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Abstract

Motivated by studies of indirect measurements in quantum mechanics, we inves-
tigate stochastic differential equations with a fixed point subject to an additional
infinitesimal repulsive perturbation. We conjecture, and prove for an important
class, that the solutions exhibit a universal behavior when time is rescaled appro-
priately: by fine-tuning of the time scale with the infinitesimal repulsive perturba-
tion, the trajectories converge in a precise sense to spiky trajectories that can be
reconstructed from an auxiliary time-homogeneous Poisson process.

Our results are based on two main tools. The first is a time change followed by
an application of Skorokhod’s lemma. We prove an effective approximate version of
this lemma of independent interest. The second is an analysis of first passage times,
which shows a deep interplay between scale functions and invariant measures.

We conclude with some speculations of possible applications of the same tech-
niques in other areas.
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1 Introduction

We are interested in the strong noise limit for a class of stochastic differential equations (SDEs)
of a specific form whose solutions develop spiky behaviors which may be precisely described.
We are looking at SDEs for a single positive variable Xt, driven by a Brownian motion Bt, of
the following form :

dXt =
λ2

2

(
εa(Xt)− b(Xt)

)
dt+ λc(Xt) dBt, (1)

when the coefficients a, b, c satisfy certain conditions and ε, λ are free parameters. We assume
that x = 0 is the only fixed point of the equation at ε = 0 and that it is attractive. This implies
in particular that b(0) = c(0) = 0, and adding that the function b is non-negative is a sufficient
–but not necessary, see below– condition. We also impose that whenever ε > 0 (even very small)
the contribution of a is strong enough to prevent trajectories from reaching 0, but that the
neighborhood of 0 is the only region where the εa term plays a significant role. We shall make
these constraints quantitative later, at least they impose that a(x) ≥ 0 close to x = 0.

We are interested in the limit λ → ∞, with an appropriate scaling of ε > 0 as λ → ∞ for
the limit to be meaningful. With the choices we made for the parameter dependence, λ can be
reabsorbed by a simple rescaling of time time and we can interpret the limit we look for as the
ε → 0+ limit but with a tuning of the time scale (depending on ε) that ensures that certain
features (some first passage times in the case at hand) remain finite.

However, as we shall briefly exemplify below, SDEs of this form arise in the description of the
evolution of quantum systems under continuous monitoring and then the natural interpretation
is different, dual in some sense. The parameter λ is directly related to the rate at which
information is pulled out from the systems (recall that extracting information from a quantum
system induces a random back-action), and the other natural physical parameter is η = λ2ε/2
so that Eq.(1) could be rewritten as

dXt =
(
ηa(Xt)−

λ2

2
b(Xt)

)
dt+ λ c(Xt) dBt, (2)

where the terms involving λ are due to measurements and bring in randomness, while the term
involving η corresponds to a standard, deterministic, evolution. Larger and larger λs means
more and more measurements per unit time, and the the way ε –or equivalently η– has to be
scaled with λ is just a quantitative expression of the quantum Zeno effect for the problem at
hand. As physicists, this is our main motivation and this is why we interpret our study of Eq.(1)
as a strong noise limit.

The prototype example is provided by the following SDE, with b > −1,

dXt =
λ2

2
(ε− bXt)dt+ λXt dBt, (3)

in the limit ε→ 0+, λ→∞ with the product λ2εb+1 := J fixed. The parameter ε is dimensionless
and λ2 has the dimension of a frequency (inverse of time). This SDE codes for two effects: (i)
the net effect of ε-independent terms is to attract Xt to the origin (even if b ∈] − 1, 0[!) on a
time scale of order λ−2 and (ii) the terms proportional to ε pushes Xt away from the origin. The
latter effect is comparatively active only when Xt is close enough to the origin. These effects
are competing in the combined limit ε→ 0, λ→∞ and they give rise to a non-trivial behavior
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provided ε and λ are scaled in an appropriate way. It is easy to verify that, at large λ and fixed
t, Xt is of order ε. More precisely there is an explicit distribution function F such that for,
each fixed t, limλ→∞ Prob(Xt < εy) = F (y). However, the process t → Xt is non-trivial in the
scaling limit λ → ∞ with λ2εb+1 = J fixed. Indeed, what is true at any time does not hold at
every time. To see this, let us ask ourselves what is the distribution of the X-maxima in the
time interval [0, T ]. Since at ε ' 0 the typical time scale of this process is λ−2, we make the
approximation that the portions of the X-trajectories separated by a time laps bigger than λ−2

are independent. The probability that the X-maxima is less than a given number m in the time
interval [0, T ] may then be estimated as

P
[
Xt < m, t ∈ [0, T ]

]
'
[ ∫ m

0
Pinv(x) dx

]λ2T
with Pinv(x) dx = εb+1

Γ(b+1)
dx
xb+2 e

−ε/x the invariant measure of Eq.(3). The important point is the
heavy tail of this measure. Hence,

P
[
Xt < m, t ∈ [0, T ]

]
'
[
1− const.

εb+1

mb+1

]λ2T
' e−const.(λ2εb+1)T/mb+1

.

We thus get a non trivial distribution for the X-maxima in the scaling limit λ2εb+1 = J fixed, al-
though, for each given t, Xt is almost surely zero. These seemingly self-contradictory statements
actually mean that, on any time interval [0, T ], the process t → Xt makes series of excursions
– instantaneous in the limit λ → ∞ and which we call ‘spikes’ – away from the origin. These
excursions form the stochastic spikes. See Fig.3 in Subsection 4.2 for samples exhibiting the
dependence in the parameter b.

One of the aims of this paper is to present a detailed characterization of the large noise
scaling limit of solutions of Eq.(3) and their spiky behavior:

Proposition 1 In the scaling limit λ→∞, ε→ 0 with λ2εb+1 =: J fixed, the solution Xt of the
SDE (3), dXt = λ2

2 (ε− bXt)dt+ λXt dBt, is a fractional power of a reflected Brownian motion
parametrized by its local time. Namely, in law and in the scaling limit,

Xt = (b+ 1)
1
b+1 |W̃τ |

1
b+1 , J t = 2Γ(b+ 1) Lτ , (4)

with Lτ the local time at the origin of a standard Brownian motion W̃τ .

Because the local time stays constant when W̃τ is away from zero, any excursion of W̃τ

away from the origin is mapped to an instantaneous spiky excursion of Xt. This has a direct
consequence for the distribution of the heights of the X-spikes:

Corollary 1 The tips of the X-spikes form a Poisson point process on R× R+ with intensity

dν =
(b+ 1)

2Γ(b+ 1)
Jdt

dx

xb+2
.

The proof of this proposition is presented in Section 4. It is based on using a Skorokhod
decomposition of a process Qt, defined in terms of Xt, to relate Xt to the power of a Brownian

3



motion – see [5, 6] for an introduction to Skorokhod’s decompositions – and on using an ergodicity
theorem to relate the original time t to the effective local time Lτ . We shall also give an
independent check that the X-spikes form a Poisson point process by determining, in the scaling
limit, the distribution of a family of stopping times Ty→z defined as the times for Xt to go from
y to z.

In Section 5 we shall extend these results to a larger class of SDEs of the form

dXt =
λ2

2
(εXq

t − bXn
t )dt+ λXk

t dBt, (5)

with n = 2k − 1 > q ≥ 0 and b > −1. By a simple change of variable, namely Qt :=
Xb+1
t
b+1 , this

equation can be rewritten as

dQt =
λ̂2

2
ε̂ Qαt dt+ λ̂ QδtdBt, (6)

with α = b+q
b+1 and δ = b+k

b+1 and with λ̂ and ε̂ respectively proportional to λ and ε. The condition
2k − 1 > q > 0 translates into 2δ − 1 > α > 0. In other words, it is equivalent to study the
SDEs of the form (5) or (6) but the former arise more naturally in some physical problems (see

below). The large noise limit we shall consider is λ → ∞, ε → 0 with λ2 ε
b+n
n−q =: J fixed, or

equivalently λ̂2ε̂
2δ−1

2δ−1−α =: Ĵ fixed:

Proposition 2 In the scaling limit λ → ∞, ε → 0 with λ2ε
b+n
n−q =: J fixed, the solution Xt of

the SDE (5), with n = 2k − 1 > q, is identical in law with a fractional power of a reflected
Brownian motion parametrized by its local time:

Xt = (b+ 1)
1
b+1 |W̃τ |

1
b+1 , J t = 2Z Lτ , (7)

with Lτ the local time at the origin of a standard Brownian motion W̃τ and Z a numerical factor
depending on the parameters q, n, k.

The proof of proposition 2 is parallel to that of proposition 1 and we shall give only the main
ingredients omitting the details. We choose to split the two propositions and to deal first with
the particular cases of proposition 1 (which correspond to q = 0, n = 1 = k) in order to make
the proof more readable.

We shall also outline in Section 6 the expected results for the general class of SDEs of the form
(1), including (5) with n 6= 2k− 1. These results are presented as motivated conjectures. There
are yet a few delicate points to extend the previous proofs to the general case. In particular,
the proof of the reconstruction relation between the effective local time Lτ and the original time
uses the ergodic theorem which can only be rigorously applied only if the SDE possesses some
specific properties which allow to disentangle the scaling limit λ→∞, ε→ 0.

A brief comparison with weak noise limit is sketched in Section 7

2 Motivation from Quantum Mechanics

Our motivation for characterizing the strong noise limit of solutions of SDEs of the form (1)
find its roots in the study of quantum systems under continuous monitoring. Let ρt be the state
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Figure 1: A typical sample of thermal jumps and spikes. The “curve” represents the
probability to be in the + σz eigenstate.

(density matrix) of the quantum systems. Under continuous monitoring, its time evolution is
governed by a SDE of the following form:

dρt = Lsys(ρt) dt+ LN (ρt) dt+MN (ρt) dBt,

where Lsys is a Lindbladian describing the system evolution in absence of monitoring, while
LN (ρ) := N †ρN − 1

2(NN †ρ + ρNN †) and MN (ρ) := N †ρ + ρN − ρTr(N †ρ + ρN) for some
operator N specifying the way the monitoring is implemented. Solutions of these SDEs are
called quantum trajectories.

We present here a few examples which lead to SDEs of the form (1). We shall deal with qubits
whose Hilbert space is C2. We parametrize the qubit density matrix by ρ = 1

2(I + ~σ · ~S) where

σx,y,z are the standard Pauli matrices and ~S2 ≤ 1. Setting 2P := 1 + Sz and 2U := Sx − iSy.
We have:

ρ =
1

2

(
1 + Sz Sx − iSy
Sx + iSy 1− Sz

)
=

(
P U
U∗ 1− P

)
.

2.1 QND detection of a thermal qubit

This case was studied in detail in [1].

Let us suppose that the qubit energy eigenstates are the σz eigenstates. When the energy is
continuously measured, U decouples and the evolution is governed by the equation:

dPt = η(p− Pt)dt+ λPt(1− Pt) dBt.

Efficient monitoring corresponds to a large value of λ, and p is the probability to be in the +
σz eigenstate at thermal equilibrium. A typical sample at fixed η and p but large λ is presented
in Fig.1.

The linearized version for Pt small reads (after renaming Pt to Xt) :

dXt = (ηp) dt+ λXt dBt

The scaling is λ→∞ with ηp fixed. A typical sample is presented in Subsection 4.2, see Fig.3.
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Figure 2: A typical sample of jumps and spikes induced by indirect measurements. The
blue “curve” represents Sz, the red “curve” is Sx.

2.2 QND detection of Rabi oscillation

Rabi oscillation refers to the precession of a spin one-half in an external magnetic field. Let
suppose that the magnetic field is along the y-axis and that the spin along the z-axis is monitored
using non-demolition measurements (this corresponds to N ∝ σz). Then the quantum trajectory
SDEs read:

dPt = ω Ut dt+ γPt(1− Pt) dBt,

dUt = −ω (Pt −
1

2
) dt− γ2

8
Ut dt− γUt(Pt −

1

2
) dBt

with ω the so-called Rabi frequency proportional to the magnetic field. Here γ−2 codes for the
information extraction rate. These equations preserve pure states (actually any initial state
converges exponentially to a pure state). We thus restrict ourselves to pure states of the form
|ψt〉 = cos(θt/2)|+〉 − sin(θt/2)|−〉, with |±〉 the state basis of spin pointing up or down in the
z-direction i.e. σz|±〉 = ±|±〉. The SDE then reduces to:

dθt = (ω − 2γ2 sin θt cos θt) dt− 2γ sin θt dBt.

The linearized version is (after renaming θt to Xt and Bt to −Bt)

dXt =
λ2

2
(ε−Xt) dt+ λXt dBt,

where λ := 2γ and ω := 2γ2ε.

In order for the (nonlinear or linearized) equations to have a non-trivial limit when the
information extraction rate is large, one must impose a scaling relation λ2ε2 =: J fixed, which
translates into ω ∼ λ. The need for rescaling the Rabi frequency is an echo of the Zeno effect.
Indeed, in the large γ limit, the monitoring back-action induces quantum jumps separated by
time intervals of order T̄jump = γ2/ω2. The scaling relation simply imposes the finiteness of this
mean time interval since T̄jump ∝ J−1.

A typical sample at large λ with fixed λ2ε2 is presented in Fig.2.

A typical sample of the linearized version is presented in Subsection 4.2, see Fig.3.
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2.3 Homodyne detection of Rabi oscillation

Homodyne detection corresponds to monitor the qubit via a coupling N ∝ σ+ (recall σ± =
(σx ± iσy)/2).

This procedure is nowadays routinely implemented in circuit QED. The output signal is
drifted by the mean value of σx = σ+ +σ− (We could also have considered a coupling via iσ+ so
that the signal would have been drifted by σy). In presence of Rabi oscillations at a frequency
ω and for a magnetic field pointing in the y-direction, the homodyne quantum trajectory SDEs
are

dSzt = ωSxt dt+ γ2(1− Szt )dt+ γ(1− Szt )Sxt dBt

dSxt = −ωSzt dt−
γ2

2
Sxt dt+ γ(1− Szt − Sxt

2)dBt

dSyt = −γ
2

2
Syt dt+ γSyt S

x
t dBt

Again γ−2 codes for the information extraction rate. Although the homodyne output signal
is coupled to σx, so that the measurement gives information on the mean value of σx, the
homodyne process is quite different from the previous (non-demolition) monitoring of σx. Purity
is preserved by the homodyne evolution. We set Sz = cos θ and Sx = − sin θ and Sy = 0. Then

dθt =
[
ω − γ2

2
sin θt(1 + 2 sin2(θt/2))

]
dt+ 2γ sin2(θt/2) dBt

The “linearized” version3 for small θ yields (after renaming Xt = θt/2, λ = γ and ω = λ2ε):

dXt =
λ2

2
(ε−Xt) dt+ λX2

t dBt.

The difference with the previous example is the presence of an X2
t (not Xt) factor in the noise

term. But this equation fits in the form (1) of the class of SDEs we study.

3 An effective form of Skorokhod’s lemma

Our convergence results rely on a simple extension of Skorokhod’s lemma with explicit bounds.

Definition 1 Let ft, t ∈ [0,+∞[ be a real continuous function such that f0 ≥ 0.
– An admissible pair for f is a pair (b, y) where bt, t ∈ [0,+∞[ and yt, t ∈ [0,+∞[ are real
continuous functions, b is nondecreasing, y is nonnegative, y = b+ f , and y0 = f0.
– A Skorokhod decomposition for f is an admissible pair (a, x) such that a is locally constant on
{x > 0}.
– Let β, υ > 0. An approximate (β, υ) decomposition of f is an admissible pair (b, y) such that
for any 0 ≤ s ≤ u, if yt ≥ υ for t ∈ [s, u] then bu − bs ≤ β(u− s).

3An abuse of language: by this we mean that only the most relevant terms are kept.
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Let us comment these definitions:
– If (a, x) is a Skorokhod decomposition of f , the set {x 6= 0} which is open by continuity, is a
countable union of disjoint open intervals of [0,+∞[ and the condition on a is that it is constant
on each of these intervals. As a is nondecreasing, it defines a nonnegative measure da and using
that x is nonnegative the condition can be seen to be equivalent to

∫
B xtdat = 0 on each Borel

set B of [0,+∞[. This may be rephrased informally as: a may only increase when x vanishes.
– It is the immediate that a Skorokhod decomposition of f is an approximate (β, υ) decompo-
sition for every β, υ > 0. Conversely, in an approximate decomposition with β, υ small, b may
only increase significantly when y is small.

We then have:

Lemma 1 (The approximate Skorokhod decomposition)
– Each real continuous function ft, t ∈ [0,+∞[ such that f0 ≥ 0 has a unique Skorokhod decom-
position (a, x), and a is given explicitly as at = max(0,maxs≤t−fs).
– If (b, y) is an admissible pair for f then b− a = y − x is a nonnegative function.
– If (b, y) is an approximate (β, υ) decomposition of f , then 0 ≤ bt − at ≤ υ + βt.

The first assertion is nothing but Skorokhod’s original lemma which is elementary, see [5, 6].
We shall reprove it together with the other assertions which are as elementary but seem to be
new.

Proof: We first prove the existence part of the original Skorokhod lemma.
Let mt := maxs≤t{−fs} and note that m + f is a nonnegative continuous function. We check
that at := max{0,ms}, xt := at + ft is a Skorokhod decomposition of f . First the fact that a
is continuous and increasing is clear because so is m. Then x is also continuous. We rewrite x
as xt = max{ft,mt + ft} ≥ mt + ft. As mt + ft ≥ 0, x is nonnegative. Suppose t is such that
xt > 0. Either mt < 0 and then by continuity mu < 0 for u close to t so that a is 0 (and in
particular constant) close to t. Or mt ≥ 0, and then 0 < xt = mt + ft, so mt > −ft, mu is
constant and ≥ 0 close to t and a is constant close to t. Thus a is locally constant on {x > 0}.
Finally, a0 = max{0,−f0} = 0 because f0 ≥ 0. So x0 = f0.
Now we turn to the second assertion. We assume that (a, x) is a Skorokhod decomposition of f
(not necessarily given by explicit formula above) and that (b, y) is an admissible pair. We argue
by contradiction4. Suppose there is some t such that at > bt. As a0 = b0 = 0 we have t > 0 and
t̄ := sup{0 ≤ s < t, bs ≥ as} is well-defined. By continuity, bt̄ = at̄ and 0 ≤ ys < xs for s ∈]t̄, t[.
Thus a is constant on ]t̄, t[ and then, by continuity, on [t̄, t]. Hence

0 < at − bt = at̄ − bt = (at̄ − bt̄) + (bt̄ − bt) = bt̄ − bt.

This would contradict the fact that b is nondecreasing. Thus b − a = y − x is a nonnegative
function, i.e. each piece of a Skorokhod decomposition is less than the corresponding piece in
any admissible pair. As a Skorokhod decomposition is in particular an admissible pair, the
Skorokhod decomposition is unique.
It remains to get the explicit bound for approximate (β, υ) decompositions. Thus let (b, y) be
an approximate (β, υ) decomposition of f , and (a, x) be the Skorokhod decomposition. We first

4The same kind of argument is used several times below, and we call it a backtracking argument: to
get a hold on something that happens at time t, we go backward in time up to a time when things were
under control, and then propagate the control to the future up to t.
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note that 0 ≤ bt−at = yt−xt ≤ yt (the first inequality was just proved above). Either yt ≤ υ and
then 0 ≤ bt − at ≤ υ. Or yt > υ. This case splits again in two. Either ys ≥ υ for s ∈ [0, t], and
then bt−at ≤ bt = bt−b0 ≤ βt. Or we can use backtracking and set t̄ := sup{0 ≤ s < t, ys ≤ υ},
so that yt̄ = υ and ys ≥ υ for s ∈ [t̄, t]. Then

bt − at ≤ bt − as = (bt − bs) + (bs − as) ≤ (bt − bs) + ys = (bt − bs) + υ ≤ β(t− s) + υ.

In all case, we have 0 ≤ bt − at ≤ βt+ υ, concluding the proof. �

Note the immediate consequence of lemma 1:

Corollary 2 Suppose given a family of (bε, yε) of (β(ε), υ(ε)) decompositions of f , defined for
ε > 0 and such that limε→0 β(ε) = limε→0 υ(ε) = 0. Then (bε, yε) converges (uniformly on each
compact interval) to the Skorokhod decomposition (a, x) of when ε→ 0.

We shall use these results for a special class of problems.
Let α > 1. Let f be given and let (a, x) be its Skorokhod decomposition. Assume that, for each
ε > 0, yε is nonnegative and solves the integral equation

yεt = ft + ε

∫ t

0

du

(yεu)α
. (8)

Setting bεt := ε
∫ t

0
du

(yεu)α it is immediate that (bε, yε) is an approximate (εC−α, C) decomposition

of f for any C > 0. Optimizing on C, we have that bεt − at ≤ (1 + 1
α)(αεt)

1
1+α , leading to the

uniform convergence of bε to a on compact intervals.
In a typical application, f will be a Brownian motion started somewhere on the positive axis.
As α > 1, one sees (for instance by comparison with the 3d Bessel process) that a solution of
Eq.(8) exists, is unique and nonnegative, leading to the desired conclusions.

4 Strong noise limit for a class of SDEs

We present here the different steps to prove proposition 1. Let us consider the SDE (3) that we
rewrite here :

dXt =
λ2

2
(ε− bXt)dt+ λXt dBt. (9)

We assume ε > 0 and b > −1.

We shall prove that the distribution of the solutions has a non trivial limit, called the scaling
limit in what follows, when λ → ∞ and ε → 0 with λ2εb+1 =: J fixed. We shall also describe
the scaling limit in terms of Poisson point processes.

Note that λ2ε � λ2, so that the leading contribution away from the origin comes from the
truncated SDE dXt = −λ2

2 bXt dt+λXt dBt where ε has been neglected. For b ≥ 0 the solutions
of the truncated equation are supermartingales bounded below by 0 so they converge almost
surely at large t. As 0 is the sole fixed point, they do in fact converge almost surely to 0 at large
t. It turn out that these conclusions are valid more generally when b > −1 though in that case

we rely on the explicit solution (at ε = 0) Xt = X0e
λBt−λ

2(b+1)
2

t for a proof.
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But whatever small ε, when a solution Xt to the complete equation comes very close to 0 it
is kicked away by the ε-term and the scaling limit is chosen to ensure that these kicks are of the
right order of magnitude. Much of the discussion that follows is an elaboration on this point.

The complete equation Eq.(9) turns out to have a closed form solution (using a method
based on ”variation of constants”):

Xt =
[
X0 +

λ2ε

2

∫ t

0
du e−λBu+

λ2(b+1)
2

u
]
eλBt−

λ2(b+1)
2

t.

For ε = 0, it is plain that the solutions converge to 0 almost surely, in agreement with the general
remark above. When b > 0, the convergence also takes place in L1.

The invariant measure of Eq.(9) is the inverse Γ-distribution: Pinv(x)dx = εb+1

Γ(b+1)
dx
xb+2 e

−ε/x,

and Pinv(x)dx → δ0 in the limit ε → 0 as expected, confirming that Xt converges to zero at
large t when ε = 0.

We shall also make use of the following scaling property: writing Yt := ε−1Xtλ−2 and noticing
that B̃t := λBtλ−2 is another Brownian motion, Yt solves an SDE independent of ε and λ, namely
dYt = 1

2(1− bYt)dt+ YtdB̃t. In particular if one solves the SDE for an initial condition which is

scale covariant (like Y0 = 0, or Y0 sampled with the stationary measure and independent of B̃)
we can get a coupling of the corresponding solutions of the SDE (9) for all values of ε and λ.

4.1 Scaling limit via time change

It is clear (for instance from the explicit solution above) that if X0 ≥ 0 then Xt > 0 for t > 0.

Let us change variable and set Qt :=
Xb+1
t
b+1 . Then:

dQt =
λ̂2

2
ε̂ Q

b
b+1

t dt+ λ̂ Qt dBt,

or alternatively dQt = λ2

2 εXb
t dt+λXb+1

t dBt, where we have absorbed numerical multiplicative

factors in redefining ε̂ and λ̂: λ̂ = λ (b+ 1) and ε̂ = ε(b+ 1)
−1
b+1 . What motivates this change of

variable is that Qt is a local martingale when ε = 0: the function q(x) := xb+1

b+1 is scale function
for the process Xt, see e.g. [4].

Lemma 2 Consider the time change trading the standard time t for the effective time τ defined

by dτ = λ2X
2(b+1)
t dt so that Wτ defined via dWτ = λXb+1

t dBt is a Brownian motion in the
time parameter τ . In the limit ε → 0, the process Q parametrized by τ is a reflected Brownian
motion:

Qτ = |W̃τ |,

with dWτ = sign(W̃τ )dW̃τ .

Proof: The proof relies on the use of the approximate Skorokhod decomposition presented
above. Tanaka’s equation [6] gives an interpretation of the Skorokhod decomposition of a Brow-
nian sample: if W̃τ is a Brownian motion, |W̃τ | satisfies d|W̃τ | = dLτ +sign(W̃τ )dW̃τ where Lτ is
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the local time of W̃τ at the origin, and by Lévi’s charaterization theorem, Wτ :=
∫ τ

0 sign(W̃σ)dW̃σ

is a Brownian motion. Thus |W̃τ | = Lτ + Wτ , and it is easily seen that this is the Skorokhod
decomposition of Wτ .
The SDE for Q parametrized with τ reads:

dQτ = dL(ε̂)
τ + dWτ , dL(ε̂)

τ :=
ε̂

2
Q
− b+2
b+1

τ dτ.

This is exactly Eq.(8) with obvious changes in notation and we apply the effective version of
Skorokhod’s lemma to conclude that for each Brownian motion sample Wτ we have that L(ε̂)

converges to Lτ as ε→ 0+, uniformly on compact time intervals. �

This lemma gave the expression of X in terms of the Brownian motion W̃ . It remains to
find the relation between τ and the original physical time t.

Lemma 3 In the scaling limit ε→ 0, λ→∞ with J = λ2εb+1 fixed, one has:

Lτ =
J

2Γ(b+ 1)
t. (10)

with Lτ the W̃τ local time at the origin.

Proof: The expression of L
(ε̂)
τ in terms of the original time is via dL

(ε̂)
τ = λ̂2

2 ε̂ Q
b/b+1
t dt =

λ2

2 εXb
t dt, so that the relation between L

(ε̂)
τ and t can be written in an integral form:

L(ε̂)
τ =

λ2ε

2

∫ t

0
dsXb

s =
J

2

∫ t

0
ds
(Xs

ε

)b
.

Let us change time and variable and set Ys := Xt
ε with s = λ2t. The relation between L

(ε̂)
τ and

t can then be written as

L(ε̂)
τ =

J

2

∫ t

0
ds
(Xs

ε

)b
=
Jt

2

1

λ2t

∫ λ2t

0
ds Y b

s .

The process Ys solves the SDE dYs = 1
2(1− bYs)ds+YsdB̃s in which ε and λ do not appear. We

can thus apply the ergodic theorem to get

lim
λ→∞

1

λ2t

∫ λ2t

0
ds Y b

s = 〈Y b〉inv.

The invariant measure for Y is that of X/ε so that

〈Y b〉inv =
1

Γ(b+ 1)

∫
dy

yb+2
e−1/yyb =

1

Γ(b+ 1)
.

This yields 2Γ(b+ 1)Lτ = Jt as announced. �

To summarize, we have proven that in the scaling limit Xb+1
t = (b+ 1)|W̃τ | (equality in law)

with W̃τ is a normalized Brownian motion (with respect to τ) and that the relation between τ
and t is through the W̃τ local time Lτ at the origin.

11



The law of the trajectories Xt in the scaling limit follows from classical results on excursions.
The set of τs such that |W̃τ | > 0 is open in R+ and as such it is the union of a countable number
of disjoint open intervals. On each of these intervals, the local time L of |W̃ | is constant but
|W̃ | makes an excursion. Thus when the local time is used as a parameter, each excursion
becomes instantaneous and draws a vertical segment, a spike, whose height is the maximum of
the excursion. It is a classical result (see e.g. [6]) that, when parameterized by L, the maxima
of the excursions of |W̃ | form a Poisson point process on R+ × R+ with intensity dLdm

m2 . Thus
in the scaling limit the trajectories of X are made of spikes whose tips form a Poisson point

process on R+ × R+ with intensity (b+1)2J
Γ(b+1) dt

dm
m2+b . From this correspondence, more features of

X in the scaling limit can be computed, and in particular anomalous behaviors. We refer to
ref.[1], which treats the case b = 0 in detail, for more details.

4.2 Scaling limits via passage times

There is another useful approach to study the scaling limit, which is based on standard tools in
the study of diffusions in one dimension [4]. Let us quote once again our starting point Eq.(3)
that we rewrite here:

dXt =
λ2

2
(ε− bXt)dt+ λXt dBt. (11)

We view this equation as defining a family of probability measures Pλ,ε on some canonical space
of functions (say continuous functions on R+).

We are interested in a non-trivial limit for Pλ,ε with ε carefully adjusted to go to 0 at an
appropriate rate when λ → ∞. The role played by ε in the above equation is noticeable only
when Xt is small. Thus we have the following rules of thumb. Suppose A is a property (i.e. a
measurable set) of trajectories
– If A can be decided without ever looking at times when X is small, then the limits of large λ
and small ε can be taken independently, i.e. limscaling Pλ,ε(A) = limλ→∞,ε→0+ Pλ,ε(A).
– If A cannot be decided without ever looking at times when X is small, be careful!

Let us illustrate this with three computations.

Exit probabilities: Let 0 ≤ x < y < z. Let P[x,z](y) denote the probability that the process
started at y exits [x, z] at z. The Markov property implies that P[x,z](Xt) is a local martingale

so that by Itô’s formula λ2

2

(
(ε− by)P ′[x,z](y) + y2P ′′[x,z](y)

)
= 0 (where ′ denotes the derivative

with respect to y) with boundary conditions P[x,z](x) = 0 and P[x,z](z) = 1. As expected, λ,
which is just an overall time scale, factors out of this time-independent quantity. So in this case,
it it trivial to see that taking the scaling limit or taking independently the limits of large λ and
small ε do yield the same outcome. This is consistent with our rule of thumb (which applies
if x > 0 because in that case indeed, we can decide if the exit is at z without ever looking at
trajectories going below x, i.e. without ever looking at trajectories coming close to regions where
the ε term is important). The fact that it is valid even if x = 0 is not predicted by the rule of
thumb, and in fact there is some kind of revenge, see below.

The equation for P[x,z](y) is easily solved to yield

P[x,z](y) =

∫ y
x u

beε/udu∫ z
x u

beε/udu
.

12



Note that, ∀ε > 0, P[0,z](y) = limx→0+ P[x,z](y) = 1, implying that the process started at
y > 0 never visits 0 but visits arbitrary large values z with probability 1. On the other hand,

by a trivial application of dominated convergence say, for x > 0, limε→0+ P[x,z](y) = yb+1−xb+1

zb+1−xb+1

which is indeed the ε = 0 result, but whose limit as x → 0+ is yb+1

zb+1 6= 1, i.e. the limits ε → 0+

and x → 0+ do not commute. The point is that when ε = 0 the trajectories started at y > 0
converge to 0 and have a nonzero probability to remain below z for all times whenever z > y.

So even for this very simple quantity, some subtleties are present.

Down-crossing times: For 0 < x < y, let Ty→x be the time it takes to go from y to x. We
call this a down-crossing because x < y. Our rule of thumb suggests that the law of this time
(which is clearly a stopping time) is not sensitive to the way the limits of large λ and small ε
are taken, because the part of a trajectory needed to compute its Ty→x never goes below x > 0
fixed. We concentrate on the Laplace transform E[e−σTy→x ].

We can write:

E[e−σTy→x ] = e−
∫ y
x φ(u,σ)du =

ψ(y, σ)

ψ(x, σ)
,

for some appropriate functions φ and ψ. These formulæ express that if u ∈ [x, y], to go from y
to x you have to go from y to u and then from u to x, so the Ty→x is the sum Ty→u + Tu→x of
two random variables which are independent by the strong Markov property.

Furthermore the process e−σtψ(Xt, σ) is a local martingale, so that by Itô’s formula ψ satisfies
a second order differential equation,

u2ψ′′(u) + (ε− bu)ψ′(u) =
2σ

λ2
ψ(u),

and φ a Ricatti type equation, namely

u2(−φ′(u) + φ2(u))− (ε− bu)φ(u) = 2σ/λ2.

Because we are looking at a down-crossing, the boundary conditions for φ are at u→ +∞ where
the ε term is negligible. So indeed the ε→ 0+ and λ→∞ can be taken independently. In the case

at hand the solution at ε = 0 can be computed explicitly. One finds φ(u) =

√
(b+1)2+8σ/λ2−(b+1)

2u
i.e.

lim
ε→0+

E[e−σTy→x ] =

(
x

y

)√(b+1)2+8σ/λ2−(b+1)
2

The corrections in ε are straightforward to compute, especially because the aforementioned
scale invariance of Eq.(11) translates into the fact that uφ(u) is a function of the variable u/ε.
Order by order in perturbation theory one gets an inhomogeneous linear first order differential
equation with only one solution compatible with the boundary condition at large u so that

uφ(u) ∼
∑

n cn
(
ε
u

)n
where c0 :=

√
(b+1)2+8σ/λ2−(b+1)

2 and the cns are, like c0, explicit functions
of b and σλ−2 that can be computed mechanically at least for the first few. We conclude:

Lemma 4 When ε → 0+ and λ → ∞ independently, and in particular in the scaling limit
when λ2εb+1 =: J is kept fixed, the random variable Ty→x for 0 < x < y scales like λ−2 and in
particular its law converges to that of the zero random variable.
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In words, when λ−2 and ε → 0+ it takes no time to go from y to x, more precisely a time of
order λ−2.

During a down-crossing from y to x , the process has a maximum My→x and the same kind
of argument shows that the joint law of (Ty→x,My→x) has a limit when ε → 0+ and λ → ∞
independently. Even if the down-crossing time and the maximum are not independent, they
become so at large λ and the limiting law can be guessed from the two computations above:

by the first computation the probability that My→x > m is P[x,m](y) whose limit is yb+1−xb+1

mb+1−xb+1 ,

and conditionally on My→x the time is takes to do the down-crossing scales like λ−2 and in
particular its law converges to that of the zero random variable. We shall not give the details
because this is intuitive given the second computation. Let us note however that making this
rigorous would not be difficult: we could describe the down-crossing from y to x with maximum
m as the concatenation of two independent processes, the first is X started at y and conditioned
to reach m before x, and the second is X stated at m and conditioned to reach x before touching
m again. Both pieces are described as diffusions via Girsanov’s theorem, the additional drift
term due to conditioning being explicit in terms of P[x,m](y). For both pieces the trajectories
do not go below x so that the limit ε → 0+ can be taken straightforwardly and independently
of the large λ limit.

Up-crossing times: For 0 < y < z, let Ty→z be the time it takes to go from y to z. We call
this an up-crossing because z > y. Our rule of thumb says that we should be careful, because
for the law of Ty→z the trajectories that go close to 0 might make a contribution. And sure they
do: for ε = 0 the trajectories converge to 0 and do not always reach z. For small ε, they either
reach z quite early or they start to converge to 0 and only the presence of the ε term gives them
a kick and a new chance to go up to z. We know from the computation of exit probabilities that,
due to these kicks, at some point z will be reached. But the smaller ε, the larger the number
of needed kicks. This is the basis of the intuitive argument given in the introduction and which
quantifies the careful rescaling of time by a factor λ depending on ε needed to reach z in finite
time. We shall now give a rigorous treatment.

Lemma 5 In the scaling limit λ→∞, ε→ 0 with λ2εb+1 =: J fixed, one has:

lim
scaling

E[e−σTy→z ] =
1 + σ Ĵ−1 q(y)

1 + σ Ĵ−1 q(z)
, (12)

with q(x) = xb+1/(b+ 1) and Ĵ = J/2Γ(b+ 1).

Proof: The arguments used for down-crossings can be repeated to show that one may write

E[e−σTy→z ] = e−
∫ z
y φ(u,σ)du =

ψ(y, σ)

ψ(z, σ)
,

and the functions ψ or φ satisfy differential equations. For the SDE (3), it reads

u2ψ′′(u) + (ε− bu)ψ′(u) =
2σ

λ2
ψ(u)

or equivalently
u2(φ′(u) + φ2(u)) + (ε− bu)φ(u) = 2σ/λ2.
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Beware that even if the equations for ψ are the same for up- and down-crossings, the solutions
are not: this time boundary conditions should be taken at small u.
The boundary condition at u = 0+ is straightforward: φ(0) = 2σ

λ2ε
. This can be seen either by

taking brutally u = 0 in the equation for φ or by realizing that at small u the equation for Xt

becomes deterministic and reduces to dXt = λ2

2 εdt.
On the other hand, in the scaling limit at fixed u one expects that the terms involving ε and
λ−2 can be neglected so that the equation for φ reduces to u2(φ′(u) + φ2(u)) − buφ(u) = 0

whose solution is φout(u) := (b+1)ub

c+ub+1 with c an integration constant. The ”out” subscript was
introduced to emphasize that φout(u) is a kind of outer solution, which is expected to be good
for every u in the scaling limit, but could be poor at small u before the scaling limit is taken.
Indeed, if b > 0 the small u behavior of φout is incompatible with the boundary condition at
u = 0+: the true solution φ(u) changes quickly in a boundary layer to interpolate between the
boundary condition at 0+ and the behavior of φout(u).
One possibility would be to compute an inner approximation φin(u) and do matching. While
this is certainly doable, we prefer a direct analysis which gives in one stroke the scaling relation
and the right boundary condition.
To achieve this, we rewrite the equation for φ as an integral equation. Guided by the method of
variation of constants for the linearized version (where the φ2 term is neglected), we arrive at the
following formula, whose correctness can of course be checked immediately by differentiation:
for y, z ∈]0,+∞[

φ(z)
e−ε/z

zb
− φ(y)

e−ε/y

yb
+

∫ z

y
duφ(u)2 e−ε/u

ub
=

2σ

λ2

∫ z

y
du

e−ε/u

ub+2
.

As long as ε > 0, when Xt is small, the SDE is well-approximated by the deterministic equation
dXt = λ2

2 ε dt which leads to the small x behavior φ(x) ∼ 2σ
λ2ε

. Due to the crushing factor e−ε/y,

the term φ(y) e
−ε/y

yb
goes to as y → 0+. Thus:

φ(z)
e−ε/z

zb
+

∫ z

0
duφ(u)2 e−ε/u

ub
=

2σ

λ2

∫ z

0
du

e−ε/u

ub+2
.

Setting Zε :=
∫ +∞

0 du e−ε/u

ub+2 and denoting by Pinv(ε, [0, z]) := Z−1
ε

∫ z
0 du

e−ε/u

ub+2 the invariant mea-
sure of the interval [0, z], the formula reads:

φ(z)
e−ε/z

zb
+

∫ z

0
duφ(u)2 e−ε/u

ub
=

2σZε
λ2

Pinv(ε, [0, z]).

The expectation of the passage time Ty→z is related to the first order in the expansion of φ(z)
in powers of σ, i.e. to the linearization of the above equation. Quantitatively

∂E[Ty→z]

∂z

e−ε/z

zb
=

2Zε
λ2

Pinv(ε, [0, z]).

Remember our aim is to find a scaling for which Ty→z, and in particular its expectation, remains
finite when ε → 0+. As limε→0+ Pinv(ε, [0, z]) = 1− for each z > 0, the only way this can occur
is by adjusting Zελ

−2 to have a finite limit. Thus we define the scaling limit as λ→∞, ε→ 0+,
with λ2/Zε = 2Ĵ fixed. This scaling relation is of course identical to the one obtained above via
the study of the Skorokhod decomposition. Now if in the three terms equation for φ two terms

have a limit when ε→ 0+, namely φ(z) and 2σZε
λ2

Pinv(ε, [0, z]), the third term,
∫ z

0 duφ(u)2 e−ε/u

ub
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must have a limit too, and the only question is whether the integral of the limit is the limit of
the integral. The only possible problem is near the origin, within the boundary layer. Replacing
φ(u) by 2σ

λ2ε
in a layer of thickness ∼ ε, the contribution to the integral is seen to be of order

O(λ−4ε−(b+1)) which is very small compared to λ−2ε−(b+1) at large λ. Thus there is no anomalous
contribution due to the boundary layer, and at ε = 0 we obtain the equation:

φ(z)z−b +

∫ z

0
duφ(u)2u−b =

σ

Ĵ
.

The solution is easily found to be5:

φ(z) =
zb

Ĵ
σ + zb+1

b+1

,

from which the announced formula for limscaling E[e−σTy→z ] follows. �

A salient feature that will be present in the more complicated cases as well is that the
generating function (12) for the passage times is a ratio ψ(y, σ)/ψ(z, σ) with ψ(x, σ) a polynomial
of degree one in σ. The Laplace transform can be inverted easily to yield:

Corollary 3 In the scaling limit λ → ∞, ε → 0 with λ2εb+1 =: J fixed, the law of Ty→z

converges to a mixture of δ0 (the Dirac point measure at the origin) with weight yb+1

zb+1 and an

exponential distribution of parameter Ĵ b+1
zb+1 with weight 1− yb+1

zb+1 .

This result on down-crossings alone, possibly appealing to Okam’s razor, contains all the
ingredients of our previous results on exit probabilities and up-crossings. To wit:
– The weight of δ0 is simply the probability, starting from y, to reach z > y before 0 when ε = 0
(but keep in mind the caveat about non commuting limits)
– The weight for the exponential distribution is the probability, starting from y, to reach 0 before
z > y when ε = 0.

So the simplest interpretation is that in the scaling limit either z or 0 is reached in no time.
As z can be arbitrary large, 0 must be reached in no time anyway, possibly after after having
visited z. And then, once at 0, the process waits an exponential time to reach z again. Crucial
for this last point is that the parameter for the exponential distribution depends only on the
endpoint z, not on y.

We illustrate our results with Fig.3 for different values of b.

4.3 The point process of maxima and its scaling limit

The spiky features of the samples in the scaling limit, and the results obtained above, suggest
that the following approach is relevant.

Fix γ and ε. Let 0 < δ− < δ+ be two numbers which are arbitrary for the time being. We
shall let them go to 0 later on. Take X0 = δ− and define the crossing times Uk, k = 0, 1, 2, · · ·

5Note that this makes
∫ z

0
duφ(u)2u−b finite because b > −1.
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Figure 3: Samples with b = −1/2, b = 0, b = 1, b = 3, b = 10, with large λ but λ2εb+1 =
1. The tips of the spikes are approximate samples of a Poisson point process with a
measure proportional to x−(b+2)dtdx. For large but fixed λ, the quality of the approximation
decreases with larger bs.
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by U0 := 0, U1 := inf{0 < t,Xt = δ+}, U2 := inf{U1 < t,Xt = δ−}, U3 := inf{U2 < t,Xt = δ+}
and so on. Between U2k and U2k+1 , k = 0, 1, · · · the process Xt makes an up-crossing from δ−
to δ+ while remaining below δ+. Between U2k−1 and U2k k = 1, 2, · · · the process Xt makes a
down-crossing from δ+ to δ− while remaining above δ−.

Let Mk := sup{Xt, t ∈ [U2k−1, U2k]}. Let PPδ−,δ+ := {(U2k,Mk) ∈ R+ × R+}k=1,2,···. We
call PPδ−,δ+ the point process of maxima. It is a random set of points in R+ × R+. We note
an important restriction property : if x ≥ δ+ then PPδ−,x = PPδ−,δ+ ∩ R+ × [x,+∞[, a plain
consequence of the continuity of trajectories.

If B is any (say Borel) subset of ]0,+∞[ bounded away from 0, we define the counting process
Nt(B), t ∈ R+ which is the number of entrances of PPδ−,δ+ in B before t, in mathematical
notation Nt(B) := #{k ≥ 1, U2k ≤ t and Mk ∈ B}. Let k1 < k2 · · · be the ordered sequence of
ks such that Mk ∈ B, and set Un(B) := U2kn , Mn(B) := Mkn . Then the Un(B)s, n = 1, 2, · · ·
are the jump times of Nt(B). For B = [δ+,+∞[, Mn(B) := Mn and Un(B) = U2n.

We shall now proceed to show that in the scaling limit the point process of maxima converges
weakly (i.e. in law) to a Poisson point process.

Define Tk := Uk − Uk−1, k = 1, 2, · · · . By the strong Markov property the two sequences
T2k+1, k = 0, 1, · · · and (T2k,Mk), k = 1, 2, · · · are independent of each other and each indi-
vidual sequence is iid, though T2k and Mk are not independent. In particular, the sequence
(T2k−1 + T2k,Mk), k = 1, 2, · · · is iid, which may be rephrased by saying the the sequence
(U2k,Mk) is a renewal process. For the same reasons, for any Borel subset B of R+, the se-
quence (Un(B),Mn(B)) is a renewal process.

We start by computing, in the scaling limit and for any z ≥ δ+ > 0 the law of (U1(B),M1(B))
in PPδ−,δ+ when B = [z,+∞[. By restriction, the entrances in B for PPδ−,δ+ and for PPδ−,z
are the same, so we take δ+ = z for this computation. Started at δ− at t = 0, the trajectory
reaches z at U1 = T1 = Tδ−→z, and reaches a maximum M1 during the down crossing from z
to δ− which is achieved at U2. We need the law of (U1(B),M1(B)) = (U1,M1) = (T1 + T2,M1)
in the scaling limit. But T1 = Tδ−→z and (T2,M1) are independent and their law in the scaling
limit where computed in the previous Section. We conclude

Lemma 6 In the scaling limit, the entrances in [z,+∞[ of the point process PPδ−,δ+ (z > δ+)
form a renewal process where the waiting times T and the entrance point M are independent
and have distribution

Pscaling(T ≥ t) =

(
δ−
z

)b+1

+

(
1−

(
δ−
z

)b+1
)
e
−Ĵ b+1

zb+1 t, t ≥ 0

and

Pscaling(M ≥ m) =
( z
m

)b+1
, m ≥ z.

In particular, taking the scaling limit and then letting δ+, δ− → 0+, for any z > 0, the counting
process Nt([z,+∞[) of entrances in [z,+∞[, converges in law to a standard Poisson process of
parameter Ĵ b+1

zb+1 , and the points of entrance form an independent iid sequence with distribution

density (b+ 1)zb+1 dm
mb+2 .

If B is any Borel subset of R+ set µ(B) :=
∫
B

(b+1)dm
mb+2 , which is < +∞ if B is bounded away

from 0. A standard argument shows that:
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Proposition 3 For any Borel subset B of R+ bounded away from 0, taking the scaling limit and
then letting δ+, δ− → 0+, the counting process Nt(B) of entrances in B, converges in law to a
standard Poisson process of parameter Ĵµ(B)t, and the points of entrance form an independent

iid sequence with distribution µ(.)
µ(B) .

A Poisson point process with intensity measure ν on a measure space (U, E) (satisfying
some supplementary technical assumptions) is defined as a collection of random variables N(A)
indexed by the measurable subsets A ∈ E such that the N(A)s for families of disjoint As are
independent, and if ν(A) < +∞, N(A) is a Poisson random variable with parameter ν(A).
When E is a product measurable space E = R+ × F and ν is the product of the Lebesgue
measure on R+ and a measure µ on F , the Poisson point process with intensity measure ν
has an alternative characterization: for each measurable subset B of F with µ(B) < +∞, the
counting process Nt(B) of entrances in B is a standard Poisson process on R+ with parameter

ν(B) and the points of entrance in B form an independent iid sequence with distribution µ(.)
µ(B) .

This follows straightforwardly from the particular case when F is a singleton. Thus we have
proved:

Proposition 4 Taking the scaling limit and then letting δ+, δ− → 0+, the point process of
maxima converges in law to a time homogeneous Poisson point process with intensity dν =
Ĵdt (b+1)dm

mb+2 .

We are now able to prove one of our main results, which implies that in the scaling limit the
trajectories can be reconstructed with arbitrary precision from the process of maxima PPδ−δ+ .

Define Kδ−,δ+ := R+×[0, δ+]
⋃
∪k=1,2,···([U2k−1, U2k]×[0,Mk]). It is the random set of points

that are below δ+ on up-crossings and below the maximum on down-crossings. In particular,
Kδ−,δ+ ⊃ {(t,Xt)}t∈R+ so it gives a rough approximation of the trajectory as a set. Fix an
arbitrary ∆ > 0 and define K∆

δ−,δ+
:= R+ × [0, δ+]

⋃
∪k=1,2,···[U2k −∆, U2k] × [0,Mk]. Observe

that K∆
δ−,δ+

is uniquely determined by PPδ−δ+ and is a collection of thickened spikes of thickness

∆ emerging from a ”background” of height δ+, i.e. K∆
δ−,δ+

is a spiky object in the limit of small
∆ and δ+.

From the above discussion, we know that for every t ∈ R+, for all λ, ε and also in the scaling
limit, there is only a finite number of points in PPδ−δ+ with time coordinate ≤ t. In the scaling

limit, and when δ− → 0+ this number is a Poisson random variable with parameter Ĵ b+1
δb+1
+

t. And

from the convergence result for the joint law of (T2k,Mk) we know that the T2k are independent
and small in the scaling limit: more precisely, for any ∆, t > 0, with probability going to 1 in
the scaling limit, all down-crossings from δ+ to δ− before time t will take a time less than ∆.
Thus we have proved:

Proposition 5 For every choice of t > 0, ∆ and δ+ > δ− > 0 the probability that, up to time
t, Kδ−,δ+ (and in particular the graph of the trajectory) is contained in K∆

δ−,δ+
goes to 1 in the

scaling limit.

In the above proposition, the interesting domain for the parameters is t large and ∆, δ+, δ−
small.
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Combined together, the propositions giving, in the scaling limit, the law of the point process
of maxima and the inclusion of the graph of trajectories in a spiky set defined solely in terms of
the point process of maxima, provide a complete description of trajectories in the scaling limit.

5 Strong noise limit for a more general class of SDEs

We generalize the previous proofs to the more general SDEs considered in proposition 2 (cf.
Section 1):

dXt =
λ2

2
(εXq

t − bXn
t )dt+ λXk

t dBt, (13)

with q, n and k positive numbers (not necessarily integers) satisfying n = 2k − 1 > q ≥ 0 and

b > −1. We look for the large noise limit λ→∞, ε→ 0, with the scaling relation λ2 ε
b+n
n−q =: J

fixed. The proofs are essentially identical to those of previous Section (which correspond to
q = 0, n = k = 1) so that we shall be brief in our presentation.

The condition n = 2k − 1 ensures good scaling properties which will be needed to complete

certain proofs. In particular, we may scale out the parameters λ and ε by defining Ys := ε
− 1
n−q Xt

with s = λ2 ε
k−1
n−q t which satisfies a λ and ε independent SDE, dYs = 1

2(Y q
s − bY n

s )ds + Y k
s dB̃s,

provided n = 2k − 1.

Another aspect of scaling is the connexion with Bessel processes for ε = 0. The case k = 1

has already been studied and it is easily checked that for k 6= 1 the process Rt :=
X1−k
t
k−1 is,

for ε = 0 and up to a rescaling of time by a factor λ2, a d-dimensional Bessel process where
d = 2k−1+b

k−1 = 2+ b+1
k−1 . Thus if k > 1 the condition b > −1 is a necessary and sufficient condition

for Rt → ∞ at large t, while if 1
2 < k < 1 the condition b > −1 is a necessary and sufficient

condition for Rt to visit 0 with probability 1. Going back to the X variable, we conclude that
b > −1 is a necessary and sufficient condition for Xt to converge to 0, either in finite (1

2 < k < 1)
or infinite (k ≥ 1) time.

We now add the simplifying assumption that b + n > 0, which is always fulfilled if b > 0.
Then Eq.(13) has an invariant measure given by

Pinv(x)dx =
ε
− b+n
n−q

Z
dx

xb+n+1
e
− ε
n−qx

q−n
, Z = (n− q)−

b+q
n−q Γ(

b+ n

n− q
).

The conditions n > q and b + n > 0 ensure the normalizability at 0 and +∞. This measure
converges to the Dirac measure at the origin δ0 in the scaling limit.

Observe that as in the previous Section Qt :=
Xb+1
t
b+1 is a local martingale at ε = 0, while

for general ε, dQt = λ2

2 εX
b+q
t dt + λXb+k

t dBt,, or equivalently dQt = λ̂2

2 ε̂ Q
α
t dt + λ̂ QδtdBt with

α = b+q
b+1 and δ = b+k

b+1 , as in Eq.(6). We set λ̂ = λ (b+ 1)
b+k
b+1 and ε̂ = ε(b+ 1)

q−k
b+1 .

To parallel the previous proofs, we change time from t to τ via dτ = λ2X
2(b+k)
t dt and define

a new Brownian motion (w.r.t. τ) via dWτ = λXb+k
t dBt. We may then rewrite the equation

for Q as

dQτ = dL(ε)
τ + dWτ , dL(ε)

τ =
λ2

2
εXb+q

t dt = εXq−2k−b
t dτ.
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This is exactly Eq.(8) with obvious changes in notation and we apply the effective version of
Skorokhod’s lemma to conclude that for each Brownian motion sample Wτ the component L(ε)

of the approximate Skorokhod decomposition of W converges when ε→ 0+ to the local time Lτ
of Wτ at 0, uniformly on compact time intervals. In the same way Qτ converges to |W̃τ | when
ε→ 0+.

The last step consists in relating the effective local time Lτ to the original time t. We again

start from the relation dL
(ε)
τ = λ2

2 εX
b+q
t dt and use the good scaling properties of Eq.(13) to set

Ys := ε
− 1
n−q Xt with s = λ2 ε

k−1
n−q t and write

Lτ = lim
λ→∞

λ2

2
ε

∫ t

0
Xb+q
t′ dt′ =

Jt

2
lim
T→∞

1

T

∫ T

0
Y b+q
s ds,

with T = λ2ε
k−1
n−q and J := λ2 ε

b+n
n−q . We used that, by definition of the scaling limit λ → 0 and

λ→∞, J is constant. Since Ys is solution of the SDE, dYs = 1
2(Y q

s − bY n
s )ds+ Y k

s dB̃s, we can
apply the ergodic theorem to evaluate the last limit integral and get

Lτ =
J

2
〈Y b+q〉inv =

J

2Z
t.

This concludes the discussion of proposition 2.

The computation of the limit distribution of the passage times associated to Eq.(13) and the
construction of the Poisson process formed by the spikes of these limit trajectories can be done
as in previous Section.

6 Strong noise limit in general

6.1 Main conjectures

We give two conjectures describing the generalization of our previous results to a larger class of
SDEs.

Though we believe that the arguments we have to support them are convincing, we chose
to mention them as conjectures for two reasons. First, we have not been able to make a simple
conceptual/natural list of requirements for the conclusions to apply. Second, in the general case
the scaling trick that we could use in the previous examples at some crucial points in the proof
to disentangle completely the roles of λ and ε is not available anymore. It should be replaced
by a statement that two limits commute, a fact that is “obvious” in the case at hand but whose
precise proof has eluded us.

Let us start again with Eq.(1) which we repeat here for convenience:

dXt =
λ2

2

(
ε a(Xt)− b(Xt)

)
dt+ λ c(Xt) dBt. (14)

We are interested in the limit λ → ∞, ε → 0+, with an appropriate scaling of ε vs λ. With
the application to quantum mechanics in view, it is natural to see λ as large because many
measurements are performed per unit of time, and the parameter of the system (λ2ε) is to be

21



tuned to ensure that the experiment is well-described by a non-trivial continuous time limit.
But from a mathematical viewpoint, it is natural to start with the equation at λ = 1, with
conditions on the coefficients such that when ε→ 0+ a time scale diverges (typically the average
first passage time at z starting from y < z) and look for a change of time scale λ−2 that
counterbalances the divergence.

In the course of the argument we shall use a number of assumptions on the coefficients.
Among those assumptions, some are of purely technical nature and we shall simply mention
them when we use them because we have not been able to organize them in a natural way. But
some assumptions have a simple conceptual interpretation and we emphasize them right now.

Conditions when ε = 0:
i) The point 0 is the only fixed point. In particular, b(0) = 0 = c(0).
ii) The solutions to Eq.(14) converge almost surely to 0 (in finite or infinite time) so that the
invariant measure is the point measure δ0.
iii) There is a scale function mapping [0,+∞[ to [0,+∞[, i.e. the differential equation ∂xh0(x) =
b(x)/2c2(x) can be solved on ]0,+∞[ and the integral q(y) :=

∫ y
0 dx e

2h0(x) is convergent and
tends to +∞ at large x. As usual, h0 is defined only up to an additive constant so q(y) is defined
only up to a multiplicative constant.
iv) The measure dx

c2(x)
e−2h0(x) is an infinite (invariant, as is easily checked) measure. More

precisely it is integrable on any Borel set bounded away from 0 (and in particular at +∞) but
diverges at 0.

Conditions when ε > 0, whatever small:
v) The behavior of solutions close to x = 0 is governed by the a-term. On the other hand, we
assume that the vicinity of x = 0+ is the only place where the a-term plays a significant role.
vi) The scale functions map ]0,+∞[ to ] − ∞,+∞[, i.e. the differential equation ∂xh1(x) =
−a(x)/2c2(x) can be solved on ]0,+∞[ but the behavior of solutions is such that the primitives∫ y
dx e2(h0(x)+εh1(x)) =

∫ y
dq(x) e2εh1(x) diverge near y = 0+ and near +∞.

vii) The measure dx
c2(x)

e−2(h0(x)+εh1(x)) is a finite (invariant, as is easily checked) measure on

]0,+∞[. We let Zε denote its total mass, or partition function, so that Pinv(ε, [0, y]) :=
Z−1
ε

∫ y
0

dx
c2(x)

e−2(h0(u)+εh1(x)) is the normalized invariant measure of the interval [0, y].

viii) For y > 0, limε→0+ Pinv(ε, [0, y]) = 1, i.e. at small ε all the weight of the invariant measure
is concentrated near 0.
ix) The two first moments of first passage times behave nicely in the small ε limit.

Certainly some of these conditions are vaguely stated and there are relations among them
(but we have not found a way to reduce the list). Here are some general remarks.
– Condition ii), i.e. almost sure convergence to 0 is clear, by a sub-martingale argument, if b
is a non-negative function, but our initial example shows that this is in general too strong a
condition.
– The scale function q for the process X· at ε = 0 is the ingredient to compute exit probabilities:
for 0 ≤ x < y < z the process started at y has probability q(y)−q(x)

q(z)−q(x) to exit [x, z] at z. As 0 is a

fixed point, the process started at y has probability 1− q(y)/q(z) > 0 to never reach altitude z,
and by the Markov property it is seen that iii) implies ii).
– Due to the properties we impose on q, we could decide to concentrate on the process Qt = q(Xt)
and retrieve the general case by making the inverse change of variables in the end. Equivalently,
we could content to treat the situation when the b-term is absent in Eq.(14).
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– Condition v) can manifest itself in a number of ways. Obvioulsy the a-term has to play a
role important enough to counterbalance the deterministic effect of the b-term –and we embody
this in the condition that close to 0+ the condition b(x) = o(a(x)) holds– but also the effect of
fluctuations induced by the c-term.
– The conditions in vi) are closely related to those in v). The first condition in vi) implies that
h1(x) takes arbitrary large values close to 0+, and we make the simplifying assumption that
h1(x) goes to +∞ as x→ 0+. Due to condition iii), the second condition in vi) will be fulfilled
if h1(x) has a limit (which we are free to choose to be 0 because h1 is defined only up to an
additive constant) when x→ +∞.
– The first condition in vi) is also a manifestation of v), as it ensures that a-term has a repulsive
effect large enough to prevent the process to reach 0+: for 0 ≤ x < y < z the process started at

y has probability
∫ y
x du e

2(h0(u)+εh1(u))∫ z
x du e

2(h0(u)+εh1(u))
to exit [x, z] at z, and this goes to 1 when x→ 0+ whatever

y and z.
– Point viii) is closely related to point iv), in saying that the invariant measure for Eq.(14)
behaves nicely as a function of ε.
– We shall see later that ix) expresses a balance between the behavior of the scale function and
of the invariant measure when ε→ 0+

We start with:

Conjecture A Let the scaling limit be defined as the limit λ→∞, ε→ 0 with λ2

2Zε
=: Ĵ fixed.

Then:
(i) Solutions Xt of the SDE (14) have a non-trivial limiting law in the scaling limit;
(ii) The limit law describes spiky trajectories Xt that can be reconstructed using a reflected
Brownian motion parametrized by its local time via the correspondence:

|W̃τ | = q(Xt), Ĵ t = Lτ ,

with Lτ the local time at the origin of the standard Brownian motion W̃τ .

– We change variables x→ q(x) :=
∫ x

0 du e
2h0(u). By assumption, this function is differentiable

and maps [0,+∞[ bijectively to [0,+∞[. As q is a scale function for the process at ε = 0, the
process Qt := q(Xt) is a local martingale at ε = 0. For arbitrary ε, Qt solves the SDE:

dQt =
λ2ε

2
e2h0(Xt) a(Xt) dt+ λ e2h0(Xt) c(Xt) dBt.

– We make a time change and define the effective time τ and a new Brownian motion (w.r.t.
the effective time) via:

dWτ = λ e2h0(Xt) c(Xt) dBt, dτ = λ2 e4h0(Xt) c2(Xt) dt.

Then dQτ = ε a(Xt)
2c2(Xt)

e−2h0(Xt) dτ + dWτ = −dh1
dq (Qτ )dτ + dWτ . The second expression em-

phasizes that the local martingales associated to the diffusions Xt and Qτ via scale functions
are the same (as they should be), and in particular Qτ stays away from the origin. Letting

dL
(ε)
τ := ε a(Xt)

2c2(Xt)
e−2h0(Xt) dτ denote the bounded variation part of dQτ we write

dQτ = dL(ε)
τ + dWτ .
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Note that for each solution Qτ of this equation, the pair (L(ε), Q) is an admissible pair for the
Brownian path W as defined in definition 1.
– We now introduce another technical assumption which is a manifestation of the general princi-
ple in v) that the vicinity of x = 0+ is the only place where the a-term plays a significant role: we

assume that dh1
dq := ∂xh1(x)

∂xq(x) is bounded when q is bounded away from 0, or equivalently the func-

tion a(x)
2c2(x)

e−2h0(x) is bounded when x is bounded away from 0. Letting cδ := sup{dh1dq , q > δ},
we have that (L(ε), Q) is an (εcδ, δ) approximate decomposition of W . We may adjust ε such
that both εcδ and δ are arbitrarily small, and we may conclude that for ε→ 0+ the pair (L(ε), Q)
converges uniformly towards the Skorokhod decomposition of W on every compact time interval

[0, T ]. Thus in the limit ε→ 0+, Qτ becomes a reflected Brownian motion |W̃τ | and L
(ε)
τ becomes

Lτ , the local time of W̃τ at the origin.
– Up to now, the discussion has been rigorous. With the particular scale invariant SDEs studied
before we could rely on a simple application of the ergodic theorem to prove the crucial relation
between the time t of the process Xt and the local time Lτ of the Brownian motion. This
does not work anymore, hence the use of the term “conjecture”. The approximate local time is

related to the physical time via dL
(ε)
τ = λ2ε

2 e2h0(Xt) a(Xt) dt. Since the natural time scale of the
problem λ−2 goes to zero in the scaling limit, we expect that the scaling limit of this integral
can be evaluated by first averaging with respect to the invariant measure. That is, we expect
that:

dLτ = lim
λ→∞

λ2ε

2
〈e2h0(Xt) a(Xt)〉inv dt.

Since the invariant measure is Pinv(x)dx = 1
Zε

dx
c2(x)

e−2(h0(x)+εh1(x)), we have, using dh1(x) =

− a(x)
2c2(x)

dx:

〈e2h0(Xt) a(Xt)〉inv =
1

Zε

∫
dx

c2(x)
a(x)e−2εh1(x) =

2

Zε

∫ ∞
0

dhe−2εh =
1

εZε

because by assumption h1(x) goes to +∞ at small x and to 0 at large x. Hence, the relation in

the limit is dLτ = λ2

2Zε
dt = Ĵ dt. It is quite remarkable that, in the general set-up, this averaging

procedure yields an explicit expression of the local time in terms of the scaling variable λ2/Zε
only.

Similar arguments apply to the reconstruction of the spike point process via passage times:

Conjecture B (i) Let Ty→z be the passage time from y to z > y of the SDE (14). In the scaling
limit λ→∞, ε→ 0, with λ2/Zε = 2Ĵ fixed, its generating function is:

lim
scaling

E[e−σTy→z ] =
1 + σ Ĵ−1 q(y)

1 + σ Ĵ−1 q(z)
, with q(x) =

∫ x

0
du e2h0(u).

(ii) The spikes of the X-trajectories, scaling limits of the solutions of Eq.(14), form a point

Poisson process on R× R+ with intensity dν = Ĵdt dq(x)
q(x)2

.

Note that h0(x) is defined up to an additive constant, so that q(x) is defined up to a
multiplicative constant. But so is Ĵ and the ratio q(x)/Ĵ is invariant (i.e. it is independent of
this arbitrary multiplicative constant).
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Let us argue in favor of the conjecture. As arguments are close to the ones given in the
simpler scale invariant cases, we concentrate on the most delicate analysis, that of the passage
time Ty→z for 0 < y < z.
– We look at the generating function of the passage time Ty→z. As before, we have representa-
tions:

E[e−σTy→z ] = e−
∫ z
y φ(x,σ)dx =

ψ(y, σ)

ψ(z, σ)
,

with φ(x, σ) = ∂x logψ(x, σ). The function φ satisfies a non-linear first order differential equa-
tion, namely

c2(x)
(
φ′(x) + φ2(x)

)
+
(
εa(x)− b(x)

)
φ(x) = 2σ/λ2,

while the function ψ satisfies a second order linear differential equation c2(x)ψ′′(x) +
(
εa(x) −

b(x)
)
ψ′(x) = (2σ/λ2)ψ(x). Though we do not indicate it explicitly, φ and ψ do depend on σ,

ε, λ.
– As before, we rewrite the equation for φ as an integral equation: for y, z ∈]0,+∞[

φ(z)e−2εh1(z)−2h0(z) − φ(y)e−2εh1(y)−2h0(y)

+

∫ z

y
duφ(u)2e−2εh1(u)−2h0(u) =

2σ

λ2

∫ z

y
du

e−2εh1(u)−2h0(u)

c(u)2
. (15)

One can show from this equation solely that for fixed ε > 0, limy→0+ φ(y)e−2εh1(y)−2h0(y) = 0

and
∫ z

0 duφ(u)2e−2εh1(u)−2h0(u) is finite. We postpone the proof after the main line of argument
in an independent lemma. This leads to the formula incorporating boundary conditions at 0:

φ(z)e−2εh1(z)−2h0(z)+

∫ z

0
duφ(u)2e−2εh1(u)−2h0(u) =

2σ

λ2

∫ z

0
du

e−2εh1(u)−2h0(u)

c(u)2
=

2σZε
λ2

Pinv(ε, [0, z]).

We can now investigate the small ε behavior.
– The expectation of the passage time Ty→z is related to the first order in the expansion of φ(z)
in powers of σ, i.e. to the linearization of the above equation. Quantitatively

∂E[Ty→z]

∂z
e−2εh1(z)−2h0(z) =

2

λ2

∫ z

0
du

e−2εh1(u)−2h0(u)

c(u)2
=

2Zε
λ2

Pinv(ε, [0, z]).

Remember our aim is to find a scaling for which Ty→z –in particular its expectation– remains
finite when ε → 0+. As limε→0+ Pinv(ε, [0, z]) = 1 for each z > 0, the only way this can occur
is by adjusting Zελ

−2 to have a finite limit. This leads to define the scaling limit as the limit
λ→∞, ε→ 0+, with λ2/Zε = going to a finite limit.
– From now on we fix the quantity λ2/Zε =: 2Ĵ and use this relation to eliminate λ from the
equations. Thus the scaling limit appears as ε→ 0+ and J fixed.
In particular, we infer from

E[Ty→z] =
1

Ĵ

∫ z

y
duPinv(ε, [0, z])e2εh1(u)+2h0(u).

that, for 0 < y ≤ z ,

lim
scaling

E[Ty→z] =
q(z)− q(y)

Ĵ

which will also be a simple consequence of our final result. Then limy→0+ limscaling E[Ty→z] =

Ĵ−1q(z). Note that it is unclear whether the limits can be interchanged, i.e. whether this is also
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limscaling E[T0→z].
– The variance of first passage times is related to the next term in the small σ expansion, explic-

itly
∂Var[Ty→z ]

∂z = Ĵ−2
∫ z

0 duPinv(ε, [0, z])2e2εh1(u)+2h0(u). Note the similarity with the formula for

E[T0→z] (not its z-derivative!) where the only difference is the power to which Ĵ−1Pinv(ε, [0, z])

is raised. As Pinv(ε, [0, z]) is small at small z for fixed ε > 0,
∂Var[Ty→z ]

∂z is well-behaved at small z
for fixed ε. We are now in position to make assumption ix) quantitative. We make the technical
assumption that

lim
z→0+

lim
ε→0+

∫ z

0
duPinv(ε, [0, z])2e2εh1(u)+2h0(u) = 0. (16)

This condition may be checked in our explicit examples. It means that no region close to 0
whose size goes to 0 with ε makes a noticeable contribution to the integral when ε → 0+. It is
an expression of a regularity condition on the variance, namely

lim
z→0+

lim
scaling

∂Var[Ty→z]
∂z

= 0.

– Returning to the global study of φ, We are led to study the small ε limit of the equation

φ(z)e−2εh1(z)−2h0(z) +

∫ z

0
duφ(u)2e−2εh1(u)−2h0(u) =

σ

Ĵ
Pinv(ε, [0, z]). (17)

It involves three terms, and if two terms have a limit when ε→ 0+, namely φ(z) and σ
Ĵ
Pinv(ε, [0, z])

the third,
∫ z

0 duφ(u)2e−2εh1(u)−2h0(u) must have a limit too. The only question is whether the
integral of the limit is the limit of the integral. And the only place where a problem may occur
is the origin : it could happen that region close to 0 whose size goes to 0 with ε makes a contri-
bution to

∫ z
0 duφ(u)2e−2εh1(u)−2h0(u) that does not vanish when ε→ 0+. But both terms on the

left hand-side of Eq.(17) are non-negative, so φ(z)e−2εh1(z)−2h0(z) ≤ σ
Ĵ
Pinv(ε, [0, z]), which leads

to ∫ z

0
duφ(u)2e−2εh1(u)−2h0(u) ≤

(
σ

Ĵ

)2 ∫ z

0
duPinv(ε, [0, z])2e2εh1(u)+2h0(u).

Thus if the condition Eq.(16) is fulfilled, no region close to 0 whose size goes to 0 with ε makes
a noticeable contribution to the integral and the limiting function φ(z) solves the equation

φ(z)e−2h0(z) +

∫ z

0
duφ(u)2e−2h0(u) =

σ

Ĵ
,

whose solution is elementary:

φ(z) =
σ

Ĵ

q′(z)

1 + σ
Ĵ
q(z)

q(z) =

∫ z

0
du e2h0(u)

leading to the announced formula for limscaling E[e−σTy→z ].
– As a final consistency check, let us observe that the function φ in the scaling limit, which
is of the form of an outer solution, is linear in σ at small z and reads φ(z) ' σ

Ĵ
e2h0(z), to

be compared with the complete (finite ε) solution to first order in σ, which reads φ(z) '
σ
Ĵ
e2h0(z)e2εh1(z)Pinv(ε, [0, z]). Thus there is matching if there is some (ε-dependent) region of

the variable z for whom e2εh1(z)Pinv(ε, [0, z]) ' 1. This relation is known to hold for fixed z and
small ε, and this is enough to guarantee the existence of a matching region, though its precise
form depends on the details of the model.
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Once the formula limscaling E[e−σTy→z ] = 1+σ Ĵ−1 q(y)

1+σ Ĵ−1 q(z)
is established, the construction of the

process of maxima and the rest of the discussion can be copied word for word from Subsection 4.3.

We finish the discussion with the lemma needed to take the limit y → 0+ in Eq.(15):

Lemma 7 Suppose f(x) is a function defined for x large enough, non-negative and such that
limx→+∞

∫ x
f2(y)dy − f(x) exists and is finite. Then limx→+∞ f(x) = 0 and

∫ +∞
f2(y)dy is

finite.

Proof: As
∫ x

f2(y)dy is an increasing function of x, it has a non-negative limit, finite or
infinite, when x → +∞. Hence, by hypothesis, the same has to be true of f(x). If the limit
of f(x) is finite and non-zero, then obviously

∫ x
f2(y)dy diverges at large x, contradicting the

existence of a limit for
∫ x

f2(y)dy − f(x). Thus is remains only to exclude the possibility that
f(x) goes to +∞ when x → +∞, and we argue by contradiction. By hypothesis, there is a
constant C such that

∫ x
f2(y)dy − f(x) ≤ C for large enough x, and if limx→+∞ f(x) = +∞

then limx→+∞
∫ x

f2(y)dy = +∞ so that for x large enough 0 <
∫ x

f2(y)dy − C. Thus setting
g(x) :=

∫ x
f2(y)dy−C there is an x0 such that 0 ≤ g(x) ≤ f(x) for x ≥ x0. But g is differentiable

and g′(x) = f2(x) which is ≥ g(x)2 for x ≥ x0. Thus g′(x)
g(x)2

≥ 1 for x ≥ x0. Taking the integral

leads to 1
g(x0) −

1
g(x) ≥ x − x0 for x ≥ x0. But the left-hand side has a finite limit at large x

because g(x) is large at large x so this is again a contradiction. �

Corollary 4 Let e(z), f(z) are non-negative functions defined in a neighborhood of O+ and
such that

∫
z e(u)du diverges when z → 0+ and limz→0+

∫
z f

2(u)e(u)du−f(z) exists and is finite.
Then limz→0+ f(z) = 0 and

∫
0+ f

2(u)e(u)du is finite.

Proof: Setting x(z) =
∫
z e(u)du and changing variables from z to x, we are reduced to an

application of the lemma. �

We apply the corollary to Eq.(15). We set e(z) := e2εh1(z)+2h0(z) and f(z) := φ(z)e−2εh1(z)−2h0(z)

so that the equation becomes

f(z)− f(y) +

∫ z

y
f2(u)e(u)du =

2σ

λ2

∫ z

y
du

e−2εh1(u)−2h0(u)

c(u)2
.

By assumption vi),
∫
y e(u)du diverges when y → 0+, while by assumption vii) the inte-

gral on the right-hand side has a limit when y → 0+. Hence the corollary implies that
limy→0+ φ(y)e−2εh1(y)−2h0(y) = 0 and

∫ z
0 duφ(u)2e−2εh1(u)−2h0(u) is finite, as needed in the main

line of the argument.

6.2 An example

Let us consider the case b(x) = bx and c(x) = x2 which for b = 1 corresponds to the homodyne
detection of Rabi oscillation (see Section 2). The SDE is then:

dXt =
λ2

2
(ε− bXt) dt+ λX2

t dBt. (18)
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It is not scale invariant. Its invariant measure is

Pinv(x)dx =
1

Zε

dx

x4
e+b/2x2−ε/3x3 .

The normalization factor is Zε :=
∫∞

0
du
u4
e
b
2
u−2− ε

3
u−3

which, via a change variable, can be written
as

Zε =
1

ε3

∫ ∞
0

ds s2 e( bs
2

2
− s

3

3
)/ε2 .

In the limit ε→ 0 this integral is dominated by the saddle point at s = b. Hence

Zε 'ε→0

√
2πb3 ε−2 eb

3/6ε2 .

It is not a simple power law in ε because the SDE (18) is not scale invariant. The relation
defining the scaling limit, λ2/2Zε =: Ĵ fixed, reads

(λ2ε2) e−b
3/6ε2 = Ĵ

√
8πb3 fixed,

as ε → 0, λ → ∞. It is non-perturbative in ε and bears similarities with spontaneous mass
generation in asymptotically free field theory.

The change of variable X → Q needed to extract the reflected Brownian motion cannot be
made explicit (because of the absence of scale invariance of Eq.(18)) but it reads:

Qt := q(Xt) =

∫ Xt

0
du e−b/2u

2
.

Qt is a local martingale in absence of the ε term, otherwise dQt = λ2ε
2 e−b/2X

2
t dt+λX2

t e
−b/2X2

t dBt.
The effective time τ and the corresponding Brownian motion Wτ are defined by

dWτ = λX2
t e
−b/2X2

t dBt, dτ = λ2X4
t e
−b/X2

t dt.

We then apply the Skorokhod’s theorem and get that, in the scaling limit, Qτ is a reflected
Brownian motion,

Qτ = |W̃τ |,

and dQτ = dLτ + dWτ with Lτ the W̃τ local time at the origin.

Because of the lack of scale invariance we cannot use the ergodic theorem to restore the
relation between the effective local time and the original time. We instead make use of the
averaging trick (for which we do not have a formal proof):

dLτ =
λ2ε

2
〈e−b/2X2

t 〉inv dt.

Since the invariant measure is 1
Zε

dx
x4
e+b/2x2−ε/3x3 , we have 〈e−b/2X2

t 〉inv = 1
Zε

∫∞
0

dx
x4
e−ε/3x

3
= 1

εZε
.

Finally

dLτ =
λ2

2Zε
dt = Ĵ dt.

We thus recover, by construction, the expected time reconstruction relation.
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7 Small noise limit: Comparison

In this short Section, we would like to compare the large noise spiky behavior studied in this
article with the behavior of solutions in the well-known small noise limit, see e.g. the book [2].
First note that the existence of spikes in the strong noise limit is linked to the heavy tail of the
invariant measure which is linked to the presence of multiplicative noise with fixed points, i.e.
non-triviality of c(x).

To simplify matters we look at a SDE for a single variable of the form6:

dXt = −U ′(Xt)dt+ νdBt, (19)

where ν controls the strength of the noise. The small noise limit is for ν � 1. To fix the setup
we take U(x) to be a double well potential, infinite at x±∞, with two minima at x0 and x1 and
a local maximum at x∗. The convention is that x−∞ < x0 < x∗ < x1 < x+∞.

The two minima are metastable attractive points but the presence of noise induces Kramer’s
like transitions from one to the other. The aim of this Section is to compare these jumps and
the associated structure of aborted jumps in the small noise limit ν → 0 with the large noise
spiky structure discussed in the previous Sections.

Let Ty→z be the time to go from y to z > y for Eq.(19). As is well known, down-hill
processes, i.e. those for U(z) < U(y), are classical in the small noise limit. They are dominated
by the drift, so that dXt ' −U ′(Xt)dt, or dt ' −dXt/U

′(Xt), and Ty→z is asymptotically
deterministic with Ty→z '

∫ z
y

dx
U ′(x) . Up-hill processes, i.e. for U(z) > U(y), are highly non-

classical. They are induced by the noise and are non-perturbative in ν. They are typically
exponentially large: Ty→z ' e+2(∆y→zU)/ν2 , up to multiplicative sub-exponential prefactor, with
∆y→zU := U(z)− U(y).

More precisely, let T̄y→z be the mean first passage time. By the strong Markov property we
have T̄y→z =

∫ z
y dxφ1(x). One can prove (e.g by introducing the generating function E[e−σTy→z ]

and analyzing the differential equation it satisfies, see [2]) that near one of the minima, say x0,
we have asymptotically as ν → 0+:

φ1(x) =


−1/U ′(x) , x−∞ < x < xν < x0

ν−1
√

2π
U ′′(x0) e

+2(∆x0→xU)/ν2 , x0 < x̃ν < x < x∗

These two formula are valid except in a small interval [xν , x̃ν ] around the minimum x0. They
also have to be modified when x approaches the saddle maximum x∗. There the mean first
passage time is still exponentially large, say T̄x0→x∗ ' e+2(∆x0→x∗U)/ν2 , but the multiplicative
prefactor is different.

Since these first passage times diverge, we have to fix a point x• up-hill from x0 (x0 < x• <
x∗) and rescale time, in order to have a meaningful limit ν → 0. That is, we scale down time,
so that the mean time to go from x0 to x• is finite in the small ε limit, and define a new time
variable t′ via

t→ t′ := t/T̄x0→x•

6We could also have considered small noise SDEs with multiplicative noise but this would not change
the discussion much.
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Figure 4: A weak noise simulation

so that T̄ ′x0→x• = 1. We then have a dychotomic behavior in the limit ν → 0:

T̄ ′x0→x =

{
0 , if x0 < x < x•

∞ , if x• < x < x∗

As a consequence the picture of the graph trajectories is quite different from the strong noise
limit. In the small noise limit:
– The depth of the different wells has to be fine-tuned if all of them have to lead to commensurable
time scales so that the jumps between them can be observed on a single time scale. This is clearly
visible even in small but finite noise simulations.
– When looked at in a time scale making jump times finite, the graph of the trajectory looks
like a succession of filled rectangles joined by a corner. Rectangular shapes also show up in
small but finite noise simulations, but they are joined by finite vertical segments and perturbed
by rough bumps, see Fig.4. The reasons are twofold. First, what can be implemented as small
noise in numerical simulations is not so small. As an illustration, for the double well with
U(x) := (x2 − 1)2/4 (so the depth of the wells is 1/4) and ν = 1/5, the inter-jump time time is
of order 106 (see Fig.4). When ν = 1/6, the inter-jump time time is already of order 108, to be
compared to a down-hill time scale of order 100. Discretized with a time step of order 10−3, the
simulation takes roughly 1012 time steps, i.e. about one day on a laptop. But taking ν = 1/7
would take weeks. Second, keeping all the computed values, at ν = 1/6 say, would take about
102TB of data, so only a small fraction can be kept for the picture. As a consequence, accessible
simulations are still quite far from the zero noise limit and they are not faithful.

There is however one salient common point with the large noise limit studied in this article:
the time separating two successive passages at x0 and x1 is exponentially distributed in the
small noise limit, just like the time between two quantum jumps in the large noise limit. But in
the large noise limit, the same time scale governs also first passage times at intermediate points,
whereas in small noise equations, any x ∈ [x0 < x∗[ is visited an exponentially large number of
times times before there is a jump from x0 to x1, and in a time scale where the first passage
time from x0 to x1 is finite, the first passage time from x0 to any x ∈ [x0 < x∗[ is exponentially
small. At small but finite noise, the occupation times within a well in-between two jumps are to
an excellent approximation proportional to the stationary measure, accounting for the bumps
visible on Fig.4.
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8 Discussion

In this paper, we have argued, and proven in a number of important special cases, that gener-
ically solutions of stochastic differential equations with a fixed point subject to an additional
infinitesimal repulsive perturbation exhibit a universal behavior when time is rescaled appropri-
ately: by tuning the time scale with the infinitesimal repulsive perturbation to ensure a finite
first passage time, the trajectories converge in a precise sense to spiky trajectories that can
be reconstructed from an auxiliary time-homogeneous Poisson process. The rescaling of the
time scale is a large noise limit, but combined with a rescaling of the repulsive perturbation to
compensate for the quantum Zeno effect.

Our results are based on two main tools. The first is a time change and an application of
Skorokhod’s lemma. To reach our goal, we have proven an effective approximate version of this
lemma which is new as far as we are aware of and which is of independent interest. The second
is an analysis of first passage times, which shows a nice interplay between scale functions and
invariant measures.

We have also stressed the profound difference with standard weak noise limits (Kramer’s
theory in the physics language)

Our results raise a number of questions, and we list a few:
– What happens when more than one fixed point exists? We have convincing evidence (and
sometimes proofs, see e.g. [1]) that the main ideas remain valid, the role of the Poisson process
being played by a Cox process.
– What happens when several components are present? Numerical simulations and hand-waving
arguments suggest that a spiky behavior with universal features is still the rule, but the pre-
cise description of the associated Poisson (or Cox) processes is at the moment completely terra
incognita. We hope to return to these questions in the future.
– Are there other areas where these ideas can be applied? There are a number of examples
of natural phenomena exhibiting spiky behavior. One can for instance think of some geophys-
ical data, but one very striking case if intermittency in turbulence (see e.g. [3]). A precise
connexion would be an extremely exciting and important discovery. But at the moment it is
unclear whether the resemblance is deeper than just visual. In the case of quantum mechanics,
the time change that simplifies the dynamics is dictated by the need to use not the number of
measurements but the effect of measurements on the system to describe the evolution, leading
to the notion of effective time. And it turns out that the right way to quantify this effect is by
identifying this effective time with the quadratic variation. But this does not have to hold for
more general intermittent behaviors, for which one has to decide between different ways of quan-
tifying the notion of effective time before one can make comparisons with “simpler processes”.
This also raises questions about the multi-fractal spectrum of the spiky trajectories studied in
this article. We hope to return to these questions as well in the future.
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A An illustrative computation

We describe in this appendix how some of the results of Subsection 4.3 can be re-derived assuming
the spiky process is a Poisson point process. In particular the limiting distribution of the passage
time determine the intensity of this point process. The crucial point is that the generating
function for the passage times in Eq.(12) is the ratio ψ(y, σ)/ψ(z, σ) with ψ(x, σ) a polynomial
of degree one in σ.

Consider a Poisson point process in R×R+ with intensity dν = dt dν̂(x). To any sample of
this process we are going to associate a spiky trajectory t→ Xt (denoting by Xt these trajectories
is a slight abuse of notation which is justified by the fact that these trajectories have the same
distribution as the solutions Xt of the SDE (9) in the scaling limit). The construction is as
follows: Pick a sample of the point process and consider all its points above a small thresholds
η → 0+. There is a countable numbers of such points: let us enumerate them as (tj , xj), xj > η,
in increasing time order 0 < t1 < t2 < · · · . The associate trajectories Xt is then defined to be
zero on all open interval ]tj−1, tj [ (i.e. Xt = 0 for t ∈]tj−1, tj [) and to be equal to the point of
the process in between (i.e. Xtj = xj for all j).

That is: the trajectories are made of series of spikes emerging from the origin at random
times and whose tips are the points of the Poisson process. The distribution of these trajectories
is induced by that of the point process. Given such trajectories we can then defined the passage
time Ty→z as the time to go from y to z > y.

Proposition 6 The distribution for the passage time Ty→z for the spiky trajectories associated
to a Poisson point process of intensity dν = dt dν̂(x) is:

P
[
Ty→z ∈ [t, t+ dt]

]
=
ν̂([z,∞))

ν̂([y,∞))

(
1t=0 + ν̂([y, z))e−ν̂([z,∞))tdt

)
(20)

Proof: Let N[t0,t]×I , with I a Borel set in R+, be the number of points of the process in
[t0, t]× I. There are two contributions to the distribution of the transition times from y to z:
(i) either the spike going above y at initial time t = 0 is also going above z;
(ii) or the spike going above y at initial time t = 0 stops before reaching z and the first later
spike going above z is at time t, up to dt.
The probability of the first event is

lim
δ→0

P
[
N[0,δ]×[z,∞) = 1

∣∣N[0,δ]×[y,∞) = 1
]

=
ν̂([z,∞))

ν̂([y,∞))

The probability of the second event is

lim
δ→0

P
[
N[0,δ]×[y,z) = 1, N[0,δ]×[z,∞) = 0, N[t,t+dt]×[z,∞) = 1

∣∣N[0,δ]×[y,∞) = 1
]

=
ν̂([y, z)) ν̂([z,∞))

ν̂([y,∞))
e−ν̂([z,∞))t dt

Summing up these two contributions we get the probability that the transition time Ty→z be t
up to dt is given by Eq.(20). Remark that this distribution is correctly normalized, thanks to
ν̂([y,∞)) = ν̂([y, z)) + ν̂([z,∞)). �
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The corresponding generating function E[e−σTy→z ] is then computable by integration. We
get:

E[e−σTy→z ] =
ν̂([z,∞))

ν̂([y,∞))

ν̂([y,∞]) + σ

ν̂([z,∞)) + σ
=

1 + σ ν̂([y,∞))−1

1 + σ ν̂([z,∞))−1
,

or alternatively, ψ(x, σ) = 1 + σ ν̂([x,∞))−1 up to a multiplicative constant. Comparing with
Eq.(12) we read that the tips of the X-spikes form a point Poisson process with intensity

dν = Ĵdt
dq(x)

q(x)2
=

(b+ 1)

2Γ(b+ 1)
Jdt

dx

xb+2
,

as claimed.
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