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We analyze the coalescing model where a ‘primary’ colony grows and randomly emits secondary
colonies that spread and eventually coalesce with it. This model describes population proliferation
in theoretical ecology, tumor growth and is also of great interest for modeling the development of
cities. Assuming the primary colony to be always spherical of radius r(t) and the emission rate
proportional to r(t)θ where θ > 0, we derive the mean-field equations governing the dynamics of the
primary colony, calculate the scaling exponents versus θ and compare our results with numerical
simulations. We then critically test the validity of the circular approximation and show that it is
sound for a constant emission rate (θ = 0). However, when the emission rate is proportional to the
perimeter, the circular approximation breaks down and the roughness of the primary colony can not
be discarded, thus modifying the scaling exponents.
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Dispersal models have been used extensively to inves-
tigate the proliferation of animal colonies in theoretical
ecology [1, 2] and as a simplified model for the growth
of cancerous tumors [3, 4]. Such models are also good
candidates for describing the growth of the built-area of
cities [5] for which we now have empirical data over long
periods of time [6]. The main feature of dispersal models
is the concomitant existence of two growth mechanisms.
The first process is the growth of the main – so-called
primary – colony, which occurs via a reaction-diffusion
process (as described by a FKK-like equation [7, 8]) and
leads to a constant growth with velocity c, depending on
the details of the system. The second ingredient is ran-
dom dispersal from the primary colony, which represents
the emergence of secondary settlements in the framework
of animal ecology, the development of metastatic tumors,
or, in the urban sprawl case, the creation of small towns
in the periphery of large cities. In the real world, dis-
persion follows privileged directions under the effect of
external forces such as blood vessels, winds and rivers,
or transportation networks for cities but in a first ap-
proach, these anisotropic effects will be neglected. We
will assume that secondary colonies also grow at the ve-
locity c and will eventually coalesce with the primary
colony, leading to a larger primary colony whose time-
dependent size will depend on the emission rate.

A classical way to study dispersal is through the dis-
persal kernel representing the probability distribution of
dispersal distances and various forms for these kernels
have been discussed [9]. A different approach has been
introduced by Kawasaki and Shigesada in [1, 8] who pro-
posed the use of simple models to tackle this challenging
problem. We shall follow this point of view and study the
coalescing colony model where a primary colony grows at
radial velocity c and emits a secondary colony at a rate

λ and at a distance ` from its border (long-range dis-
persal). The variable ` can be drawn from a probability
distribution P (`) but we consider here that the secondary
colonies are emitted at a constant distance `0 from the
boundary of the primary colony (i.e. P (`) = δ(` − `0)).
Besides, we assume that each secondary colony also grows
with the same radial speed c and does not emit tertiary
colonies. The dependence of the emission rate on the
colony size is taken into account by the functional form

λ(r) = λ0r
θ , (1)

r being the radius of the primary colony and θ ≥ 0. When
θ = 0 the growth rate is independent from the primary
colony size, for θ = 1 it is proportional to its perimeter
and for θ = 2 to its area.

Coalescence happens when a secondary colony of ra-
dius r2 intersects with the primary one, of radius r, and
becomes part of the latter. We shall consider two vari-
ants of the process. In the first version of the model,
denoted by the M0 model, we assume that the primary
colony remains circular after coalescence (see Fig. 1), and
has a new radius r′ given by

r′
2

= r2 + r22 . (2)

This interesting model was discussed in [8] but a full
quantitative understanding of the radius r(t) is still lack-
ing. Here, we present a microscopic derivation of the
dynamics of the M0 model, in the mean-field approxi-
mation, and study its solutions as a function of the pa-
rameter θ. In particular, we derive a simplified equation
that preserves the physics of the system and allows to
extract the scaling behavior for the main quantities of
interest. Our predictions are then tested with numerical
simulations.
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In the second part of this work, we discuss the impor-
tance of the circular approximation and its impact on the
scaling behaviors. We introduce a modified version of the
process, referred to as the M1 model, in which after co-
alescence the secondary colony merges into the primary
colony and the shape of the primary colony does not re-
main circular. This important difference between models
M0 and M1 is illustrated in the Fig. 1.

FIG. 1: Example of coalescence in models M0 and M1.
In M0, the primary colony (in red) remains circular and
the area of the secondary colony is evenly distributed on

the rim; in M1, the shapes are simply ‘concatenated’.

We now derive the main equations for the model M0.
We recall that λ(ti)dti represents the probability to emit
a colony in the interval [ti, ti + dti] and we denote by ti

′

the time of coalescence of a colony emitted at time ti.
The condition of coalescence is given by

r(ti
′) + cti

′ = `0 + r(ti) + cti , (3)

which defines – formally – the function f such that

ti
′ = f(ti) . (4)

The mean-field approach that we propose here consists
in neglecting the fluctuations of this function f(t) and
to consider that it is the same for all secondary colonies.
The evolution of the area of the primary colony is thus
given by

dA

dt
= 2πrc+

∫
dtiλ(ti)δ(t− f(ti))πc

2(t− ti)2 , (5)

where the first term of the rhs is due to short-range dis-
persion and the second term represents the coalescence
with secondary colonies. This leads to

dA

dt
= 2πrc+ λ(f−1(t)) |

[
f−1(t)

]′
πc2(t− f−1(t))2 | .

(6)
We call x(t) the radius of the colony absorbed at time
t, given by x(t) = c(t − f−1(t)). Injecting this quantity
in Eqs. (3) and (6), we obtain the Kawasaki-Shigesada

system of equations [8]
dr

dt
= c+

λ0

[
r
(
t− x(t)

c

)]θ
2πr(t)

(
1− ẋ(t)

c

)
πx(t)2 ,

`0 = r(t)− r
(
t− x(t)

c

)
+ x(t) .

(7)

(8)

In the long time regime, t � x(t)/c, the system of
Eq. (7) and Eq. (8) takes the simplified form

dr

dt
= c+

λ0r
θ−1

2
x(t)2 ,

x(t) =
`0

1 + ṙ
c

.

(9)

(10)

These effective equations allow us to investigate the be-
havior of the model without altering the physics of the
problem as will be shown by comparing the solutions to
numerical simulations.

We first solve the effective system for θ = 0 (ie. λ =
λ0). Defining x∗ as the average radius of a secondary
colony just before its coalescence and assuming that it is
constant in time we obtain

dr

dt
= c+

λ0
2r
x∗2 , (11)

whose solution is

r(t) ∼ a+ ct+
λ0x

∗2

2c
log

(
2cr

λ0x∗
2 + 1

)
. (12)

When t→∞, the dominant contribution is

r(t) ∼ a+ ct+
C

c
log

(
c2t

C
+ 1

)
, (13)

with x∗ ' `0/2 and C =
λl20
8 .

We perform numerical simulations with a constant
λ0 = 0.5 and c = 1, for different values of the emis-
sion distance `0. It is useful to introduce η = 2c

l0λ0
, which

represents the ratio between the emission time τe = 1/λ0
and the coalescence time τc = `0/(2c). In Fig. 2 Top-
Left, we plot the radius of the primary colony r(t) versus
t. We then perform on these data a two parameters fit
with a function of the form

g(t) = a+
Csimul
c

log

(
c2t

Csimul
+ 1

)
, (14)

where the fitting parameters are a and Csimul. In Fig. 2
Top-Right we test the results of the fit, comparing the es-
timated value Csimul obtained, with its theoretical value

C =
λl20
8 = c2

2λ0η2
. We observe an excellent agreement,

showing the validity of our theoretical calculations.
For θ > 1, we further simplify the system Eqs. (26)

and (27) by assuming ṙ � c and obtain the single effec-
tive equation

Ar(t)θ−1 ' ˙r(t)
2
(

˙r(t)− c
)

(15)
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FIG. 2: (Top) Case θ = 0: (Top-Left) Plot of r(t) versus
t for different values of the parameter η, averaged over

10 simulations. (Top-Right) Plot of Csimul versus η
extracted from the empirical fit. The theoretical
prediction is shown in red. (Bottom) Case θ = 1:

(Bottom-Left) r(t) versus t for different values of the
parameter η, obtained averaging over 100 simulations.
(Bottom-Right) c′ − c versus η as obtained from the

empirical fit. In red, the theoretical prediction
(Eq. (18)).

with A = λ0

2 c
2`20. This nonlinear differential equation

captures the physics of the coalescence and allows us to
extract the large-time behavior of the main quantities of
interest in this problem. In particular, assuming scaling
laws at large times of the form r(t) ∼ atβ and x(t) ∼
dt−α, Eq. 15 yields

β =
3

4− θ
, α = β − 1 . (16)

Note that for θ → 4, we have β → ∞, the radius grows
faster than a power law and explodes exponentially. For
θ = 1, we obtain α = 0, β = 1 which means that we
have x(t) = x∗ independent of t and a linear behavior of
r(t). From Eq. (7) we deduce that the radial velocity c′

is given by

c′ = c+
λ0
2
x∗2 (17)

and the value of x∗ can be obtained by solving Eq. (8)
that can be written as

λ0
2c
x∗3 + 2x∗ − `0 = 0 . (18)

This result, for the specific case of θ = 1, was first ob-
tained by Shigesada and Kawasaki [1]. We test this result

numerically (with λ0 = 0.3, c = 1, and for different val-
ues of the emission distance `0) and in Fig. 2 Bottom-Left
we plot the radius of the primary colony r(t) versus t. A
linear fit allows us to obtain an estimate for the radial
velocity c′ that we compare in Fig. 2 Bottom-Right with
the theoretical prediction of Eq. (18). Here also, an ex-
cellent agreement is observed.

For θ > 1, the theoretical analysis predicts that
the leading order characterized by a scaling behavior
given by Eqs. (16) can be observed in a range of time
tmin � t� tmax which depend on θ and on the param-
eter η2λ/2 (see the supplementary material for details
on this point). We performed numerical simulations for
θ = [1.1, 1.2, 1.3, 1.4, 1.6, 2.0], with the parameter c = 1
and λ = 0.001 (and additional simulations with the pa-
rameter λ = 0.005 for θ = 1.2). In Fig. 3, we plot the
values of the exponents β obtained by power law fits and
we compare it with the theoretical prediction (Eq. (16))
in red. We observe a good agreement with some devi-
ations for higher values of θ which is probably due the
small range [tmin, tmax] in this case.

FIG. 3: Plot of the exponent β as a function of θ,
obtained from a power law fit on r(t) versus t for the

values of η2λ/2 maximizing the range [tmin, tmax] in our
simulation domain.

The Shigesada-Kawasaki coalescing model is based on
the circular approximation. The validity of this hypothe-
sis will be investigated by simulating the M1 model where
we respect the geometry of the coalescence process. We
first consider a constant emission rate λ(r) = λ0 and as-
sume that the area A and the perimeter P obey to a
power law scaling of the form

A(t) ∼ tµ P (t) ∼ tν . (19)

Performing a power-law fit on the empirical results, we
obtain µ ≈ 2 and ν ≈ 1 (see Supplementary Material
for details and plots). These results can be compared
with those obtained in the model M0. In Fig. 4, we
plot A(t)/(πc2t2)− 1 and P (t)/(2πct)− 1 versus t: these
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quantities both go to zero for large values of t, suggest-
ing that at large times, the dominant behavior of the M0

and the M1 models are the same with A(t) ∼ πc2t2 and
P (t) ∼ 2πct. Hence, for θ = 0 and large value of t, the
circular approximation appears to be valid. If we assume

FIG. 4: (Left) A(t)/(πc2t2)− 1 versus time t. (Right)
P (t)/(2πct)− 1 versus t. These results are obtained for

different values of ` and are averaged over 100
numerical simulations. For each value of `, we report in
the inset the values of the exponents γ and γ′ obtained

by fitting these plots.

that the sub-dominant corrections are described by the
scaling forms

A(t)

πc2t2
− 1 ∼ t−γ P (t)

2πct
− 1 ∼ t−γ

′
(20)

the numerical results suggest that γ ∼ 0.5 and γ′ ∼ 0.5
showing that the corrections to the dominant term are
decaying as a power law in model M1, in contrast with
the logarithmic correction observed in the M0 model (see
Supplementary Material).

We now focus on the simulation results obtained for
the M1 model characterized by an emission rate λ given
by

λ(t) = λ0P (t) , (21)

where P (t) is the total perimeter of the primary colony at
time t, which corresponds to the case θ = 1 in the model
M0. The simulations results for the area A(t) and the
perimeter P (t) of the primary colony (see Supp. Mat.)

(a) (b)

(c)

FIG. 5: (a) A(t)/(πc2t2)− 1 versus t for different values
of `. (b) P (t)/(2πct)− 1 versus t for different values of
`. (c) Plot of f1(`) and f2(`) versus ` for t = 200. These
results are obtained by averaging over 100 simulations.

suggest that we still have µ ≈ 2 and ν ≈ 1 as in the
M0 model. We can go further and investigate the pref-
actor. We recall that for the M0 model with θ = 1, the
radius of the primary colony increases with an effective
radial velocity c′ > c. In Fig. 5 we plot the quantities
A(t)/πc′2t2 − 1 and P (t)/2πc′t − 1; if the prefactor is
the same of the M0 model we should find (as we did for
θ = 0) that these quantities tend to zero for large values
of t. In Fig. 5-(a)-(b), we see that these two quantities
tend to a constant that depends on `. We can therefore
write

A(t) = πc′2(1 + f1(`))t2 P (t) = 2πc′(1 + f2(`))t .
(22)

and we observe numerically that f1 ≡ f2 (see Fig. 5-
(c)), demonstrating that the circular approximation is
not appropriate for θ = 1. In order to shed some light on

this behavior, we plot the quantities A(t)

π〈r〉2−1 and P (t)
2π〈r〉−1

where 〈r〉 is the average radius of the primary colony.
The results shown in Fig. 6 suggest that the perimeter
cannot be described by a circle, signaling a breakdown
of the circular approximation (even if from the point of
view of the area the system behaves approximately as a
circle). To visualize the shape of the system, we consider
a simplified picture where the primary colony is described
as a circle of radius 〈r〉 to which n semicircles of average
radius δ are attached (see Fig. 7 for an illustration). The

maximum number of semicircles is N = π〈r〉
δ , and we
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FIG. 6: (Left) π〈r〉2
A(t) − 1 versus t for different values of `.

(Right) P (t)
2π〈r〉 − 1 for different values of `. The results

are obtained averaging over 100 simulations.

FIG. 7: A simplified representation of the primary
colony in the model M1 with θ = 1 (here we have

n = 7).

have for this toy model

P

2π〈r〉
− 1 =

n

N

(π
2
− 1
)

(23)

leading to a value in the range [0, π2 − 1], consistent with
the result of Fig. 6 (right). This figure also suggests that
n increases with the dispersion distance `, while for small
value of ` the secondary colonies are quickly absorbed.

The circularity of the primary colony can be probed
further with the observable

S(t) = P (t)/(2
√
πA(t))− 1 . (24)

For a perfect circle S(t) = 0, whereas S(t) > 0 esti-
mates the ‘rugosity’ of the system. The results shown in
Fig. 8(top) indicate that for θ = 0, S(t) is larger than
zero but tends to zero for large values of t as expected
from the previous discussion and the model M0 seems to
be a sound approximation when θ = 0. But, for θ = 1,
this is not true anymore: we observe in Fig. 8(bottom)
that S(t) > 1 and that S(t) tends to a constant for large
t, consistently with the previous results.

We developed the general framework allowing the the-
oretical discussion of the growth and coalescence process.

FIG. 8: (Left) Example of shapes obtained for the
primary colony in the M1 model. (Top-left) Case θ = 0,
` = 10. (Top-right) Case θ = 1, ` = 2. (right) S(t)

versus t. On the top we have the behavior for θ = 0
averaged over 10 simulations and on the bottom θ = 1

averaged over 100 simulations.

We discussed the quantitative predictions for the simpler
model in which the emission rate depend on the expo-
nent θ, while the distance ` is constant and the process
is isotropic. However, it is possible to integrate other
specific features such as anisotropy or random emission
distances and to investigate how these latter modify the
actual results. Also, the circular approximation that al-
lows for this analytical approach seems to be justified in
cases where the emission rate grows not too quickly with
the size of the primary colony. Otherwise, it is necessary
to take the geometry of the colony into account, and mak-
ing the theoretical extremely challenging. This model is
very general and versatile, the results obtained are po-
tentially useful to gain insights into the understanding
of population proliferation, tumor growth and is also of
great interest for modeling the dynamics of complex sys-
tems such as the sprawl of cities.
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Supplementary material

The model M0: further investigations

We discuss for θ > 1 the range of validity of the power-
law behavior r(t) ∼ tβ , exploring the second order be-
havior.
Assuming the following form for the evolution of the ra-
dius of the primary colony with time,

r(t) ∼ atβ + btβ
′
, (25)

we consider the simplified Shigesada-Kawasaki system of
equations given by

dr

dt
= c+

λ0r
θ−1

2
x(t)2 ,

x(t) =
`0

1 + ṙ
c

;

(26)

(27)

with A = λ
2 c

2`20. After some calculations, a development
at the first and second order of Eq. (26) bring to the
following results

β′ = 1 , (28)

a =

(
2β3

`20λ0c
2

) 1
θ−4

, (29)

and

b =
4− θ

15− 6θ
. (30)

Being all the parameters determined we can deduce the
value of the time tmin = (b/a)1/(β−1) starting from which
the second order term begins to be smaller than the first
order one. Hence, for t � tmin we can write r(t) ∼ atβ ,

neglecting the second order term. After some calculation
one gets

tmin = f(θ)

(
2c2−θ

λ0`0
2

) 1
θ−1

(31)

with

f(θ) =

(
4− θ

15− 6θ

) 4−θ
θ−1
(

27

(4− θ)3

) 1
θ−1

. (32)

We remark moreover that the Shigesada-Kawasaki equa-
tions are valid only if the coalescence of a colony does not
cause the coalescence of another secondary colony. This
means that the increasing in the radius at time t, δr(t)
has to be smaller than the distance between two succes-
sively emitted secondary colonies. The following relation
has to be verified√

r2 + x∗2 − r < 2c

λ0rθ
. (33)

From Eq. (27) one can write

x(t) ' c`0
˙r(t)

, (34)

this implies the following relation

x(t) ∼ dt−α (35)

with α = β − 1 and d = c`0/(βa). After some calcula-
tions one can show that the Shigesada-Kawasaki system
of equations is valid only for t < tmax, with

tmax = g(θ)

(
2c2−θ

λ0`0
2

) 1
θ−1

(36)

and

g(θ) = 2
4−θ
θ−1 β . (37)

To summarize, we are able to observe the power-law
behavior given by r(t) ∼ tβ in the range of time for which
tmin � t < tmax. The size of the range of validity de-
pends on the ratio between g(θ) and f(θ). This ratio
decreases when θ increases as shown in Fig. 9.

In the table I we report for different θ, the values of
the variable η2λ0/2 for which we performed numerical
simulations and fit, and the corresponding values of tmin,
tmax.

Avalanche effect We have just discussed that it exists
a time tmax over which the Shigesada-Kawasaki equa-
tions are not valid anymore. Indeed, for t > tmax
avalanche effects arise. This is due to the high emis-
sion rate and means that not only we can have multiple
coalescences, (that is more colonies absorbed in a single
time step), but the increase in the radius produced by
these coalescences can bring to other coalescences before
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FIG. 9: g(θ)/f(θ) versus θ.

θ = 1.1 θ = 1.2 θ = 1.3 θ = 1.4 θ = 1.6 θ = 2.0

η2λ0
2

0.5 0.8 2.2 2.2 5 20

tmin 3 × 10−16 5 × 10−7 6 × 10−3 5 × 10−2 1.74 30

tmax 1.5 × 106 5.7 × 103 8.1 × 103 7.7 × 102 2.9 × 102 1.2 × 102

TABLE I: In the table we report for the different θ, the
values of the variable η2λ0/2 for which we performed

the fit, and the corresponding values of tc, tmax.

moving to the next time step. Every time this happens
we say that we observe an avalanche. In this situation
the Shigesada-Kawasaki equations do not held and an-
other treatment of the problem is necessary. This goes
beyond the aim of this paper, however we performed nu-
merical simulations to highlight this phenomenon, with
the choice of θ = 1.4. At each time step dt = 0.001 we
count the number of avalanches na and the number of
total coalescences nc happened during dt as consequence
of the different avalanches.
The plots are shown in Fig. 10(a-b) where we observe
that at a given time around t ≈ 2000, the avalanche phe-
nomenon change behavior acquiring more relevance, and
bringing to a change in the slope characterizing the be-
havior of r(t) with time (see Fig. 10-c).

The M1 model: further empirical results

Case θ = 0

We present here further simulation results obtained for
the M1 model with a constant emission rate λ(r) = λ0.
We assume that the area A and the perimeter P of the

FIG. 10: (Top) na vs. t (Middle) nc vs. t. (Bottom)
r(t) vs. t. The results are obtained averaging over 100

simulations. For θ = 1.4, ` = 50, c = 1, λ = 0.001.

primary colony obey to a power-law scaling of the form

A(t) ∼ tµ P (t) ∼ tν . (38)
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FIG. 11: (Top) A(t) vs. t. (Bottom) P (t) vs. t. For
different values of ` we plot in a log-log scale, the area
and the perimeter of the primary colony versus time

averaged over 10 simulations. We perform a power-law
fit and the values of the exponents obtained are shown

in the insets.

In Fig. 11 we perform a power-law fit on the empirical
results for two different time regimes. This allows us
to examine eventual finite-size effects: we choose t > tfc
and then t > 100tfc, with tfc being the time at which the
first coalescence happens. The values of the exponents µ

and ν are shown in the insets of Fig. 11, with the higher
value corresponding to the choice t > 100tfc.

We assume that the sub-dominant corrections are de-
scribed by the scaling forms

A(t)

πc2t2
− 1 ∼ t−γ P (t)

2πct
− 1 ∼ t−γ

′
. (39)

In the Table II we report for the different choice of `,
the values of t∗ and of the exponents γ and γ′. For each
value of ` the smaller value of the exponent correspond
to the fit for t > t∗ and the larger value to the fit range
t > 10t∗.

` = 0.10 ` = 1.0 ` = 5.0 ` = 10.0

γ 0.53 − 0.53 0.55 − 0.57 0.54 − 0.56 0.52 − 0.54

γ′ 0.54 − 0.55 0.56 − 0.58 0.55 − 0.58 0.53 − 0.55

t∗ 10 30 70 100

TABLE II: In the table we report for the different
choice of `, the values of t∗ and of the exponents γ and
γ′. For each value of ` the smaller value of the exponent
correspond to the fit for t > t∗ and the larger value to

the fit range t > 10t∗.

Case θ = 1

The simulations results for the area A(t) and the
perimeter P (t) of the primary colony, obtained for dif-
ferent values of ` are shown in Fig. 12. We assume the
power-law behaviors given by Eq. (38) and we perform
a fit on the empirical data. The values of the exponents
obtained (for the time range t > tfc and t > 20tfc, with
tfc the time at which the first coalescence happens) are
shown in the insets of Fig. 12. The higher values cor-
respond to the choice t > 20tfc and this suggests that,
taking possible finite-size effects into account, one can
write

µ ≈ 2 ν ≈ 1 . (40)
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FIG. 12: (Top) A(t) vs. t. (Bottom) P (t) vs. t. For
different values of ` we plot in a log-log scale, the area
and the perimeter of the primary colony versus time

averaged over 100 simulations. We perform a power-law
fit and the values of the exponents obtained are shown

in the insets.
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