(t − t ′1,t − t ′2,t − t ′3)

×E(t ′1)E(t ′2)E(t ′3)dt ′1dt ′2dt ′3 + · · · , (1)

where higher-order terms in the field are not written because
they correspond to higher-order susceptibilities and where ε0

is the vacuum dielectric constant. Note that the threefold con-
volution product contained in Eq. (1) is a simple generalization
of the standard onefold convolution product used to express the
linear response. In purely ac experiments where the magnitude
of the oscillating field Eac (of angular frequency ω = 2πf ) is
varied, two cubic responses arise, at frequencies ω and 3ω.
If a static field Est is superimposed on top of Eac, new cubic
responses arise, for both even and odd harmonics. By setting
δP ≡ P (Eac,Est) − Plin(Eac,Est) and keeping only the odd
harmonics, we get

δP

ε0
= 3

4

∣∣χ (1)
3

∣∣E3
ac cos

(
ωt − δ

(1)
3

)
+ 1

4

∣∣χ (3)
3

∣∣E3
ac cos

(
3ωt − δ

(3)
3

)
+ 3

∣∣χ (1)
2,1

∣∣E2
stEac cos

(
ωt − δ

(1)
2,1

)
, (2)

where we have used the threefold Fourier transform of the
kernel introduced in Eq. (1) and defined∣∣χ (1)

3

∣∣ exp
( − iδ

(1)
3

)
:= χ3(−ω,ω,ω),∣∣χ (3)

3

∣∣ exp
( − iδ

(3)
3

)
:= χ3(ω,ω,ω),∣∣χ (1)

2,1

∣∣ exp
( − iδ

(1)
2,1

)
:= χ3(0,0,ω). (3)

For any cubic susceptibility, generically denoted by χ3, the cor-
responding dimensionless cubic susceptibility X3 is defined as

X3 = kBT

ε0�χ2
1 a3

χ3, (4)

where �χ1 is the dielectric strength, i.e., �χ1 =
χlin(0) − χlin(∞), where χlin(0) and χlin(∞) are, respectively,

the linear susceptibility at zero and infinite frequency. Note that
X3 has the great advantage of being both dimensionless and
independent of the field amplitude. Similar quantities can be
defined for dimensionless fifth-order responses, as explained
in Ref. [18].

Considering Eq. (1), one anticipates theoretically that the
three cubic susceptibilities are closely related, since they all
originate from the same pulse response function. However,
it was claimed in Refs. [22,23] that the several unrelated
effects contributing to the three X3’s could be singled out
by a separate measurement of each cubic susceptibility. In
this work we unveil the deep similarities existing between
X

(1)
3 , X

(3)
3 , and X

(1)
2,1 that we have experimentally determined

in glycerol and propylene carbonate, which are archetypical
glass formers. The experiments were done in the Augsburg and
Saclay setups described elsewhere [13,18,24]. For each data
point of Figs. 1 and 2, the field was varied to ensure that the
data obey Eq. (2); for the specific case of X

(1)
2;1 the ac field Eac

was kept well below the static field Est. We briefly emphasize
that the nonlinear effects reported here have been shown to be
free of exogeneous effects: The global homogeneous heating
of the samples by the dielectric energy dissipated by the
application of the strong ac field Eac was shown to be fully
negligible for X

(3)
3 as long as the inverse of the relaxation

time fα � 1 kHz (see Ref. [25]). These homogeneous heating
effects were kept negligible in X

(1)
3 (to which they contribute

much more) by keeping fα below 10 Hz for the Saclay setup
[24] or by severely limiting the number n of periods during
which the electric field is applied (Augsburg setup; see [26]).
The contribution of electrostriction was demonstrated to be
safely negligible in Ref. [24], both using theoretical estimates
and by showing that changing the geometry of spacers does
not affect X

(3)
3 . As for the ∼0.5% ionic impurities present in

both liquids, we briefly explain that they have a negligible
role, except at zero frequency where it might explain why the
three X3’s are not strictly equal, contrarily to what is expected
on general grounds. Let us recall that on the one hand it
was shown that ion heating contribution is fully negligible
in X

(1)
2,1 (see the Appendix of Ref. [27]) and, on the other

hand, it is well known that ions affect the linear response χlin

at very low frequencies (say, f/fα � 0.05): This yields an
upturn of the out-of-phase linear response χ ′′

lin, which diverges
as 1/ω instead of vanishing as ω in an ideally pure liquid
containing only molecular dipoles. This is why we do not push
our nonlinear measurements below 0.01fα , because at lower
frequencies the nonlinear response is likely to be dominated
by the ion contribution. In the same spirit, when measuring
X

(1)
2;1, the static field was applied during a finite amount of

time (longer than 1/ω) and its direction was systematically
reversed to minimize any ionic migration effect. Finally, to
avoid mixing the cubic response of molecular dipoles with
that of ions, we have not measured the cubic response obtained
just by using a pure static field. Therefore, we do not reach the
zero-frequency limit where, on general grounds, one expects
all the cubic susceptibilities to be equal. We think this is the
reason why in Figs. 1 and 2 the three cubic susceptibilities are
still slightly different even at the lowest frequencies that we
have investigated.
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FIG. 1. Comparison of three cubic dimensionless susceptibilities
of glycerol recorded at the same temperature with the same sam-
ples. The field amplitude is varied in [2 MV/m; 5 MV/m] (Saclay
setup [24]). (a) Amplitudes and (b) phases are shown by the symbols;
lines are just a guide for the eyes. Here X

(1)
3 and X

(3)
3 correspond to

pure ac experiments of the first- and third-harmonic cubic response,
respectively, and X

(1)
2,1 is the cubic response at the first harmonic when

a dc field is superimposed on an ac field. Note the strong similarities
between these three quantities. Moreover, the temperature behavior
of the peak is the same for the three dimensionless susceptibilities
reported here. The two dotted lines in (b) correspond to a global shift
of Arg[X(1)

2,1] either by 180◦ [supporting Eq. (5)] or by 360◦ (see the
text).

B. Experimental results

Figure 1 shows the behavior of the three cubic susceptibil-
ities for supercooled glycerol at 202 K where the inverse re-
laxation time fα � 2 Hz. Figure 2 reports the same results for
propylene carbonate at 160 K where fα � 0.2 Hz. Figures 1(a)
and 2(a) display the moduli of the cubic susceptibilities, while
Figs. 1(b) and 2(b) show the associated phases. We find four
salient experimental features.

(i) The three moduli have a humped shape in frequency, with
a peak located in the region of fα , namely, at 0.22fα for X

(3)
3 ,

at 0.8fα for X
(1)
2,1, and at 2.5fα for X

(1)
3 . These three numerical

prefactors are only slightly different in propylene carbonate.
Above the peak (higher frequencies), the moduli of the three
cubic susceptibilities decrease as ∼(fα/f )0.6 for glycerol and
as ∼(fα/f )0.7 for propylene carbonate. Below the peak (lower
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FIG. 2. Same as Fig. 1 but for propylene carbonate (lines are
a guide for the eyes). The field amplitude is varied in [2 MV/m;
5 MV/m] in the Saclay setup [24] and in [2.6 MV/m; 3.5 MV/m] in
the Augsburg setup [13].

frequencies), the moduli fall down when decreasing frequency
and become independent of frequency when f/fα � 0.05. We
refer to this low-frequency domain as the plateau region [28].

(ii) The temperature dependence of the three dimensionless
susceptibilities is significantly stronger around and above
the hump than in the plateau region. Around and above the
hump, the three cubic susceptibilities have a temperature
dependence that is very close to that of T χT := T |∂ ln fα/∂T |
(see Refs. [12,13,15,24,27]). Note that, owing to the limited
temperature interval accessible to experiments, one cannot dis-
tinguish clearly between T χT and T 2χT (see Refs. [13,14,29]).
As for the plateau region, its temperature dependence is much
weaker. It was convincingly shown in Refs. [12,24,27] that for
glycerol, X

(3)
3 and X

(1)
2,1 do not depend on temperature in the

plateau region, up to the experimental accuracy of ±3% per
data point. This is also the case for propylene carbonate [13]
where the plateau region lies in the same range of f/fα . Finally,
the measurements of X

(3)
3 at various pressures was achieved in

Ref. [15] and it was shown that the effect of pressure can be
related to the effect of temperature.

(iii) The phases of the three cubic responses basically do
not depend explicitly on temperature [12,24], but only on
u = f/fα , through a master curve that depends only on the
precise cubic susceptibility under consideration (see Figs. 1
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and 2). These master curves have the same qualitative shape
as a function of u in both glycerol and propylene carbonate.
We note that the phases of the three cubic susceptibilities are
related to one another. In the plateau region all the phases are
equal (see the upper dotted line in Figs. 1 and 2), which is easily
understood because at low frequency the system responds
adiabatically to the external field. At higher frequencies, we
note that for glycerol (expressing the phases in radians)

Arg
[
X

(1)
3

] ≈ Arg
[
X

(1)
2,1

] + π for f/fα � 0.5, (5)

Arg
[
X

(1)
3

] ≈ Arg
[
X

(3)
3

]
for f/fα � 5, (6)

which are quite nontrivial relations, which hold also for
propylene carbonate.

(iv) In the phase of χ
(1)
3 of propylene carbonate (Fig. 2), a

jump of π is observed that is accompanied by the indication
of a spikelike minimum in the modulus (more details are
given in the Appendix, Sec. 1). A similar jump may also be
present in glycerol (Fig. 1). We observe that this jump in the
phase happens at the crossover between the T -independent
plateau and the strongly T -dependent hump. More precisely,
in the plateau region one observes a reduction of the real
part of the dielectric constant χ ′

lin, while around the hump
χ ′

lin is enhanced. At the frequency of the jump, both effects
compensate and this coincides with a very low value of the
imaginary part of X

(1)
3 .

Apart from this jump of π that seems specific to χ
(1)
3 , the

similarity between the three cubic susceptibilities reported in
Figs. 1 and 2 puts strong constraints on the underlying physical
mechanisms leading to an increase of the peak height with
temperature.

III. ACCOUNTING FOR EXPERIMENTAL RESULTS
WITHIN THE FRAMEWORK OF BB

We now briefly explain why the aforementioned findings
are in fact consistent with the theoretical framework put
forward by BB [11]. The idea is that provided f � fα , i.e.,
for processes faster than the relaxation time, one cannot
distinguish between a truly frozen glass and a still flowing
liquid. If some amorphous order is present in the glass phase,
then nontrivial spatial correlations should be present and
lead to anomalously high values of nonlinear susceptibilities.
If these spatial correlations extend far enough to be in a
scaling regime, one expects the nonlinear susceptibilities to
be dominated by the glassy correlations and given by [11,18]

X
glass
2k+1(f,T ) = [Ncorr(T )]kHk

(
f

fα

)
, (7)

where the scaling functions Hk do not explicitly depend
on temperature, but depend on the kind of susceptibility
that is considered, i.e., X

(1)
3 , X

(3)
3 , or X

(1)
2,1 in the cubic

case k = 1. Since this glassy contribution has been shown
to be the most divergent one [11,21], it should dominate
over the other contributions to X2k+1 as long as one does
not enter the low-frequency regime f 	 fα . In the latter
regime, relaxation has happened everywhere in the system,
destroying amorphous order [30] and the associated anomalous
response to the external field and Hk(0) = 0. In other words,

in this very-low-frequency regime, every molecule behaves
independently of the others and X2k+1 is dominated by the
trivial Langevin response of effectively independent molecules
(see [28] for a refined discussion). Due to the definition
adopted in Eq. (4), the trivial contribution to X2k+1 should not
depend on temperature (or very weakly). Hence, provided Ncorr

increases upon cooling, there will be a regime where the glassy
contribution X

glass
2k+1 should exceed the trivial contribution,

leading to humped-shape nonlinear susceptibilities, peaking
at fpeak ∼ fα , where the scaling functions Hk reaches its
maximum. Focusing on the three salient experimental facts
discussed in the preceding section, we find that (i) due to
the fact that Hk does not depend explicitly on T , the value
of fpeak/fα should not depend on temperature, consistently
with the experimental behavior; (ii) because of the dominant
role played by the glassy response for f � fpeak, the T

dependence of X2k+1 will be much stronger above fpeak than
in the trivial low-frequency region; and (iii) because nonlinear
susceptibilities are expressed in terms of scaling functions,
it is natural that the behavior of their moduli and phases are
quantitatively related, especially at high frequency where the
trivial contribution can be neglected, consistently with Eqs. (5)
and (6) (see below for a more quantitative argument in the
context of the so-called toy model) [31].

Let us again emphasize that the BB prediction relies
on a scaling argument, where the correlation length 
 of
amorphously ordered domains is (much) larger than the
molecular size a. This naturally explains the similarities of
the cubic responses in microscopically very different liquids
such as glycerol and propylene carbonate, as well as many
other liquids [13,15]. Indeed, the microscopic differences are
likely to be wiped out for large 
, much like in usual phase
transitions.

Throughout this paper, we will not interpret Ncorr as a
purely dynamical correlation volume, but as a static correlation
volume, elicited by a quasistatic nonlinear response [the
frequency of the hump is indeed often lower than fα (see
Sec. II)]. This interpretation may seem surprising at first
sight since theorems relating (in a strict sense) nonlinear
responses to high-order correlations functions only exist in
the static case and therefore cannot be straightforwardly used
to interpret the humped shape of X3 (and of X5) observed
experimentally.

This is why each theory of the glass transition must be
inspected separately [18] to see whether or not it can account
for the anomalous behavior of nonlinear responses observed
in frequency and in temperature. The case of the family of
KCMs is especially interesting since dynamical correlations,
revealed by, e.g., four-point correlation functions, exist even
in the absence of a static correlation length. However, in the
KCM family, we do not expect any humped shape for nonlinear
responses [18]. This is not the case for theories (such as RFOT
or frustration theories) where a nontrivial thermodynamic
critical point drives the glass transition: In this case the
incipient amorphous order allows one to account [18] for the
observed features of X3 and X5. This is why we think that in
order for X3 to grow some incipient amorphous order is needed
and we expect dynamical correlations in strongly supercooled
liquids to be driven by static (point-to-set) correlations [32];
this statement will be reinforced by what we find in Sec. IV B.
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Notably, we find that the temperature dependence of Ncorr

inferred from the height of the humps of the three X3’s
are compatible with one another and closely related to the
temperature dependence of T χT , which was proposed in
Refs. [16,17] as a simplified estimator of Ncorr in supercooled
liquids. The convergence of these different estimates, which
rely on general model-free theoretical arguments, is a strong
hint that the underlying physical phenomenon is indeed the
growth of collective effects in glassy systems, a conclusion
that we will reinforce by analyzing other approaches.

IV. OTHER PHENOMENOLOGICAL APPROACHES

A valid criticism of the general BB prediction is that the
analytical expression of the scaling functions Hk is unknown,
except for k = 1 within mode-coupling theory (MCT), where
some analytical progress is possible [21]. In particular, only the
T dependence of Ncorr can be extracted from the experiments
using Eq. (7), but not its absolute value. Moreover, since Eq. (7)
is only valid in the limit Ncorr 
 1, it may happen that other
subleading contributions to X

glass
3 are relevant in the limited

range of temperatures available in practice. Some simplified
schematic models have therefore been proposed to compute
explicitly the different cubic susceptibilities. We show that
in each of them Ncorr is a key ingredient, either explicit or
implicit. For the sake of brevity, we concentrate on physical
arguments and postpone further analytical developments to the
Appendix; however, we recall some quantitative limitations
in the next section. Sections IV A and IV C give definitely
phenomenological descriptions, whereas Sec. IV B starts from
a solid thermodynamical relation recently pinpointed by Jo-
hari, which, when coupled with the well-known Adam-Gibbs
relation, provides a physically motivated specification of BB’s
mechanism.

A. Toy model and pragmatic model

The toy model has been proposed in Refs. [27,33] as a
simple incarnation of BB’s mechanism, while the pragmatic
model is more recent [34,35]. Both models start with the
same assumptions: (i) Each amorphously ordered domain
containing Ncorr molecules has a dipole moment proportional
to

√
Ncorr, leading to an anomalous contribution to the cubic

response X
glass
3 ∝ Ncorr, and (ii) there is a crossover at low

frequencies towards a trivial cubic susceptibility contribution
Xtriv

3 that does not depend on Ncorr. We note in passing that the
toy model predicts generally [33] an anomalous contribution
X

glass
2k+1 ∝ [Ncorr]k . This naturally accounts for the results of

Ref. [18], where it was shown that Xglass
5 ∝ [Xglass

3 ]2 in glycerol
and propylene carbonate, consistently with BB’s predictions
summarized in Eq. (7).

More precisely, in the toy model each amorphously ordered
domain is supposed to exist in a simplified energy landscape,
namely, an asymmetric double-well potential with a dimen-
sionless asymmetry δ, favoring one well over the other. The
most important difference between the toy and the pragmatic
model is the description of the low-frequency crossover (see
Refs. [33,35] for more details).

On top of Ncorr and δ, the toy model uses a third adjustable
parameter, namely, the frequency f ∗ below which the trivial

contribution becomes dominant. In Ref. [33], both the modulus
and the phase of X

(1)
3 (ω,T ) and of X

(3)
3 (ω,T ) in glycerol were

well fitted by using f ∗ � fα/7, δ = 0.6, and, for T = 204 K,
Ncorr = 5 for X

(3)
3 and Ncorr = 15 for X

(1)
3 . In Ref. [27], the

behavior of X
(1)
2,1(ω,T ) in glycerol was further fitted with the

same values of δ and of f ∗ but with Ncorr = 10 (at a slightly
different temperature T = 202 K). Of course, the fact that
a different value of Ncorr must be used for the three cubic
susceptibilities reveals that the toy model is oversimplified, as
expected. However, keeping in mind that the precise value of
Ncorr does not change the behavior of the phases, we note that
the fit of the three experimental phases is achieved [27,33] by
using the very same values of f ∗/fα and of δ. This means that
Eqs. (5) and (6) are well accounted for by the toy model by
choosing two free parameters. This is a quantitative illustration
of how BB’s general framework does indeed lead to strong
relations between the various nonlinear susceptibilities, such
as those contained in Eqs. (5) and (6).

Let us mention briefly the asymmetric double-well
potential model [36], which is also about species ex-
isting in a double well of asymmetry energy �, ex-
cepted that two key assumptions of the toy and
pragmatic models are not made: The value of Ncorr is not
introduced and the crossover to trivial cubic response is
not enforced at low frequencies. As a result, the hump for
|X(3)

3 | is predicted [36,37] only when the reduced asymmetry
δ = tanh(�/2kBT ) is close to a very specific value, namely,
δc = √

1/3, where X3 vanishes at zero frequency due to the
compensation of its several terms. However, at the fifth order
[37] this compensation happens for two values of δ very
different from δc: as a result, the model cannot predict a
hump happening both for the third and for the fifth order
in the same parametric regime, contrarily to the experimental
results of Ref. [18]. This very recent calculation of fifth-order
susceptibility [37] reinforces the point of view of the toy
and pragmatic models, which do predict a hump occurring
at the same frequency and temperature due to their two key
assumptions (Ncorr and crossover to trivial nonlinear responses
at low frequencies). This can be understood qualitatively:
Because the toy model predicts [33] an anomalous contribution
X

glass
2k+1 ∼ [Ncorr]k , provided that Ncorr is large enough, the

magnitude of this contribution is much larger than that of
the small trivial contribution Xtriv

2k+1 ∼ 1, and the left side of
the peak of |X2k+1| arises just because the toy model enforces
a crossover from the large anomalous response to the small
trivial response at low frequencies f 	 fα . As for the right
side of the peak, it comes from the fact that |X2k+1| → 0 when
f 
 fα for the simple reason that the supercooled liquid does
not respond to the field at very large frequencies.

B. Entropic effects

We recall the argument given by Johari in [38,39]. Suppose
a static electric field Est is applied to a dielectric material at
temperature T . By using the general relations of thermody-
namics, one finds that a variation of entropy [δS]Est follows,
which for small Est is given by

[δS]Est ≈ 1

2
ε0

∂�χ1

∂T
E2

sta
3, (8)
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where a3 is the molecular volume. Equation (8) holds
generically for any material. However, in the specific case
of supercooled liquids close enough to their glass transition
temperature Tg , a special relation exists between the molecular
relaxation time τα and the configurational contribution to the
entropy Sc. This relation, first anticipated by Adam and Gibbs
[2], can be written as

ln
τα(T )

τ0
= �0

T Sc(T )
, (9)

where τ0 is a microscopic time and �0 is an effective energy
barrier for a molecule. The temperature dependence of T Sc(T )
quite well captures the temperature variation of ln(τα), at least
for a large class of supercooled liquids [40].

We now follow Johari [38,39] and we assume that [δS]Est

is dominated by the dependence of Sc on field; see the
Appendix, Sec. 2 for further discussion of this important
physical assumption. Combining Eqs. (8) and (9), we find
that a static field Est produces a shift of ln(τα/τ0) given by

[δ ln τα]Est = − �0

T S2
c

[δS]Est . (10)

We show in the Appendix, Sec. 2 that this entropic effect
gives a contribution to X

(1)
2,1, which we call J

(1)
2,1 after Johari.

Introducing x = ωτα , we obtain

J
(1)
2,1 = −kB�0

6S2
c

[
∂ ln (�χ1)

∂T

][
∂

χlin

�χ1

∂ ln x

]
∝ 1

S2
c

, (11)

where χlin is the complex linear susceptibility.
Equation (11) deserves two comments. First, |J (1)

2,1| has a
humped shaped in frequency with a maximum in the region
of ωτα � 1, because of the frequency dependence of the
factor proportional to ∂χlin/∂ ln x in Eq. (11). Second, the
temperature variation of J

(1)
2,1 is overwhelmingly dominated

by that of S−1
c because Sc ∝ T − TK , with TK the Kauzman

temperature.
In fact, following Adam and Gibbs’ original formulation

[2], the dynamics of a supercooled liquid comes from
cooperatively rearranging regions (CRRs). Assuming that
these regions are compact (see [7,41]; see also [18] for a
recent discussion of this point), the spatial extension 
 of
the CRRs is related to the number Ncorr of molecules as
Ncorr = (
/a)d , where d is the dimensionality of space. Within
the Adam-Gibbs picture, Sc ∝ 1/Ncorr, leading to

J
(1)
2,1 ∝ Nq

corr, (12)

with q = 2, i.e., a stronger divergence than predicted by BB,
but a similar qualitative relation between nonlinear effects
and glassy correlations. Taking into account more general
relationships between Sc and Ncorr, we find that the possible
values of q are bounded between 2/3 and 2 (see the Appendix,
Sec. 3 a).

However, the Adam-Gibbs picture has been reformulated
more convincingly within the RFOT theory of glasses (see
[7,42]). This leads to more constrained results (see the
Appendix, Sec. 3 b)

J
(1)
2,1 ∝ Nq

corr, q = 1 + � − θ

d
, (13)

where � is the barrier exponent and θ the surface tension
exponent (see the Appendix, Sec. 3 b). We note in passing that
formally, the Adam-Gibbs picture corresponds to θ = 0 and
� = d. Returning to the RFOT theory, the exponents θ and �

should obey, in general, the following bounds:

d

2
� θ � d − 1. (14)

The upper bound is natural for a surface-tension exponent,
whereas the lower bound is obtained if one takes into account
the existence of self-induced disorder: If θ < d/2 amorphous
order would be destroyed by the disorder, which is what one
expects below the lower critical dimension. Concerning �, ar-
guments based on the free-energy landscape give � � θ [42].
However, it is possible that these do not hold for the dynamical
rearrangements responsible for relaxation; indeed, numerical
results seem to favor ψ < θ [43]. From these bounds, one
concludes [44] that, for d = 3, q lies in the range [1/3,3/2],
where q = 1 corresponds to the recommended RFOT values,
� = θ = d/2. Note that q = 1 precisely corresponds to BB’s
prediction, in which case entropic effects are a physically
motivated picture of BB’s mechanism. For the lowest values
of q � 1/3, the Johari contribution is actually expected to be
really subleading with respect to BB’s contribution. Indeed,
in BB’s framework, the only way for X3 to grow slower than
Ncorr is that glassy domains are noncompact [18], a possibility
that is difficult to accommodate both with the RFOT theory
and with the experimental results of Ref. [18].

To summarize this section, the two key assumptions for
computing Johari’s entropy effect are that the field-induced
entropy variation mainly goes into the configurational part
of the entropy and that its effect can be evaluated by using
the Adam-Gibbs relation. We have found that the entropy
contribution to X

(1)
2;1, called J

(1)
2;1 , is similar to BB’s general

prediction both because of its humped shape in frequency
[see Eq. (11)] and because it is directly related to Ncorr

[see Eqs. (12) and (13)]. Additionally, because Sc is a static
quantity, Eqs. (12) and (13) support our interpretation that X3

is related to static amorphous correlations, as stated at the end
of Sec. III.

Let us add two remarks. One is about the extension of the
above calculation to X

(1)
3 and to X

(3)
3 . Such an extension is a

key ingredient of the phenomenological model elaborated in
Refs. [22,23] and gives the main term allowing one to fit the
modulus of X

(3)
3 for glycerol [23]. This extension came after

several works [45–48] where the entropic effects were found
to be consistent with the measured X

(1)
2;1 in various systems.

Note that to perform this extension one needs to introduce a
time-dependent configurational entropy, which is nevertheless
acceptable in the region ωτα � 1, where the model is used. The
second remark is that there must be other contributions to X

(1)
2,1

coming from, e.g., the field dependence of the energy barrier
�0 or of the surface energy cost ϒ in the RFOT. Following the
calculations in Appendix, Sec. 3 b, this leads to a contribution
that behaves as N

�/d
corr , which is subdominant compared to J

(1)
2,1

as given by Eq. (13). This illustrates that between BB’s leading
contribution to X

(1)
2;1 and the mere trivial contribution, there is

room for intermediate terms scaling more slowly than Ncorr.
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C. Box model

The box model is historically the first model of nonlinear
response in supercooled liquids designed to account for the
nonresonant hole burning experiments [49]. It assumes [49–
53] that some heterogeneous heating happens within each of
the amorphously ordered domain and that the thermal time
during which the dissipated heat is kept within each domain
is as long as the dielectric relaxation time of the domain,
i.e., as long as seconds when T is close to Tg . According to
Ref. [35], this seems to contradict physical intuition, since the
size of amorphously ordered domains is only a few nanometers
[54]. The box model has been shown to give good fits of
the imaginary part of X

(1)
3 for f > fα in many glass-forming

liquids (see, e.g., [50–53]). It was shown also [55] that the
box model is not able to fit quantitatively the measured X

(3)
3

(even though some qualitative features are accounted for) and
that the box model only provides a vanishing contribution to
X

(1)
2,1 [27].
In recent works [22,23], the three experimental cubic

susceptibilities have been argued to result from a superposition
of an entropic contribution and of a contribution coming from
the box model, plus a trivial contribution playing a minor role
around the peaks of the cubic susceptibilities. More precisely,
the hump of |X(1]

2,1| and of |X(3)
3 | would be mainly due to

the entropy effect, contrarily to the hump of |X(1)
3 |, which

would be due to the box model contribution. This means that
very different physical mechanisms would conspire to give
contributions of the same order of magnitude, with phases that
have no reason to match as they do empirically [see Eqs. (5)
and (6)]: Why should X

(1)
3 and X

(3)
3 have the same phase at

high frequencies if their physical origin is different?
We see no reason for such a similarity if the growth of X

(1)
3

and X
(3)
3 is due to independent mechanisms. Having just related

entropic effects to the increase of Ncorr, everything becomes
instead very natural if the box model is recast in a framework
where X

(1)
3 is related to the glassy correlation volume. As a

first step in this direction, we show in the Appendix, Sec. 4
that the box model prediction for X

(1)
3 at high frequencies is

proportional to the above toy model prediction, provided Ncorr

and T χT are proportional, which is a reasonable assumption,
as explained at the end of Sec. III and in Refs. [16,17,24].
Overall, the only reasonable way to account for the similarity
of all three cubic susceptibilities, demonstrated experimentally
in Sec. II, is to invoke a common physical mechanism. As all
the other existing approaches previously reviewed in this paper
relate cubic responses to the growth of the glassy correlation
volume, reformulating the box model along the same line is,
in our view, a necessity.

V. CONCLUSION

We have compared three different cubic susceptibilities,
in two different liquids, and found that they all behave very
similarly in frequency and in temperature, both for their
moduli and for their phases. This suggests a unique underlying
physical mechanism, which we argue is the growth of a glassy
correlation length, measuring the size of the domains where
amorphous order sets in. The theoretical framework proposed

by two of us [11] (BB) provides a consistent description for
all cubic (and higher-order [18]) susceptibilities X3. We have
reviewed various phenomenological models that attempt to
give a quantitative description of X3. Although some of them
are at first sight not compatible with the previous scenario
and lead to puzzling physical predictions compared to our
experiments, we explained why they are not in contradiction
with BB’s predictions. Excepted for the box model where the
task is not fully achieved, all the models can be actually recast
in such a way that the number of correlated molecules Ncorr

appears (implicitly or explicitly) as a key ingredient.
Having unified various approaches of nonlinear responses

close to Tg , our work opens at least two routes of research. First,
it would be very interesting to access χ3 (and χ5) in molecular
liquids at higher temperatures, closer to the MCT transition,
and/or for frequencies close to the fast β process where more
complex fractal structures with df < d may be anticipated
[6,56]. Note that even though X

(1)
3 or X

(3)
3 is plagued by heating

issues when fα is large, this is not the case for X
(1)
2,1 because

a dc field yields negligible dissipation. As we have shown
that the three cubic susceptibilities are driven by the same
physics, it would be wise to choose X

(1)
2,1 to investigate the

behavior of molecular liquids at high temperatures. Second,
we could revisit the vast field of polymers by monitoring
their nonlinear responses, which should shed light on the
temperature evolution of the correlations in these systems.
Therefore, we think that there is much room to deepen
our understanding of the glass transition by carrying out
experiments about nonlinear susceptibilities.
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APPENDIX

1. The spikelike minimum in |X (1)
3 | for propylene carbonate

The spikelike minimum as indicated by the red line in
Fig. 2(a) seems somewhat speculative. However, when plotting
the same data set as real and imaginary parts (see Fig. 3),
it becomes obvious that |X(1)

3 | becomes zero at a certain
frequency, thus generating a negative spike in the logarithmic
plot of Fig. 2(a): When the trivial response starts to dominate
at low frequencies, the real part of X

(1)
3 must become negative

because dielectric saturation causes a decrease of the dielectric
constant χ ′

lin at high fields [i.e., negative Re(X(1)
3 )] instead of

the increase seen at higher frequencies [positive Re(X(1)
3 )].

This causes Re(X(1)
3 ) to cross the zero line. The imaginary

part of X
(1)
3 also is close to zero in this region and thus the

modulus |X(1)
3 | also becomes extremely small at this crossover

frequency.
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FIG. 3. Real and imaginary parts of the X
(1)
3 data of propylene

carbonate shown in Fig. 2. Lines are guides for the eyes.

2. Entropic effects

The argument of Johari is to decompose the total entropy
Stot of a supercooled liquid in its vibrational part Svib and its
configurational part Sc. Then, because of the smallness of elec-
trostriction effects in general [38,39], Johari deduces that the
field-induced variation of Svib is much smaller than that of Sc.
We note that this argument can be reinforced by an alternative
reasoning: Stot can also be decomposed as the entropy of the
crystal Scryst plus an excess entropy Sexc, where Sexc contains
the configurational entropy Sc = fSSexc; the factor fS < 1
does not depend on the temperature [57] and will be disre-
garded hereafter. As for some archetypical glass formers, such
as glycerol and propylene carbonate studied in the Sec. II B, the
static value of the dielectric linear susceptibility �χ1 is much
larger in the supercooled liquid than in the crystal, it is very
likely that ∂�χ1/∂T is also much larger in the supercooled
liquid than in the crystal. With the help of Eq. (8), this means
that the field-induced variation of Scryst is much smaller than
that of Sexc and thus also of Sc. Of course the validity of
this alternative argument is restricted to the subclass of glass
formers where �χ1 
 1 in the supercooled liquid state.

We now focus specifically on the case where an ac field Eac,
of angular frequency ω, is applied on top of the static field Est.
Consistently with the assumption of a linear dielectric response
allowing us to derive Eq. (8), we express the polarization
P when Est = 0 as P (Eac,0,T ) = ε0χlinEac, where χlin is a
complex quantity that, once scaled by �χ1, depends mainly
on x = ωτα . Considering Eq. (10), we obtain

P (Eac,Est,T ) = P (Eac,0,T ) + ∂P

∂ ln τα

[δ ln τα]Est + · · · ,

(A1)

where higher-order terms in δ ln τα have been neglected. Be-
cause P (Eac,0,T ) ∝ Eac and δ ln τα ∝ E2

st, defining δPEst =
P (Eac,Est,T ) − P (Eac,0,T ), one finds δPEst ∝ E2

stEac. This
shows that δPEst is cubic in the electric field.

Inserting Eq. (8) into Eq. (10) and using Eq. (A1), we find
that the entropy variation induced by the static electric field
yields a term proportional to E2

stEac, i.e., it yields a contribution
to X

(1)
2,1 because of the definition given in Eq. (2). We obtain

for this entropic contribution to χ
(1)
2;1,

χ
(1),δS
2,1 =

[
−1

6

]
ε0

[
∂�χ1

∂T

]
a3 �0

S2
c T

[
∂χlin

∂ ln x

]
, (A2)

where we recall our notation x ≡ ωτα .
By using Eq. (A2) we find the entropy contribution J

(1)
2,1 to

the dimensionless cubic susceptibility X
(1)
2,1,

J
(1)
2,1 = −kB�0

6S2
c

[
∂ ln (�χ1)

∂T

][
∂

χlin

�χ1

∂ ln x

]
∝ 1

S2
c

, (A3)

where, as explained above, χlin is a complex quantity. As
explained in the main text, Eq. (A3) implies that |J (1)

2;1 | is peaked
for a frequency close to fα . We note that in an ideal gas of
dipoles |X(1)

2;1| has no peak at any frequency (see the works
cited in [28]). This comes from the fact that in an ideal gas of
dipoles the relaxation time is insensitive to the static field, i.e.,
the last term of Eq. (A1) has to be neglected when computing
X

(1)
2;1. Assuming a nonzero value of [δ ln τα]Est is thus a highly

nontrivial assumption that calls for an explanation. We have
argued, following Johari, that [δ ln τα]Est comes from entropic
effects. In the case where this could be disputed, e.g., when
�χ1 � 1 and/or when the factor fS turns out to be very far
from 1, we show briefly that a nonzero value of [δ ln τα]Est is
related to the glassy correlation volume. Indeed, one has

[δ ln τα]Est =
[
∂ ln τα

∂E2
st

]
T

E2
st = −

[
∂ ln τα

∂T

]
Est=0

ME2
st,

(A4)

whereM = ∂Tg/∂E2
st expresses the shift of the glass transition

temperature Tg induced by Est, i.e., the fact that the dielectric
spectrum is uniformly shifted in frequency by the static field;
the minus sign in the last equality of Eq. (A4) comes from the
mapping between P (T ,Est) and P (T − ME2

st,0) (see [27]).
As a result,[

∂ ln τα

∂E2
st

]
T

= −M
[
∂ ln τα

∂T

]
Est=0

= M
T

|T χT |, (A5)

which establishes that a nonzero value of [δ ln τα]Est must
be related to T χT , i.e., to the glassy correlation volume,
as advocated in Refs. [16,17]. Having briefly evoked the
case where the origin of the nonzero value of [δ ln τα]Est is
questionable, we now return to the case where this origin is
the entropy effect pinpointed by Johari.

3. Relation between configurational entropy and length scales

a. Adam-Gibbs case

When lowering T , a supercooled liquid becomes increas-
ingly viscous and its dynamics comes from “cooperatively
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rearranging regions,” to quote the original expression of Adam
and Gibbs [2]. Expanding on [18], as well as on several
theoretical approaches [7,41], we will assume that these
regions are compact, i.e., their spatial extension 
 is related
to their number Ncorr of molecules by Ncorr = (
/a)d , where d

is the dimensionality of space.
Returning to the original argument of Adam and Gibbs [2]

readily gives a lower bound for Ncorr. Indeed, owing to its
extensive character, the configurational entropy of a domain
of size 
 is Sc(
/a)d . For this domain to be able to relax, at
least two states must be available and thus the aforementioned
configurational entropy cannot be smaller than kB ln 2. As a
result, (




a

)d

� kB ln 2

Sc

,
kB ln 2

Sc

� Ncorr. (A6)

In addition, by using Refs. [42,58,59], one can find an
upper bound for Ncorr. For a given domain of size 
 where
Ncorr molecules relax cooperatively, the argument comes from
the comparison of the number of accessible states μSc(
/a)d

with the number of different boundary conditions λ(
/a)d−1

(here μ and λ are constants). The latter must be larger than the
former; otherwise there are not enough boundary conditions to
select each of the accessible states. This would mean that when
freezing all the molecules of the system except those inside
the domain with size 
, one cannot define a preferred state,
since many states are possible. This contradicts the assumption
that within the considered domain all the molecules are in a
well-defined state. To avoid this contradiction, one needs to
write

λ

(



a

)d−1

� μSc

(



a

)d

, Ncorr �
[

λ

μSc

]d

. (A7)

By using the two boundaries obtained in Eqs. (A6) and
(A7), we get, with d = 3,

1

S2
c

= �[Ncorr]
q with

2

3
� q � 2, (A8)

where both the proportionality constant � and the exponent
q should not depend on temperature owing to the fact that Sc

and Ncorr are the only temperature-dependent quantities in the
aforementioned inequalities. We now combine Eqs. (A8) and
(A3) to obtain

J
(1)
2,1 ∝ [Ncorr]

q with 2
3 � q � 2. (A9)

We emphasize that as the exponent q cannot be zero, Eq. (A9)
establishes that the aforementioned entropic contribution to
the cubic susceptibility is connected to Ncorr.

b. Specific case of RFOT

The highest possible value q = 2 in Eqs. (A8) and (A9)
corresponds to the Adam-Gibbs argument Sc ∝ 1/Ncorr. In the
original Adam-Gibbs argument [2,42,60], this comes from the
assumption that the barrier height � governing relaxation is
proportional to Ncorr = (
/a)d . This of course overestimates �

since it supposes that any relaxation involves a finite fraction of
the total number of molecules in the domain. This is unlikely
when 
 is large since, in general, the energy cost to relax a

domain of size 
 cannot scale more rapidly than (
/a)(d−1)

(see [61]).
It does not seem easy to combine this idea that the energy

cost scales proportionally to (
/a)θ , where θ must be lower
than or equal to d − 1 with the result that ln(τα/τ0) ∝ 1/T Sc,
which, as already mentioned, is obeyed in a vast series of glass-
forming liquids [40]. The random first-order transition theory
[7], proposed 30 years after the Adam-Gibbs seminal paper,
achieves this task, as we briefly recall now. According to the
RFOT theory, if a domain of size 
 relaxes, the associated free-
energy cost is given by δF = ϒ(
/a)θ − T Sc(
/a)d , where the
first term corresponds to the surface energy cost and the second
term is the free-energy gain of entropic origin. Relaxation can
happen only provided that states are available, i.e., for large
enough 
. One shows [42] that this happens when 
 � 
�,
where 
� is the maximum of δF (
). As the relaxation time τ is
given by ln (τ/τ0) = (
/a)��0/kBT , the typical domain size
is 
� because it is the one that minimizes τ . One finds

(

�

a

)d

=
[

θϒ

dT Sc

]d/(d−θ)

, (A10)

ln
τα

τ0
= �0

kBT

[
θϒ

dT Sc

]�/(d−θ)

. (A11)

Using this relation and that

Ncorr =
(


�

a

)d

,

one finds Eq. (13) for the entropic contribution.
Within the RFOT theory it has been argued that � =

θ = d/2 and that ϒ = κT , with κ a quasiuniversal constant
[7]. This leads to the Adam-Gibbs relation, i.e., ln(τα/τ0) ∝
1/T Sc, and to a χ

(1)
2,1 that is directly proportional to Ncorr.

4. Box model predictions for X (1)
3

In the box model, the supercooled liquid is assumed to
be made of independent dynamical heterogeneities (DHs).
Each DH has its own dielectric relaxation time τDH and the
probability distribution G of the τ ’s is chosen so as to recover
the linear polarization of the material. The dynamics of the
polarization of a given DH is assumed to be given by a Debye
equation, i.e., its time-dependent linear polarization Plin,DH(t)
is given by

Plin,DH(t) = ε0�χ1Eac√
1 + y2

cos[ωt − arctan(y)], (A12)

where we have set y = ωτDH.
The key assumption of the box model is about the dissipated

heat, which is supposed to remain confined within each DH
during a thermal time equal to the dielectric time τDH. Because
the dissipated power P is quadratic in the field Eac, it contains
a static term P0 and a term P2 oscillating at 2ω. The resulting
heating of the considered DH contains the two corresponding
terms δT0,DH and δT2,DH.

Because the box model has been shown to be efficient
only for X

(1)
3 (f 
 fα) we will focus on X

(1)
3 and use the fact

that f 
 fα amounts to y 
 1 for most of the DHs; this
comes from the shape of G(τ ), which has a sharp peak around
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τα = 1/2πfα . As shown in Eqs. (4) and (5) of Ref. [55], as soon
as y 
 1 one has δT2,DH 	 δT0,DH and X

(1)
3 can be computed

just by using the values of δT0,DH in the various DHs. For any
given DH where y 
 1 one gets [55]

P
(1)
3,DH(t) � ∂Plin,DH(t)

∂T
δT0, (A13)

δT0,DH = ε0�χ1E
2
ac

2cDH

y2

1 + y2
, (A14)

where cDH is the part of the (volumetric) specific heat involved
in the DHs and P

(1)
3,DH is, for a given DH, the term corresponding

to the first one on the right-hand side of Eq. (2). In complete
analogy with Eqs. (2)–(4), we give here the definition of the

dimensionless cubic susceptibility |X(1)
3,DH|e−iδ

(1)
3,DH for a given

DH, namely,

P
(1)
3,DH(t) = 3

4
ε0

ε0�χ2
1 a3

kBT
E3

ac

∣∣X(1)
3,DH

∣∣ cos
(
ωt − δ

(1)
3,DH

)
.

(A15)

We now just have to combine Eqs. (A12)–(A15) to obtain

∣∣X(1)
3,DH

∣∣e−iδ
(1)
3,DH � 4

3

kB

cDHa3
|T χT |y

3
√

4y2 + (y2 − 1)2

(1 + y2)3

×e−i arctan[(y2−1)/2y], (A16)

where we have set |T χT | = −∂ ln(τDH)/∂ ln(T ) because we
assume that the time-temperature superposition property
holds, i.e., that all the τ evolve in temperature as the
typical relaxation time τα . Apart from that, in Eq. (A16) the
approximate inequality comes only from the fact that we have
neglected the subleading term in y coming from δT2,DH in
Eq. (A13).

We now fully simplify Eq. (A16) by taking the limit y 
 1,

lim
y
1

∣∣X(1,BM)
3,DH

∣∣e−iδ
(1,BM)
3,DH = 4

3

kB

cDHa3
|T χT |e

−iπ/2

y
, (A17)

where the superscript BM stands for box model to make the
distinction from the toy model that we are using hereafter.
The toy model, introduced in Ref. [33], starts with the same
assumption as the box model regarding the decomposition of
a supercooled liquids into independent DHs of distribution
G(τ ). The dynamical equation for the polarization in the toy
model is a simple Debye equation for the linear response,
but when considering higher-order responses, new nonlinear
terms arise in the equation. As explained in the main text,

these nonlinear terms do not come from heating at the scale of
each DH but from the key assumption of the toy model, i.e.,
from the assumption that each amorphously ordered DH has a
dipole moment proportional to

√
Ncorr. This yields generically

X2k+1 ∝ Nk
corr. By using Eq. (A29) of Ref. [33], one has

∣∣X(1,TM)
3,DH

∣∣e−iδ
(1,TM)
3,DH =

[
3

5

]
Ncorr

1 − δ2

∣∣D(1)
3,DH(y)

∣∣√
1 + y2

ei�
(1)
3,DH(y)−i arctan(y),

lim
y
1

∣∣D(1)
3,DH(y)

∣∣ei�
(1)
3,DH(y) = 1

2
, (A18)

where the superscript TM stands for toy model. By using
Eqs. (A17) and (A18) we obtain

lim
y
1

[ ∣∣X(1,TM)
3,DH

∣∣e−iδ
(1,TM)
3,DH∣∣X(1,BM)

3,DH

∣∣e−iδ
(1,BM)
3,DH

]
= 9

40

[
cDHa3

kB

]
Ncorr

(1 − δ2)|T χT |

� 2.2
Ncorr

(1 − δ2)|T χT | , (A19)

where the last approximate equality was obtained by using
the values for glycerol cDH � 1.2 × 106 J/K m3 and a3 �
1.2 × 10−28 m3. We thus have shown that, provided Ncorr is
proportional to |T χT |, the predictions of the box and toy model
for X

(1)
3 (f 
 fα) are similar in phase and in magnitude. This

is important since this corresponds to the observable and to
the frequency range where the box model has been able to fit
the experimental data. We end with two remarks.

(i) In glycerol around 204 K one finds |T χT | � 102 and
in Ref. [33] a good fit of the measured X

(1)
3 was obtained

within the toy model with Ncorr = 15 and δ = 0.6. Using these
values in Eq. (A19) yields X

(3),TM
3 /X

(3),BM
3 � 0.5, i.e., a value

that is two times smaller than expected. This shows that the
limit y 
 1 is not precise enough to give the exact prefactors.
Similarly, the phase of the measured X

(1)
3 (f 
 fα) is not −π/2

but a factor of 2 smaller. We note furthermore that the exact
value of cDH chosen to fit the X

(1)
3 data within the box model

depends on the material and that an adjustable factor, between
0.5 and 1, has been used in Ref. [52]. This adjustable factor
is within the range of numerical uncertainty produced by our
method using the limit y 
 1.

(ii) Also applying this reasoning to X
(3)
3 does not yield a

corresponding result since |X(3),TM
3 /X

(3),BM
3 | ∝ y, i.e., the two

models never yield the same functional dependence on y for
the third-harmonic cubic susceptibility.
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