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Abstract

We study the formation of Majorana states in superconductors using the Ma-
jorana polarization, which can locally evaluate the Majorana character of a
given state. We introduce the definition of the Majorana polarization vector
and the corresponding criterion to identify a Majorana state, and we apply it
to some simple cases such as a one-dimensional wire with spin-orbit coupling,
subject to a Zeeman magnetic field, and proximitized by a superconductor, as
well as to an NS junction made with such a wire. We also apply this criterion
to two-dimensional finite-size strips and squares subject to the same physical
conditions. Our analysis demonstrates the necessity of using the Majorana po-
larization local order parameter to characterize the Majorana states, particularly
in finite-size systems.

1. Introduction

Majorana fermions have been attracting a lot of interest recently ; these
atypical fermionic particles have been predicted long time ago by E. Majorana
as real solutions of the Dirac equation [1]. Regular fermions that have each
their corresponding antiparticle, for example in condensed matter physics the
antiparticle of an electronic excitation is a hole. However the Majorana parti-
cles are their own antiparticles, which makes for a very special and intriguing
situation. In nature there are very few instances of finding Majorana particles.
Thus, neutrinos are believed to be Majorana fermions, and while their proper-
ties are consistent with such an assumption, a definite experimental proof is still
lacking. In condensed-matter systems there is no a priori motivation to look for
Majoranas, since such systems are composed of regular fermions, and for a long
time no search for Majoranas was conducted in such systems. However, over
the past years, it has been proposed that even condensed-matter systems may
support Majorana-like excitations, in the form of collective modes, in a similar
manner in which electronic systems may support fractionally charged excitation.
Thus, the first reference to such a realization of Majoranas was given by Kitaev
in 2001[2], followed subsequently by a large number of works proposing different
condensed-matter platforms supporting Majoranas (see [3] for a review).
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A simple manner to think about the possibility of the realization of Majo-
rana states in a condensed matter system is to imagine a setup in which the
elementary excitations are equal combinations of electrons and holes. Thus the
reality condition, implying that a given excitation is identical to its hermitian
conjugate, is automatically satisfied. Such excitations made of combinations of
electrons and holes appear naturally in superconductors, and thus we expect
that the superconductors would be the ideal ground to start looking for Majo-
ranas. However, in regular s-wave superconductors the natural excitations (Bo-
goliubov qausiparticles) are made up of electrons and holes with opposite spins,
that are not self-adjoint due to their spin structure. To have a true self-adjoint
state one would require a p-wave superconductor, but such superconductors are
rare and their p-wave character not fully agreed upon (e.g. Sr2RuO4 [4]). One
would therefore need a better method to realize such excitations.

Thus, among the most studied Majorana proposals, both theoretically and
experimentally, are one-dimensional (1D) systems with a strong spin-orbit cou-
pling such as InAs and InSb wires [5, 6], subject to Zeeman magnetic field and
proximitized by a superconductor (SC); it has been shown that such systems can
exhibit Majorana bound states (MBS) at their extremities [7, 8]. Concerning
the experimental confirmation, though there have already been several promis-
ing experiments [9, 10, 11, 12, 13] their interpretation is controversial and no
clear-cut detection of Majoranas has so far been agreed upon.

The goal of the present work is to introduce a new tool to study Majorana
fermions in condensed matter systems. We show here that a fundamental ingre-
dient in studying these excitations is lacking, and we present this missing piece
and prove its importance. We thus introduce the generalized Majorana polar-
ization (MP) [14, 15], which is a universal measure of the spatial dependence
of the Majorana character of a given state, i.e. of the same-spin particle-hole
overlap. This quantity can be thought of as the analog of the local density of
states (LDOS) for regular electrons, except that while the LDOS measures the
number of available electronic states, the MP measures the number of available
Majorana states at a given energy and position. Moreover, as we will show, a
real quantity does not suffice to capture the Majorana character, and one needs
to introduce a complex quantity which can be represented as a two-component
vector in the complex plane.

Having access to such a local measure can allow one to understand the
evolution of the Majorana states through a phase transition, their dependence
on specific particularities of the system such as size, disorder, inhomogeneities,
etc., as well as how one can manipulate them.

We show that the calculation of the MP allows one to write down a topolog-
ical criterion and assign a global topological character to a given state. When
the criterion of zero energy for a given state cannot be strictly applied (e.g
infinitesimally small but non-zero energies), having access to a local order pa-
rameter is a sufficient and versatile criterion for such a distinction. This allows
for an accurate determination of the topological phase diagram from numerical
calculations.

In what follows we write down the generalized MP definition and apply it to
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a few examples, such as a one-dimensional wire with Rashba, Zeeman and SC
proximity, as well as to NS junctions made with such wires. Also, we apply it to
two-dimensional finite-size strips and squares with open boundary conditions.

The paper is organized as follows: In section 2 we present the Majorana
polarization, in section 3 we introduce the most general model Hamiltonians for
the systems studied, in section 4 we apply the MP criterion to the simple case
of a one-dimensional wire, in section 5 we consider an NS junction, while in
section 6 we study two-dimensional finite-size systems. We conclude in section
7.

2. Majorana Fermions and the Majorana Polarization

Since Majorana fermions are their own anti-particles γ† = γ, where γ† is
the creation operator for a Majorana fermion. In condensed-matter systems
in which the elementary excitations are electrons (c†) and holes (c), Majorana
states can be achieved as collective excitations, in particular as superpositions
of electronic and hole states (γ = (c± c†)/

√
2), superpositions that can satisfy

the self-adjoint-conditions. Such superpositions can occur naturally in super-
conductors, with equal superpositions of electrons and holes being predicted at
zero-energy. However, regular superconductors would pair electrons and holes of
opposite spins (vc↑+uc†↓), while Majorana states require superpositions of elec-

trons and holes with the same spin (γα = cα ± c†α)/
√

2). It has been proposed
that they can arise naturally in one-dimensional wires with strong spin-orbit
coupling in the presence of a Zeeman field and in the proximity of a regular
superconductor.

To quantify such superpositions we introduce the Majorana polarization [14,
15]. This is an analogous quantity to the LDOS that measures the number
of electronic states available as a function of energy and position. The MP
measures the number of Majorana states available as a function of the energy
and position. Moreover, for a single state, the LDOS can provide information
about the distribution of the electronic density as a function of position, and
consequently indicate where the electronic state is more likely to be localized.
In a similar manner the MP of a given state can tell where the Majorana state
is more likely to be localized. However, while the LDOS is a scalar quantity,
the MP is a vector quantity. This is because to describe most generally the
electron-hole overlap of a given state a scalar quantity does not suffice. The
most general Majorana state can be written as γ = (c+ eiθc†)/2, where θ is an
arbitrary phase. Such combination can be characterized by a scalar quantity
capturing the amount of electron-hole overlap, but also by a phase, necessary
to describe the relative phase between the electron and a hole component. This
phase makes the MP a vector that spans the two-dimensional complex plane,
with a magnitude between zero and one, zero for purely electron or hole states,
and one for purely Majorana states. We can think about the MP vector as a
pseudo-spin polarized LDOS, with the pseudo-spin direction corresponding to
the relative phase between the electron and the hole component.
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To take a more specific example we consider first a spinless model for which
the most general solution for a given state is a combination of electrons and
holes Ψ = uc† + vc. We can see here that such a state is purely electronic or
purely hole if either u or v is zero, and it is a Majorana if |u| = |v| = 1/2. We
introduce the Majorana polarization vector that characterizes the electron-hole
overlap as

P = 2uv, (1)

or equivalently, in vector notation P = (Px, Py) with Px = 2Re(uv) and Py =
2Im(uv). We note that P is indeed zero for either u = 0 or v = 0, while for a
Majorana state, for which |u| = |v| = 1/2, or equivalently ΨM = eiφ(c†+eiθc)/2,
then P = e2iφeiθ. This has indeed the absolute value of 1. The resulting phase
has two components, e2iφ comes from the overall arbitrary phase factor of the
wave function and it is generally irrelevant, and can be gauged away. The
second phase factor eiθ has however a physical significance since it captures the
information about the relative phase between the electron and hole component.
As we will see in what follows it does not have to be spatially uniform and
its spatial structure is crucial in the study of a given Majorana state. The
simplest example underlying the importance of this phase factor is that of a
one-dimensional wire in which the right-end Majorana has θ = π, while the left-
end one has θ = −π (in the literature the corresponding Majoranas are usually
denoted γ1/2 = (c† ± c)/

√
2). We should note that for any given closed system

the distribution of θ needs to satisfy the condition that the integral of the MP
vector over the entire system 1is equal to zero (there cannot exist free-standing
Majorana monopoles in nature). The phase θ can be usually related to the SC
phase, but it can be influenced also by many factors and the details of the model
and of the setup. While |P | = 1 corresponds to a Majorana state, |P | < 1 is
not a Majorana though a state with a large value of |P | may also have some
interesting properties. A state with |P | = 0 is a pure electron or hole state. A
graphic description of the MP is presented in Fig. 1.

For a spinful model for which a given wavefunction has the most general
form Ψ = u↑c

†
↑ + v↑c↑ + u↓c

†
↓ + v↓c↓ the MP can simply be generalized to

P = 2u↑v↑ + 2u↓v↓, (2)

or equivalently P = (Px, Py), with Px = 2Re(u↑v↑+u↓v↓) and Py = 2Im(u↑v↑+
u↓v↓).

To understand how the definition of the MP works for an extended system
we consider a two-dimensional lattice for which the MP needs to be defined on
each site r = (x, y) (see Fig.2), for each eigenstate Ψj(r) = ujr↑c

†
j↑ + vjr↑cj↑ +

1Here, and in what follows, by the ’integral’ of the MP vector quantity over a given region
we denote the absolute value of the sum of the MP vectors for all the lattice sites inside the
corresponding region.
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Figure 1: (Color online) The Majorana polarization vector P in the complex plane.

Figure 2: (Color online) The Majorana polarization vector represented on a site of a square
lattice.

ujr↓c
†
j↓ + vjr↓cj↓, and can thus be written as:

P j(r) ≡
{
P jx(r), P jy (r)

}
≡
{

2Re
[
ujr↑v

j
r↑ + ujr↓v

j
r↓

]
, 2Im

[
ujr↑v

j
r↑ + ujr↓v

j
r↓

]}
(3)

Additionally, in a region R where such a Majorana state is localized, its
wavefunction must satisfy

C =

∣∣∣∑j∈R P
j(r)

∣∣∣∑
j∈R〈Ψj(r)|Ψj(r)〉

= 1 , (4)

where 〈Ψj(r)|Ψj(r)〉 is the electronic density at position r for the eigenstate
j. For a system with two Majoranas localized each on a different edge of the
system, R can simply be taken to be half the system.

To obtain the topological phase diagram we first find the lowest energy states
of the given system. If these states have energies close to zero they may be MBS.
We divide our system into two halves (along the shorter length), and we compute
the integral of the MP vector in each of these halves defined by r ∈ R for each
’zero’-energy state. The states that have C = 1 are MBS, and those with C = 0
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Figure 3: (Color online) A few typical MP configurations: a) Majorana state, MP large and
aligned, b) quasi-Majorana state, MP large but non aligned, c) trivial state, MP=0.

are regular electron or hole states. Note that we may have only a pair of state
with C = 1, or multiple degenerate zero-energy MBS states with C = 1.

A few examples of typical MP configurations are given in Fig. 3. In Fig. 3a)
a typical Majorana setup is depicted, in which the two necessary conditions
are satisfied: 1. over half of the system the MP vectors are aligned, and 2.
locally the MP value is equal to the electronic density (local perfect Majorana
character). These conditions need to both be satisfied in order that the sum
of the MP vector over half the wire to be equal to the sum of the electronic
densities. The total integral of the MP vector over the entire system is zero, as
expected. In Fig. 3c) we depict the trivial situation in which locally the MP
vectors are very small (local non-Majorana character), this situation corresponds
to a trivial phase. In Fig. 3b) we depict an interesting situation that can arise
in which locally one may have a perfect Majorana character (equal MP and
electronic density), but the MP vectors are not aligned, thus yielding a sum
smaller than the total electronic density. For this situation C < 1 and the
topological criterion is not satisfied, however the state, even if non-topological
has interesting properties that we will discuss in the next sections, we call such
a state a quasi-Majorana state.

In what follows we apply this definition and the MP criterion to test the
formation of Majorana states in a few particular situations of one-dimensional
and two-dimensional lattices.
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3. Model

We consider a tight-binding Hamiltonian, with a Rashba spin-orbit coupling
α, subject to a magnetic field ~B(~r) and brought in the proximity of a supercon-
ducting substrate which is assumed to induce an on-site SC pairing. We write
down the corresponding Bogoliubov-de-Gennes Hamiltonian in the Nambu ba-
sis, Ψj = (ψj,↑, ψj,↓, ψ

†
j,↓,−ψ

†
j,↑)

T , where j denotes the corresponding site. The
full Hamiltonian is

H = H0 +HB +HR . (5)

The first term of the Hamiltonian is given by

H0 =
∑
j

Ψ†j [−µτ z −∆τx] Ψ̃j − t
∑
〈i,j〉

Ψ†iτ
zΨj , (6)

where µ is the chemical potential, t the hopping strength,
∑
〈i,j〉 denotes sum-

ming over nearest neighbors, and ∆ the induced superconducting pairing. We
set t = h̄ = 1 throughout. We also take the distance between nearest neighbours
a = 1.

The second term in Eq. 5 describes the effect of the Zeeman magnetic field
of strength B and is given by

HB =
∑
j

Ψ†j
~Bj · ~σΨj . (7)

While this is the most general form describing a magnetic field pointing in
an arbitrary direction and that can vary spatially, in most of what follows we
will consider a uniform field pointing in the z direction.

The term corresponding to the effective Rashba spin-orbit interaction of
strength α can be written as:

HR = Im[α
∑
〈i,j〉

Ψ†i

(
~δij × ~σ

)
· ẑτ zΨj ] . (8)

4. One-dimensional wire

We first consider a one-dimensional wire (see Fig. 4) and a uniform magnetic

field pointing in the z direction, ~B(~r) = Vz ẑ, and we study the formation of the
Majorana end states. We perform an exact diagonalization of the tight-binding
Hamiltonian described in the previous section and we obtain the eigenvalues
and eigenfuctions of this system, as well as the MP of the lowest energy state.
In Fig. 4 we depict schematically the configuration of the MP that we obtain,
while in Fig. 5 we plot the MP of the lowest energy state as a function of the
applied Zeeman field. We indeed recover Majorana bound states at the ends of
the wire, with MP vectors pointing in the opposite direction[15]. We note that
the MP remains finite for Vz > ∆ and goes to zero over the phase transition at
Vz = ∆ as expected.
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Figure 4: (Color online) One-dimensional wire: Majorana states form with MP vectors point-
ing in opposite direction at the two ends.

Moreover, the lowest-energy states of the system stick to zero energy for
Vz > ∆ and acquire a non-zero value for Vz < ∆ marking the phase transition
between the topological and non-topological state. Also, as it can be seen from
the inset of the lower panel Fig. 5, the renormalized integral of the MP over half
the wire (C) is equal to 1 in the topological phase, and decreases abruptly to
zero in the non-topological phase. This allows us to confirm our assumption that
the value of C can be used as a good order parameter to describe a topological
phase transition, and that the MP is a good local order parameter to describe
the formation of Majorana states.

5. NS junctions

We focus on using a one-dimensional wire such as the one described in the
previous section to make an SN long junction. Thus, as described in Fig. 6,
the superconductivity is induced by proximity only in the section of the wire in
contact with the superconductor. We model this by considering ∆x<20 = 0.4t
in the SC-proximitized region and ∆x≥20 = 0 in the normal region.

By diagonalizing the Hamiltonian of this system we find that its spectrum
also exhibits two zero-energy modes. In Fig. 7 we focus on the example t = 1,
µ = 0, α = 0.2t, Vz = 0.5t, N = 40. We see that the zero-energy states cor-
respond to a localized Majorana in the SC and an extended uniform Majorana
in the normal state [16]. We have checked that the integral of the renormalized
MP for this state is exactly 1, cancelling the MP of the edge mode in the SC
(the total MP has to be conserved and equal to zero).

We note that the use of the MP local order parameter is crucial to understand
the physics of this system. Without it one cannot say for sure if the zero-energy
states are Majoranas, nor that the Majorana character is uniform and that the
Majorana state extends thus over the entire normal region. Such observation
about the localization of a Majorana state is very important for the detection
and the manipulation of Majorana states in NS junctions.

6. Finite-size strips and squares

In what follows we consider finite-size systems with open boundary condi-
tions in both directions (see Fig. 8), and we analyze their properties numerically
by looking at the lowest energies eigenstates obtained using the MathQ code
[17]. We take the magnetic field to be uniform and perpendicular to the plane

of the lattice, ~B(~r) = Bẑ. For our analysis we ignore the orbital effects of the
field. The interesting question is what happens when the transversal and lon-
gitudinal directions become comparable, in which situation we should expect
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Figure 5: Upper panel: Majorana polarization of the lowest-energy state as a function
of position and Vz. Lower panel: lowest-energy eigenvalues and the half-wire integral
of the Majorana polarization (C/2, inset) as a function of Vz. Note that at Vz = ∆
the MP goes to zero, and correspondingly the lowest-energy state acquires a non-zero
value. Also C = 1 for Vz > ∆, and it decreases to zero sharply across the phase
transition at Vz = ∆. Parameters: ∆ = 0.3, µ = 0, and α = 0.2

that the system has effectively a single boundary and the Majorana states on
the opposite edges may hybridize and destroy each other.

For a system in which the length is much larger than the width Ny � Nx we
expect to recover the checkerboard phase diagram calculated analytically in [18],
and this is indeed the case, the topological regions predicted by the MP criterion
(red in Fig. 9(a)) correspond exactly to the topological regions predicted in [18].
For a wider system we can see that the phase diagram calculated analytically is
recovered very well at large values of B, however, at small values of B, the value
of C is neither 0, nor 1, but it shows an intermediate value (regions depicted
in yellow in the phase diagram). For fully square systems (Fig. 9(b)) the entire
topological phase is characterized now by C ≈ 0.7. We should note that all the
states corresponding to the regions with C < 1 have non-zero but very small
energies, thus making it impossible to interpret them as Majoranas or not based
solely on the energy criterion.

To understand the nature of these states we focus on the local structure of
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Figure 6: (Color online) Schematics of an NS junction made with a one-dimensional wire
proximitized by a SC over half its length.

Figure 7: (Color online) Local Majorana polarization of the lowest-energy state as a function of
position for an NS junction with t = 1, µ = 0, α = 0.2t, Vz = 0.5t, N = 40, and ∆x<20 = 0.4t
in the S region and ∆x≥20 = 0 in the N region. The MBS contribution at the superconductor
edge near x ≈ 1, has been scaled down by 1/4 relative to the extended Majorana in the N
region so that they can be shown in the same figure.

Figure 8: (Color online) A sketch of a finite-size strip of size Nx � Ny . The black sites denote
the short edges of the system where the Majorana modes would be localized. This system can
be thought of as a set of 1D wires coupled in the y-direction.
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Figure 9: (Color online) The phase diagram as a function of B and µ for finite-size systems of
(a) 3×201, (b) 101×101, and (c) 51×201. This has been calculated using C, the renormalized
sum of the MP vector of the lowest energy state over half of the system (see main text). In all
the examples ∆ = 0.4t and α = 0.5t. The analytical topological phase boundaries for quasi
1D (solid lines) and 2D (dashed lines) are also plotted.
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the MP. A Majorana state must have an integral of the MP over a spatial region
R equal to the sum of the LDOS over the same region. This can be achieved only
if at each site the MP is equal to the DOS (perfect local Majorana character),
as well as if the MP local vectors are all aligned inside R (‘ferromagnetic’ MP
structure).

In Figs. 10-11 we plot the MP for a variety of different low energy states. In
Fig. 10 we plot the MP vector for a 51×201 system with ∆ = 0.3t and α = 0.5t.
Fig. 10(a) corresponds to the red (topological) phase in Fig. 9(c) (C = 1), with
µ = 3.5t and B = 2.2t. We should expect to have two MBS confined at the
two narrow ends of the ribbon, and we note that this is indeed the case, we can
see the formation of two ‘ferromagnetic’ states localized at the two ends of the
wire, having opposite MP vectors.

Fig. 10(b) corresponds to the blue phase in Fig. 9(c), with C = 0. We take
µ = 3.5t and B = 2.3t, and the corresponding state, while being localized on
the edges, is indeed non-Majorana, since the integral of the MP over half of the
wire is exactly zero.

In Fig. 10(c) we focus on the more puzzling C < 1 phase, denoted in yellow
in Fig. 9(c). We take µ = 3.5t and B = t. We note that the corresponding
lowest energy state is also an edge state, extending over the entire contour
of the system. Moreover, the state is not ‘ferromagnetic’, but exhibits a small
uniform variation between adjacent sites, making the total integral over R finite,
but not equal to 1. We denote this state as a quasi-Majorana state.

Finally in Fig. 10(d) we show a state with C = 0 for µ = 0.5t and B = 5t,
which corresponds to the blue region outside the region delimited by the 2D
topological lines. This actually correspond to a fully trivial state localized no
longer on the edge but in the bulk, and for which the value of the MP is close
to zero even locally.

It appears that the existence of the ‘yellow’ phase is due to the shape of the
system, i.e to the fact that the length and the width become comparable. If
the length is increased the yellow phase is diminishing and the phase diagram
converges towards the phase diagram calculated analytically in the previous sec-
tion. This observation has been made also for the Kitaev model [14]. However,
we want to stress that in real experimental systems the existence of the interme-
diate phase with C < 1 is possible, and it would correspond to the formation of
low-energy subgap states which have locally a full Majorana character, but that
are non-Majorana, due to their global lack of symmetry. It would be interesting
to explore the connection between these quasi-Majorana states and the ’chiral’
Majorana states described in Refs. [19, 3]. Another interesting question would
be if such quasi-Majorana states have any topological characteristics, such as
non-Abelian statistics, or atypical braiding properties, and if such states can
be useful for example for quantum computation in a similar manner as the
Majorana states. Note that a state with a C = 1 is a Majorana, and cer-
tainly has non-Abelian statistics. It is not at all clear that the statistics of the
quasi-Majorana states would be Abelian. These are peculiar states in-between
fermionic and Majorana-like, and there exist to this point no work to investigate
their statistics. Moreover there seems to be a fundamental difference between
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Figure 10: (Color online) MP for the lowest energy states for an open system of 51×201 with
∆ = 0.3t and α = 0.5t. We plot (a) an MBS µ = 3.5t and B = 2.2t (corresponding to the red
phase in Fig. 9(c)), (b) a non-MBS edge state µ = 3.5t and B = 2.3t (blue phase in Fig. 9(c)),
(c) a quasi-Majorana state µ = 3.5t and B = t (yellow phase in Fig. 9(c)), and (d) a trivial
bulk state µ = 0.5t and B = 5t (blue phase in Fig. 9(c)).

such states and the properly fermionic states which have a uniform local zero
MP. The quasi-Majoranas have their weight divided into a few different regions,
roughly disconnected from each other, each with C different from zero. Manip-
ulating such a state in one part of the system is not the same as manipulating
the fermionic state, and the effect of such manipulation is also a very interesting
question.

An extreme situation is depicted in Fig. 11(a,b), in which we plot the MP
for two quasi-Majorana states for a square system. Interestingly enough these
two states have different MP characteristics, they are either localized roughly
at the corners, or along the contour of the system. Note that for a fully square
system the corner MP vectors are oriented at roughly 90 degrees angle with
respect with each other, giving rise to an integral of C =

√
2/2 ≈ 0.7, which

corresponds well to the ‘yellow’ in Fig. 9(b).

7. Conclusions

We have introduced the Majorana polarization vector and we have shown
that it can be used as a local order parameter to characterize a given eigen-
state. We have shown that using a criterion based on the MP (the sum of the
MP vectors over a given region is equal to the sum of the LDOS) allows one to
distinguish Majorana states from non-Majorana states. We have implemented
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Figure 11: (Color online) MP for lowest energy state for open system of 101 × 101 with
∆ = 0.3t and α = 0.5t. (a) µ = 4t and B = t, and (b) µ = 2t and B = 3t, both in the 2D
topologically non-trivial phase.

this criterion to one-dimensional systems and finite-size two-dimensional sys-
tems. We have proved that using such a criterion is crucial in studying the
character of very-low-energy states as it allows one to distinguish Majorana
states for example from quasi-Majorana states that are locally Majorana, but
for which the MP vector is not aligned inside a given region.
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