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Beyond Amplitudes' Positivity and the Fate of Massive Gravity

We constrain effective field theories by going beyond the familiar positivity bounds that follow from unitarity, analyticity, and crossing symmetry of the scattering amplitudes. As interesting examples, we discuss the implications of the bounds for the Galileon and ghost-free massive gravity. The latter is ruled out by our theoretical bounds when combined with the experimental constraints on the graviton mass and from fifth-force experiments, given the impossibility to consistently implement the Vainshtein mechanism. We also show that the Galileon theory must contain symmetry-breaking terms that are at most one-loop suppressed compared to the symmetry-preserving ones.

I. INTRODUCTION AND SUMMARY

The idea that physics at low energy can be described in terms of light degrees of freedom alone is one of the most satisfactory organising principle in physics, which goes under the name of Effective Field Theory (EFT). A quantum field theory (QFT) can be viewed as the trajectory in the renormalization group (RG) flow from one EFT to another one, each being well described by an approximate fixed point where the local operators are classified mainly by their scaling dimension. The effect of ultraviolet (UV) dynamics is systematically accounted for in the resulting infrared (IR) EFT by integrating out the heavy degrees of freedom which generate an effective Lagrangian made of infinitely many local operators. Yet, EFTs are predictive even when the UV dynamics is unknown, because in practice only a finite number of operators contributes, at a given accuracy, to observable quantities. The higher the operator dimension, the smaller the effect at low energy.

In fact, extra information about the UV is always available: the underlying Lorentz invariant microscopic QFT is unitary, causal and local. These principles are stirred in the fundamental properties of the S-matrix such as unitarity, analyticity, crossing symmetry, and polynomial boundedness. These imply a UV-IR connection in the form of dispersion relations that link the (forward) amplitudes in the deep IR with the discontinuity across the branch cuts integrated all the way to infinite energy [START_REF] Gell-Mann | Use of Causality Conditions in Quantum Theory[END_REF][START_REF] Goldberger | Causality Conditions and Dispersion Relations. 1. Boson Fields[END_REF]. Unitarity ensures the positivity of such discontinuities, and in turn the positivity of (certain) Wilson coefficients associated to the operators in the EFT Lagrangian. This UV-IR connection can be used to show that "wrong-sign" Wilson coefficients in the IR can not be generated by a Lorentz invariant, unitary, casual, and local UV completion, as it was emphasised e.g. in [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF]. These positivity bounds have found several applications, including the proof of the a-theorem [START_REF] Komargodski | On Renormalization Group Flows in Four Dimensions[END_REF][START_REF] Luty | The a-theorem and the Asymptotics of 4D Quantum Field Theory[END_REF], the study of chiral perturbation theory [START_REF] Manohar | Dispersion Relation Bounds for Pi Pi Scattering[END_REF], W Wscattering and theories of composite Higgs [START_REF] Distler | Falsifying Models of New Physics via Ww Scattering[END_REF][START_REF] Bellazzini | Symmetries, Sum Rules and Constraints on Effective Field Theories[END_REF][START_REF] Low | Theoretical Constraints on the Higgs Effective Couplings[END_REF][START_REF] Falkowski | What If the Higgs Couplings to W and Z Bosons are Larger Than in the Standard Model?[END_REF][START_REF] Urbano | Remarks on Analyticity and Unitarity in the Presence of a Strongly Interacting Light Higgs[END_REF], as well as bounds on quantum gravity [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF], massive gravity [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bonifacio | Positivity Constraints for Pseudolinear Massive Spin-2 and Vector Galileons[END_REF][START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF], Galileons [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF][START_REF] De Rham | Massive Galileon Positivity Bounds[END_REF][START_REF] Nicolis | Energy's and Amplitudes' Positivity[END_REF][START_REF] Keltner | UV Properties of Galileons: Spectral Densities[END_REF], inflation [START_REF] Baumann | Signs of Analyticity in Single-Field Inflation[END_REF][START_REF] Croon | Goldstone Inflation[END_REF], the weak gravity conjecture [START_REF] Cheung | Infrared Consistency and the Weak Gravity Conjecture[END_REF][START_REF] Cheung | Naturalness and the Weak Gravity Conjecture[END_REF] and conformal field theory [START_REF] Komargodski | Conformal Field Theories and Deep Inelastic Scattering[END_REF][START_REF] Hartman | Causality Constraints in Conformal Field Theory[END_REF][START_REF] Alday | Unitarity and Positivity Constraints for CFT at Large Central Charge[END_REF]. The approach has been recently extended to particles of arbitrary spin [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF], with applications to massive gravity and the EFT of a Goldstino [START_REF] Bruggisser | Strongly Interacting Light Dark Matter[END_REF][START_REF] Bellazzini | R-Axion at Colliders[END_REF][START_REF] Bellazzini | The Other Fermion Compositeness[END_REF], and the formulation of a general no-go theorem on the leading energy-scaling behavior of the amplitudes in the IR [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF]. Ref.'s [START_REF] De Rham | Massive Galileon Positivity Bounds[END_REF][START_REF] De Rham | Positivity Bounds for Scalar Theories[END_REF][START_REF] De Rham | UV Complete Me: Positivity Bounds for Particles with Spin[END_REF] extended this technique beyond the forward limit, providing an infinite series of positivity constraints for amplitudes of arbitrary spin. In this paper we show that bounds stronger than stan-arXiv:1710.02539v1 [hep-th] 6 Oct 2017 dard positivity constraints can be derived by taking into account the irreducible IR cross-sections under the dispersive integral, which are calculable within the EFT. In models where the forward amplitude is suppressed (e.g. Galileons), or the high-energy scattering is governed by strong, but soft, dynamics (massive gravity, dilaton, WZW-like theories [START_REF] Cheung | A Periodic Table of Effective Field Theories[END_REF]), as well as models with suppressed 2 → 2 (but enhanced 2 → 3), our bounds are dramatically stronger. These bounds can be used to place rigorous upper limits on the cutoff scale for certain EFT's or constrain the relevant couplings, in a way that is somewhat reminiscent of the revived S-matrix bootstrap approach in four dimensions [START_REF] Paulos | The S-Matrix Bootstrap Iii: Higher Dimensional Amplitudes[END_REF]. The procedure we use was originally suggested in [START_REF] Nicolis | Energy's and Amplitudes' Positivity[END_REF], and later employed to estimate order-of-magnitude bounds [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF][START_REF] De Rham | Massive Galileon Positivity Bounds[END_REF]; here we extend these arguments to sharp inequalities and bring this technique beyond amplitudes' positivity.

We discuss explicitly two relevant applications of the bounds: the EFT for a weakly broken Galileon [START_REF] Nicolis | The Galileon as a Local Modification of Gravity[END_REF][START_REF] Pirtskhalava | Weakly Broken Galileon Symmetry[END_REF], and the ghost-free massive gravity theory [START_REF] De Rham | Generalization of the Fierz-Pauli Action[END_REF][START_REF] De Rham | Resummation of Massive Gravity[END_REF], known also as dRGT massive gravity, or Λ 3 -theory (Λ 3 is the mass scale that remains in the decoupling limit for the scalar Galileon mode). Despite the encouraging recent results on the positivity conditions that ghost-free massive gravity must satisfy [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF], our constraints provide a much stronger, and yet theoretically robust, lower bound on the graviton mass m. Indeed, our dispersion relations imply that the forward elastic amplitudes, that are suppressed by m at fixed Λ 3 , must nevertheless be larger than a factor times the unsuppressed elastic or inelastic cross-sections. Resolving this tension requires a nontrivial lower bound for the graviton mass. Under the customarily accepted assumption that Λ 3 is the cutoff of the theory in Minkowski background, i.e. away from all massive sources, this lower bound reads m 100 keV, which is grossly excluded observationally. Even relaxing this assumption and lowering the cutoff even further (i.e. taking hierarchically separated values for the actual cutoff Λ and the scale Λ 3 evaluated in Minkowski), we show that the dRGT massive gravity theory does not survive the combination of our bound with the experimental constraints on the graviton mass, unless a (presently unknown) mechanism other than the Vainshtein screening is at play. We anticipate these results in Fig. 1.

In the following, we begin by deriving the new bounds in full generality, and then apply them to the Galileon theory, showing that Galileon-symmetry-breaking terms can not be arbitrarily small. This naturally leads us to ghost-free massive gravity, where we find the most dramatic implications of the bounds; other applications are discussed in the conclusion.

II. DISPERSION RELATIONS

Let us consider the center-of-mass 2-to-2 scattering amplitude M z1z2z3z4 (s, t) where the various polarization
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2. Integration contours in the complex s-plane at fixed t = 0, with poles at s1 = M 2 and s2 = 4m 2 -M . The point s = µ 2 is on the real axis between the branch-cuts shown in red.

functions are labeled z i . The Mandelstam variables 1 are defined by s 2 and satisfy s+t+u = 4m 2 , where m is the mass of the scattered particles (all of the same species for easy of presentation). Our arguments will require finite m = 0. Yet, they hold even for some massless theories (scalars, spin-1/2 fermions, and softly broken U (1) gauge theories), which have a smooth limit m → 0 at least for the highest helicities, so that the bound can be derived with an arbitrarily small but finite mass, before taking the zero limit. We call,

= -(k 1 + k 2 ) 2 , t = -(k 1 + k 3 ) 2 , u = -(k 1 +k 4 )
M z1z2 (s) ≡ M z1z2z1z2 (s, t = 0) , (1) 
the forward elastic amplitude at t = 0, and integrate M z1z1 (s)/(s -µ 2 ) 3 along a closed contour Γ in the complex s-plane, enclosing all the physical IR-poles s i associated to the stable light degrees of freedom exchanged in the scattering (or its crossed-symmetric process), together with the point s = µ 2 lying on the real axis between s = 0 and s = 4m 2 ,

Σ z1z2 IR ≡ 1 2πi Γ ds M z1z2 (s) (s -µ 2 ) 3 , (2) 
see Fig. 2. The Σ z1z2 IR is nothing but the sum of the IR residues,

Σ z1z2 IR = Res s=si,µ 2 M z1z2 (s) (s -µ 2 ) 3 , (3) 
1

We use the mostly-plus Minkowski metric (-, +, +, +), work with the relativistic normalization of one-particle states p, z|p z = (2π)δ 3 (p -p )2E(p)δ zz , and define the M operator from the S-matrix operator, S = 1 + (2π) 4 δ 4 ( k i )iM.

and it is therefore calculable within the EFT. Using the Cauchy integral theorem we deform the contour integral into Γ that runs just around the s-channel and u-channel branch-cuts, and goes along the big circle eventually sent to infinity.

The polynomial in the denominator of Eq. ( 2) has the lowest order that ensures the convergence of the dispersive integral in the UV, a consequence of the Froissart-Martin asymptotic bound |M(s → ∞)| < const • s log 2 s, which is always satisfied in any local massive QFT [START_REF] Froissart | Asymptotic Behavior and Subtractions in the Mandelstam Representation[END_REF][START_REF] Martin | Extension of the Axiomatic Analyticity Domain of Scattering Amplitudes by Unitarity. 1[END_REF]. Thus lim s→∞ |M(s)|/s 2 → 0, and we can drop this contribution and write Σ z1z2 IR as an integral of the discontinuity DiscM z1z2 (s) ≡ M z1z2 (s + i ) -M z1z2 (s -i ) along the branch-cuts,

Σ z1z2 IR = 1 2πi ∞ 4m 2 ds + 0 -∞ ds DiscM z1z2 (s) (s -µ 2 ) 3 . ( 4 
)
The integral along the u-channel branch-cut runs over non-physical values of s = (-∞, 0), but can be expressed in terms of another physical amplitude, involving antiparticles (identified by a bar over the spin label, i.e. z), and related to the former by crossing. Indeed, crossing particle 1 and 3 in the forward elastic limit t = 0, implies [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF],

M z1z2 (s) = M -z1z2 (u = -s + 4m 2 ) (helicity basis) M z1z2 (s) = M z1z2 (u = -s + 4m 2 ) (linear basis)
We will work in the helicity basis notation and recall that for -z → z we recover the results for linear polarizations. Moreover, for particles that are their own antiparticles, z = z. Finally, amplitudes are real functions of complex variables, i.e. M(s) * = M(s * ), so that the discontinuities are proportional to the imaginary part, and one obtains the dispersion relation between IR and UV:

Σ z1z2 IR = ∞ 4m 2 ds π ImM z1z2 (s) (s -µ 2 ) 3 + ImM -z1z2 (s) (s -4m 2 + µ 2 ) 3 . (5)

III. POSITIVITY AND BEYOND

Unitarity of the S-matrix implies the optical theorem,

ImM z1z2 (s) = s 1 -4m 2 /s • σ z1z2 tot (s) > 0 , (6) 
where σ z1z2 tot (s) is the total cross-section σ z1z2 tot = X σ z1z2→X . So, the imaginary parts in the integrand Eq. ( 5) are strictly positive for any theory where particles 1 and 2 are interacting, as long as 0 < µ 2 < 4m 2 . Thus one obtains the rigorous positivity bound,

Σ z1z2 IR > 0 . (7) 
Since Σ z1z2 IR is calculable in the IR in terms of the Wilson coefficients, Eq. ( 7) provides a non-trivial constraint on the EFT.

As a simple example consider the theory of a pseudo-Goldstone boson π, from an approximate global U (1) symmetry which is broken spontaneously in the IR. The effective Lagrangian reads

L EFT = -1 2 (∂π) 2 + λ Λ 4 [(∂π) 2 + . . .] 2 -2 π 2 Λ 2 + c(∂π) 2 + . . . ,
where Λ is the cutoff and λ ∼ O(1) (or even larger should the underlying dynamics be strongly coupled). The parameters that break the approximate Goldstone shift symmetry π → π + const are instead suppressed, naturally, by 1. In any case, from an EFT point of view, both signs of λ are consistent with the symmetry; however Σ IR = λ/2Λ 4 , so that only λ > 0 is consistent with the positivity bound [START_REF] Distler | Falsifying Models of New Physics via Ww Scattering[END_REF]. Unitary, local, causal and Lorentz invariant UV completions can generate only positive λ in the IR [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF]. Important for our arguments below, is that this statement is irrespective of the soft deformations ∼ : the limit → 0 is smooth. Like in the previous example, Σ IR is often calculable within the tree-level EFT where the only discontinuity in the amplitude M EFT are simple poles. In such a case we can use again Cauchy theorem on the tree-level EFT amplitude so that Σ IR is more promptly calculated as minus the residue at infinity [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF],

Σ z1z2 IR = -Res s=∞ M EFT (s) (s -µ 2 ) 3 (8) 
up to small tiny corrections. In addition, for amplitudes that scale as M EFT (s) ∼ s 2 for large s and t = 0 (as in e.g. the Galileon and ghost-free massive gravity), we have Σ z1z2

IR = 1/2(∂ 2 M EFT /∂s 2 )| m 2 s .
In this case, the left-hand side of the dispersion relation ( 5) is µ 2 -independent and one can thus drop µ 2 from the right-hand side too.

So far we invoked very general principles of QFT and derived positivity constraints on EFT's. We can in fact extract more than positivities by noticing that the total cross-section on the right-hand side of the dispersion relation contains an irreducible contribution from the IR physics, which is calculable within the EFT by construction. The other contributions, e.g. those from the UV, are uncalculable with the EFT but are nevertheless always strictly positive, by unitarity. Moreover, each final state X in the total cross-section contributes positively too. Therefore, an exact inequality follows from truncating the right-hand side of (5) at some energy E 2 Λ 2 below the cutoff Λ of the EFT,

Σ z1z2 IR > X E 2 4m 2 ds π 1 -4 m 2 s sσ z1z2→X (s) (s -µ 2 ) 3 + sσ -z1z2→X (s) (s -4m 2 + µ 2 ) 3 IR . (9) 
Both sides are now calculable, hence the subscript IR. The Σ z1z2 IR must not only be positive but strictly bigger than something which is itself positive and calculable within the EFT. Moreover we can retain any subset X of final states, independently on whether they are elastic or inelastic: the more channels and information are retained in the IR the more refined the resulting bound will be.

The information provided by our bound [START_REF] Low | Theoretical Constraints on the Higgs Effective Couplings[END_REF], is maximized in theories where the elastic forward amplitude M z1z2 , which appears in the lefthand side, is parametrically suppressed compared to the non-forward or inelastic ones (that is M z1z2z1z2 (s, t = 0), M z1z2z3z4 (s, t), or more generally M z1z2→X ), that appear in the righthand side. This tension results in constraints on the couplings and masses of the EFT, that include and go beyond the positivity of Σ IR . Galileons, for examples, have a suppressed forward amplitude: the would-be leading stu-term actually vanishes at t = 0 and the amplitude is thus sensitive to the small Galileon-symmetry breaking terms. On the other hand, neither the Galileon elastic cross-section nor the right-hand side of (9) are suppressed. Massive gravity, dilaton, WZW-like theories [START_REF] Cheung | A Periodic Table of Effective Field Theories[END_REF], as well as other models where 2 → 2 is suppressed while 2 → 3 is not, are other simple examples of theories that get non-trivial constraints from our bound Eq. ( 9). Even in situations without parametric suppression, our bound carries important information: it links elastic and inelastic cross sections that might depend on different Wilson coefficients in the EFT.

Amplitudes in an EFT means finite, yet systematically improvable, accuracy δ in the calculation. The main source of error for small masses is the truncation of the tower of higher dimensional operators. For example, working to the leading order (LO) in powers of (E/Λ)2 , (m/E) 2 (and hence (µ/E) 2 ), the bound (9) takes a simpler form

Σ z1z2 IR ,LO > X E 2 ds πs 2 σ z1z2→X (s) + σ z1-z2→X (s) IR ,LO × 1 + o m E 2 + o E Λ 2 ( 10 
)
where the error from the truncation

o E Λ 2 = c UV + o(1) g 2 * 16π 2 ln E Λ E Λ 2 + . . . ( 11 
)
is controlled by the (collective) coupling g * of the IRtheory that renormalizes the higher dimensional operators that come with (unknown) Wilson coefficients c UV ∼ o(1). 2 The IR-running effects from Λ to E are an irreducible (yet improvable) source of error, whereas the UV contribution is model dependent.

Choosing E at or slightly below the cutoff scale Λ gives just an order of magnitude estimate for the bound [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF][START_REF] De Rham | Massive Galileon Positivity Bounds[END_REF]. A rigorous bound can instead be defined even for large couplings g * ∼ 4π and c UV ∼ 1, just by choosing a sufficiently small (E/Λ) 2 . Percent accuracy can be achieved already with E/Λ ∼ 1/10. Of course, nothing except more demanding calculations prevents us to reduce the error by working to all order in the mass, or including next-to-next-to. . . next-to-LO corrections so that the truncation of the EFT (or the running couplings) affects the result only by an even smaller relative error, loops -factors × o(E/Λ) n3 .

IV. GALILEON

Let us consider the amplitude

M(s, t) = g 2 * -3 stu Λ 6 + 2 s 2 + t 2 + u 2 2Λ 4 + . . . (12) 
for a single scalar π whose hard-scattering limit is o(s 3 ), whereas the forward scattering is o(s 2 ) and suppressed by 2 1. The cutoff Λ corresponds to a physical threshold for new states propagating on-shell, i.e. the location of the first non-analyticity in the complex s-plane which is not accounted by loops of π. We have factored out the overall coupling constant g 2 * to make clear the distinction between the physical cutoff Λ and other scales not associated to physical masses, such as decay constants, see Appendix A.

Eq. ( 12) gives Σ IR = g 2 * 2 /Λ4 and σ ππ→ππ = 3g 4 * s 5 /(320πΛ 12 ) + . . . 4 so that the bound (10) is 2 > 3 40

g 2 * 16π 2 E Λ 8 , (13) 
up to the relative error [START_REF] Urbano | Remarks on Analyticity and Unitarity in the Presence of a Strongly Interacting Light Higgs[END_REF]. The lesson to be learnt here is that s 2 -terms in the amplitude can not be too much suppressed compared to the the s 3 -terms. Choosing e.g. a 30%-accuracy on the overall factor (E/Λ) 8 ∼ 10 -2 (loosely speaking corresponding to a "3sigma" claim), one gets that 2 > 10 -3 (1 ± 30%) for a fully strongly coupled theory g * = 4π. A claim valid at "1-sigma" corresponds to setting E ∼ Λ, that is accepting o(1) corrections: 2 g 2 * /(16π 2 ). The weakly broken Galileon Lagrangian [START_REF] Nicolis | The Galileon as a Local Modification of Gravity[END_REF][START_REF] Pirtskhalava | Weakly Broken Galileon Symmetry[END_REF] 

L = - 1 2 (∂ µ π) 2 1 + c 3 Λ 3 π + c 4 Λ 6 ( π) 2 -(∂ µ ∂ ν π) 2 +c 5 (. . .) + λ 4Λ 4 [(∂π) 2 ] 2 - m 2 2 π 2 (14) 
has suppressed Galileon symmetry-breaking terms λ c 2 3 , c 4 and m 2 Λ 2 . It reproduces the scattering amplitude [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF] with the identification

c 2 3 -2c 4 = 4g 2 * , λ Λ 4 + c 2 3 m 2 2Λ 6 = g 2 * 2 Λ 4 = Σ IR . ( 15 
)
In the massless limit, or more generally for c 2 3 m 2 /Λ 2 λ (which is fully natural given that λ preserves a shift symmetry while m 2 does not), the bound (13) tells that λ is not only positive, but (parametrically) at most oneloop factor away from (c 2 3 -2g 4 )/4

λ > 3 640

c 2 3 -2c 4 2 16π 2 E Λ 8 . (16) 
For a massive Galileon with negligible λ one gets that c 3 > 0 and that the mass is bounded below

m 2 > Λ 2 3 320 (c 3 -2c 4 /c 3 ) 2 16π 2 E Λ 8 (17) 
where (E/Λ) 8 ∼ 10 -2 for a 30% accuracy on the overall factor.

V. MASSIVE GRAVITY

The previous bounds on Galileons are unfortunately not directly applicable to cosmological models of modified gravity, which contain other IR degrees of freedom affecting Σ IR significantly, such as e.g. a massless graviton like in Horndeski theories [START_REF] Koyama | Effective Theory for the Vainshtein Mechanism from the Horndeski Action[END_REF]. In that case both size of the inequality would be ill-defined at the Coulomb singularity t = 0 because of the massless spin-2 state exchanged in the t-channel. Alternative ideas or extra assumptions are needed for a massless graviton, see e.g. [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF][START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] Cheung | Positivity of Curvature-Squared Corrections in Gravity[END_REF][START_REF] Benakli | Superluminal Graviton Propagation[END_REF].

In a massive gravity theory the situation is instead more favourable as a finite graviton mass has a double role: it regulates the IR singularity and tips the s 2 -term (vanishing in the forward and decoupling limit) to either positive or negative values, depending on the parameters of the theory that get therefore constrained by the positivity of Σ IR > 0 [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF]. Notice that one can not directly interpret the results obtained above for the scalar Galileon mode as the longitudinal component of the massive graviton as the IR dynamics is different: for example, the helicity-2 mode in t-channel gives a contribution to the amplitude that is as large as the contribution from the Galileon scalar modes. Ghost-free massive gravity has to be studied in its completeness [START_REF] De Rham | Generalization of the Fierz-Pauli Action[END_REF][START_REF] De Rham | Resummation of Massive Gravity[END_REF] (for reviews see [START_REF] Hinterbichler | Theoretical Aspects of Massive Gravity[END_REF][START_REF] De Rham | Massive Gravity[END_REF]),

S = d 4 x √ -g m 2 Pl 2 R - m 2 Pl m 2 8 V (g, h) (18) 
where m Pl = (8πG) -1/2 is the reduced Planck mass, g µν = η µν + h µν is an effective metric written in term of the Minkowski metric η µν (with mostly + signature) and a spin-2 graviton field h µν in the unitary gauge, R is the Ricci scalar for g µν , and

V (g, h) = V 2 + V 3 + V 4 is the soft graviton potential V 2 (g, h) =b 1 h 2 + b 2 h 2 (19) V 3 (g, h) =c 1 h 3 + c 2 h 2 h + c 3 h 3 (20) V 4 (g, h) =d 1 h 4 + d 2 h 3 h + d 3 h 2 2 (21) + d 4 h 2 h 2 + d 5 h 4
with h ≡ h µν g µν , h 2 ≡ g µν h νρ g ρσ h σµ ,. . . The coefficients depend on just two parameters, c 3 and d 5 , after imposing the ghost-free conditions

b 1 = 1 , b 2 = -1 (22) 
c 1 = 2c 3 + 1 2 , c 2 = -3c 3 - 1 2 , ( 23 
)
d 1 = -6d 5 + 3 2 c 3 + 5 16 , d 2 = 8d 5 - 3 2 c 3 - 1 4 , (24) 
d 3 = 3d 5 - 3 4 c 3 - 1 16 , d 4 = -6d 5 + 3 4 c 3 . (25) 
Since the graviton is its own antiparticle, it is convenient to work with linear polarizations that make the crossed amplitudes, and in turn the bound, neater [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF][START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF]. For example, the LO bound with linear polarizations reads

Σ z1z2 IR ,LO > X 2 π E 2 ds s 2 σ z1z2→X (s) IR ,LO . (26) 
Adopting the basis of polarizations reported in the appendix B, we have two tensor polarizations (T , T ) that do not grow with energy, two vector polarizations (V , V ) that grow linearly with energy, and one scalar polarization (S) that grows quadratically with the energy. We calculate the amplitudes for different initial and final state configurations and find that Σ z1z2 IR ∼ m 2 /Λ 6 3 is suppressed by the small graviton mass, where Λ 3 ≡ (m 2 m Pl ) 1/3 . On the other hand, we find that the crosssections are not generically suppressed by m: hence, a small mass is at odd with our bound Eq. ( 26). Resolving this tension results into non-trivial constraints on the theory, beyond the positivity bounds derived in [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF]. In particular, the amplitudes for SS, V V, V V , V S elastic scatterings, have the following suppressed residues,

Σ SS IR = 2m 2 9Λ 6 3 (7 -6c 3 (1 + 3c 3 ) + 48d 5 ) > 0 (27) Σ V V IR = m 2 16Λ 6 3 5 + 72c 3 -240c 2 3 > 0 (28) Σ V V IR = m 2 16Λ 6 3 23 -72c 3 + 144c 2 3 + 192d 5 > 0 (29) Σ V S IR = m 2 48Λ 6 3 91 -312c 3 + 432c 2 3 + 384d 5 > 0 . ( 30 
)
In contrast the hard-scattering limits of the amplitudes, that enters the RHS of Eq. ( 26), is unsuppressed. For s, t m 2 ,

M SSSS = st(s + t) 6Λ 6 
3

(1 -4c 3 (1 -9c 3 ) + 64d 5 ) M V V V V = 9st(s + t) 32Λ 6 
3

(1 -4c 3 ) 2 M V V V V = 3t 3 32Λ 6 3 (1 -4c 3 ) 2 (31) 
M V SV S = 3t 4Λ 6 3 c 3 (1 -2c 3 )(s + st -t 2 ) - 5s 2 + 5st -9t 2 72
It is convenient to recall also the bound

m 2 36Λ 6 3 35 + 60c 3 -468c 2 3 -192d 5 > 0 ( 32 
)
which follows from the positivity of the residue of maximally-mixed ST polarizations, i.e. (with a slighly abuse of notation) Σ T T IR + Σ SS IR + 2Σ T ST S IR + 4Σ T T SS IR > 0, where the expressions for these Σ IR , that we have explicitly reproduced, are given in [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF].

At this point we chose the arbitrary energy scale E of Eq. ( 26) between the cutoff, E Λ, so that the EFT calculation for the right-hand side of ( 26) is trustworthy, and the mass E m, so that the EFT hard-scattering amplitudes Eq. ( 31) are dominating the cross-sections. We define,

δ ≡ E Λ 2 ( 33 
)
that controls the accuracy of the EFT calculation, and obtain,

F i (c 3 , d 5 ) > 4πm Pl m g * 4π 4 δ 6 , (34) 
where we have defined

g * ≡ Λ Λ 3 3 . ( 35 
)
The functions F i (c 3 , d 5 ) are

F SS = 960 7 -6c 3 (1 + 3c 3 ) + 48d5 (1 -4c 3 (1 -9c 3 ) + 64d 5 ) 2 3/2 , F V V = 2560 27 5 + 72c 3 -240c 2 3 (1 -4c 3 ) 4 3/2 , ( 36 
)
F V V = 896 9 23 -72c 3 + 144c 2 3 + 192d 5 (1 -4c 3 ) 4 3/2 , F V S = 80640 91 -312c 3 + 432c 2 3 + 384d 5 1975 -29808c 3 (1 -2c 3 )(1 -4c 3 + 8c 2 3 ) 3/2
.

The four inequalities following from Eq. ( 34), are the main result of this section: they imply lower bounds on the graviton mass, which can not be arbitrarily small compared to 4πm Pl (which, incidentally, is the largest cutoff for quantum gravity) for a fixed g * . These bounds represent the very much improved, sharper, and more conservative version of the rough estimate done in [START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF]. As we discuss below, g * cannot be taken arbitrarily small either.

Implications

The bounds Eq. ( 34) can be read in two ways: as constraints on the plane (c 3 , d 5 ) of the graviton potential parameters, for a given graviton mass m and a given ratio (Λ/Λ 3 ) 3 = g * , or as an absolute constraint on g * for a given m, independently of c 3 and d 5 , by finding the maximum of F i (c 3 , d 5 ).

We begin with a discussion of the bounds on the parameters c 3 and d 5 inside F i . The experimental upper limit on the graviton mass is extremely stringent, m 10 -32 -10 -30 eV, depending on the type of experiment and theory assumptions behind it (see [START_REF] De Rham | Graviton Mass Bounds[END_REF] for a critical discussion). Taking this as input, we show in Fig. 3 the constraints on c 3 and d 5 , for a given g * ; the colored regions being allowed by our constraints. The yellow region are nothing but the standard positivity constraints [START_REF] Bellazzini | R-Axion at Colliders[END_REF][START_REF] Bellazzini | The Other Fermion Compositeness[END_REF][START_REF] De Rham | Positivity Bounds for Scalar Theories[END_REF][START_REF] De Rham | UV Complete Me: Positivity Bounds for Particles with Spin[END_REF][START_REF] Nicolis | The Galileon as a Local Modification of Gravity[END_REF]. For g * 10 -9 (corresponding to situations where Λ and Λ 3 are less than a factor ∼ 1000 away from each other, see Eq. ( 35), our bounds do not admit any solution in the (c 3 , d 5 )plane. Notice that as g * gets bigger the constraints from F V V or F V V alone single out essentially a narrow band around the line c 3 = 1/4, in agreement with the causality arguments of Ref.s [START_REF] Camanho | Causality Constraints on Massive Gravity[END_REF][START_REF] Hinterbichler | Massive Spin-2 Scattering and Asymptotic Superluminality[END_REF]. Similarly, the constraint from F SS alone, converge quickly on the line 1 -4c 3 (1 -9c 3 ) + 64d 5 = 0. The intersection point (c 3 , d 5 ) = (1/4, -9/256) (red point in Fig. 3) is finally removed by F V S .

In substance, the intersection region in the left panel of Fig. 3 is empty, while a small island (delimited by a solid black line) survives in the right plot with smaller g * . To find the maximum value of g * that allows for a FIG. 3. Exclusion plot in the (c3, d5) plane for ghost-free massive gravity, for fixed accuracy δ = 1%, mass m = 10 -30 eV, and coupling g * = 1(2) • 10 -9 in the right (left) panel. Yellow region: allowed by standard positivity constraints, Eqs. [START_REF] Bellazzini | R-Axion at Colliders[END_REF][START_REF] Bellazzini | The Other Fermion Compositeness[END_REF][START_REF] De Rham | Positivity Bounds for Scalar Theories[END_REF][START_REF] De Rham | UV Complete Me: Positivity Bounds for Particles with Spin[END_REF][START_REF] Nicolis | The Galileon as a Local Modification of Gravity[END_REF], whose optimized versionfrom Ref. [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF] is dotted. Other colored regions are allowed by our new bounds. Dash-dotted red line (dashed black line): regions of vanishing FV V (FSS), where the respective bounds vanish: indeed in the red dot (c3, d5) = (1/4, -9/256) the vector and scalar mode decouple from the tensors, but not from each other, and in the black dot the scalar mode decouples from the tensor mode and itself. solution, we write Eq. ( 34) as

m > 1.2 • 10 12 eV g * 1 4 δ 1% 6 1 F i (c 3 , d 5 ) , (37) 
and note that F V S is continuous on the compact region allowed by the positivity constraints [START_REF] Bellazzini | R-Axion at Colliders[END_REF][START_REF] Bellazzini | The Other Fermion Compositeness[END_REF][START_REF] De Rham | Positivity Bounds for Scalar Theories[END_REF][START_REF] De Rham | UV Complete Me: Positivity Bounds for Particles with Spin[END_REF][START_REF] Nicolis | The Galileon as a Local Modification of Gravity[END_REF]. The F V S has thus a maximum value F V S (ĉ 3 , d5 ) = 1.95 • 10 7 at (ĉ 3 , d5 ) (0.19, 0.15) inside that region (in fact, at the boundary), which implies the lower bound

m > 10 -30 eV g * 2 • 10 -9 4 δ 1% 6 , (38) 
independently of any values of c 3 and d 5 . We recall that the direct experimental constraints on the graviton mass are m 10 -30 eV. This situation is summarized in Fig. 1 and implies that g * 10 -9 is excluded. Even slightly stronger bounds can be obtained by working with the non-elastic channels. In fact, as we now discuss, g * can not be taken to such small values anyway.

The crucial question now is: what is the physical meaning of g * , the relation between the cutoff Λ and the scale Λ 3 ? Can the UV completion be arbitrarily weakly coupled g * 10 -9 [15]? To our knowledge, most literature of massive gravity has so far identified the cutoff Λ with the scale Λ 3 , so that one expects a sizable g * ≈ 0.1 -4π. These values are now grossly excluded by our bounds.

What about hierarchical values for Λ and Λ 3 corresponding to tiny values for g * ? From a theoretical point of view Λ and Λ 3 scale differently with = 1, so that their ratio actually changes when units are changed, in such a way that indeed g * scales like a coupling constant (see Appendix A). This is fully analogous to the difference between a vacuum expectation value v (VEV) and the masses of new particles ∼ coupling × v, e.g. the W -boson mass m W ∼ gv. The crucial point is that the cutoff, which is a physical scale Λ differs from Λ 3 , which does not have the right dimension to represent a cutoff. Since Λ -1 3 = 15 km m/10 -30 eV -2/3 , a very small coupling g * translates into a very low cutoff (large in distance units)

Λ (15000 km)

-1 g * 10 -9 1/3 m 10 -30 eV 2/3 . (39) 
This is grossly inconsistent with the precise tests of general relativity, which go down to the mm scale or even below, see e.g. [50,[START_REF] Kapner | Tests of the Gravitational Inverse-Square Law Below the Dark-Energy Length Scale[END_REF] and references in [START_REF] De Rham | Graviton Mass Bounds[END_REF]. The tension between our bounds, direct limits on the graviton mass, and from fifth force experiments is not resolvable (see Fig. 1), and this excludes massive gravity.

One might naively think that some screening effect, e.g. the Vainshtein mechanism [START_REF] Vainshtein | To the Problem of Nonvanishing Gravitation Mass[END_REF][START_REF] Deffayet | Nonperturbative Continuity in Graviton Mass Versus Perturbative Discontinuity[END_REF], could resolve this tension: after all the cutoff in Eq. [START_REF] Koyama | Effective Theory for the Vainshtein Mechanism from the Horndeski Action[END_REF] holds in Minkowski space and non-necessarily in regions near massive bodies, such as the earth, where non-linearities are important. However, the Vainshtein mechanism relies, crucially, on the assumption that the tower of effective operators is such that only building blocks of the type ∂∂π/Λ 3 3 are unsuppressed (we work here for simplicity with the Stueckelberg mode π in the decoupling limit), whereas terms with more than two derivatives per field, like (∂/Λ) n ∂∂π/Λ 3 3 , are small. This assumption is consistent with NDA for Λ Λ 3 i.e. for g * 1, but this is exactly the region ruled out by our bounds, as discussed above.

On the other hand, assuming that the Vainshtein mechanism works along with Λ Λ 3 , translates into extra highly non-generic assumptions about the UVcompletion, see [START_REF] Nicolis | Classical and Quantum Consistency of the Dgp Model[END_REF]. More importantly, the very same assumption that allows one to trust the Vainshtein mechanism, that is trusting the prediction at distances much smaller than Λ -1 3 , and a fortiori smaller than Λ -1 , would at the same time allows one to choose E in [START_REF] Bruggisser | Strongly Interacting Light Dark Matter[END_REF] to much larger values than Λ as well. In practice, the assumption that would justify the call for a Vainshtein mechanism would allow us to set, effectively, g * ∼ 1 again.

In summary, either g * 1 or Vainshtein can be taken, but not both. This is after all obvious: Vainshtein requires effectively a larger calculability cutoff, Λ → Λ 3 , so our bounds become more effective too.

All in all, our theoretical bounds [START_REF] Martin | Extension of the Axiomatic Analyticity Domain of Scattering Amplitudes by Unitarity. 1[END_REF][START_REF] Cheung | A Periodic Table of Effective Field Theories[END_REF] rule out ghost-free massive gravity for good, unless some new clever mechanism beyond Vainshtein's would allow to lower even further the cutoff. In turn, ghost-free massive gravity is no longer a candidate for explaining the cosmic acceleration since that requires m ∼ H 0 ∼ 10 -33 eV.

VI. OUTLOOK

Positivity bounds are statements that arise from first principles such unitarity, analyticity, and crossing symmetry of the Lorentz invariant S-matrix. They have proven to be very useful because they set nonperturbative theoretical constraints even in strongly coupled theories, and give information that goes well beyond the mere use of symmetries. In this paper we went beyond positivity bounds and derived rigorous inequalities for amplitudes that are calculable in the IR via an EFT approach. The dispersive integral in the IR is not only positive but calculable, with an error from truncating the EFT towers of higher-dimensional operators that can be tamed thanks to separation of scales, which is what makes the EFT useful in the first place.

Our results are simple and general, and they can be applied straightforwardly to several EFTs. The phenomenological applications to interesting theories such as the weakly-broken Galileon and the ghost-free massive gravity that we explored in this paper are extremely rewarding. Our results, taken at face value, rule out dRGT massive gravity by combining our bound with the experimental lower bound on the graviton mass, and fifth force experiments, see Fig. 1. In the region where the Vainshtein mechanism could be at play, our bounds in fact require m 100 keV. Needless to say, our bounds neither apply to Lorentz-violating models of massive gravity (e.g. [START_REF] Blas | [END_REF]), nor to theories with a massless graviton.

There are several directions where our bounds can find fruitful applications. The most immediate ideas involve theories with Goldstone particles, e.g., the EFT for the Golstino from SUSY breaking, the R-axion from R-symmety breaking, and the dilaton from scale-symmetry breaking. In these theories there exist universal couplings that are set by the various decay constants, but include also other non-universal parameters whose sizes and signs are often not accessible with the standard positivity bounds. Our results would allow instead to relate the non-universal parameters to the decay constants and extract thus non-trivial information on these EFTs, which are also phenomenologically interesting, see e.g. [26-28, 54, 55]. Another direction would be theories that have suppressed 2-to-2 amplitudes but unsuppressed 2to-3 amplitudes, as those discussed e.g. in [START_REF] Cheung | A Periodic Table of Effective Field Theories[END_REF].

One important open question, that for the time being remains elusive, is whether it is possible (at least under extra assumptions) to extend our results to theories with massless particles and with spin J ≥ 2. If that would be the case, the bounds would provide new insights on the long-distance universal properties of the UV-completion of quantum gravity. The bounds would also apply to IR modifications of General Relativity such as Horndeskilike theories, where the graviton remains massless.

More importantly, the relation between VEVs, couplings, physical masses and the associated Compton lengths is

[λ -1 ] = m = [g * A ] . (A1) 
A coupling times a VEV is nothing but an inverse physical length which can be converted to a physical mass by plugging in the conversion factor, aka . In other words, the appearance of the coupling in (A1) tells us that parametrically VEV's are to masses (or Compton lengths) like apples are to oranges. 5 The immediate consequence of this trivial excercise is that the reduced But what is left behind is the correct counting of g *insertions. This reasoning with = 1 is useful to keep track of the appropriate g * insertions; the structure of a generic Lagrangian that automatically reproduces it is,

L = Λ 4 g 2 * L ∂ Λ , g * A Λ , g * ψ Λ 3/2 (A2)
where Λ is a physical mass scale and L is a polynomial with dimensionless coefficient, and we have finally set back = 1.The Lagrangian (A2) accounts for the intuitive fact that any field insertion in a given non-trivial process requires including a coupling constant as well.

A class of simple theories with only one coupling and one scale [START_REF] Giudice | The Strongly-Interacting Light Higgs[END_REF] are those where all coefficients of L are of the same order (except for symmetries that can naturally suppress a subset of the parameters). They represent a generalization of the naive counting of 4π-factors, routinely used in strongly coupled EFT's in particle physics (see e.g. [START_REF] Cohen | Counting 4 Pis in Strongly Coupled Supersymmetry[END_REF]), which goes under the name of naive dimensional analysis (NDA). With the g * -counting at hand, we immediately recognize that the scale Λ 3 3 = (m 2 m Pl ) traditionally used in massive gravity is not parametrically a physical threshold: it misses a coupling constant. This is made manifest by the fact that the graviton mass is a physical mass scale but m Pl is only a VEV. Alternatively, in the decoupling limit the coefficient of the cubic Galileon must carry a coupling g * , that is [c 3 ] = [g * ] to match the general scaling (A2). The actual correct parametric scaling is thus Λ 3 = g * Λ 3 3 . A weakly coupled theory corresponds to suppressed Λ relative to Λ 3 , like a weakly coupled UV completion of general relativity corresponds to states entering much earlier than 4πm Pl .

The advantage of our convention is that it removes the little group matrix that would otherwise act on the polarization indexes z = T, T , V, V , S when performing the rotations that send k 1 to k i . (The Wigner rotation must be adapted accordingly too). For massless particles the differences between the two conventions is essentially immaterial as the little group acts just like phases.

FIG. 1 .

 1 FIG. 1. Exclusion region for massive gravity. The gray region is theoretically excluded by our lower bound Eq. (38) with accuracy δ = 1%. The colored lines represent the physical cutoff away from the red region, where a Vainshtein mechanism could be consistently implemented. Fifth-force experiments probe the mm scale (excluding the orange region); the horizontal dashed line represents the experimental upper bound on the graviton mass.

  Planck mass m Pl has units of a VEV, [m Pl ] = [A], and not of a physical mass scale, in full analogy with the axion decay constant [f a ] = [A]. The UV-completion of general relativity should enter at some physical energy g * m Pl which is parametrically different than m Pl , even after setting = 1, because of the coupling g * .

In our perspective, c UV 1 would just signal the misidentification of what the actual LO hard-scattering amplitude is, and would require inclusion of the operators with large c UV within the LO amplitude.

[START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF] In addition, the LO may possibly receive corrections from the logarithmic running of LO couplings. In the examples where our bounds are interesting, symmetry are often at play and the LO operators do not actually get renormalized, except from small explicit breaking

effects.[START_REF] Komargodski | On Renormalization Group Flows in Four Dimensions[END_REF] Curiously, there is a mild violation of the naive-dimensional analysis estimate 2 NDA > 9g 2 * /16π 2 (E/Λ) 8[START_REF] Bellazzini | Softness and Amplitudes Positivity for Spinning Particles[END_REF] due to a 10% cancellation in the phase-space integral 1/2 1 -1 d cos θ|stu| 2 which returns s 6 (1/3 + 1/5 -1/2) = s 6 /30 rather than o(1)s 6 .

We thank Riccardo Rattazzi who inspired this adage, with his interventions at the J. Hopkins workshop in Budapest in 2017.

We are taking the same matrix entries of[START_REF] Cheung | Positive Signs in Massive Gravity[END_REF], except that that we have removed the i factor from the vector polarizations and taken all upper Lorentz indexes. We checked that our choice satisfy the completeness relation. The i factor is never important in elastic amplitudes, but it should actually be included whenever considering mixed-helicity states that include vector components, as done in[START_REF] Cheung | Positive Signs in Massive Gravity[END_REF] 
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Appendix A: g * -counting via -counting

In this appendix we recall how dimensional analysis is useful to extract the scaling with respect to coupling constants.

Rescaling the units from = 1 to = 1 while keeping c = 1 reintroduces a conversion factor between energy (or momentum) units E and length (or time) units , i.e. = /E. With canonically normalized kinetic terms, we have the following scaling with :

, where g * is (a collective name for) coupling constant(s) and m a physical mass. Notice that Higgs quartic coupling λ is really a coupling squared

. Quantum corrections scale indeed like powers of the dimensionless quantity g 2 * /(16π 2 ) or λ /(16π 2 ), so that they are important for g 2 * ∼ 16π 2 / ∼ λ when there is no large dimensionless number (such as e.g. the number of species). Extending this dimensional analysis to fermions is immediate to see that Yukawa couplings scale like -1/2 too.

Appendix B: Polarizations

We adopt the following basis of linear polarizations

which are associated to the particle

which lies along the z-axis and has E 2 = k 2 1 + m 2 . They are real, symmetric, traceless, orthogonal, transverse to k 1 , and normalized to * µν νµ = 1 6 . The polarizations associated to the other momenta k µ i in the 2-to-2 scattering in the center of mass frame are obtained by a Lorentz transformation of those in (B1), e.g.

with R µ µ the rotation along the y-axis by cos θ = 1 + 2t/(s -4m 2 ) such that k 3 = Rk 1 . While this definition is valid and legitimate, it corresponds effectively to consider k 1 as the canonical reference vector, rather than (m, 0, 0, 0) T , upon which constructing the massive one-particle states via boosting. Alternatively, it means that the standard Lorentz transformation that sends (m, 0, 0, 0) T to k is a boost along the z-axis followed by rotation that sends ẑ to k (like done e.g. for massless particle in [START_REF] Weinberg | The Quantum Theory of Fields[END_REF]), rather than the sequence rotationboost-rotation usually adopted for massive states [START_REF] Weinberg | The Quantum Theory of Fields[END_REF].