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Small quantum systems can now be continuously monitored experimentally which allows for the
reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of
jumps between the eigenstates of the observable which is measured. Using the Stochastic Master
Equation (SME) formalism for continuous quantum measurements, we show that the density matrix
of a system indeed shows a jumpy behavior when it is subjected to a tight measurement (even if
the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any
system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to
two simple examples. We then discuss the mathematical, foundational and practical applications
of our results. The analysis we present is based on a study of the strong noise limit of a class
of stochastic differential equations (the SME) and as such the method may be applicable to other
physical situations in which a strong noise limit plays a role.

I. INTRODUCTION

Recent advances in experimental techniques now allow
for a tight monitoring, i.e. a continuous and strong mea-
surement, of small open quantum systems. The corre-
sponding quantum trajectories can now be recorded with
increasing precision [22, 29]. A striking feature of such
systems undergoing continuous measurement is the emer-
gence of a jumpy behaviour between measurement eigen-
states. This interesting and ubiquitous phenomenon has
already been observed in many experiments [10, 23, 27].
Even if quantum jumps were already well known to Bohr
[11], to our knowledge, their emergence and statistics
have never been studied thoroughly in the general case.
This theoretical investigation is the main purpose of this
article.

We conduct our study using the formalism of contin-
uous measurement developed in [2–4, 9, 13, 30], that is
we study a stochastic differential equation (SDE) with
Gaussian noise describing the (continuous) evolution of
the density matrix of a small open system of interest. The
stochasticity comes from the conditioning of the density
matrix on the (random) measurement outcomes. Such
equations can be obtained as the limit of a series of
weak measurements carried out on a quantum system
[1, 25, 26]. In this setting, the jumpy regime arises when
the rate of measurements, that we call γ2, is large. At this
point we should emphasize that these quantum jumps
obtained in the large γ limit of continuous equations are
not the same as those emerging from the intrinsically dis-
continuous Poissonian unravelling of a quantum master
equation.

From a mathematical perspective, we study a class
of non-linear SDE in the strong noise limit, and show
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that the solution converges, in a very weak sense, to a
continuous-time finite-state Markov process on the mea-
surement pointer states and we compute the transition
rates. We show that the finite dimensional distributions
converge weakly towards those of a finite-state Markov
process on the measurement pointer states1. We should
stress that the convergence is weak also in the sense that
some interesting quantum fluctuations, which should be
further studied, are preserved in the limit.

Eventually, we believe this study provides a quanti-
tative understanding on the semi-classical behaviour of
tightly monitored quantum systems and heavily gener-
alises the specific cases treated in [6, 7, 14]. As such it
could have applications to a wide class of microscopic
open systems showing a jumpy behaviour ranging from
quantum dots to photons in a cavity.

Outline This paper is structured as follows. In sec-
tion II we present our model and the main claim of the
article without proof. We discuss the implications of the
result and then study two simple examples of applications
in section III. Section IV is more technical and devoted
to the proofs. We first show the emergence of the jumps
and compute their rate assuming a given scaling limit.
We then proceed to show that this scaling is actually the
most general. Eventually, we discuss in more details the
physical meaning of our results in section V.

II. MAIN RESULTS

We consider a very general quantum system, but with
a finite dimensional Hilbert space, whose dynamics are
prescribed by a Lindbladian L. We assume that an ob-
servable O is also continuously measured at a rate, or

1 Weak convergence is also called convergence in law: expectations
of bounded continuous functions depending on the positions at
fixed times t1, ..., tk have a large γ limit which is the expectation
with respect to a finite-state Markov process.
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strength, γ2 (say with a repeated interaction scheme as
in [18, 19]) with efficiency η. As a result the density
matrix of the system evolves in the following way [31]:

dρt = L(ρt) dt+ γ2LN (ρt) dt+ γ
√
η DN (ρt) dWt, (1)

where Wt is a standard Wiener process, and N is the
so-called measurement operator with O = N + N† the
measured observable, LN (ρ) = NρN† − 1

2{N
†N, ρ} is

the Lindblad generator associated to N and DN (ρ) =
Nρ + ρN† − ρ tr(Oρ) the stochastic innovation term 2.
Any given realisation of the Wiener process corresponds
to a sample of a time series of measurements. Measure-
ment outputs xt are random according to the rules of
Quantum Mechanics and given by dxt = γtr(Oρ) dt +
η−1/2 dWt [31]. Solutions of eq.(1) are called quantum
trajectories. We will write everything in the basis where
O is diagonal, i.e. O =

∑
k λk|k〉〈k| and suppose that

all its eigenvalues are different. We assume that the
measurement operators N are diagonal in this basis,
N =

∑
k νk|k〉〈k| with λk = νk + ν̄k = 2Re νk, in order

to ensure for the process to be a non-demolition mea-
surement in absence of the dynamics generated by the
Lindbladian L. The eigenstates |k〉 will be called pointer
states in what follows.

When γ is large, the system density matrix will un-
dergo quantum jumps between the pointer states of the
observable O. Our objective is to characterise those
jumps at the stochastic process level and not only at
the ensemble average level, i.e. we want to show that the
conditioned density matrix becomes itself, as far as the
diagonal is concerned and in the large γ limit, a finite
state Markov process (and not only that the diagonal
of the unconditioned density matrix is the probability
density associated to a finite state Markov process as in
[15, 21]). Especially, the objective of this paper is to show
how the jump rates between different states depend on
the parameters of the Lindbladian L and as a result how
they also partially characterise it.

We first need to say a brief word about the scaling limit
in order to state the results, and it will be more carefully
explained later in Section IV B. It is well known that if
L is generated by a simple Hamiltonian, a continuous
strong measurement will tend to Zeno freeze the system
in one of the pointer states for an arbitrary long time, i.e.
when γ →∞ all the jump rates will go to 0. As a result
and to get meaningful predictions in this limit, we need
to adequately rescale the different parts of the dynamics
to keep finite jump rates in the large γ limit. Such a
rescaling is not required for all parts of the dynamics

2 Notice that we use the same notation as in [28] for consistency
but that the latter differs from Milburn and Wiseman’s [31].
The dictionary is the following: LN (ρ) = D[N ]ρ and DN (ρ) =
H[N ]ρ. We prefer to use the letter L for the Lindbladian and to
reserve the letter H for an Hamiltonian, and we use the letter D
for the term multiplying the Brownian noise as a reference to a
non-linear diffusion coefficient.

because as was argued in [6], jumps that emerge from
a dissipative coupling cannot be Zeno frozen. To get
the most general scaling limit, we consequently need to
split the Lindbladian into different parts, actually four,
that need to be rescaled separately. We write Qi for the
diagonal coefficients of ρ in the measurement eigenbasis,
the probabilities, and Uij for the non diagonal coefficients
of ρ, the (not yet rescaled) phases,

Qi := 〈i|ρ|i〉, Uij := 〈i|ρ|j〉, i 6= j.

We decompose L in four super-operators, A that sends
the probabilities to the probabilities, B the phases to the
probabilities, C the probabilities to the phases and D the
phases to the phases.

∂tρt = L(ρt) ⇐⇒
notation

{
∂tQi = A(Q)i +B(U)i
∂tUij = C(Q)ij +D(U)ij

,

with A(Q)i = AkiQk, B(U)i = Bkli Ukl, C(Q)ij = CkijQk,

and D(U) = Dkl
ijUkl; summation over repeated indices

is implicit. The reason why this decomposition is legit-
imate will be clearer later but a good rationale for it is
that as the strong measurement will tend to shrink the
phases, they will obviously need a differentiated treat-
ment from the probabilities. We now claim that A needs
no rescaling, that C and B need to scale like γ and D
like γ2. In what follow, we thus write :

A = A, B = γB, C = γC, D = γ2D. (2)

For such a scaling to be consistent with the complete
positivity of the map generated by L in the large γ limit,
we will see that D needs to be diagonal:

Dklij = −dij δki δlj
We should also add that equation (2) only gives the dom-
inant terms in an expansion in power of γ and that the
sub-leading corrections may in general be needed for com-
patibility with the complete positivity of the map asso-
ciated to L. We just claim that they have no impact on
the large γ limit as expected and omit them for clarity.

Our main result, which will be proved in section IV A,
can then be stated as follows:

Proposition. With the previous notations, when γ →∞
the finite dimensional distributions of the conditioned
density matrix ρt converge to those of a finite state
Markov process on the projectors associated to the mea-
surement eigenvectors. The jump rate from site i to site
j then reads in terms of the rescaled coefficients:

mi
j = Aij + 2Re

∑
k<l

CiklBklj
∆kl

(3)

with ∆kl := 1
2 (|νk|2 + |νl|2 − 2νkν̄l) + dkl.

In other words, in the strong measurement limit, the
density matrix behaves as a jump process between the
projectors |i〉〈i| with jump rates given by the previous
formula. Let us now make several remarks.
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Remark 1. The result does not depend on the efficiency
η of the measurement (provided it does not vanish).

Remark 2. The mean probabilities Qi := E[Qi] obtained
by averaging over quantum trajectories, satisfy the finite
state Markov process equation

∂tQj =
∑
i

Qim
i
j . (4)

As a result, our framework can also be applied to sys-
tems with strong dissipation or equivalently systems that
are strongly measured with unrecorded outcomes. In
such a situation, the density matrix is diagonal and its
evolution is simply given by the average over trajectories
of the jump process : ∂tQj =

∑
iQim

i
j . In that case, the

density matrix itself is not a finite state Markov process
but the probability distribution of a finite state Markov
process. In this simpler setting, result (4) can admittedly
be derived from the Lindblad equation (i.e. the SME av-
eraged over the noise). However, remark 2 shows that it
can be seen as a trivial byproduct of our more general
proposition.

Remark 3. The reader may wonder how our result writ-
ten in terms of A,B, C and D may be related to the gen-
erators of the Lindbladian. We claim and will prove in
Section IV B that the most general scaling that can be
written is the following:

L(ρ) =− i[γH + γ2Hdiag, ρ] +
∑
a

LNa
(ρ)

+ γ2
∑
b

LNdiag
b

(ρ) + subleading terms
(5)

where LN denotes as above the Lindblad generator asso-
ciated to N and where the superscript ”diag” means that
the corresponding matrix has to be diagonal, H (with-
out superscript) is any self-adjoint matrix and the Na
(without superscript) can be any matrix. The sublead-
ing terms in γ are irrelevant for the jump rate compu-
tation. Notice that the most general scaling is again far
from trivial, possibly with terms of order 0, 1 and 2 in γ.
Using the notation in equation (5) we get the following
expression for the terms appearing in the jump rates in
(3):

Aij =
∑
a

(∣∣(Na)ji
∣∣2 − δij(N†aNa)jj

)
CiklBklj = (Hilδik −Hkiδil) (Hjkδjl −Hljδjk)

dij =
1

2

∑
a

{
|(Ndiag

a )ii|2 + |(Ndiag
a )jj |2

− 2(Ndiag
a )ii(N

diag
a )jj

}
+ i(Hdiag

ii −Hdiag
jj )

(6)

where the second line is understood without summation
on repeated indices. If we forget about the terms that
need to be rescaled in γ2, this means that the main con-
tribution to the jump rates comes from the non diagonal

part of the matrices appearing in the Lindblad genera-
tors. The second contribution comes from the non diag-
onal parts of the Hamiltonian that need to be rescaled
with a factor γ to remain relevant in the strong measure-
ment limit. Before going to the proof of this result, we
give two simple examples of application of our formula.

III. APPLICATIONS

We now study two examples where the jump rates de-
pend in a very different way on the system dynamics. In
the first example, jumps will emerge from the competi-
tion between a unitary evolution and continuous quan-
tum measurement (B 6= 0 and C 6= 0): when the Hamil-
tonian is kept constant, the jump rates will go to zero
when γ goes to infinity, the evolution will be progres-
sively Zeno-frozen. In the second example, the jumps will
emerge from the competition between a dissipative evo-
lution and continuous quantum measurement (A 6= 0):
the jump rates will converge to a constant when γ goes
to infinity, the evolution will not be Zeno-frozen. A sys-
tem in which those two kinds of evolution are present at
the same time has been studied in [28].

A. Simple Hamiltonian

The simplest non trivial example that one can consider
is that of a two level system, say a spin 1/2, evolving
according to a Hamiltonian H = ω σ/2x and that is con-
tinuously measured in a basis different from the energy
basis. Indeed if the measured observable commutes with
the Hamiltonian, the system will collapse in one of the
Hamiltonian eigenvectors and never jump afterwards, a
situation we want to avoid. We thus chose to arbitrarily
measure O = σz/2 at a rate γ2 so that the measure-
ment basis is the canonical basis. Eventually we need to
rescale the Hamiltonian (or equivalently adimensionalise
time) ω = γu in order to avoid a complete Zeno-freezing
of the jumps. In the absence of measurement the system
Lindbladian simply reads:

L(ρ) = −iγu
2

[σx, ρ]. (7)

Expanding equation (7) gives:
A = 0,

B10
0 = B01

1 = −B01
0 = −B10

1 = −iu/2,
C0

01 = C1
10 = −C1

01 = C0
01 = iu/2,

(8)

so that eventually we get the jump rates m0
1 = m1

0 =
u2. If we reintroduce the dimension in the Hamiltonian,
that is we keep ω fixed for large yet fixed γ we get an
average time between two jumps τ = γ2/ω2 which goes
to ∞ when γ goes to infinity. Thus the well known Zeno
effect [20] is recovered in this framework. An analogous
result had already been derived in this setting with a less
general method in [7, 8, 14].
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FIG. 1. Sample trajectory of the density matrix coefficients
Qt = 〈1|ρt|1〉 and Ut = 〈0|ρt|1〉 for ω = 1 and γ = 0.25 on
the left and γ = 5.0 on the right. Notice the change of regime
from smooth Rabi oscillations to sharp quantum jumps when
γ is increased. The remaining thin fluctuations around the
limiting jump process are not described in our framework.

B. Simple thermal jumps

Another application of our result is the study of ther-
mal jumps. The jump rates and more details of the
stochastic process had already been derived in [6] albeit
with an ad-hoc method. We consider a simple two level
system consisting of a ground state |0〉 and an excited
state |1〉 coupled to a thermal bath. It evolves according
to an Hamiltonian H = ω

2 σz and the dissipative part of
the evolution is induced by σ+ and σ− in the form of two
Lindblad generators:

Lσ± = σ±ρσ∓ −
1

2
{σ∓σ±, ρ}.

Eventually the Lindbladian in the absence of measure-
ment reads:

L(ρ) = −i[H, ρ] + λpLσ−(ρ) + λ(1− p)Lσ+
(ρ), (9)

FIG. 2. Sample trajectory of the density matrix coefficient
Qt = 〈1|ρt|1〉 with p = 0.5 for γ = 0.05 on the left and
γ = 10.0 on the right. Notice the change of regime from a
smooth thermalization to sharp quantum jumps when γ is
increased.

where λ is the coupling strength with the bath and
p := 1/(1 + e−βω) is the probability to be in the ground
state at thermal equilibrium. This is a simple yet legit-
imate model for the evolution of a system coupled to a
thermal bath [12]. We also assume that its energy is con-
tinuously measured (i.e. O = σz) at a rate γ2 and want
to characterise the thermally activated quantum jumps
that appear in the large γ limit. This is actually a triv-
ial question with the help of our proposition. Expanding
equation (9) gives, with the previous notations:

A1
0 = λp, A0

1 = λ(1− p)
B = 0

C = 0

(10)

So that A immediately encodes the jump rates. We re-
cover the Gibbs equilibrium distribution for the occu-
pation ratios and see that the jump rates are directly
proportional to the system-bath coupling strength.

IV. PROOFS

A. Proof of the proposition

Here our objective is to prove that a density matrix
obeying equation (1) becomes a finite state Markov pro-
cess on the projectors on the eigenvectors of the measured
observable in the large γ limit and to compute the jump
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rates mi
j or equivalently the Markov transition matrix

M . Using the previous notations equation (1) can be
expanded to:

dQi = A(Q)i dt+ B(Y)i dt

+ γ
√
η Qi

(
λi −

∑
k

Qkλk

)
dWt,

dYij = γ2
(
C(Q)ij −∆ij Yij

)
dt

+ γ
√
η Yij

(
νi + ν̄j −

∑
k

Qkλk

)
dWt.

(11)

We have used the additional notation Yij := γUij and
∆ij := 1

2 (|νi|2 + |νj |2 − 2νiν̄j)
2 + dij . Recall that λk =

νk + ν̄k. The process is written in terms of the rescaled
variables Q and Y but we shall sometimes abbreviate the
notation by using ρ to collectively refer to these variables;
for instance f(ρ) is going to be a short name for f(Q,Y).

1. Strategy:

The main object we will consider is the probability
kernel Kt(ρ0, dρ) to go from a given density matrix ρ0

to another density matrix ρ, up to dρ, after a time t.
The kernel Kt verifies the Kolmogorov equation ∂tKt =
KtD where D is the second order differential operator
(or Dynkin operator) associated to the SDE (11). These
concepts will be defined in more details below. At this
stage, we do not need to write D explicitly but simply to
notice that, because of Itô’s formula, the coefficients in
front of the noise terms will come squared so that D will
only contain terms of order 0 and 2 in γ. As a result we
write

D = D0 + γ2D2,

and will compute Kt = etD0+tγ2D2 for large γ.
The main argument is then the following. Any second

order operator associated to well defined SDE’s is a non-
positive operator, so that when γ is very large, even after
a small amount of time, only the eigenvectors that are in

the kernel of D2 will remain when considering etγ
2D2 .

The idea is then to perform a perturbative expansion
around those remaining eigenvectors and compute the
jump rate between them.

2. Definitions

We first start by introducing some definitions and no-
tations (see [16, 24] for more details). The kernel Kt

codes for the probability of a solution of the flow equa-
tion started at ρ0 to be at ρ at time t. It can be used to
compute the average of any regular function f :

E[f(ρt)] =

∫
ρ∈K

Kt(ρ0, dρ) f(ρ),

with ρt the solution of the SDE started at ρ0 at time 0 and
the integration domain is the set3 of density operators
K. The probability kernel Kt can also be viewed as an
operator acting on functions defined on K via:

Kt : f → Ktf with (Ktf)(ρ) :=

∫
ρ′∈K

Kt(ρ, dρ
′)f(ρ′).

An equation for Kt can be obtained by computing the
time derivative of E[f(ρt)] in two different ways. One can
first apply Itô calculus to f(ρt):

df(ρt) = (Df)(ρt) dt+ (· · · )dWt,

with D the second order differential operator associated
to the SDEs (11) (also called Dynkin operator or some-
times dual Fokker-Planck operator). A function f(ρt) is
called a local martingale if there is no drift terms in its
Itô derivative, that is if Df = 0.

Thanks to the defining property of the Ito calculus, the
above equation implies

∂tE[f(ρt)] = E[(Df)(ρt)],

Writing the expectations in terms of the probability ker-
nel Kt gives∫

ρ∈K
∂tKt(ρ0, dρ) f(ρ) =

∫
ρ∈K

Kt(ρ0, dρ) (Df)(ρ),

for any function f . Hence, we get what we had claimed
in the introduction of the proof,

∂tKt = KtD,

as an equation on operators acting on functions over K.
The formal solution of this differential equation, with ini-
tial data Kt=0 = Id, is

Kt = exp(tD),

again viewed as an operator identity.
The same can be done in the dual picture. If f(ρ) and

µ(dρ) respectively denote a function and a measure on
K, the duality is the obvious one:

< µ, f >:=

∫
ρ∈K

µ(dρ) f(ρ).

If O is an operator acting on functions, its dual OT acts
on measures via < OTµ, f >:=< µ,Of >. In particu-
lar, the dual DT of the Dynkin operator D is the usual
Fokker-Planck operator.

By duality, the flow on ρ defined by the SDE induces
a flow on the measures via

µ0 → µt with µt(dρ) :=

∫
ρ0∈K

µ0(dρ0)Kt(ρ0, dρ),

3 By the Lindblad construction, the flow associated to the SDE
defined above preserves this set.
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Of course it is such that < µt, f >=< µ0,Ktf >, so that
we can write this flow as µt = KT

t µ0. By definition we
then have

∂tµt = DT µt,

or equivalently ∂tK
T
t = DT KT

t . A measure is said to be
invariant if it is constant in time, i.e. if it is annihilated
by DT . Invariant measures and local martingales are thus
dual objects. Now that we have reminded the reader of
these definitions, we can apply the announced strategy.

3. The large γ limit of the transition kernel

Let us proceed. Let FI be the basis diagonalizing the
operator D, let EI be the associated eigenvalues, DFI =
EI FI , EI ≤ 0, and let ΛI be the associated dual basis so
that:

Kt(ρ0, dρ) =
∑
I

etEI FI(ρ0) ΛI(dρ). (12)

All EI , FI and ΛI depend on γ. Since D = γ2 D2+D0,
perturbation theory tells that

EI = γ2 eI + e0
I + γ−2 e1

I +O(γ−4),

FI = fI + γ−2f1
I +O(γ−4),

ΛI = µI + γ−2µI1 +O(γ−4),

with eI an eigenvalue of D2 and fI (resp. µI) the cor-
responding eigenvector (resp. dual eigenvector). Hence,
only the terms corresponding to eigenvalues EI whose
dominating contribution eI vanishes survive in the point-
wise limit of the sum (12):

lim
γ→∞

Kt(ρ0, dρ) =
∑

I: eI=0

ete
0
IfI(ρ0)µI(dρ).

Restricting the sum to eI = 0 selects fI to be in the
kernel of D2: D2fI = 0.

Let now fi be a basis of Ker(D2) and µi be the associ-
ated dual basis of Ker(DT

2 ), so that fI (with D2fI = 0)
is a linear combination of fi: fI =

∑
j fj(

∫
µjfI).

Degenerate perturbation theory around the zero eigen-
value tells us that D2f

1
I + D0fI = e0

IfI . Integrating this
last equation against µj yields∫

µj(dρ)(D0fI)(ρ) = e0
I

∫
µj(dρ)fI(ρ),

so that e0
I are eigenvalues of the matrix mj

k :=
∫
µj D0fk

and fI the corresponding eigenvectors.
Consequently, we may write the limiting formula for

the point-wise limit of the kernel Kt in the basis fi as

lim
γ→∞

Kt(ρ0, dρ) =
∑
ij

fj(ρ0)
(
etM

)j
i
µi(dρ), (13)

with

mj
i :=

∫
µj(dρ) (D0fi)(ρ),

where fi is a basis of KerD2 and µj is the dual ba-
sis. Recall that D2 is the second order differential op-
erator associated to SDE’s. Hence, to any element of
KerD2 corresponds a (local) martingale for the associated
stochastic process. The dual basis of invariant measures
µi ∈ KerDT

2 that we shall identify below have disjoint
supports so that we can use those to index the states
of a finite dimensional Markov chain (we say that the
chain is in the state i if ρ is in the support of µi) and
to ensure the consistency of the associated process. The
large γ limit thus projects the original process on a fi-
nite state Markov chain whose states are indexed by the
D2-martingales and the matrix M contains the transition
probabilities between the states.

4. Computing the Markov transition matrix:

We now need to compute the f ’s and the µ’s to even-
tually get the Markov matrix M . The operator D2 is the
second order operator associated to the set of SDE’s:

dQi =
√
η Qi

(
λi −

∑
k

Qkλk

)
dWt

dYij =
(
C(Q)ij −∆ij Yij

)
dt

+
√
η Yij

(
νi + ν̄j −

∑
k

Qkλk

)
dWt

(14)

To compute the invariant measures associated to this
SDE, we could try to solve its Fokker-Planck equation.
However as the invariant measures are singular in the
Q’s, it is easier to study the stochastic process directly.
Let us first notice that the Q’s are bounded martingales
and as a result they converge almost surely to one of the
fixed points. It is easy to see that the only fixed points
of the noise term are of the form Qk = δik where i is
random and depends on the trajectory. (Recall that we
assumed that all λk were distinct). This is an expected
result because eqs.(14), but without the C(Q)ij-terms,
are those for indirect non-demolition measurements: it
simply means that, because of measurement, the proba-
bilities tend to collapse with all the mass in a (random)
pointer state. These are all linearly independent martin-
gales and

fi(ρ) := Qi ∈ KerD2.

form a basis of KerD2. Notice that
∑
i fi = 1 and this

ensures that
∑
im

j
i = 0. There are as many dual invari-

ant forms dµ’s as there are fixed points and we have

µi(dρ) := δi(dQ)µi(dY) ∈ KerDT
2 ,
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where δi(dQ) = δ(1 − Qi)dQi
∏
j 6=i δ(Qj)dQj, with

δ(Q)dQ the Dirac measure, and µi(dY) is the normal-
ized Y -dependence of the invariant measure conditioned
on the fact that the trajectory in the Q-subspace con-
verge to Qj = δij . Notice that in general, µi(dY) has
no reason to be peaked and is actually rather broad with
power law tails. Computing µi(dY) is difficult in gen-
eral because Ckij need not be real. A possible solution
is to solve the equation for Ykl to compute its moments.
But it is even easier to notice that neither µi(dY) nor all
its moments will actually ever be needed to compute the
transition rates

∫
µiD0fj which only depend on the av-

erage value of Y. This average can be easily computed.
Let us integrate the SDE for Ykl conditioned on Ql → δil
for all l:

Ykl =

∫ t

0

(
Cikl−∆klYkl

)
dt+
√
η

∫ t

0

Ykl

(
νk+ ν̄l−λi

)
dWt

(15)
We now take the average and write yikl := E[Ykl|Q· = δ·i]

which gives ẏikl = Cikl − ∆kly
i
kl so that yikl(t) =

Ci
kl

∆kl
+

yikl(0)e−∆klt, and, since Re ∆kl > 0,

yikl(t) := E[Ykl|Q· = δ·i] −→
t→+∞

Cikl
∆kl

.

Recall that ∆kl := 1
2 (|νk|2 + |νl|2 − 2νkν̄l)

2 + dkl.

We can now compute the transition rates mi
j =∫

µiD0fj . The operator D0 can be easily computed
as it is the operator associated to the (S)DE dQi =
A(Q)idt + B(Y)idt, without noisy terms, so that D0 is
the first order differential operator:

D0 =
∑
i

[A(Q)i + B(Y)i] ∂Qi
(16)

Recalling that fj(ρ) = Qj we get (with implicit summa-
tion on repeated indices):

mi
j =

∫
µiD0fj

=

∫
K
δi(dQ)µi(dY)

(
AkjQk + Bklj Ykl

)
= Akj

∫
K
δi(dQ)Qkµ

i(dY) + Bklj
∫
K
µi(dY)Yklδ

i(dQ)

= Aij +
∑
kl

Bklj Cikl
∆kl

,

which is the result that was announced previously.

B. What is the most general jumpy scaling limit?

We now prove that we have derived the most general
scaling limit that gives rise to quantum jumps. For A,
B and C we obviously have the most general scaling as

if they were scaled with a smaller power, they would be-
come irrelevant in the scaling limit (or equivalently the
Zeno effect would kill the associated transition rates),
and if they were scaled with a bigger power, the jump
rates would diverge in the large γ limit and the limit
would not be jumpy anymore. To say it differently, the
simple fact that we ask the limit to be jumpy and that
the system parameters have an influence fixes completely
the scaling. We now need to show, as we have previ-
ously announced, that the phase-phase coupling term D
in the Lindbladian is always irrelevant no matter how it
is rescaled unless it is diagonal. We will first show that
that the non diagonal terms cannot grow faster than γ
and then prove that such a limiting scaling would still
make them irrelevant. Eventually we prove the link be-
tween the scaling expressed in terms of A, B, C and D
and the Linblad generators of remark 3.

a. D cannot grow faster than γ, unless diagonal: Let
us suppose that D can grow faster than γ. It would then
need to be rescaled independently of A, B and C which
were shown to grow no faster than γ. As a result D needs
to be itself the generator of a completely positive map
Φt that couples only the phases with the phases. Let us
suppose that we have a completely positive application
Φt with generator L̃ that couples only the phases and
write it using the usual decomposition:

L̃(ρ) = −i
[
H, ρ

]
+
∑
a

(
MaρMa † − 1

2
{Ma †Ma, ρ}

)
,

(17)

for some operators Ma. We ask that L̃ does not act
on the diagonal coefficients, i.e. L̃(|i〉〈i|) = 0 for any
projector on the measurement eigenvector |i〉〈i|. In par-
ticular, imposing that the diagonal elements vanish, i.e.
〈j|L̃(|i〉〈i|)|j〉 = 0 for any j, reads∑

a

(∣∣Ma
ji

∣∣2 − δij(Ma †Ma)jj

)
= 0.

Thus, for j 6= i, we get∑
a

∣∣Ma
ji

∣∣2 = 0, (18)

and hence Ma
ji = 0 for all a and j 6= i. That is, all the

Ma’s are diagonal matrices. The Hamiltonian part of
the flow also needs to be diagonal. Indeed, if Hkl 6= 0
for some k and l, k 6= l, we have 〈k|[H, |l〉〈l|]|l〉 = Hkl

so H couples the probabilities to the phase which is for-
bidden. Therefore, H is also diagonal and as a result
L̃ cannot mix the phases. Writing Ma =

∑
k n

a
k|k〉〈k|,

this means that at most D(Y)ij = −DijYij , with Dij =
1
2

∑
a(|nai |2 + |naj |2 − 2nai n̄

a
j ) + i(Hii −Hjj), a term that

is proportional to the deterministic part of the measure-
ment acting on the phase. The only non-trivial consistent
scaling is that D scales as γ2 and D(Y )ij = −γ2dijYij .
Notice that we have proved at the same time that in
the generators picture, the terms contributing to D come
from a diagonal Hamiltonian and the diagonal part of the
matrices Ma appearing in the Lindblad generator.
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b. If D scales as γ then it is irrelevant: Let us sup-
pose that D = γD which is the limiting scaling allowed
for a non-diagonal D. In that case the Fokker-Planck
operator associated to equation (1) needs to be written
with a new term of order γ that is D = D0 +γD1 +γ2D2

where D1 is the Fokker-Planck operator associated to the
(S)DE: dYij = DklijYkl dt. We thus have:

D1 =
∑
ijkl

DklijYkl∂Yij

We now proceed with the same perturbative expansion
as before except this time we assume that a term of order

γ remains, i.e. that Kt = etγ
2D2+tγD1+tD0 . The first two

terms of the eigenvalue expansion will need to be zero
to give a non trivial jumpy behavior in the large γ limit.
We use the same notation as before, that is:

FI = fI + γ−1f1
I + γ−2f2

I + ...

EI = 0× γ2 + 0× γ + e0
I + ...

(19)

for the eigen-modes with leading vanishing eigenvalues.
We then have, up to second order in γ:

D2fI = 0

D2f
1
I + D1fI = 0

D2f
2
I + D1f

1
I + D0fI = eI fI

(20)

Recall that the f ’s only depend on D2 and are thus the
same as before, that is fi(Q,Y) = Qi which gives in
particular D1fI = 0. In that case we have D2f

1
I = 0 so

that f1
I ∈ Ker(D2) and as a consequence, D1f

1
I is also

zero. As a result, the terms of order γ no longer have
any role to play in the computations and D is irrelevant.

c. The scaling provided in remark 3 is the most gen-
eral: Now that we have the most general scaling in
terms of A, B, C and D, we only need to relate them
to the expression of the Lindblad generators. Using the
generic Linbladian of equation (17) we get:

Aij =
∑
a

(∣∣Ma
ji

∣∣2 − δij(Ma †Ma)jj

)
This show that if the Ma’s have non diagonal parts, then
they have to be of order zero in γ. As a result, the con-
tribution of the Ma’s having non diagonal parts to B and
C is also of order zero and vanishes once we consider the
rescaled coefficients B and C. If the Ma’s are purely di-
agonal, we have already proved that they only contribute
to D. As a result, the only contributions to B and C come
from the Hamiltonian and we compute:

CiklB
kl
j = (Hilδik −Hkiδil) (Hjkδjl −Hljδjk)

This means that only the non diagonal parts contribute
as k 6= l and they need to be rescaled as γ to be relevant.
Eventually, the diagonal parts of the Ma’s and of H ap-
pear in D and consequently need to be rescaled with a

factor γ2 to stay relevant in the large γ limit. To sum-
marise, the non diagonal coefficients of the Ma’s need not
be rescaled, the non diagonal coefficients of the Hamilto-
nian need to be rescaled with a factor γ and the diagonal
part of the Hamiltonian and the Ma’s need to be rescaled
with a factor γ2. This proves the form of equation (5).

V. DISCUSSION

After these lengthy derivations, let us step back and
comment on the mathematical results and their physical
implications. We have shown that an open quantum sys-
tem that is continuously measured has an evolution that
gets jumpy when the measurement process dominates.
Our derivation shows that quantum jumps are ubiqui-
tous in the sense that any quantum system subjected to
a tight monitoring will undergo quantum jumps (or will
simply be frozen, i.e. will have a jump rate equal to zero).

However, we should insist that for large but finite γ,
the evolution of the system density matrix is still contin-
uous and the jumps –though they look instantaneous in
the limit– have a finite duration of order γ−2. In this set-
ting, quantum jumps are not strictly instantaneous and
are only the effective description of a more fundamental
evolution. This is in stark contrast with the quantum
jumps that appear directly in stochastic master equa-
tions for Poissonian unravellings. Our derivation thus
gives some insights into the debate about the reality of
quantum jumps. The conclusions will however depend on
the foundational attitude of the reader. If one is ready
to give an ontological status to the conditioned density
matrix – as it is the case for example in dynamical re-
duction models [5, 17]–, then the jumps we observe are
really a consequence of measurement and can even be as-
sumed to be progressively created by measurement. From
a more epistemic or Bayesian perspective, measurements
could just be progressively revealing, as well as influenc-
ing, a (yet to be specified) underlying jump process. As
far as we know, a specific model for the second option
has not been provided yet –though it should certainly be
investigated.

From a more practical point of view, we have provided
a simple analytical recipe to compute the effective evo-
lution of systems that are either continuously monitored
or subjected to strong dissipation. The jump rates are
simple analytical functions of the measured operator and
the Linbladian. Our results have been derived for a single
measured observable but can effortlessly be generalised
to a larger set of commuting observables. Finally, we
should add that we have voluntarily neglected the study
of the remaining fluctuations around the jump process.
This admittedly difficult but fascinating enquiry is, we
believe, the next step in the thorough understanding of
quantum jumps.
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