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Spikes in quantum trajectories
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1Laboratoire de Physique Théorique, CNRS and Ecole Normale Supérieure de Paris, France
2Institut de Physique Théorique, CEA Saclay and CNRS, Gif-sur-Yvette, France

A quantum system subjected to a strong continuous monitoring undergoes quantum jumps. This
very well known fact hides a neglected subtlety: sharp scale-invariant fluctuations invariably decorate
the jump process even in the limit where the measurement rate is very large. This article is devoted
to the quantitative study of these remaining fluctuations, which we call spikes, and to a discussion of
their physical status. We start by introducing a classical model where the origin of these fluctuations
is more intuitive and then jump to the quantum realm where their existence is less intuitive. We
compute the exact distribution of the spikes for a continuously monitored qubit. We conclude by
discussing their physical and operational relevance.

I. INTRODUCTION

The quantum jumps emerging from the continuous
monitoring of a quantum system have been known since
the begining of quantum mechanics [1] and have been
the subject of both theoretical [2–4] and experimental
[5–8] investigation. It has been emphasized recently [9],
though it was certainly expected, that they are a generic
phenomenon in the sense that they necessarily appear
anytime a quantum system is subjected to a strong con-
tinuous monitoring. However, fluctuations around the
dominant jump process could already be descried in the
early numerical work on the subject [10, 11]. They per-
sist in the strong measurement limit and are not arti-
facts of experimental uncertainties, a fact which seems
to have been largely overlooked in the literature. Even
for strong (diffusive) continuous measurements, the Pois-
sonian jumps of the density matrix always appear deco-
rated with a residual noise. When the measurement rate
becomes infinite, this decorating noise becomes punctual
and has a vanishing impact on the finite dimensional
probability distributions. However, as we will see, this
does not mean that it can be discarded altogether.

The objective of this article is to prove that some sharp
fluctuations, looking like aborted jumps and which we
call spikes, indeed persist even in the infinitely strong
measurement limit and to show that they can be precisely
quantified. We start by studying a classical toy model of
iterated imperfect measurement where the phenomenon
of spikes appears in a very clear and non puzzling way.
We then go to the quantum realm where we show that a
continuously and perfectly monitored qubit displays the
same type of fluctuations. We compute the distribution
of the spikes in these two cases and use the first to provide
a physical intuition on the second.
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II. A CLASSICAL TOY MODEL

Let us start with a model for a classical iterated im-
perfect measurement. We consider a classical particle
hopping between two compartments "left" and "right"
of a box. To make things simpler we start with a dis-
crete time and assume that the particle has a probability
λ to change of compartment at every step. Our objective
is to track the real position Rt of the particle (Rt = 1 for
"left" and Rt = 0 for "right"). For that matter we take
a photo of the box at each time step but we assume that
the camera is bad and provides us only with very blurry
pictures. Every photo yields a binary answer δn = ±1
which gives some information about the possible local-
ization of the particle:

P(δn = 1|particle on the left) =
1 + ε

2

P(δn = 1|particle on the right) =
1− ε

2

(1)

where ε ∈ ]0, 1[ represents the measurement precision.
What we have constructed (see Fig. 1) is actually one of
the simplest possible instance of a Hidden Markov Model
[12]. As often in such a situation, we are interested in
knowing the best estimate Qn that the particle is on the

FIG. 1. Schematics of the classical model considered. The
particle jumps are recorded in a variable Rt, an imperfect
camera yields blurry photos from which a binary variable δi
is extracted. An estimate Qt of Rt is constructed from the
δu’s for u < t. The obtained Qt is expected to be close to Rt
when the camera takes many images per unit time.
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left at the n-th iteration, i.e.:

Qn = P(particle on the left at time n|pictures before n)

= P(Rn = 1|{δk}k≤n)

To compute Qn+1, knowing Qn and the result from the
last picture δn+1, we simply need to:

• Incorporate the information from the last measure-
ment result δn+1 using Bayes rule:

Qn+1 = P(left at n+1|{δk}k≤n, δn+1)

=
P(δn+1|Rn+1 = 1)P(Rn+1 = 1|{δk}k≤n)

P(δn+1|{δk}k≤n)

(2)

• Take into account the fact that we know that the
particle tends to jump during the time interval sep-
arating two photos:

P(Rn+1 = 1|Rn = 1) = 1− λ
P(Rn+1 = 1|Rn = 0) = λ

(3)

Using the law of total probability and the fact that
P(Rn+1|Rn) is independent from {δk}k≤n gives

P(Rn+1 = 1|{δk}k≤n) = (1− λ)Qn + λ(1−Qn). (4)

Similarly the law of total probability can be used to com-
pute the denominator of equation (2). Eventually, insert-
ing formulae (1) and (4) in equation (2) one can construct
Qn+1 from Qn and δn+1: Elementary algebra and stan-
dard probability theory then give:

Qn+1 =
(1 + εδn+1) [(1− λ)Qn + λ(1−Qn)]

1 + 2εδn+1 [(1− λ)Qn + λ(1−Qn)− 1/2]
(5)

i.e. Qn can be iteratively constructed from {δk}k≤n.
To summarize we have a real physical quantity Rn that
jumps between 0 and 1. The only information available
at step n is the collection of δk for k ≤ n from which we
can construct, the best estimation Qn of Rn at the step
n. Our objective is to show the similarities and differ-
ences between the behavior of Rn, the physical quantity,
and Qn, which represents what we know of Rn. We can
loosely say that we have a lot of information on Rn if Qn
is close to 0 or 1.

For computational convenience, one can derive the con-
tinuous version of the previous discrete evolution in the
limit of infinitely blurry pictures taken at an infinitely
high frequency (so that information is extracted contin-
uously at a finite rate). With the following rescaling and
definitions:

t = nδt, ε =
√
γ
√
δt/2, λ = λ̃δt/2, (6)

one can write a stochastic differential equation[13] (in
the Itô form) for the evolution of Qt as seen from the
observer’s perspective:

dQt = λ̃

(
1

2
−Qt

)
dt+

√
γ Qt(1−Qt)dWt, (7)

FIG. 2. Emergence of the spikes: Qt for various choices of
γ. Top-left γ = 10−2, the information flow is weak and Qt
fluctuates around 1/2. As γ increases, Qt gets closer to Rt
but sharp excursions persist. No qualitative difference can be
seen with the naked eye between γ = 104 and γ → +∞.

where Wt is a Wiener process (i.e. dWt

dt is the Gaussian
white noise). The details of the derivation can be found
in appendix A. Let us emphasize the fact that this con-
tinuous limit is only needed to get closed form results and
to give a more intuitive understanding of the phenomena
at play. It is by no means required for the "spikes" to
emerge. Even with a fixed value of ε < 1 i.e. even for
ε close to 1, numerical simulations show that the plots
look qualitatively the same for the large γ limit we are
going to consider next; the results we are going to show
are not an artifact of the rescaling.

Equation (7) is now easy to interpret with the physical
picture in mind. When γ is small, i.e. when the rate at
which information is extracted is negligible compared to
the jump rate, the evolution is dominated by the drift
term which tends to drag the probability to 1/2, that
is to complete ignorance. When γ is large, the noise
term dominates and Qt tends to be attracted to the fixed
points of the diffusion, 0 and 1, i.e. perfect certainty.
This intuition is largely confirmed by a direct numerical
simulation of the evolution (see Fig. 2). However, it
misses an important aspect of the fluctuations.

The numerical simulations of Fig. 2 show that our
estimate Qt indeed undergoes jumps mirroring those of
Rt when γ is large. What is more surprising is the
fact that the sharp fluctuations around the plateaus do
not disappear for large γ as one would naively expect.
They become sharper and sharper but their statistics do
converge to a limit. These remaining net fluctuations,
which become instantaneous when γ → ∞, are what we
call spikes. Spikes can be characterized by the following
proposition:

Proposition 1. In a time interval [0,T] when Rt = 0,
the probability to have N spikes with maxima in the
domain D ⊂ [0, T ] × [0, 1[ is a Poisson variable, i.e.
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FIG. 3. Details of the spikes in an interval where Rt = 0.
The number of spikes (here 3) in the domain D is quantified
by the proposition.

P(N) = µN

N ! e
−µ with intensity µ =

∫
D
dν. The measure

dν is given by:

dν =
λ̃

Q2
dQdt (8)

The situation is completely symmetric when Rt = 1,
the spikes then start from the top of the graph, i.e. Q =

1 and go down; in this case dν = λ̃
(1−Q)2 dQdt. The

proof is provided in appendix B 1 and extensively uses
the fact that when γ is large, Qt is almost a continuous
martingale, i.e. a Brownian motion up to a time re-
parametrization [14, 15].

Let us remark a few straightforward consequences of
the proposition. Spikes are scale invariant fluctuations.
More precisely, Fig. 3 would look exactly the same with
the transformations t → At and Q → AQ. There are
consequently infinitely many small spikes (but a finite
number of spikes bigger than Q0 for Q0 > 0).

This phenomenon of spikes could be thought to have
no interesting practical consequences, after all as there
is only a countable number of punctual spikes in the
γ → +∞ limit, the simple jump process with the spikes
removed is almost everywhere equal to the one dressed
with the full fluctuations. However, if we look at quan-
tities like arrival times, taking into account the spikes is
fundamental. The probability that Qt reaches a region
of relative uncertainty, say 0.4 < Qt < 0.6, in a given
time interval has a dramatically higher value once the
spikes are taken into account. As a more concrete ex-
ample, consider two consecutive jumps of R occuring at
time t1 and t2 with t2 − t1 = ln 2/λ̃. Then we can see
from the proposition that, in the interval ]t1, t2[, we have
50% chance to make at least one wrong prediction of Rt
using Qt, i.e.

P

(
∃t ∈]t1, t2[, |Qt −Rt| >

1

2

)
=

1

2
,

even though strictly nothing physical happens inside this
interval and the measurement rate is infinite! Had we
naively taken the large γ limit we would have imagined
this probability to be 0.

FIG. 4. The smoothed estimate Qst = E[Rt|δu, u ∈ R] of Rt
shows no spikes.

However, even if the fine description of spikes is very
useful in practice, it has no dramatic fundamental im-
plications. No physical quantity is intrinsically "spiky",
only our information on the particle position behaves
in such a peculiar way. Had we considered a forward-
backward (or smoothed) estimate, i.e. had we used all
the photos to retrodict the position of the particle at an
earlier time, the estimate Qst = E[Rt|δu, u ∈ R] would
have been more regular and notably spikeless (see Fig.
4). At most this means that the (filtered) Bayesian es-
timate of a quantity does not need to behave like the
quantity itself even in the limit where the estimate is
naively expected to be faithful. The emergence of a sim-
ilar phenomenon in the quantum realm, where no un-
derlying spikeless jump process can simply be invoked,
should be more surprising.

III. THE QUANTUM REALM

A good and widely studied (purely) quantum analog
of our classical toy model is the continuous monitoring
of a quantum system. For simplicity we will only treat
the case of a 2-level quantum system but conjecture that
the phenomenon we will see is ubiquitous in the sense
that any continuously measured quantum system would
display similar fluctuations.

Let us consider the continuous monitoring of a qubit
(e.g. a spin 1/2 in a magnetic field). In analogy with
the classical toy model, this can be seen as an iteration
of weak measurements on a qubit [16–19] carried out via
repeated interactions with probes. In such a setting a
probe interacts for some time with the system before be-
ing measured by a perfect detector (see Fig. 5). Be-
cause of the entanglement between the probe and the
system, this measurement result gives some information
on the system state. The probes consequently play ex-
actly the same role as the blurry pictures of the classical
case. Using the standard rules of quantum mechanics,
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it is straightforward to get the evolution of the system
state ρ as a function of time knowing the initial state
of the probes, the unitary system-probe interaction Uint
and the measurement results. In what follows, we will
go directly to the continuous limit of this scheme (i.e.
quickly repeated weak interactions) but again, the results
qualitatively hold in the discrete case.

We suppose that we continuously monitor the qubit in
a basis different[20] from its energy basis (e.g. we contin-
uously measure a spin in a direction orthogonal to that
of the external magnetic field). Using continuous quan-
tum measurement theory [21–27] one can get a stochastic
master equation (SME) for the evolution of the density
matrix ρt of the qubit (with ~ = 1):

dρt =− iΩ
2

[σy, ρt]dt−
γ

2
[σz [σz, ρt]] dt

+
√
γ (σzρt + ρtσz − 2tr[σzρt]) dWt,

(9)

where we have considered for simplicity a measurement
along Oz and a magnetic field along Oy and have as-
sumed an efficiency of 1 which guarantees that the noise
if of purely quantum origin. The first term corresponds
to the unitary part of the system evolution and the two
other terms correspond respectively to the decoherence
and localization (or collapse) induced by the measure-
ment scheme. In this setting, the analog Xt of the inte-
grated information from the photos

∑
k<t δk, often called

the signal, verifies dXt = 2
√
γtr[σzρt]dt+ dWt. To avoid

a complete Zeno freezing of the evolution, which will un-
doubtedly happen if we increase the measurement rate
carelessly, we increase the magnetic field proportionally
to the square root of the measurement rate, i.e. we take
Ω =

√
γω with ω constant. As before we are interested

in the quantity Qt = 〈+|zρt|+〉z the probability that the
qubit is found in the state |+〉z .

FIG. 5. Repeated interaction scheme. A collection of probes,
typically two level systems, successively interact unitarily
with the system before being projectively measured by a per-
fect detector. The probability Qt = 〈ψ|ρt|ψ〉 for the system
to be in some state |ψ〉 can be computed using the measure-
ment results and the standard rules of quantum mechanics.
Notice the analogy with the classical scheme of Fig. 1. In this
setting, the randomness in the evolution does not come from
experimental imperfections but is purely of quantum origin.

FIG. 6. Emergence of the spikes: Qt for various choices of γ.
Again, no qualitative difference can be seen with the naked
eye between γ = 104 and γ → +∞. We take Ω = 2 +

√
γ,

i.e. Ω not exactly linear in γ to keep a non trivial evolution
(some Rabi oscillations) at γ ' 0. Notice that this time there
is no underlying jump process Rt.

The direct numerical simulations of eq. (9) for var-
ious values of γ are shown on Fig. 6. As before, we
see the emergence of (quantum) spikes around a jumpy
trajectory which –at first sight– seem to have the same
characteristic than that of Fig. 2. Actually, the analogy
is not just qualitative and the spikes can be shown to
be characterized by the same kind of Poisson process as
before. This time the proposition reads:

Proposition 2. In a time interval [0,T] where Qt is
close to 0, the probability to have N spikes with maxima
in the domain D ⊂ [0, T ]×[0, 1[ is a Poisson variable, i.e.
P(N) = µN

N ! e
−µ with intensity µ =

∫
D
dν. The measure

dν is given by:

dν =
ω2

Q2
dQdt (10)

The notion of being close to 0 (or 1) becomes well de-
fined when γ → +∞ where Qt = 0 or Qt = 1 almost
surely with a finite jump rate between the two cases. As
in the case of the toy model, the situation is perfectly
symmetric when Qt is close to 1. The proof uses es-
sentially the same method as before and is provided in
appendix B 2.

With the help of numerical simulations, we conjecture
that the phenomenon of spikes is ubiquitous in tightly
monitored quantum systems. However, it is less clear to
see along which direction of the density operator space
the spikes should occur in a more general setting. This
is a question which should be studied further and a fully
rigorous proof of the generality of the spikes, completed
by their precise characterization, would be gripping.

For the classical toy model, we have shown that using
smoothing instead of filtering would remove the spikes.
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In the absence of a well defined hidden state in the quan-
tum case, such a procedure could at least provide us
with a spikeless quantity. Different quantum analogues
of smoothing have been proposed in the literature [28–30]
and already applied in experiments [31, 32]. In [29], the
authors define the past quantum state which is a quan-
tum equivalent of smoothing rooted in the weak value
formalism. The quantities computed with the past quan-
tum state, like the past density matrix, are more regu-
lar than ρt and it can be checked numerically that they
are spikeless. However because it is based on the weak
value, this formalism suffers from the same subtleties of
interpretation in the general case [33]. In an other in-
teresting proposal [30], the authors define a procedure
called quantum state smoothing which allows to recover
some of the information lost in an unmonitored bath via
the use of future measurement results. This procedure
keeps the standard interpretation of the quantum state.
However, it cannot be used in our specific situation as
it offers no gain for a measurement with efficiency 1 and
no unmonitored decoherence channel: in this case there
is, strictly speaking, no information to recover. The dif-
ferent proposals for a quantum equivalent of smoothing
have various advantages and drawbacks and their abil-
ity to trim the spikes can give a criterion –among many
others– to compare their benefits.

IV. DISCUSSION

We have shown that the phenomenon of spikes could
be understood as a pure artifact of Bayesian filtering in a
classical toy model where nothing physical (in that case
the particle classical position Rt) is spiky. In the quan-
tum case, such a straightforward answer cannot be pro-
vided in the absence of a hidden variable. Moreover, in
the case we have considered, the quantum state stays pure
[34] during the whole evolution making the spikes diffi-
cult to dismiss as a spurious consequence of ignorance.
Eventually, the essence of the problem lies in the “real-
ity” one is ready to grant the quantum state. Without
going into these matters of interpretation, we believe the
analogy with the classical case at least shows the quan-
tum state behaves in an unintuitive way for a physical
quantity. Nevertheless, spikes uncontroversially exist in
the information we have of the system. Even if they have
a vanishing support in the strong measurement limit, we
have seen that they have an irreducible impact on quan-
tities like arrival times. This means that spikes should
absolutely be taken into account when designing feedback
control schemes (where smoothing procedures cannot be
applied). For example, a real-time control protocol re-
quiring to do an operation every time the density matrix
goes a bit too far from a predefined measurement eigen-
state (as e.g. in [35]) will be triggered very often –perhaps
in some cases too often– by spikes, something one would
not have guessed taking naively the strong measurement
limit.

An important problem is now the observation and
quantification of spikes in experiments. Even if the ob-
servation of quantum trajectories is now done routinely
by some skilled experimentalists [8, 36–38], it is remark-
able that spikes have not been conclusively pined down
yet [39]. The simplest and already feasible way to ob-
serve and quantify spikes would be to look first at the
discrete case, i.e. at experiments of repeated interactions
e.g. as [40, 41]. Provided no ad-hoc averaging procedure
is applied, one should be able to reconstruct the spikes.
The difficulty is that the spikes show up no matter what
the origin of the noise is and post processing procedures
aimed at taming classical noise may very well suppress
the quantum part as well. Finally, we have considered
only simple two dimensional problems in this work. We
have observed spikes numerically in any dimension but
knowing more about their distribution in the general case
would be illuminating.
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Appendix A: Continuous limit of the toy model

In this appendix, we provide a physicist proof of equa-
tion (7) of the main text, which is the limit of equation
(5) when λ and ε are small. As we know that λ will scale
as dt and ε as

√
dt, we expand equation (5) up to order

dt by keeping only terms of order ε, ε2 and λ. This gives:

Qn+1 −Qn 'λ(1−Qn)− λQn + 2εQn(1−Qn)δn+1

− 2ε2Qn(1−Qn)(2Qn − 1)

(A1)

We now divide time t in m intervals dt each of them
divided in l even smaller intervals δt, i.e. t = nδt =
mlδt = mdt. In what follow, both l and m will be large.
We introduce dQt = Qm(l+1)−Qml and dXt = X(m+1)l−
Xml =

∑(m+1)l
k=ml δk

√
δt and recall that

ε =
√
γ
√
δt/2, λ = λ̃δt/2, (A2)

summing l times equation (A1) gives:

dQt ' λ̃(
1

2
−Qt)dt+

√
γQt(1−Qt)

(
dXt −

1

2

√
γ(2Qt − 1)dt

)
(A3)

When l is large with dt kept small, dXt is an (infinitesi-
mal) Gaussian random variable as a sum of independent
increments with (almost) the same law and equation (A3)
becomes a stochastic differential equation. We only need
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FIG. 7. Two trajectories of Qτ starting from q.

to compute the mean and variance of the r.h.s of equation
(A3) to rewrite it in the Itô form.

E(dXt|{δu}u≤t) '
√
γ

2
(2Qt − 1)lδt =

√
γ

2
(2Qt − 1)dt

E(dX2
t |{δu}u≤t) ' lδt = dt

(A4)

Which means that dXt =
√
γ

2 (2Qt − 1)dt + dWt where
Wt is a Wiener process. Eventually we get:

dQt = λ̃

(
1

2
−Qt

)
dt+

√
γ Qt(1−Qt)dWt, (A5)

Which is what we have claimed.

Appendix B: Proof of the emergence of the spikes

In this appendix we provide an intuitive proof of the
emergence of the spikes for the classical toy model and
for the continuously monitored qubit.

1. Case of the toy model

The basic ingredients are the fact that when γ is large,
Qt is almost a martingale and the fact that stopped mar-
tingale, i.e. a martingale conditioned on stopping at a
predefined event, is still a martingale. We will focus on
the spikes starting from Q = 0 (the situation is the same
for Q = 1). We will compute the statistics of the max-
imum reached by Qt, starting from q close to 0 at t=0,
before it reaches qδ � q. In what follows we will conse-
quently have the hierarchy:

1 > q � qδ � γ−1λ̃ (B1)

We consider the stopping time τ which is a random
variable such that τ = t as long as Qt does not reach
either qδ or Q and τ = treach after Qt reached qδ or
Q at time t = treach. Because 1 � qδ � γ−1λ̃, we
see from equation (7) that Qt is almost a martingale,
i.e. the drift term is much smaller than the noise term.

FIG. 8. On the left, a trajectory starting from q, going up to
Q and eventually going down below qδ. In the large γ limit,
this whole trajectory is followed almost instantaneously and
looks like a single vertical spike (shown on the right).

Probability theory now tells us that Qτ (see Fig. 7) is
also a martingale which gives:

E(Qτ |Q0 = q) = q (B2)

But the direct computation of this expected value for t
large gives:

E(Qτ |Q0 = q) =P(Qτ = Q|Q0 = q)Q

+P(Qτ = qδ|Q0 = q)qδ
(B3)

which gives: P(Qτ = Q|Q0 = q) ' q
Q . Something which

we can rewrite:

P

(
Max

t,∀u<t,Qu>qδ
(Qt) > Q|Q0 = q

)
=

q

Q

Or eventually in differential form:

dP (Max (Qt) = Q|Q0 = q) = q

(
dQ

Q2
+ δ(1−Q)dQ

)
(B4)

This gives us the 1/Q2 dependency in equation
(8). Notice also the Dirac mass, corresponding
to complete jumps, that comes from the fact that

P

(
Max

t,∀u<t,Qu>qδ
(Qt) ≥ 1|Q0 = q

)
= q 6= 0. This equa-

tion is an equation for a conditioned probability and thus
only gives us a ratio of probabilities, we still need to find
the normalisation. This is naively given by the rate at
which Qt reaches again q after reaching qδ, i.e. to how
often Qt gets to "try" to do a large excursion.

We first have to notice that an excursion, i.e. starting
from q, reaching a maximum Q and going below qδ, takes
an infinitely small amount of time in the large γ limit.
This simply comes from the fact that the dominant mar-
tingale term in equation (7) is independent from γ once
we do the rescaling u = γt: dXu = Qu(1 − Qu)dWu.
This means that the typical time scale of an excursion is
proportional to γ−1, hence that excursions are instanta-
neous in the large γ limit (which is why we now call them
spikes). What equation (B4) actually does in this con-
text is giving us the probability that a spike higher than
q has a total height Q. In an interval dt we know just
one thing, we know that the probability to reach Q ' 1,
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i.e. the probability to do a complete jump, is λ̃dt. The
probability that a spike higher than q reaches Q = 1 is
simply q. This means that the probability to have a spike
higher than q in an interval dt is q−1λ̃dt, which provides
the normalisation we wanted[42]. Eventually, if we spec-
ify that we are on an interval without jumps to remove
the Dirac mass, we get:

dP (Max (Qt) = Q) = λ̃dt
dQ

Q2
(B5)

That is, during an infinitesimal time interval dt, the prob-
ability that there is a spike of maximum Q up to dQ is
λ̃dtdQ/Q2. As the spikes are independent from one an-
other, this gives a Poissonian probability P(N) to have
N spikes in any domain D:

P(N) =
µN

N !
e−µ, (B6)

with µ =
∫
D

λ̃
Q2 dtdQ, which is what we had claimed.

2. Case of the qubit

The case of the qubit can be solved in the same way.
Indeed, expanding equation (9) gives the following equa-

tion for Qt = 〈+|zρt|+〉z and Yt =
√
γ〈+|zρt|−〉z:

dQt = −ωYtdt+ 4
√
γQt(1−Qt)dWt

dYt = γ [ω(2Qt − 1)− 2Yt] dt+
√
γYt(1− 2Qt)dWt

(B7)

We would like to use the same reasoning as before, i.e.
say that Qt is almost a martingale. In order to do this,
we have to show first that Yt is of order 0 in γ. This is
indeed the case: when γ is large, Qt is typically close to
0 or 1. As before we will consider the case where Qt is
close to 0. In that case, and if we rescale time by taking
u = γt we have:

dYu ' [−ω − 2Yu] du+ YudWu (B8)

This means that the average of Y , Ȳu, verifies, the ordi-
nary differential equation ∂uȲu =

[
−ω − 2Ȳu

]
. When γ

is large, u flows infinitely fast so that we reach the sta-
tionary value of Ȳ instantaneously and Ȳu ' −1

2ω . This
means that the term ωYt is typically of order 0 in γ and
thus negligible compared to the noise term in equation
(B7). This shows that, as before, Qt is almost a martin-
gale in the large γ limit (and is the same martingale as
before) which is the only thing that was used in the first
part of the previous proof. What differs in this setting
is the normalisation argument of the second part. It has
been proved in [9], and it can be guessed by dimensional
analysis, that the rate of (complete) jumps in the large
γ limit is ω2 in the case we now consider. This means
that in the previous normalisation argument λ̃dt simply
needs to be replaced by ω2dt which provides the formula
(10) we had put forward.
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