
HAL Id: cea-01625320
https://cea.hal.science/cea-01625320v1

Submitted on 27 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Platform Dedicated for In-Memory Computing
Circuit Evaluation

Maha Kooli, Henri-Pierre Charles, Clément Touzet, Bastien Giraud,
Jean-Philippe Noel

To cite this version:
Maha Kooli, Henri-Pierre Charles, Clément Touzet, Bastien Giraud, Jean-Philippe Noel. Software
Platform Dedicated for In-Memory Computing Circuit Evaluation. RSP’17 (Rapid System Prototyp-
ing), Oct 2017, Séoul, South Korea. �10.1145/3130265.3130322�. �cea-01625320�

https://cea.hal.science/cea-01625320v1
https://hal.archives-ouvertes.fr

Software Platform Dedicated for In-Memory Computing Circuit

Evaluation

Maha Kooli1, Henri-Pierre Charles2, Clément Touzet1, Bastien Giraud1, Jean-Philippe Noël1
1 Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble
2 Univ. Grenoble Alpes, CEA, LIST, F-38000 Grenoble

maha.kooli@cea.fr

ABSTRACT

This paper presents a new software platform, co-developed
by research teams with expertises in memory design, and
software engineering and compilation aspects, to dimension
and evaluate a novel In-Memory Power Aware CompuTing
(IMPACT) system for IoT. IMPACT circuit is an emerging
memory that promises to save execution time and power con-
sumption by embedding computing abilities. The proposed
platform permits to manually convert a software applica-
tion from conventional to IMPACT implementation using
vector representation. The two implementations are then
compiled on the Low Level Virtual Machine (LLVM) and
traced in order to evaluate their performance in terms of
timing and energy consumption. The results of emulating
image-processing and secure applications on IMPACT system
show a significant gain in the execution time and the energy
consumption compared to a conventional system with an
ARM Cortex®-M7 processor. The execution time can be
reduced from 50x to 6145x, depending on the application
and the workload size. Furthermore, the gain of the energy
consumption is about 12.6x.

CCS CONCEPTS

• Computer systems organization → Heterogeneous (hy-
brid) systems;

KEYWORDS

In-memory Computing, Performance, Software Platform,
LLVM

ACM Reference Format:

Maha Kooli1, Henri-Pierre Charles2, Clément Touzet1, Bastien

Giraud1, Jean-Philippe Noël1. 2017. Software Platform Dedicated

for In-Memory Computing Circuit Evaluation. In Proceedings of

RSP’17, Seoul, Republic of Korea, October 15–20, 2017, 7 pages.

https://doi.org/10.1145/3130265.3130322

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

RSP’17, October 15–20, 2017, Seoul, Republic of Korea

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5418-9/17/10. . . $15.00
https://doi.org/10.1145/3130265.3130322

1 INTRODUCTION

Researchers are nowadays focusing on memory improvement
in particular the growing speed gap between memory and
computation unit known as the ”memory wall” (Figure 1).
One solution to reduce the data movement and the resulting
power consumption consists in bringing a part of the memory
(i.e., the caches) near to the processor. However, to optimize
the data access time the cache sizes are reduced, which re-
quires multi cache levels leading to significant increase of the
chip area. Therefore, other solutions came up over the years
to cover these problems. They can be grouped in the following
techniques: Processing-In-Memory, In-Memory-Computing,
Logic-In-Memory.

Figure 1: Conventional computing architecture
which needs a memory access for all word level com-
putation

Processing-In-Memory (PIM) is a process based on DRAM,
which consists in putting the computation unit next to the
memory while keeping the two dissociated [14]. The objec-
tive behind bringing the processor near to the memory aims
to reduce the time required to access the data inside the
memory and therefore the power consumption due to that.
This concept has been first introduced in [6] and [17], where
the memory and the CPU have been implemented in the
same die. In more recent works and with the progress of
the 3D technology, researchers propose to design stacks of
computation unit (as CPUs [18] or as logic units [7]) next
to the memory stack, which permits to create massive data
parallelism. Logic-In-Memory is the concept of integrating
some computation in the memory. However, it is more used
to realize logic operations on a specific memory layer [16]
or logic layer dedicated for 3Ds memories [21]. In-Memory
Computing (IMC) consists in integrating a part of the com-
putation units into the memory boundary (Figure 2), which
means that the data do not go out from the memory. This
should offer significant gain in the execution time and the

RSP’17, October 15–20, 2017, Seoul, Republic of Korea M. Kooli et al.

power consumption. The IMC concept has been applied on
volatile memories [8] and non volatile memories [15] [20] [10].
In [4], the authors present the architecture of in-memory
computing applied on the caches. In [9], the authors discuss
the different performance gain of this circuit for a face recog-
nition algorithm. However, in all these papers, no software
platform to simulate the in-memory computing circuit has
been presented. All the applications that have been experi-
mented to evaluate this concept, are manually analyzed. In
this paper, we do not only focus on the architecture of this
circuit, but also on the compilation and the programming
flow, the point that has not been studied by the existing
works.

IN/OUT DFF/LATCHIN/OUT DFF/LATCH

SRAM
bitcell array

MUX (optional)

ro
w

de
co

de
r

CTRL IO

multi-row
selection

IO to ALU-
like

m
ul

ti
-r

ow
se

le
ct

or
(2

 o
r>

)

SRAM
bitcell array

CTRL
MUX (optional)

ALU-like

SRAM Architecture IMPACT Architecture

Figure 2: IMPACT circuit architecture derived from
SRAM circuit architecture

In this article, we propose a new software platform that
helps to design a new IMPACT circuit in order to quickly
investigate different memory layout parameters under the
light of real world and high level applications. Thanks to a
high level instrumentation trace generator and a trace ana-
lyzer able to evaluate the performances. This study permits
to help memory designers to select optimum configurations.

This paper is based on the work previously published
in [5], where the concept of the IMPACT circuit has been
first introduced. We present a novel software platform to
rapidly prototype the IMPACT system and dimension its
circuit. The objective of our research project is to: (i) prove
a huge performance improvement in terms of execution time
and energy consumption, (ii) help designer to select optimal
configurations, and (iii) build a complete IMPACT system
going from the software to the hardware layers (Figure 3).
The proposed software platform permits to evaluate the
execution time and the energy consumption of two software
applications first run on a conventional IoT system and
then simulated on IMPACT system. The first experimented
application is a security one while the second is an image
processing application. The results show a timing speed factor
varying between 50 and 6145 times, and an energy gain of
12.6 times.

This paper is structured as follows. Section 2 presents a
brief description of the IMPACT system. Section 3 introduces
the software platform proposed to experiment the IMPACT
circuit. Section 4 describes the experimentation. The scenar-
ios and the results are then discussed in Section 5. Finally,
Section 6 concludes the paper.

8 bit 1024 byte
IMPACT Circuit(large ALU-like)CPU

Instruction Set Architecture

Silicon Design

Silicon Demonstrator

ALUALU

Virtual Instruction Set

Compiler Programming Language

Software Application

S
of

tw
ar

e
H

ar
dw

ar
e

Technology Layer
Progress

Figure 3: General project overview: Evaluating high
level applications in order to design suitable memory
architectures

2 IMPACT SYSTEM DESCRIPTION

In this section, we describe the concept of IMPACT Circuit.
The work published in [5] introduces the concept of IM-

PACT circuit. Based on efficient bitcells, it proposes a novel
computing circuit using the SRAM architecture to enable in-
memory logic and arithmetic operations, as shown in Figure 2.
This permits to reduce the data transfer between the memory
and the computing units (i.e., ALU). The proposed IMPACT
circuit is able to perform the same logic and arithmetic oper-
ations as a basic ALU and, therefore enables non-destructive
computing and storage in the same unit.

The IMPACT concept is based on an SRAM bitcell array
in which multiple rows can be selected at the same time
during the same clock cycle for performing in-situ operations
between selected rows. The operation type is chosen and con-
trolled slice-wise (using a dedicated controller), thus different
operations can be performed on different slices of the same ar-
ray offering highly-parallel operations. The IMPACT circuit
is able to perform different arithmetic and logic operations
inside the memory, thus limiting intensive data transfers.

Table 1 provides the description of the logic and arithmetic
operations that the IMPACT memory is able to perform. The
logic operations are performed in two clock cycles, while the
arithmetic operations are performed in three cycles. Based on
this timing, we compute the total number of cycles required to
run an application on IMPACT system, as it will be presented
in Section 5.

2.1 Logic Operations

A native logic operation can be performed when more than
one row are selected in a bitcell column. Based on the triple-
port SRAM bitcells enabling two read and one write opera-
tions per memory access cycle, the read-ports connected to
the data stored in the write-port enable to perform NOR
operations, while the ones connected to the complementary

Software Platform Dedicated for In-Memory Computing Circuit EvaluationRSP’17, October 15–20, 2017, Seoul, Republic of Korea

Table 1: Arithmetic and Logic Operations enabled
by IMPACT System.

Operation
Type

Examples Cycles
#

Sub-
Operations*

LOGIC OR, AND,
INV, XOR,
...

2 cycles Rs -> Ws

ARITHMETIC ADD, SUB,
INC, DEC,
...

3 cycles Rs -> L ->
Ws

* Rs: represents the load operation in IMPACT circuit

Ws: represents the store operation in IMPACT circuit

L: additional cycle for the logic execution

data enable to perform AND operations. Based on this behav-
ior, an additional IO circuitry has been designed to perform
the rest of valid logic operations with N operands (N cor-
responding to the number of selected rows): OR, NAND,
EQ (equal) and NEQ (not equal). A selection signal ADD
enables to change the nature of the operation on the outputs
of the circuitry, which is useful to differentiate addition and
subtraction operations.

If only one row is selected, as in a conventional mem-
ory, the result on the true read bitline (RBLT), (resp. false
read biltine) will be the value of the selected data (resp.
complementary data). In this case, the resulting operations
performed by the additional IO circuitry are: XOR, NXOR,
INV and material implication. This operating mode is used
to perform addition, subtraction and word-level compari-
son (greater than (GT), lower than (LT) and equal (EQ))
operations.

2.2 Arithmetic Operations

Based on the results of the logic operation of the additional IO
circuitry, we implement a ripple-carry adder/subtractor. Only
three logic gates are added to perform the operations which
are usually implemented only with CMOS logic gates. The
selection between the addition and subtraction operation is
made by setting the appropriate value on the ADD signal (‘1’
for addition, ‘0’ for subtraction). Increment and decrement
operations are performed in the same way by setting the
carry to ’1’. All these operations can be performed in one
time (e.g. in asynchronous operating mode) or in three equal
cycles (e.g. in synchronous operating mode).

Other arithmetic operations are enabled by the IMPACT
circuit, such as the comparison operation at word level (GT,
LT and EQ). These operations are performed with the same
timing constraints as the ADD/SUB operations by adding
some logic gates to the additional IO circuitry.

3 SOFTWARE PLATFORM

DESCRIPTION

This paper presents a preliminary software platform to emu-
late software applications on IMPACT circuit. The proposed
platform will be used to: (i) demonstate a huge performance
gain in terms of execution time and energy consumption
for IoT, (ii) help designer to select optimal configurations
and (iii) build a complete IMPACT system going from the
software to the hardware layer.

In order to characterize a new compilation platform for
IMPACT circuit, we need to investigate methods and tools to
describe the software independently from the target hardware
architecture. In fact, at this stage of our research, the Instruc-
tion Set Architecture (ISA) of the IMPACT hardware system
(smart memory + CPU) is not yet defined and implemented.
Therefore, it cannot be used to analyze how the software ap-
plications is executed on the IMPACT system. In this paper,
we make use of virtualization techniques, in particular LLVM
[13], which is a compiler framework that uses virtualization
with virtual instruction sets to perform complex analysis
of software applications on different architectures. LLVM
presents different characteristics that are advantageous for
our tool. First, it uses the Intermediate Representation (IR)
as a form to represent the code in the compiler, which is
similar to an assembly code. The is independent from the
source language and the target machine. Furthermore, LLVM
allows code to be left for late-compilation from the IR to
machine code via the just-in-time compilation. Then, LLVM
is able to manipulate very large vectors (e.g., <2048 x i32>
a vector of 2048 32-bit integer) and integer with arbitrary
bit width varying from 1 bit to 223 − 1 (about 8 millions) [3].

The proposed software platform consists in compiling the
application implemented in two modes, the conventional and
the IMPACT implementations. The IMPACT implementa-
tion is based on the LLVM vector representation of the data,
where the word size is dynamically configured. This vector
representation interprets the logic/arithmetic operations that
are performed in IMPACT circuit. In fact, as explained in
Section 2, this circuit is based on SRAM array in which
multiple rows can be selected and computed at the same
time.

In Figure 4, we provide the flow of the proposed platform
going through different system layers. Starting from the C
programming language, we implement the given software ap-
plication in two versions: (1) the conventional version and (2)
the smart version representing the behavior of the IMPACT
memory, where the arithmetic/logic operations are computed
on data represented as vectors. For example, as shown in
Listing 1, a bit-wise between the elements of two byte arrays
is implemented, in smart version, as a bit-wise between two
vectors of bytes. Each vector corresponds to a line in the
smart memory, and the operation is implemented using the
LLVM capabilities to manage such operation on large inte-
gers/vectors. The output of the application is guaranteed to
be the same for the two implementations.

RSP’17, October 15–20, 2017, Seoul, Republic of Korea M. Kooli et al.

Bench (C)

LLVM IR

Speed Factor
IMPACT vs. Conventional

Smart LLVM IR

Smart Bench (C)Programming
language

Middleware

Emulation

Performance
Evaluation

Instrumented
LLVM IR

Instrumented
Smart LLVM IR

Instrumentation

Conventional
Execution Trace

Trace
Analysis

Conventional System IMPACT System

Compilation
clang

Execution
lli

Smart
Execution Trace

Manual transformation (similar to OpenCL or CUDA
programming model)
Automatic transformation using our implemented tools
Automatic generation using existing tools

Memory
Configurations

Figure 4: Flow of the proposed platform enabling the
generation of execution traces and the performance
evaluation of IMPACT system vs. conventional one

The application is then compiled to the middleware LLVM
IR code using Clang [2]. The next step consists in executing
the application and monitoring the timing. However, LLVM
does not provide, at the interpretation mode, information
about the executed operation and the exact timing when
an instruction is executed. Thus, we propose to instrument
the LLVM code by adding instructions to log the executed
operation, the address and the size of the operands. This
concept has been first introduced in [12]. In this paper, we use
this concept to follow the arithmetic/logic operations and the
access memory operations (read/write). The instrumented
code is therefore executed and traces are recorded for the
conventional and the IMPACT executions (Figure 5).

#if SMART

typedef unsigned char Array

__attribute__ ((ext_vector_type(LEN)));

#else

typedef unsigned char Array[LEN];

#endif

void ComputeAddOp(Array Msg , Array Key){

Array EncMsg;

#if SMART

EncMsg = Msg^Key;

#else

for (i = 0; i < LEN; ++i){

EncMsg[i] = Msg[i]^Key[i];

}

#endif

}

Listing 1: Conventional vs. IMPACT implementa-
tion

The traces resulting from the two executions are analyzed
by computing the total number of cycles and the energy
consumption. For the conventional execution, the number of
cycle and the energy consuption are provided by the selected
technology and processor. For the IMPACT execution, we
consider the timing information provided in Table 1. The final
step consists in computing the speed factor as the ratio be-
tween the cycles and energy consumption of the conventional
execution and the IMPACT execution.

Conventional
ExecutionTrace

IMPACT
Execution Trace

load 8 0x7d640

load 8 0x7d642

add 8 0x7d640 0x7d642 0x7d644

store 8 0x7d644

add 32 0x7ece0 0x7ece8 0x7ecf0

icmp 32 0x7ede0 0x7ede8 0x7edf0

br

smartAdd 512 0x7d640 0x7d240 0x7ce40

x 64

(a)

(b)

Figure 5: (a) Conventional execution trace, (b) IM-
PACT execution trace

4 EXPERIMENTATION

In order to evaluate the IMPACT circuit, we set up a con-
ventional system for the sake of refrence. In this paper, we
compare the execution time and the energy consumption
required to simulate a software application on an IMPACT
system to the execution time and the energy consumption
required to run the same application on a conventional sys-
tem. To have a fair comparison, we set up the same CPU for
both systems. In particular, we use an ARM Cortex®-M7
processor, which is the most recent and highest performance
member of the energy-efficient ARM Cortex-M series [1]. As
shown in Figure 6, the conventional system is composed of a
CPU (without cache to represent IoT devices) and an SRAM,
while the IMPACT system is composed of a CPU and a smart
memory based on SRAM.

To compute the timing of the conventional execution, we
consider that the read/write operations take only one cycle
to access data in the memory, and that the arithmetic/logic

Software Platform Dedicated for In-Memory Computing Circuit EvaluationRSP’17, October 15–20, 2017, Seoul, Republic of Korea

Conventional System IMPACT System

CPU ARM
Cortex-M7

CPU ARM
Cortex-M7

SRAM
Smart Memory
(SRAM + ALU)

Comparison

Figure 6: Experimental platform

operations take one cycle to be executed in the CPU. In fact,
for this paper, we are considering the optimal case for the
conventional system, where the chip frequency is equal to
the memory frequency.

To compute the timing of the IMPACT execution, we use
the information provided in Table 1 about the number of
cycle required by each operation.

Then to evaluate the energy consumed by the applica-
tion, we consider the energy consumed by each smart and
conventional operation (read, write, arithmetic/logic). These
information are provided thanks to measurements internally
done in our research group.

Having the number of cycles and the energy consumed in
pJ for each execution, we compute the gain of the IMPACT
system comparing the conventional system. It is important to
mention that for this paper, we evaluate the execution time
and energy consumption only for the function that is per-
forming the arithmetic/logic data computation. In addition,
we assume that for the IMPACT memory, we have a single
memory block where all the data are stored and computed.

5 SCENARIOS AND RESULTS

In this section, we evaluate the performances of IMPACT
system emulating two software applications: (1) a security
application presenting an input data of one dimension, and
(2) an image processing application presenting an input data
of two dimensions. For each scenario, we introduce the algo-
rithms and discuss the results.

5.1 One-Time Pad

In cryptography, the One-Time Pad (OTP) [19] is an encryp-
tion technique that uses a private key generated randomly
to encrypt a message. The message is then decrypted by the
receiver using a matching one-time pad and key. In order to
be efficient in terms of security (i.e., the message can not be
decrypt or break), the key should be: truly random, at least
as long as the message, never reused in whole or in part, and
kept completely secret. OTP figured prominently in secret
message transmission and espionage before and during the
second World War and during the Cold War era.

In this paper, we make use of OTP as a preliminary appli-
cation targeting security features. The algorithm is based on
bit-wise operation between the secret key and the message,

as shown in Algorithm 1. The operations used in this algo-
rithm can be reused in the future to target more complex
application scenarios targeting security.

Algorithm 1 One-Time Pad (Classic Version)

1: unsigned char Array[LEN]
2: for (i = 0; i<LEN; ++i) do
3: EncMsg[i] = Msg[i] ⊕ Key[i];
4: end for

The algorithm is implemented in both conventional and
IMPACT systems. In Listing 2, we present the LLVM IR code
of the conventional implementation, where the encrypted mes-
sage and the key are implemented as an array of characters,
each character is of 1-byte long. The ’xor’ is then performed
byte per byte on the characters of the array. The complexity
of the memory access is then linear (O(N)). However, for the
IMPACT implementation, the encrypted message and the
key are implemented as vectors, as shown in Listing 3. The
’xor’ is then performed on the vectors. The complexity of the
memory access is then constant (O(1)).

define void @Encrypt (i8 ∗ %Key , i8 ∗ %Msg ,

[1024 x i8]∗ %EnMsg) {
br label %1

; < l a b e l >:1 ; preds = %1, %0

%indv a r s . i v = phi i64 [0 , %0] ,

[% i ndva r s . i v . n e x t , %1]

%2 = getelementptr inbounds i8 ∗ %Msg ,
i64 %indv a r s . i v

%3 = load i8 ∗ %2
%4 = getelementptr inbounds i8 ∗ %Key ,

i64 %indv a r s . i v

%5 = load i8 ∗ %4
%6 = xor i8 %5, %3

%7 = getelementptr inbounds [1024 x i8]∗

%EnMsg , i64 0 , i64 %indv a r s . i v
store i8 %6, i8 ∗ %7

%indv a r s . i v . n e x t = add i64 %indva r s . i v , 1

%ex i tcond = icmp eq i64 %indva r s . i v . n e x t ,1024
br i1 %exitcond , label %8, label %1

; < l a b e l >:8 ; preds = %1

ret void

}

Listing 2: LLVM IR code of OTP application run on
conventional system

define void @Encrypt(<1024xi8 >∗ , <1024xi8 >∗ ,
<1024xi8>∗ %EnMsg) {

%Key = load <1024 x i8>∗ %0

%Msg = load <1024 x i8>∗ %1
%3 = xor <1024 x i8> %Msg , %Key

store <1024 x i8> %3, <1024 x i8>∗ %EnMsg

ret void

}

Listing 3: LLVM IR code of OTP application simu-
lated on IMPACT system

RSP’17, October 15–20, 2017, Seoul, Republic of Korea M. Kooli et al.

For the experiments, we consider, as workloads, different
key sizes: 64, 128, 256, 512 and 1024 byte. In Figure 7, we
present the timing speed factor of the IMPACT system com-
pared to the conventional one. The acceleration of IMPACT
emulation varies between 193x and 6145x times. On the other
hand, the gain in the energy consumption is about 12.9x times
the energy consumed by conventional system. The energy
reduction does not vary when the workload data size change,
since it is measured by words of data.

193x 385x
769x

1537x

3073x

6145x

 64
byte

 128
byte

 256
byte

 512
byte

1024
byte

2048
byte

S
p

ee
d

 F
ac

to
r

(x
 n

b
 o

f
cy

cl
es

)

Key Size

Figure 7: Timing speed factor between conventional
and IMPACT systems for OTP application

5.2 Motion Detection

Motion detection [11] has attracted a great interest from
computer vision researchers due to its promising applications
in many areas, such as video surveillance, traffic monitoring
or sign language recognition. Motion detection represents the
basis of any object tracking, or image compression system.
It is defined as the process of detecting a change in the
object position relative to its surroundings or a change in the
surroundings relative to an object.

The motion detection algorithm used in this paper consists
in comparing the pixels of the image sequence frame in order
to detect (or not) a movement in a certain zone of the image.
As shown in Algorithm 2, the comparison of the images is
performed by subtraction operation. The pixel colors of the
resulting image represent the degree of difference between
the two images.

The algorithm is implemented as conventional and IM-
PACT implementations. For the conventional version, the
image is implemented as a matrix of pixels, each pixel is of
1 byte. The subtraction is then performed byte per byte on
the matrix pixels. The complexity of the memory access is
quadratic (O(N2)). However, for the IMPACT version, the
image is implemented as an array of vectors. The vectors
represent the lines of the image pixels. The subtraction is
then performed vector per vector. The complexity of the
memory access is then linear (O(N)).

For the experiments, we consider images with different
sizes:

Algorithm 2 Motion Detection (Conventional Version)

1: unsigned char Img[LARGEUR*4][HAUTEUR]
2: for (line = 0; line<HAUTEUR; ++line) do
3: for (column = 0; column<LARGEUR; ++column)

do
4: for (i=0; i<4; i++) do
5: Img[line][column*4+i] = ImgA[line][column*4+i]

- ImgB[line][column*4+i]
6: end for
7: end for
8: end for

• X264 Standard of video compression: block sizes of
16x16 and 8x8 pixels.

• Graphics Display Resolution: 160x120 QQVGA, 320x240
QVGA, 640x480 VGA.

• High Definition: 960x540 qHD.

In Figure 8, we present the clock cycle speed factor of
the IMPACT system compared to the conventional one. The
results show that the acceleration varies between 50x and
5952x times the timing of the conventional system. The gain
in the energy consumption is about 12.4x times the energy
consumed by the conventional system. The energy reduction
does not vary when the workload data size change, since it
is measured by words by data.

50x 100x

992x

1984x

3968x

5952x

 8x8
X264

16x16
X264

160x120
QQVGA

320x240
QVGA

640x480
VGA

960x540
qHD

S
p

ee
d

 F
ac

to
r

(x
 n

b
 o

f
cy

cl
es

)

Image Size

Figure 8: Timing speed factor between conventional
and IMPACT systems for motion detection applica-
tion

5.3 Discussion

We note from the presented results that the timing accel-
eration is more important for larger application workloads.
Since we assume in this paper that the IMPACT memory is
designed as single block, we have to design very large size
IMPACT memories to run big data applications, which leads
to increase the timing acceleration of the IMPACT memory.
However, this is quite costly in particular for IMPACT circuit
that are designed to be more complex than conventional cir-
cuits since it contains additional circuits that are responsible
to perform operations. A possible solution that we envisage

Software Platform Dedicated for In-Memory Computing Circuit EvaluationRSP’17, October 15–20, 2017, Seoul, Republic of Korea

as a perspective to this work is to partition and design several
IMPACT memory blocks with reasonable word size, then
distribute the data workload on these blocks in a way to
maximize the parallel operations. For example, the memory
blocks can be superposed in 3D. An operation in one block
can be then performed in parallel as an other operation in
a second block. In particular, we can simulate the motion
detection application on images of type VGA, using four
images of type quarter VGA (QVGA) distributed on four
memory blocks. The timing acceleration will be significant
thanks to the parallelization, while the cost of the memory
design will be reduced.

We note also from these results that the IMPACT system
offers significant timing accelerations while less significant
gain in the energy consumption. In fact, the energy study
presented in this paper is preliminary. We need to investigate
more effort to have more precise and significant gains in
energy consumption, while keeping important timing acceler-
ations.

As mentioned previously in Section 4, the acceleration
factors shown in Figure 7 and 8 represent the execution time
of the function that is performing the arithmetic/logic data
computation. It will be interesting, in future work, to consider
the rest of the application and also the rest of the system.
The speed factor will be reduced relatively while remaining
significant compared to a conventional system.

6 CONCLUSION

In this paper, we presented a new software platform able to
dimension and evaluate our IMPACT circuit. The proposed
approach permits to manually convert a software application
from conventional implementation to IMPACT implementa-
tion, using an equivalent vector-parallel representation. The
two implementations are then compiled to the middleware
LLVM IR and instrumented in order to record traces of each
execution. The traces are then analyzed to evaluate the per-
formance of IMPACT circuit in terms of timing and energy
consumption. In this paper, we present two application sce-
narios to experiment the IMPACT circuit: (1) a security
application presenting input data of one dimension, and (2)
an image processing application presenting input data of two
dimensions.

The results of emulating these applications on IMPACT
circuit show a significant gain in the execution time and a
quite important gain in the energy consumption comparing
to a conventional system run on an ARM Cortex®-M7 pro-
cessor. The timing acceleration varies between 50x and 6145x,
while the energy speed factor is about 12.6x.

As perspective, several ideas can be developed. First, we
propose to investigate effort to have more important and
precise energy gain. Furthermore, we propose to partition
the IMPACT memory in different blocks with small word
size in order to parallelize the execution of operations, which
should improve the system performance.

REFERENCES
[1] [n. d.]. ARM: Architecture for the Digital World, Cortex-

M7 Processor. www.arm.com/products/processors/cortex-m/
cortex-m7-processor.php. ([n. d.]).

[2] [n. d.]. clang: a C language family frontend for LLVM. www.clang.
llvm.org/. ([n. d.]).

[3] [n. d.]. LLVM Language Reference Manual. www.llvm.org/docs/
LangRef.htmlinteger-type. ([n. d.]).

[4] Shaizeen Aga et al. 2017. Compute Caches. In IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA). 481–492.

[5] Kaya Can Akyel et al. 2016. DRC 2: Dynamically Reconfigurable
Computing Circuit based on memory architecture. In IEEE In-
ternational Conference on Rebooting Computing (ICRC). 1–8.

[6] Maya Gokhale et al. 1995. Processing in memory: The Terasys
massively parallel PIM array. Computer 28, 4 (1995), 23–31.

[7] Joe Jeddeloh and Brent Keeth. 2012. Hybrid memory cube new
DRAM architecture increases density and performance. In Sym-
posium on VLSI Technology (VLSIT). 87–88.

[8] Supreet Jeloka et al. 2016. A 28 nm Configurable Memory
(TCAM/BCAM/SRAM) Using Push-Rule 6T Bit Cell Enabling
Logic-in-Memory. IEEE Journal of Solid-State Circuits 51, 4
(2016), 1009–1021.

[9] Dongsuk Jeon et al. 2017. A 23-mW Face Recognition Processor
with Mostly-Read 5T Memory in 40-nm CMOS. IEEE Journal
of Solid-State Circuits 52, 6 (2017), 1628–1642.

[10] V Joshi et al. 2017. Low-variation SRAM bitcells in 22nm FDSOI
technology. In Symposium on VLSI Technology. IEEE, T222–
T223.

[11] Kamna Kohli and Jatinder Pal Singh. 2013. Motion Detection
Algorithm. International Journal of Computer Science & Ap-
plications (TIJCSA) 1, 12 (2013).

[12] Maha Kooli. 2016. Analysing and Supporting the Reliability
Decision-making Process in Computing Systems with a Relia-
bility Evaluation Framework. Theses. Université Montpellier.

[13] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation
framework for lifelong program analysis & transformation. In
Proceedings of the international symposium on Code generation
and optimization: feedback-directed and runtime optimization.
IEEE Computer Society, 75.

[14] Dominique Lavenier et al. 2016. DNA Mapping using Processor-in-
Memory Architecture. In Workshop on Accelerator-Enabled Al-
gorithms and Applications in Bioinformatics. Shenzhen, China.

[15] Shuangchen Li et al. 2016. Pinatubo: A processing-in-memory
architecture for bulk bitwise operations in emerging non-volatile
memories. In 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC). 1–6.

[16] Shoun Matsunaga et al. 2009. MTJ-based nonvolatile logic-in-
memory circuit, future prospects and issues. In Proceedings of
the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 433–435.

[17] David Patterson et al. 1997. A case for intelligent RA. IEEE
Micro 17, 2 (1997), 34–44.

[18] Seth H Pugsley et al. 2014. NDC: Analyzing the impact of 3D-
stacked memory + logic devices on MapReduce workloads. In
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 190–200.

[19] Bruce Schneier. 2007. Applied cryptography: protocols, algo-
rithms, and source code in C. john wiley & sons.

[20] Yuhao Wang et al. 2016. DW-AES: A Domain-Wall Nanowire-
Based AES for High Throughput and Energy-Efficient Data En-
cryption in Non-Volatile Memory. IEEE Transactions on Infor-
mation Forensics and Security 11, 11 (2016), 2426–2440.

[21] Qiuling Zhu et al. 2013. A 3D-stacked logic-in-memory acceler-
ator for application-specific data intensive computing. In IEEE
International 3D Systems Integration Conference (3DIC). 1–7.

