N

N
N

HAL

open science

From global scaling to the dynamics of individual cities

Jules Depersin, Marc Barthelemy

» To cite this version:

Jules Depersin, Marc Barthelemy. From global scaling to the dynamics of individual cities. Proceed-
ings of the National Academy of Sciences of the United States of America, 2018, 115 (10), pp.2317-2322.

10.1073/pnas.171869011 . cea-01626240

HAL Id: cea-01626240
https://cea.hal.science/cea-01626240
Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://cea.hal.science/cea-01626240
https://hal.archives-ouvertes.fr

arXiv:1710.09559v1 [physics.soc-ph] 26 Oct 2017

From global scaling to the dynamics of individual cities
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Scaling has been proposed as a powerful tool to analyze the properties of complex systems, and
in particular for cities where it describes how various properties change with population. The
empirical study of scaling on a wide range of urban datasets displays apparent nonlinear behaviors
whose statistical validity and meaning were recently the focus of many debates. We discuss here
another aspect which is the implication of such scaling forms on individual cities and how they
can be used for predicting the behavior of a city when its population changes. We illustrate this
discussion on the case of delay due to traffic congestion with a dataset for 101 US cities in the
range 1982-2014. We show that the scaling form obtained by agglomerating all the available data
for different cities and for different years displays indeed a nonlinear behavior, but which appears
to be unrelated to the dynamics of individual cities when their population grow. In other words,
the congestion induced delay in a given city does not depend on its population only, but also on
its previous history. This strong path-dependency prohibits the existence of a simple scaling form
valid for all cities and shows that we cannot always agglomerate the data for many different systems.
More generally, these results also challenge the use of transversal data for understanding longitudinal
series for cities.

Keywords: Science of cities | Scaling | Path dependency

The recent availability of data for cities opens the fas-
cinating possibility of a science of cities [, 2] and has led
numerous scientists to search for general laws [3| [4] ruling
the evolution of various socio-economical and structural
indicators such as patent production, personal income or
electric cable total length, etc. In [3], it was suggested
that assuming the population P to be the most impor-
tant determinant for cities, we could study the evolution
of many different features when P is increasing. In [4],
many socio-economic factors were studied versus popula-
tion indicating the existence of simple scaling laws under
the form of power laws. For each indicator Y, Betten-
court et al. [4] found a power law of the form Y ~ P
where the exponent 3 depends on the quantity consid-
ered. Some quantities evolve superlinearly with the popu-
lation (5 > 1), for instance new patents (5 = 1.27), GDP
(1.13 < 8 < 1.26) or serious crime (8 = 1.16), while some
other behave sublinearly (5 < 1) as gasoline stations or
sales. Quantities that are independent from the size of
the city — typically human-related quantities such as wa-
ter consumption — scale with an exponent 8 = 1. The
usual explanation for these effects is the impact of in-
teractions (scaling as P?) for superlinear quantities, and
economies of scale for sublinear quantities. This publica-
tion [4] was followed by a wealth of other measures such
as the abundance of business categories [5], the number
of sexually transmitted infection [6], road networks [7],
or carbon dioxide emissions [§HI2].

Scaling in urban systems has however been criticized
in some recent papers [10, 13H16]. A first re-analysis of

the data for the GDP and income [I3] showed that the
power law could not be distinguished from other func-
tional forms, or that the linear fit is better [I4], and in
[15] the authors led a rigorous investigation on the statis-
tical quality of scalings for various quantities and found
that in many superlinear cases, the linear assumption
could in fact not be rejected. They also showed that
the fitting results depend crucially on the assumptions
about noise. From another point of view, the authors
in [16] showed that, for some socioeconomic indicators,
those scaling are not universal and could depend on de-
tails of urban systems. More precisely, they showed on
data of 5,000 french cities that two different definitions
of the cities (Unité urbaine (Urban Units) and Aire ur-
baine (Metropolitan areas)) lead to different values of the
scaling exponent for a given quantity, a result confirmed
on transport-emitted COy in [I0]. Not only the value of
the exponent can change, but in some case, for different
definitions of the city, the scaling regime changes: for in-
stance, the number of jobs in the manufacturing sector
grows superlinearly with the population of Urban Units,
but sublinearly if one considers Metropolitan Areas [16].
We can expect the results to change quantitatively, but
here we have changes from the superlinear to the sub-
linear regime, casting some doubts about this nonlinear
scaling and its universality.

In this paper we raise another problem that is the rel-
evance of such a scaling for the individual dynamics of
cities. At a more theoretical level, we question here the
scaling assumption where a quantity Y (usually exten-



sive) is assumed to be determined by the population only
Y = F(P) (where F is in general an unknown function).
Even if the population is an important determinant for
cities we cannot exclude time effect and path-dependency
which would then imply that the quantity Y depends
also on time Y = F(P,t) and possibly on all Y(¢') for
t’ < t. In other terms, the path-dependency means that
it doesn’t make sense in general to compare two cities
having the same population but at very different dates:
both central Paris and Phoenix (AZ) had a population
of about 1 million inhabitants, the former in 1840 and
the latter in 1990, and it is very likely that the dynam-
ics — for most of the relevant quantities — from 1840 in
Paris will be very different from the one starting in 1990
in Phoenix, implying that the usual scaling form does
not apply in general. In this paper, we investigate this
question and test if a scaling exponent computed by ag-
gregating data for different cities (usually at a same date)
is relevant for predicting what will happen at the level of
individual cities as their population grow. We illustrate
this discussion on the case of congestion-induced delays
but our results could have far-reaching consequences on
many other scaling results for cities.

Aggregating all cities: Global scaling

We focus on the particular case of traffic congestion
and its impact on time delays. Previous studies have
been made in order to empirically test and theoretically
explain how traffic congestion scale with the population.
In [17, 18] for instance, the authors propose a theory of
urban growth which accounts for some of the observed
scalings. The theoretical predictions are tested against
several data sets, collected by OCDE or by a GPS device
company (TomTom) [I7]. Here, we study the dataset
(freely available at [19]) published by the Texas A&M
Transportation Institute (TTI) in the Urban Mobility
Report (UMR), obtained for 101 cities in the United
States over 33 years (from 1982 to 2014). This database
has been investigated in 2017 by [20] and in this study,
the authors agglomerate all the data corresponding to
different cities and performed the usual power law fit of
the form

o1 = aP’ (1)

where é7; is the annual congestion induced delay corre-
sponding to the city 7. In this study we take for P; (also
denoted by P in the following) the number of car com-
muters for the city ¢ rather than the population, because
this is the relevant parameter in many models that deal
with congestion in cities (see [18]). If we take the popula-
tion instead of the number of car commuters, our results
are qualitatively the same and our conclusions remain un-
changed, even if all the exponent values change slightly
(a fit for all cities and all years shows that the number

of car commuters is approximately a constant fraction of
order 35% of the population). In [20], they used the least
square method to estimate 8 and for the year 2014 (the
last available year in the urban mobility report), we find
with this method 5 = 1.23 4+ 0.03. We plot the data and
the corresponding fit on Fig.
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FIG. 1: Plot of the annual delay d7 versus the number
of drivers P for all cities in 2014 (data from TTT’s
Urban Mobility Information website, see [19]). The

straight line is a power law fit in this loglog
representation and gives an exponent value 8 ~ 1.23
(and R? = 0.93).

The quality of a fit has in general to be carefully
checked with the help of statistical methods [I5], and
computing a good estimation of this exponent values re-
lies on several assumptions: data points are independent,
the noise is multiplicative and has a variance independant
of P; (homoscedasticity). It should also be checked that
the nonlinear fit that has an additional parameter com-
pared to the linear one, is much better than what would
be expected by pure chance. In this case, the trend seems
however to fit the data in a reasonably good way with a
large R? = 0.93, even if we have only two decades here.
The value of 8 larger than 1 indicates a superlinear be-
havior of the traffic congestion, a fact in agreement with
recent empirical [20] and theoretical approaches [I8] [21].

We can repeat this fit for each year separately, from
1982 to 2014. Formally, we test for each time ¢ the re-
lationship log(d7;(t)) = log(a) + B(t) x log(P;(t)) + noise
where (3(t) is the scaling exponent to determine. We
show the values of B(t) versus t in Fig. 2| and we observe
that B(t) is not constant through time and displays non-
negligible fluctuations of order 20%. However all these
values are larger than 1 indicating a consistent superlin-
ear behavior. In [20] a least square method has been used
on all the points available: they mix all the 33 years avail-
able for each of the 101 cities and get 33 x 101 = 3333
points leading to a scaling exponent 8 ~ 1.36 + 0.01,
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FIG. 2: Scaling exponent §(t) for the delay computed
for each year separately, from 1982 to 2014. All these
values are consistent with a superlinear behavior found

in [20].

consistent again with a superlinear relation. ,as found in
[20]. For this dataset, we plot the scatterplot and the cor-
responding nonlinear fit in Fig. [3|top) (note that we plot
here the delay per capita). We observe some variabil-
ity but the global increasing trend seems to be correct.
This way of proceeding with data is common: one mixes
data for different cities and for the available years, and
then performs a regression over the whole set. The scal-
ing that is obtained — and that we qualify as ‘global’—
is then used for discussing theoretical approaches. For
instance, in [21], this approach is used for computing
some scaling exponents (for quantities such as land area,
wages, etc.) and are compared with the exponent ex-
pected from theoretical calculations. In [22], empirical
regularities are found by applying this methodology to
different indicators, suggesting the existence of a univer-
sal socioeconomic dynamics. Beyond statistical problems
related to fitting procedures, the exact meaning and the
relevance of this global scaling for individual cities is how-
ever not clear. In other words, when we know that a cer-
tain quantity Y scales for all cities as Y ~ P?, what can
we say about the evolution of a single city ? In the fol-
lowing we address this question on the case of congestion
delay and by studying in details the dynamics of every
individual city and compare its behavior with the global
scaling described above.

The dynamics of individual cities

In Fig. [B[bottom), we show the same plot as in
Fig.[3(top) but where we now distinguish cities (one color
corresponds to one city). This allows us to compare the
evolution of the delay due to congestion in each city when
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FIG. 3: (Top) Scatterplot of the annual delay per capita
07 /P versus P for all the 101 cities and for all years
(1982-2014). The straight line is the power law fit with
value 8 =~ 1.36 consistent with a superlinear behavior.
(Bottom) Same scatterplot but where the points are
colored according to the city they describe (one color
per city). As we discuss in the text there is no obvious
relation between the global power law scaling and the
individual behavior of cities.

its population grows. The first striking observation is
that for all cities in our dataset, the evolution of the con-
gestion delay does not behave as predicted by the global
trend. They have their own trend which depends on their
particular history. In this respect, it is natural to ask
what is the individual city dynamics and what does it
have in common with the global scaling. In what follows
we thus focus on this individual behavior and discuss its
relation with the global power law exponent.



Absence of a single scaling

With this dataset, we can monitor the evolution of each
city when its population grows. The first thing that we
observe on the examples in Fig. [4]top) is that the annual
delay is not a simple function of P only. The value of
the number of drivers (or the population) is not enough
to determine the delay. We also note in this figure that
the slopes are different (a power law fit gives 5 & 3.20 for
Bakersfield and 8 ~ 1.45 for Sarasota) showing that even
when a power law exists it is not with the same exponent
(see below for a further analysis of this point). In order to
test further the existence of a scaling of the form 67 ~ P#
we plot in Fig. [ Bottom) for all cities 67(t)/57(t) versus
P(t)/P(t1) where t; is the first available time. Even if
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FIG. 4: (Top) Loglog plot of the annual delay per
capita 07/P versus P for two different cities:
Bakersfield (CA) and Sarasota (FL). For the same
range of P values, the delay is different, and the slopes
are different as well. (Bottom). Plot of the rescaled
delay 07(t)/d7(t1) versus P(t)/P(t1). The curves
correspond to different cities and the fact that they do
not collapse indicates the absence of a unique scaling
determined by a single exponent.

the prefactor changes from a city to another this rescaling
allows to test the existence of a unique power law scaling.
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As we can see in this figure [f{bottom), the curves for
different cities do not collapse signalling the absence of
a scaling form governed by a single exponent. In the
following we will focus on the different behaviors observed
for this set of cities.

Different categories of cities

We analyze the behavior of each of the 101 cities in
the dataset and we observe a variety of behaviors. More
precisely, there are two main categories characterized by
different time evolutions:

e The delay increases with P and in most cases can be
fitted by a power (see Fig. top)) and we refer to
this set as ‘type-1’ cities and which represent over
30% of our cases. We note here that for the dataset
studied here, the time range (from 1982 to 2014)
does not allow to have a very large variation of
the number of drivers (the ratio P(2014)/P(1982)
varies from 1.2 to 6 approximately) and a much
larger dataset would be needed in order to have a
better accuracy for these exponent values.

e The other cities (about 40% of all cities) display
two regimes separated by a change of slope that
is in general abrupt. The second regime for these
‘type-2’ cities can be in some cases a ‘saturation’
where the delay stays constant. We show in Fig.
bottom) an example of such city that displays
saturation with a zero slope in the second regime.

e The rest of cities (= 30%) do not display a common
behavior (for instance some present 3 changes of
slope, etc.)

In most cases however, the individual behavior of a city
does not correspond to the global scaling §7 ~ P36, In
the following we focus on each of these classes and try to
characterize them more precisely.

Type-1 cities: power law growth

This particular class comprises cities that display an
individual scaling law that can be fitted by a power law
of the form 67(t) ~ P(t)% , where P(t) is the number
of commuters at time ¢t and §7(¢) the corresponding an-
nual congestion-induced delay. The quantity 3; depends
in general on the city ¢ and we show in Fig. [6] the his-
togram for this exponent computed for all type-1 cities.
We clearly see that very few cities behave as the ‘global
trend’ predicted: only 2 cities over 31 have an exponent
< 1.5, while 13 cities have an exponent > 2.5. This re-
sult shows that when we observe a power law behavior
at the individual city level, it is generally with an expo-
nent that is much larger than 1 and much larger than
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FIG. 5: Loglog plot of the annual delay per capita 7/P
versus P from 1982 to 2014. (Top) An example of a
type-1 city where the delay grows with P and that can
be reasonably fitted by a power law (Bakersfield, CA).
(Bottom). Example of a type-2 city with two power law
regimes characterized by two different exponents
(Cincinatti, OH).

the result found for the global scaling. In other words
there seems to be no correlation between the global ob-
servation made on all cities and the individual behavior
of cities when its population evolves.

Type-2 cities: existence of two regimes

For about 40% of the cities in the dataset, the delay
versus the number of car commuters displays a change of
slope and log(d7) is a piecewise linear function of log(P).
Formally one could write:

a1 + B x log(P) when P < P*

2
ag + B2 x log(P) when P > P* @)

log(d7) = {
This behavior indicates that the dynamics of the traffic
congestion in those cities followed successively two differ-
ent scaling laws with two different exponents 5, and Bs
and we plot the histograms for both these exponents in
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FIG. 6: Empirical histogram of 8 for type-1 cities. The
vertical line indicates the value of the global scaling
8 =~ 1.36.

Fig.[7] We note that the average of 3 is around 5.3, while

N(B2)

FIG. 7: Empirical histograms for the two exponents (1
and (2 that describe the two regimes of type-2 cities.
(Top) Histogram for 8; and (Bottom) the histogram for
B2. For most cities we have 8y > 5.

the average of B drops to 1.32, closer to the ‘global ex-



ponent’ (but with a large dispersion around this value).
Beyond averages, we have that for almost every case,
B1 > B2. Almost all the exponents of the first regime
B are above 2 (indicating a strong superlinearity) while
the second exponents 2 are mostly < 2. For this second
regime, some cities do not exhibit superlinear behaviour.
Indeed for some cities (~ 30%), the exponent 5 is very
close to 1, indicating a linear behavior and equivalently
a delay per capita constant — that we coined ‘saturation’.
The cities of Akron (see Fig. , or Pittsburg for instance
fall into that subcategory. We also observe that in some
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FIG. 8: Example of two different type-2 cities with two
regimes characterized by two exponents 31 and . In
the case of Akron (OH) we observe a ‘saturation’ with a
constant delay per capita (82 ~ 0), while for
Albuquerque (NM) the delay per capita decreases with
the population (82 < 0).

cases a crossing between the curves corresponding to dif-
ferent cities can occur (such as Akron and Albuquerque
in Fig. . This crossing is another sign that the poste-
rior evolution of a city is not uniquely determined by the
population and the delay at a certain time (if it did the
evolution after the crossing should be identical for the
two cities).

In other cases (~ 10%), the exponent o is clearly
< 1, which indicates sublinearity and that the delay
per capita decreases with the population. We show the
example of the city of Albuquerque (New Mexico) in
Fig. This phenomenon is very counter intuitive, even
if we can point out some elements of explanation. In-
deed, in addition to the congestion induced delay, we
also have the data for the total driven length L;y (in
miles x commuters) for each city and each year. We can
check if this quantity can explain, even partially, the be-
havior of the total delay. For some type-2 cities with two
regimes, we plot the driven length per commuter against
the number of drivers and we observe that this curve dis-
plays a change of regime at the exact same point for the
delay. In Fig. @(top), we see that for the case of Birm-

ingham, from 1998, the delay remains almost constant,
whereas it increased constantly at a high rate before
that (more precisely we have here 81 ~ 4 and 3y ~ 0).
In Fig. |§| (bottom), we observe that in the same year,
the curve for L, /P experienced a change of slope: the
length per capita increased before 1998, and slowly de-
creases after that date. This could explain partially why
the delay does non evolve after this date: there are cer-
tainly more people on the road after 1998, and therefore
more likely some congestion, but each commuter drives
less on average which decreases the occurrence of traffic
jams: these two effects can compensate each other. This
is one possible partial explanation, which however does
not hold for all the cities. The change of slope in Ly /P
vs P is common in this dataset and in most cases hap-
pens simultaneously with the change of regimes of the
delay, pointing to the existence of correlations between
these quantities, even if not in a causal manner. The
simultaneous change of regime for these two quantities
might also be the sign that the city experienced a large
scale structural change.
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FIG. 9: Birmingham case. (Top) Loglog plot of 7/P
versus P. (Bottom) Loglog plot of the total driven
length per capita Ltot/P vs P.

For this category of cities, beyond the two exponents



B1 and B, we can also study (i) at what time T* the
change of slope happened, (ii) what was the population
of the city when it happened (P*), and (iii) what was the
delay par capita when it happened ((§7/P)*). We repre-
sent the histograms for these three quantities in Fig.
The distribution of 7% is difficult to interpret and do not
display a typical date at which the slope changes. The
change of slopes do not occur at the same time for these
cities, which would have been the case for instance if
there had been a national plan in the US to rebuild the
whole road system, or any other federal decision. The
histogram for P* seems clearer to interpret with the ex-
istence of a clear maximum around 200,000 commuters
and a quick decay for larger values. The average of the
distribution is 394,000, while the standard deviation is
367,000. Finally, the delay per capita (07/P)* displays
a histogram that has a relatively small compact support,
with an average of about 39 hours per year, and a stan-
dard deviation about 18 hours per year. This relatively
small variation of (§7/P)* suggests that it is the conges-
tion that triggers the change of regime signalled by dif-
ferent exponents. Further studies are however certainly
needed in order to clarify this important point.

Discussion

We focused in this paper on the dataset for congestion-
induced delay in some US cities. This is a particularly
interesting dataset as it is both transversal (it contains
many cities), and longitudinal (for each city we have the
temporal evolution of the delay). This is a rather rare
case at the moment, but this type of data will certainly
become more abundant in the future and will allow to test
our results on other quantities. Our observations about
scaling might therefore have far reaching consequences
for the quantitative study of urban systems, well beyond
the case of congestion induced delays.

The general scaling form Y ~ P? indicates that if the
population is multiplied by a factor A the quantity Y is
then multiplied by a factor \?. This scaling form re-
lies however on a strong implicit assumption which is
the ‘logarithmic population translation’ invariance. In
other words, this scaling form implies that for any times
t and ¢ we have Y (t')/Y(t) = (P(t')/P(t))? and then
depends on the ratio of populations only (or the differ-
ence of logarithms). As we observed in this study, there
is no such scaling at the individual city level but a vari-
ety of behaviors. In the language of statistical physics,
the quantity Y (here equal to d7) is not a state function
determined by the population only, and displays some
sort of aging effect where the delay in a city depends
not only on the population but also on the time, and
probably on the whole history of the city. In any case
we cannot make for a given city a prediction for time
to > t1 knowing only its state for ¢;. This idea of path-
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FIG. 10: Empirical histograms for 7%, P* (in unit of
million inhabitants) and (67/P)*. In particular the
histogram for (67/P)* shows that the changes of slope
in type-2 cities appears approximately at the same
value of about 40 hours per year and per capita of
congestion delay.

dependency is natural for many complex systems, and
in statistical physics, we know that spin-glasses [23] for
example display aging which means that some features
of the system (for instance the relaxation time) evolves
with the age of the system and does not depend on the
state of the system only. This in particular implies that



we do not have time translation invariance but that most
functions of two times ¢ and ¢’ do not depend on t — ¢/
only. This aging theory has been applied to many other
complex systems, from ‘soft material’ [24] to superpara-
magnet [25], and it would be interesting to understand it
in the framework of the evolution of urban systems.

The results presented in this paper illustrated on the
case of congestion-induced delays could in principle be
applied to any other quantity. They highlight the risk
of agglomerating data for different cities and to consider
that cities are scaled-up versions of each other (as ques-
tioned in [26] for example): there are strong constraints
for being allowed to do that such as path-independence,
which is apparently not satisfied in the case of congestion,
and which should be checked in each case.

Beyond scaling, these results also pose the challenging
problem of using transversal data (ie. for different cities)
in order to get some information about the longitudinal
series for individual cities. This is a fundamental prob-
lem that needs to be clarified when looking for generic
properties of cities.
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