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Abstract: The Petawatt Aquitaine Laser (PETAL) facility was designed and constructed by 
the French Commissariat à l'énergie atomique et aux énergies alternatives (CEA) as an 
additional PW beamline to the Laser MegaJoule (LMJ) facility. PETAL energy is limited to 1 
kJ at the beginning due to the damage threshold of the final optics. In this paper, we present 
the commissioning of the PW PETAL beamline. The first kJ shots in the amplifier section 
with a large spectrum front end, the alignment of the synthetic aperture compression stage 
and the initial demonstration of the 1.15 PW @ 850 J operations in the compression stage are 
detailed. Issues encountered relating to damage to optics are also addressed. 
© 2017 Optical Society of America 

OCIS codes: (320.0320) Ultrafast optics; (320.5520) Pulse compression; (140.3530) Lasers, neodymium. 
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1. Introduction 

The invention of optical pulse compression with diffraction gratings by Treacy [1] and the 
advent of the Chirped Pulse Amplification (CPA) technique in 1985 [2] paved the way to 
ultra-high intensity large laser facilities devoted to the study of light-matter interactions. 
Since the end of the nineties, several ultra-high intensity systems have been built and 
commissioned around the world as upgrades of older systems or new facilities to reach the 
PW [3]. The Petawatt Aquitaine Laser (PETAL) beamline has been designed and constructed 
by the French Commissariat à l'énergie atomique et aux énergies alternatives (CEA) to deliver 
laser pulses in the kJ-picosecond range at a wavelength of 1053 nm [4]. PETAL will allow for 
experiments in the field of ultrahigh intensity sciences, extreme plasma physics, astrophysics, 
radiography, and for fast ignition by a combination of its own multipetawatt kilojoule beam 
and the nanosecond multikilojoule beams of the Laser Megajoule (LMJ) [5,6]. The PETAL 
beamline hence joins kJ-ps range, Petawatt to multi-Petawatt facilities such as OMEGA-EP 
[7], LFEX [8, 9] or NIF-ARC [10]. In this paper, we present the laser commissioning of the 
PETAL beamline and its main current performances. In particular, we detail the front-end 
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however the 4x2 beams amplifier section mechanical structure of the LMJ is modified to 
handle a single beam (37.1 x 35.6 cm2). The architecture comprises a four-pass system with 
angular multiplexing and a reverser [Fig. 3]. It uses 16 amplifier laser slabs arranged into two 
sets. The front-end pulse is injected into the transport spatial filter, passes into two amplifier 
groups separated by the cavity spatial filter, bounces off the M1 deformable mirror, and 
passes through the 16 slabs a second time. The beam is then reflected off the Mdt1 mirror, 
enters the reverser, reflects off the M2 mirror and goes back to M1 to exit the amplifier 
section after L4, the last transport spatial filter lens. 

The two sets of amplifiers can accept up to 9 slabs. For 6.4 kJ operations, only 16 slabs 
are required. Therefore, PETAL uses 7 (cavity amplifier) and 9 (transport amplifier) 
Phosphate Nd:glass slabs, 8 from HOYA (LHG-8) and 8 from SCHOTT (LG-770) to 
optimize the spectral bandwidth taking benefit of the small fluorescence peak difference (0.4 
nm). 

 

Fig. 3. Amplifier section scheme. 

These spatial filters (pair of refractive lenses) are used to clean the beam of unwanted 
intensity modulations at high spatial frequencies and also to extend and/or to image the spatial 
profile for each amplifier stage. As glass index depends on wavelength, when a 
polychromatic light goes through a refractive lens, this light is focused in multiple foci along 
the lens axis, each corresponding to a given wavelength. This aberration is known as 
longitudinal chromatic aberration or Pulse Front Curvature. This chromatic aberration is 
equivalent to a delay in the time domain and the addition of the delays induced by traversing 
the various lenses of the Amplifier Section (equivalent to 1520 fs) will prevent the system 
from reaching sub-picosecond compression if uncorrected. We have consequently fitted a 
chromatism corrector [13] in the reverser. This chromatism corrector (CROCO) uses a 
diffractive Fresnel lens with a focal length of 2.523 m, in combination with a divergent 
refractive lens allowing for a correction of −1520 fs. 

The amplifier section was commissioned in two steps. The first step was performed with 
an LMJ front-end delivering monochromatic pulses and a full aperture, to qualify the gain of 
the different slabs in the single-beam configuration. The second step was performed with the 
PETAL front end (large spectrum and sub-aperture beam) to study the effect of spectral gain 
narrowing and observe the evolution of the sub-aperture beam profiles. 

Monochromatic commissioning demonstrated energy of 4.9 kJ in 5 ns, corresponding to 
LMJ pulse duration operation. To remain within the range of PETAL in terms of pulse 
duration and energy, 1.9 kJ in 1.7 ns was qualified. 

Large spectrum commissioning demonstrated energy of 1.4 kJ in 2 ns with a 3.5 nm 
spectral bandwidth and a sub-aperture shaped beam. The decrease in pulse duration is due to 
spectral gain narrowing in the Nd:glass amplifiers. This output energy value corresponds to 
the current operating point since 1.4 kJ corresponds to 1 kJ after compression. This is the 
maximum energy level we can compress due to the damage threshold after the compressor. 
This large spectral bandwidth was commissioned with 13 slabs, to limit the energy stored in 
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Commissioning results with a sub-aperture beam are presented in Fig. 6 with the evolution 
of the temporal and spatial profiles for the 1.15 PW shot. 14 slabs were used to amplify the 
beam from 20 mJ to 1240 J. 

 

Fig. 6. Sub-apertures beam amplification up to 1.24 kJ. 

These commissioning processes have indicated [Fig. 7] that the holes in the beam are 
affected neither by the ASE in the amplifiers nor by amplification saturation. We observe a 
deformation of the spatial profile along the sub-apertures due to the amplifier gain. A new 
phase plate has been designed to compensate for this shape and will be implemented in 
PETAL for future shots to obtain a top hat spatial profile and extract more energy for the 
same maximum fluence. 

 

Fig. 7. Profiles of the injected and the amplified beam. 

4. Compression performance 

4.1 Compression scheme 

The PETAL compressor scheme [17] is based on the coherent addition of beams instead of 
grating mosaic phasing. The initial beam is divided into sub-apertures, which are 
independently compressed and synchronized with classical (micrometric range) precision. 
Finally, these sub-apertures are coherently combined using only one segmented mirror with 
three interferometric displacements for each sub-aperture. To limit the volume of the vacuum 
compressor, compression is applied in two stages [Figs. 8 and 9]. First, a compressor in air 
reduces pulse duration from a few nanoseconds to a few hundred picoseconds in an unfolded 
double pass compression configuration (gratings G11, G12, G13 and G14). The relatively 
long pulse duration allows for the use of 83 cm monolithic gratings by decreasing the grating 
incidence angle. Second, a compressor in a vacuum finalizes the compression of the pulse 
down to a duration of 500 fs. The second compression stage is designed with a small 
compression factor to limit transverse chromatism in a single-pass configuration. This allows 
us to consider this compressor as four independent units, each one addressing one sub-
aperture. Each independent compressor (G21/G22, G23/G24, G25/G26 and G27/G28) may 
even have different characteristics such as groove density or incidence angle. Finally, a 
segmented mirror between the two compression stages compensates the spatial phase shift 
induced by the separation of the gratings in the final compressor. The first compressor has a 
groove density of 1680 g/mm, an incidence of 56° and a grating distance of 2.62 m. The 
second compressor has a groove density of 1780 g/mm, an incidence of 77.2° and a grating 
distance of 2 m. The transmission is 81% for the first stage of compression and 91% for the 
second stage. 
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Fig. 8. Implementation of the compression stage and diagnostics table (TDC); MT5 and 
MT5bis are drawn in target shot configuration. 

 

Fig. 9. 1st stage of compression in air (left), 2nd stage of compression in the vacuum vessel 
(center) and compression diagnostics table (right). 

4.2 Compression diagnostics 

All compression diagnostics are performed after a pair of leaky mirrors, MT5 (transport 
mirror #5) and MT5bis [Figs. 8 and 9]. These 2 mirrors have 3 configurations: shot on target ( 
+ 45°, −45°), shot on the compression calorimeter (−45°, + 45°), and alignment ( + 1°, −1°). 
These configurations allow for transmission to be adjusted while maintaining the same beam 
centering. MT5 has 0.16% transmission at an incidence of 45° and more than 60% at 0°. 
MT5bis has 3% transmission at 45° and more than 60% at 0°. 

Spatio-temporal effects are some of the key issues for the ultra-high intensity beam [19, 
20]. Therefore, many efforts were made in terms of image relay and beam propagation prior 
to the diagnostics. A diffractive lens is used to compensate for longitudinal chromatism in the 
diagnostic pickup and the beam is imaged in the different diagnostics. Multiple characteristics 
of this attenuated beam are measured on the compression diagnostics table (TDC): the near 
field, the far field, the pulse duration with a second order autocorrelator, the spectrum, the 
spectral phase with a SPIRITED [18], spectral phase differences and the synchronizations 
between sub-aperture pulses with a 2D spectral interferometer (2D-SI) [17] and the relative 
energy. An absolute calorimeter for energy (RECO) is installed in a specific vacuum box to 
calibrate the relative energy. All diagnostics can be performed in single-shot operation. 

The 2D-SI [17] uses a bi-prismatic plate, a cylindrical lens for one-direction focusing 
along the slit axis (vertical axis), and a spectrograph with a 0.05 nm spectral resolution. The 
temporal delay between the sub-apertures is visually deduced and precisely adjusted by 
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analysing the interference pattern using a 1D-Fourier transform along the slit axis. Moreover, 
a visual 2D-SI pattern observation allows the differential spectral phase shift to be quantified 
and qualified: delay, chirp difference between sub-apertures, temporal distortion and also 
residual unwanted dispersion. 

Figure 10 shows the 2D-SI for the full beam, with 4 sub-apertures corresponding to the 4 
independent compressors of the second stage of compression. In the first image, sub-apertures 
are not synchronized, therefore we observe a complex system of vertical fringes. After 
adjusting the grating distances of the 3 sub-apertures to be synchronized, we observe only one 
system of vertical fringes, which corresponds to one independent compressor not 
synchronized with the 3 others. By finally adjusting the distance of this 4th independent 
compressor, we suppressed the last vertical fringes. A small curvature (SMILEY) was 
observed in the horizontal fringes due to residual chirp difference, horizontal fringes are due 
to the bi-prismatic plate. 

 

Fig. 10. 2D-spectral interferometry with 4 non-synchronized sub-apertures (a), 3 out of 4 sub-
apertures synchronized (b), all sub-apertures synchronized (c). 

4.3 Compressor alignments 

First, each grating in the compressors (1st and 2nd stages) is pre-aligned with a 
monochromatic alignment laser to adjust the parallelism of the face and the grooves. The 
oscillator (16 nm and 77.76 MHz) from the front end is then used to precisely correct all 
residual angular dispersions (groove parallelism, grating face parallelism, groove density 
mismatch and longitudinal chromatism) [21, 22]. 

The sub-aperture PETAL compression scheme requires a specific alignment procedure. 
Indeed, the second stage is equivalent to 4 independent compressors that must be compressed 
and synchronized. The sub-aperture synchronization cannot be adjusted with the segmented 
mirror, its correction range in delay is too limited. 

Since the compression is optimized (pulse duration) with a few 100 µm of grating 
distance adjustments and synchronization (precision 50 fs) is achieved with a few 10 µm, the 
PETAL compressor can be optimized in 3 steps: 

• Step A: optimization of the 4 independent compressors with the second order 
autocorrelator. At this step, the sub-apertures have time delays TD between each 
other. Vertical fringes are observed on the 2D-SI [17] due to the delay between sub-
apertures [Fig. 11(a)]; 

• Step B: one sub-aperture is taken as a reference and a second compressor is 
synchronized (TD = 0) with this reference by adjusting the grating distance δLB using 
the 2D-SI measurement for these 2 sub-apertures. At this step, the second 
compressor is no longer compressed due to the grating distance displacement. A 
SMILEY is observed on the 2D-SI due to residual chirp [Fig. 11(b)]; 

• Step C: starting from step A, the gratings of the second compressor are tilted to an angle 
ΔiC and the grating distance changed by δLC to compensate for both the delay and 
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the chirp. Only horizontal fringes are observed on the 2D-SI due to the bi-prismatic 
plate [Fig. 11(c)]. 

Using the second stage compressor characteristics (N = 1780 g/mm, i = 77.2°), the 
adjustment of each independent compressor is given by the following equations [21, 22]: 

 ( ) ( )2.71C BL m L mδ μ δ μ= ⋅  (1) 

 ( ) ( )0.26C Bi rad L mμ δ μΔ = ⋅  (2) 

Figure 11 shows the 2D-SI results observed in the 3 alignment steps with compensation of 
residual chirp difference while maintaining synchronization. 

 

Fig. 11. Step A: 2D-spectral interferometry with 4 non-synchronized sub-apertures (a), Step B: 
observation of a SMILEY after synchronization of G23/G24 pulse with G25/G26 (b), Step C: 
reduction of the SMILEY with changes of incidence angle and grating distance of G25/G26 
(c). 

A small global residual chirp may persist after these 3 steps. This global chirp is then 
suppressed using a monolithic grating in the 1st stage of compression to correct the 4 sub-
apertures at the same time. This fine adjustment is measured using the SPIRITED [18]. 

4.4 Experimental results to demonstrate a peak power of 1.15 PW 

4.4.1 Compression 

Compression can be optimized by changing the grating distances of each independent 
compressor. Pulse duration is measured with a second order autocorrelator. Figure 12 shows 
the autocorrelation between the 4 independent compressors on a 219 J shot with a pulse 
duration between 540 fs and 570 fs for a 3 nm spectral bandwidth. 

 

Fig. 12. Autocorrelation plots for a 219 J @ 3nm shot and pulse durations at FWHM. 

4.4.2 Synchronization of sub-aperture pulses with compression maintained 

Figure 13 presents the experimental results obtained for 2 independent compressors 
(G25/G26, G27/G28) by taking compressor G23/G24 as a reference. First, the 2D-SI 
measurements [Fig. 13(a)] give SMILEY at best synchronization, which is an indication of 
residual chirp difference. The formula given by Eq. (1) and Eq. (2) are used to correct this 
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chirp difference and to maintain synchronization [Fig. 13(b)]. The improvements for 
autocorrelation plots are shown in Figs. 13(c) and 13(d). 

 

Fig. 13. (a) 2D-SI with the residual chirp; (b) 2D-SI after modifications of gratings angle and 
grating distance; (c) and (d) 2nd order autocorrelation traces corresponding to (a) and (b). 

The 2D-SI is more precise (interferometric precision Δφ2nd order (ω) << 2π) to optimize the 
relative chirp between independent compressors than the second order autocorrelator. 
Moreover 2D-SI has the advantage to allow measurement with the oscillator pulse train 
instead of the mJ front-end pulse (1 shot / 4 min). Synchronization better than +/− 50 fs 
between sub-apertures could be obtain thanks to this 2D-spectral interferometer. 

4.4.3 1.15 PW shot 

During the first PW campaign in may 2015, the measurements on the TDC was biased by 
Kerr effect due to the propagation in the diagnostic pick-up and by an imperfect relay 
imaging on the diagnostics. All these points are now improved [Fig. 12]: imaging systems are 
under vacuum, near fields are imaged on diagnostics, energy on the TDC is limited to 3 mJ 
(15 mJ on the 1.15 PW shot). Moreover, we have decided to completely model the 
diagnostics using Miró code to take into account the residual Kerr effect and the spatio-
temporal effects on measurements. This point is crucial since the maximum peak power is 
less than the direct ratio of the energy divided by the pulse duration deduced from the 
autocorrelation measurement. 

Before the maximum energy shot, we delivered a front-end shot [Figs. 14 and 15] to 
validate the compression performance (400 fs for the 8 nm supergaussian profile). The input 
for Miró simulations come from experimental measurements of the beam at the amplifier 
section injection (spatial, temporal, spectral profiles). We find a quite good agreement 
between the experimental results and the simulations. The Miró code allows us to add the 
residual synchronization of the sub-apertures [Fig. 15(d)] to estimate the pulse duration with 
more accuracy. 
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Fig. 14. Spatial experimental (top) and simulated (bottom) profiles for the front-end shot. 

 

Fig. 15. Experimental (a, b) and simulated (c) 2nd order autocorrelation plots at TDC, 
simulated energy front profile at the output of the compressor (d) and peak power (e) for the 
front-end shot 

The 1.15 PW shot was then run with the activation of 14 slabs in the amplifier section. 
These 14 slabs amplify energy from 20.3 mJ @ 4.3 ns up to 1.24 kJ @ 3.7 nm. The 
experimental and associated simulated profiles are shown in Figs. 16 and 17. We observe a 
Kerr effect on the measurements and on the simulations due to the level of energy injected at 
TDC, 15 mJ instead of 3 mJ (value for optimal diagnostics). The duration of the compressed 
pulse, with synchronization, is equal to 700 fs for an energy level of 850 J, corresponding to 
1.15 PW. Energy is measured using the RECO calorimeter. 

 

Fig. 16. Spatial experimental (top) and simulated (bottom) profiles for the 1.15 PW shot. 
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Fig. 17. Experimental (a, b) and simulated (c) 2nd order autocorrelation plots at TDC, 
simulated energy front profile at the output of the compressor (d) and peak power (e) for the 
1.15 PW shot. 

Moreover this shot was also measured with a damaged leaky mirror [Fig. 18(a)] inducing 
a reflection decrease of 8.8% for the calorimeter. Hence, the real energy on this shot was 925 
J instead of 850 J, which corresponds to 1.25 PW. 

4.5 Damage issues 

Visual inspections were carried out during the PETAL beamline commissioning process to 
check for potential laser damage. Pulse compression gratings and the MT5 leaky mirror after 
were pictured after compression using observation windows located in the vicinity of these 
optical components. We particularly focused on leaky and transport mirrors. Pulse 
compression gratings are used at a 77.2° incidence while mirrors operate at 45°. The latter are 
therefore likely to be the first to exhibit laser damage, the beam size on the component 
surface is 3 times higher for the gratings due to the incidence angle. 

Initial damage was detected on the MT5 leaky mirror above a power of approximately 0.8 
PW (Fmax ≈  1.3 J/cm2, in beam normal) during the first PW campaign where the MT5 was 
oriented using the RECO calorimeter and no damage was observed for gratings. Damage 
occurred at a relatively low energy level due to both the excessive beam spatial modulations 
and a non-optimized early coating design. We then first worked on the mirror coating design. 

We also decided to test the transport mirror MT6 (transport mirror next to MT5). To this 
end, the MT6 component was placed in the MT5 position. Figure 18 shows the damage 
pattern observed for these optical components. Rather large areas of each sub-aperture exhibit 
damage morphology typical of intrinsic material damage, suggesting that the mirror damage 
threshold was locally exceeded. Moreover, the high spatial frequency patterns observed in 
Fig. 18 are likely to be induced by the diffraction gratings and their manufacturing process. 

Based on these results, we modified the coating design to enhance the laser induced 
damage threshold (LIDT) of the mirror while maintaining the same reflectivity. This basically 
involves reducing the electric field in the first layers of the coating by changing the stack 
design. The LIDT of samples representative of both the early and the updated design were 
damage tested using both a 1:1 damage procedure [23] and a mono-shot protocol using the 
DERIC damage tester [24]. Two improvements were revealed, for example, for the MT5 leak 
mirror, raising the LIDT from 1.7 J/cm2 to 3.7 J/cm2 at 1.053 µm, 770 fs, 45°, S-pol in the 
beam normal. The MT5 leaky mirror was consequently replaced with a mirror coated with 
this updated design and used in the next commissioning steps. 
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Fig. 18. MT5 leaky mirror, early design, after a 572 J, 700 fs shot May 2015 (a) MT6 transport 
mirror, early design, after a 1004 J, 1 ps shot, October 2015 (b). Damage to sub-apertures (red 
arrows) 

A visual inspection after a 1 PW shot on the MT5 leaky mirror confirmed the trend 
observed for samples. As seen on Fig. 19, the mirror is now sustaining this high intensity. 

 

Fig. 19. MT5 leaky mirror with updated design (a) and pulse compression grating after a 1 PW 
shot (1030 J, 1 ps) (b). October 2015. No damage observed visually. 

A complete optical inspection was performed in the metrology lab on the MT6 early 
design mirror after replacement. This inspection confirmed that most damage was intrinsic, 
with damage sites growing during successive laser shots [25]. Nevertheless, sparse localized 
coating defects, induced damage, were also observed. Their morphology is similar to that 
already seen on mirror samples and these are also growing sites, as reported elsewhere [26]. 
While the intrinsic damage threshold can be measured with a 1:1 damage testing protocol, 
coating defect induced damage (which remained well below the 1:1 threshold) is measured 
using a raster scan testing protocol [27]. Both intrinsic threshold and damage density must be 
improved to reach the multi-PW regime. 

Finally, we report that during the beamline commissioning process, we observed very few 
localized damage sites on the pulse compression gratings. The high incidence of the gratings 
used in the PETAL compressor is very favorable in terms of damage resistance compared to 
mirrors. 

Damage to optics can be induced by inadequate design or a local initiator. Beam spatial 
quality also has to be improved to reach a higher intensity. Knowledge of the uniformity of 
the beam profile, beam modulations and beam size must be improved. 

All of these contributions are options in order to reach the 2 PW target. 
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5. Summary 

The PETAL beamline was commissioned over a 2-year period up to the end of the 
compressor stage. During this commissioning process, the amplifier section demonstrated its 
ability to deliver energy up to 5 kJ and a spectral bandwidth up to 3 nm, compatible with 500 
fs operation. Spatial beam shaping was managed with a phase plate in the front-end to create 
the 4 sub-apertures required for the compression stage. This beam shaping process is not 
affected by the ASE during the high energy amplification process. A PW campaign was then 
carried out on the PETAL beamline in May 2015. A 1.15 PW shot was obtained with 700 fs 
pulse duration and 850 J energy at the output of the PETAL compressor. Attention was paid 
to the compressor alignment, on beam pickup and during diagnostics to limit non-linear and 
spatio-temporal effects. Full-scale optics (transport mirrors in particular), visual monitoring 
and sample damage testing indicated that the first transport mirror design was limited to 1.7 
J/cm2. The new coating design with a damage threshold of 3.7 J/cm2 has been validated in 
transport allowing for the future transport of 1 kJ in the target chamber. Furthermore, works 
are in progress to optimize the spatial beam profile to obtain a more uniform beam. 
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