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We give a proof of perturbative renormalizability of SU(2) Yang–Mills theory in
four-dimensional Euclidean space which is based on the flow equations of the renor-
malization group. The main motivation is to present a proof which does not make
appear mathematically undefined objects (as, for example, dimensionally regularized
generating functionals), which permits to parametrize the theory in terms of physical
renormalization conditions, and which allows to control the singularities of the corre-
lation functions of the theory in the infrared domain. Thus a large part of the proof is
dedicated to bounds on massless correlation functions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000041]

I. INTRODUCTION

Renormalization theory based on the differential flow equations (Wilson, 1971; Wegner and
Houghton, 1973; and Polchinski, 1984) has allowed to build a unified approach to the analysis of
renormalizability for a wide class of theories without recourse to Feynman graphs. This method
was applied to show momentum bounds of massive φ4 theory (Kopper and Meunier, 2002), used to
prove renormalization of spontaneously broken SU(2) Yang–Mills (Kopper and Müller, 2009) and to
establish uniform bounds on Schwinger functions of massless φ4 fields (Guida and Kopper, 2011).
Starting with the milestone studies (Yang and Mills, 1954; Faddeev and Popov, 1967; Slavnov,
1972; Taylor, 1971; Lee and Zinn-Justin, 1972; ’t Hooft and Veltman, 1972; Becchi et al., 1975;
Tyutin, 1975; and Zinn-Justin, 1975) [see Lai (1981) for more references], a variety of results on the
renormalizability of nonabelian gauge theories flourished in the literature, in different contexts and
with different level of mathematical rigor. Work on this problem in the context of Flow Equations
(FE) includes Reuter and Wetterich (1994), Becchi (1996), Bonini et al. (1995), and Morris and
D’Attanasio (1996), and, more recently, Fröb et al. (2016). The present work deals with perturbative
renormalizability and shares certain aspects with some of these articles: from Becchi (1996), we
borrow the fruitful idea that the local operator describing the violation of Slavnov–Taylor identi-
ties (STI) for the one-particle irreducible (1PI) functions (Zinn-Justin, 1975 and Kluberg-Stern and
Zuber, 1975) is constrained by the nilpotency of the underlying “Slavnov differential operator”; as
in Bonini et al. (1995) [and in contrast with Fröb et al. (2016)], we define the marginal correlators by
physical boundary conditions at vanishing IR cutoff and nonexceptional momenta. Our main result
is a proof of the renormalizability of Yang–Mills theory that complements the previous work in
view of the following features: (i) Rigorous control of the IR and UV behavior of the one-particle
irreducible functions is established by means of uniform bounds in momentum space. In particular,
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from the bounds follow the existence of the IR limit of 1PI functions at nonexceptional momenta
and the existence of the subsequent UV limit. (ii) The vanishing of the STI violation in the UV
limit is proven. (iii) The relevant part of 1PI functions and STI violation at nonvanishing renor-
malization momenta, which gives initial conditions for the renormalization group FE, is thoroughly
identified.

Our proof refers explicitly to SU(2) Yang–Mills theory. However, it could be extended without
important conceptual changes to other semi-simple compact Lie groups.

We proceed as follows. In Sec. II, we fix the notations and introduce the classical Yang–Mills
action, generating functionals and regulators. We define the BRST transformations. Then we derive
the FE of the renormalization group, for the connected amputated Schwinger functions and for the
one-particle irreducible vertex functions. Finally, we study the STI, the Antighost Equation (AGE),
and their violation. Remark that in our context gauge invariance is broken through the presence of
the cutoffs.

Our proof of renormalizability of Yang-Mills theory is based on momentum bounds for the vertex
bounds which permit to take the limits Λ→ 0 (IR-cutoff) and Λ0→∞ (UV-cutoff) for nonexcep-
tional external momenta. These bounds are an extension of those in Guida and Kopper (2011) and
are established inductively with the aid of the FE. They are expressed in terms of tree amplitudes
and polynomials of logarithms. For our trees, we only have to consider vertices of coordination
numbers 1 and 3. In Sec. III, we present the definitions of the tree structures to be considered, and
the aforementioned bounds. These bounds permit to prove the existence of the vertex functions for
nonexceptional external momenta on removal of the cutoffs. This statement also holds for vertex
functions carrying an operator insertion related the BRST transformation of the fields. These vertex
functions are required to formulate the STI. Then we also have to consider vertex functions with
operator insertions which permit to formulate the violation of the STI. Our bounds then permit to
show that, for suitable renormalization conditions, these functions describing the violation of the STI
vanish in the UV limit.

Section IV is dedicated to the proof of those bounds. The rhs of the FE is a sum of products of
vertex functions in lower loop order joined by free propagators. Our technique of proof is then based
on the fact that applying our inductive bounds on these chains, which still have to be closed by a
Λ-derived propagator and then integrated over the circulating loop momentum and overΛ, reproduce
our inductive bounds at loop order l. The proof treats irrelevant terms first, then marginal, and finally
strictly relevant ones. Particular attention has to be paid to the renormalization conditions. Section IV
ends with a proof of UV-convergence for Λ0→∞.

In Sec. V, we prove that the renormalization conditions required to prove the bounds of Secs. III
and IV can actually be imposed. These renormalization conditions are such that they leave us free to
fix the physical coupling of the theory. At the same time, they permit us to vanish the relevant part of
all functions describing the violation of the STI. This is required in the previous proof.

In Appendixes A–D, we present some facts on Gaussian measures, an example of chains of
vertex functions, an analysis of linear independence of Euclidean tensor structures, a large number
of elementary bounds on integrals we encounter in the proofs. We also add a list with bounds on the
propagators and their derivatives. In Appendixes E and F, we analyse the generating functionals of
the (inserted) vertex functions, as far as they have relevant content. Appendix G is a supplement to
Sec. II D and contains the generalization of the STI and AGE to the case of nonvanishing IR cutoff.
In Appendixes H and I, we present the list of renormalization points and operator insertions to be
considered.

II. THE FORMALISM

A. Notations

N is the set of nonnegative integers. |S| is the cardinality of a set S. Furthermore, (a, b, c, . . .) and
{a, b, c, . . .} denote a sequence and a set, respectively. Unless otherwise stated, sequence stands
for finite sequence. For shortness, we set [a : b] := {i ∈Z : a 6 i 6 b} and [b] := [1 : b]. Repeated
indices are implicitly summed over, e.g., Aata := ΣaAata. We choose the following basis of the Lie
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algebra:

taB
1
2
σa, [ta, tb]= iεabctc, a, b, c ∈ {1, 2, 3}, (1)

where σa are the Pauli matrices and εabc is the Levi–Civita symbol, ε123 = 1. In this article, we will
deal with tensor fields on R4 in Cartesian coordinate systems with metric tensor δµν . If A, B are two
Cartesian tensors of R4 of rank r with components Aµ1...µr and Bµ1...µr , respectively, then the scalar
product (A, B) is the contraction

(A, B)BA∗µ1...µr
Bµ1...µr . (2)

Given a Cartesian tensor T, we use the norm

|T |B (T , T )
1
2 . (3)

For instance, for p ∈R4, |p|2 = Σµp2
µ. Let T, A, and B be Cartesian tensors such that T~µ~ν =A~µ~ρ B~ρ~ν

where ~µ, ~ρ, and ~ν are multi-indices, for example, ~µ := (µ1, . . . , µn). Then using the Cauchy–Schwarz
inequality,

|T |2 =
∑
~µ,~ν

|
∑
~ρ

A~µ~ρB~ρ~ν |
2 6

∑
~µ,~ν

∑
~ρ,~σ

|A~µ~ρ |
2 |B~σ~ν |

2 = |A|2 |B|2. (4)

The integral over R4 of the product of two functions is denoted by

〈f1, f2〉B
∫

d4x f1(x)f2(x), (5)

and the Fourier transform of a function is defined by

f (p)B
∫

d4x e−ipxf (x). (6)

The convolution of two functions f, g is denoted as below

(f ∗ g)(x)=
∫

d4y f (y)g(x − y). (7)

For functions φi(pi) and F(p1, . . . , pk) with pi ∈R4, the symbol 〈F |φ1 . . . φk ; p〉 denotes the following
integral in momentum space:

〈F |φ1 . . . φk ; p〉:=
∫

(2π)4δ
( k∑

j=1

pj + p
)
F(p1, . . . , pk)φ1(p1) . . . φk(pk)

k∏
i=1

d4pi

(2π)4
. (8)

We also use the shorthands

〈φ1 . . . φk ; p〉B 〈1|φ1 . . . φk ; p〉, 〈φ1 . . . φk〉B 〈1|φ1 . . . φk ; 0〉. (9)

A cumulative notation for the elementary fields and corresponding sources is

ΦB
(

Aa
µ, Ba, ca, c̄a

)
, KB

(
ja
µ, ba, η̄a, ηa

)
, (10)

where c, c̄, η, η̄ are generators of an infinite-dimensional anticommuting algebra. Furthermore, we
use the following shorthand:

K · ΦB 〈ja
µ, Aa

µ〉 + 〈ba, Ba〉 + 〈η̄a, ca〉 + 〈c̄a, ηa〉. (11)

We will have to consider one-particle irreducible functions, also known as vertex functions, whose
generating functional is denoted by Γ. These functions are translation-invariant in position space.
Their reduced Fourier transforms Γ ~φ are defined as follows:

Γ
~φ(p1, . . . , pn−1)B

∫ ( n−1∏
i=1

d4xi e−ipixi
)
Γ
~φ(0, x1, . . . , xn−1), (12)
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where ~φ := (φ0, . . . , φn−1) is a sequence of field labels, φi ∈ {A, B, c, c̄}, and

Γ
~φ(x0, x1, . . . , xn−1)B

( δ

δφ0(x0)
. . .

δ

δφn−1(xn−1)

)
Γ

���~φ=0
. (13)

Note that, with the exception of Appendix A, derivatives with respect to Grassmannian variables are
always intended to be left derivatives, see, e.g., Berezin (1966). The complete Fourier transformed
n-point vertex function then satisfies

(2π)4(n−1)
( δ

δφ0(−p0)
. . .

δ

δφn−1(−pn−1)

)
Γ

���~φ=0
= δ(

n−1∑
i=0

pi) Γ
~φ , (14)

where Γ ~φ stands for Γ ~φ(p1, . . . , pn−1). The reduced and complete Fourier transforms with nχ > 1
composite operator insertions of sources ~χ = (χ0, . . . , χnχ−1) and ~φ := (φnχ , . . . , φn−1) are corre-
spondingly related by

(2π)4(n−1)
( n−1∏

i=nχ

δ

δφi(−pi)

nχ−1∏
i=0

δ

δ χi(−pi)

)
Γ

���~φ=0
~χ=0

= δ(
n−1∑
i=0

pi) Γ
~φ

~χ
, (15)

where the order of the derivatives δ/δφi is the same as before, the derivatives δ/δ χi are ordered with

left-to-right increasing indices, and Γ
~φ

~χ
stands for Γ

~φ

~χ
(p1, . . . , pn−1). Note that n � 1 is the total number

of arguments, e.g., for Γ
~φ

~χ
(p1, . . . , pn−1), we have n= nχ + n.

It will be useful to keep a bijective relation between momenta and field labels (including
possible insertion labels), pi↔ φi. Hence, we assume that p0 is the negative subsum of all other
momenta,

PnB {~p ∈R4n :~p= (p0, . . . , pn−1), p0 =−

n−1∑
i=1

pi}, |~p|2B
n−1∑
i=0

p2
i , (16)

and, referring to (14) and (15), we use the notation

Γ
~φ(~p)= Γ ~φ(p1, . . . , pn−1), ~p= (p0, . . . , pn−1) ∈ Pn, (17)

Γ
~φ

~χ
(~p)= Γ

~φ

~χ
(p1, . . . , pn−1), ~p= (p0, . . . , pn−1) ∈ Pn. (18)

A momentum configuration ~p ∈ Pn is said exceptional iff there exists a nonempty S ⊂ [1 : n − 1]
such that

∑
i∈S pi = 0. If this is not the case, ~p is said nonexceptional.

We rely on the multi-index formalism for derivatives with respect to momenta. Taking in account
that there are no derivatives with respect to p0, we set:

wB (w0,1, w0,2, . . . , wn−1,4), wi,µ ∈N, w0,µB 0, (19)

wB (w0, . . . , wn−1), wiB
4∑
µ=1

wi,µ, (20)

WnB {w ∈ {0} × Nn−1 : ‖w‖ 6 wmax }, ‖w‖B
n−1∑
i=0

wi, (21)

∂ w
ΓB

n−1∏
i=0

4∏
µ=1

( ∂

∂pi,µ

)wi,µ
Γ, ∂wΓB

( n−1∏
i=0

∂wi
pi

)
Γ, (22)

where ∂k
p is the tensor with components ∂pµ1

. . . ∂pµk
, and wmax is an arbitrary integer >4 fixed

throughout the paper. The following shorthands will be helpful:

Γ̇
ΛΛ0 B ∂ΛΓ

ΛΛ0 , ∂φiΓ
~φB

∂Γ
~φ

∂pi
, Γ

;wB ∂wΓ, (23)

δ̃φ(p)B (2π)4 δ

δφ(−p)
, φ̌(p)B φ(−p), log+ xB log max(1, x). (24)
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B. The classical action

We start with a four-dimensional Euclidean classical field theory invariant under local SU(2)
transformations and with a coupling g, 0. Given G= eigα with α = αata, an element of the Lie
algebra, a gauge transformation reads

Aµ 7→
i
g

G∂µG−1 + GAµG−1, φ 7→GφG−1, (25)

and in infinitesimal form,

Aµ 7→Aµ + ∂µα − ig[Aµ, α], φ 7→ φ + ig[α, φ], (26)

where we also show the transformation for a field φ in the adjoint representation of the Lie algebra.
The quantization of gauge theories using auxiliary ghost fields is presented, for example, by Slavnov
and Faddeev in their book (Slavnov and Faddeev, 1991). Following Popov and Faddeev, 1967 and
’t Hooft, 1971 with an appropriate linear gauge-fixing functional, the semiclassical Lagrangian density
takes the form

Ltot
0 =

1
4

Fa
µνFa

µν +
1

2ξ
(∂µAa

µ)2 − ∂µ c̄a(Dµc)a, (27)

Dµc= ∂µc − ig[Aµ, c], (28)

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν], (29)

where ξ > 0 is the Feynman parameter and {Fµν , Aµ, c} are elements of the su(2) algebra, e.g.,
Aµ = taAa

µ. We will study the quantum theory in a framework which breaks local gauge invariance
due to the presence of momentum space regulators. However, the Lagrangian respects global SU(2)
symmetry and Euclidean isometries ISO(4) and has ghost number zero. We admit all counterterms
compatible with these symmetries,

Lct =r0,c̄cc̄cc̄bcbc̄aca + r0,c̄cAA
1 c̄bcbAa

µAa
µ + r0,c̄cAA

2 c̄acbAa
µAb

µ

+ r0,AAAA
1 Ab

µAb
νAa

µAa
ν + r0,AAAA

2 Ab
νAb

νAa
µAa

µ + 2εabcr0,AAA(∂µAa
ν)Ab

µAc
ν

− r0,Ac̄c
1 εabd(∂µ c̄a)Ab

µcd − r0,Ac̄c
2 εabd c̄aAb

µ∂µcd + Σ0,c̄cc̄a∂2ca

−
1
2
Σ

0,AA
T Aa

µ(∂2δµν − ∂µ∂ν)Aa
ν +

1
2ξ
Σ

0,AA
L (∂µAa

µ)2

+
1
2
δm2

AAAa
µAa

µ − δm2
c̄cc̄aca. (30)

There are eleven marginal counterterms and two strictly relevant counterterms. To denote the marginal
counterterms, we use the symbols r0 and Σ0. For the strictly relevant counterterms, we use δm2

AA and
δm2

c̄c.

C. Generating functionals and flow equations

In Secs. II C and II D, we introduce the essential structural tools required for our proof of
renormalizability of nonabelian Yang–Mills theory. These tools on the one hand are the differential
flow equations of the renormalization group, and on the other hand the (violated) Slavnov–Taylor
identities. They are both obtained from the functional integral representation of the theory.

Functional integrals are known to exist, beyond perturbation theory, if suitably regularized
(Glimm and Jaffe, 1987). To restrict their support to sufficiently regular functions in position space,
one has to introduce an ultraviolet (UV) cutoff. To avoid infrared problems, one has to introduce a cor-
responding infrared cutoff, the most practical one being a finite volume cutoff, introduced by putting
the system on a torus with periodic boundary conditions. For an analysis of the support properties of
(Gaussian) functional integrals, see Reed (1973).

 16 February 2024 08:13:49



093503-6 Efremov, Guida, and Kopper J. Math. Phys. 58, 093503 (2017)

We do not make explicit the finite volume cutoff in this paper, which would still blow up the
manuscript to some degree. For some more details in this respect, see Müller (2003). On the other
hand, the UV cutoff is explicit.

Once the finite volume cutoff has been introduced, the FEs (with UV regulators) can be shown to
hold up toΛ= 0, andΛbeing the flow parameter, even beyond perturbation theory (as far as the bosonic
degrees of freedom are concerned). One can then construct perturbative solutions of the FEs, which
are well-defined and regular in the open domain of nonexceptional external momenta, and which
satisfy the Slavnov–Taylor identities, in the limits where the flow parameter is sent to zero and the
UV cutoff is sent to infinity. If keeping the finite volume until the end, one then has to show that these
solutions have uniform limits (in compact subsets of the open domain of nonexceptional momenta)
once the volume is sent to infinity. Short-circuiting this reasoning, as we do here, is tantamount to
postulating from the beginning that the FEs and the (violated) Slavnov–Taylor identities hold, for
nonexceptional momenta, also in the limit Λ→ 0.

By definition, the characteristic function of a finite measure dν is its Fourier transform, see, e.g.,
Dalecky and Fomin (1991) and Glimm and Jaffe (1987),

χ(K)B
∫

dν(Φ) e
i
~K ·Φ. (31)

We consider a Gaussian measure dνΛΛ0 with a characteristic function

χΛΛ0 (j, b, η̄, η)= e
1
~ 〈η̄,SΛΛ0η〉− 1

2~ 〈j,C
ΛΛ0 j〉− 1

2~ξ 〈b,b〉, (32)

and we denote as usual

(CΛΛ0 j)µ(x)=
∫

d4y CΛΛ0
µν (x, y)jν(y), (33)

CΛΛ0
µν (x, y)=

∫
d4p

(2π)4
eip(x−y)CΛΛ0

µν (p), (34)

where in momentum space the regularized propagators are defined by the expressions

Cµν(p)B
1

p2
(δµν + (ξ − 1)

pµpν
p2

), CΛΛ0
µν (p)BCµν(p)σΛΛ0 (p2), (35)

S(p)B
1

p2
, SΛΛ0 (p)BS(p)σΛΛ0 (p2), (36)

σΛΛ0 (s)BσΛ0 (s) − σΛ(s), σλ(s)B exp(−
s2

λ4
). (37)

For shortness, we will also write C−1
ΛΛ0

instead of (CΛΛ0 )−1. The parameters Λ and Λ0, such that
0 <Λ 6Λ0, are, respectively, IR and UV cutoffs.

Definition 1. Let dµΛΛ0 be the measure defined by

dµΛΛ0 (A, B, c, c̄)B dνΛΛ0 (A, B − i
1
ξ
∂A, c, c̄). (38)

For Φ= (A, B, c, c̄) and K = (j, b, η̄, η) and an infinitesimal variation δΦ= (δA, 0, δc, δc̄), using the
properties of Gaussian measures from Appendix A, we have

dµΛΛ0 (Φ + δΦ)=dµΛΛ0 (Φ)
(
1 +

1
~
〈c̄, S−1

ΛΛ0
δc〉 +

1
~
〈δc̄, S−1

ΛΛ0
c〉

−
1
~
〈A, C−1

ΛΛ0
δA〉 −

1
~
〈i∂(B − i

1
ξ
∂A), δA〉

)
. (39)

Definition 2. The free partition function ZΛΛ0
0 is defined by

ZΛΛ0
0 (K)B

∫
dµΛΛ0 (Φ)e

1
~K ·Φ. (40)

 16 February 2024 08:13:49



093503-7 Efremov, Guida, and Kopper J. Math. Phys. 58, 093503 (2017)

It follows that

ZΛΛ0
0 (j, b, η̄, η)= χΛΛ0 (−i j −

1
ξ
∂b,−i b,−i η̄,−i η), (41)

ZΛΛ0
0 (K)= e

1
2~ 〈K ,CΛΛ0 K〉, (42)

where CΛΛ0 is a 7 × 7 matrix,

CΛΛ0 B

*......
,

CΛΛ0
µν , SΛΛ0 pµ, 0, 0

−SΛΛ0 pν ,
1
ξ

(1 − σΛΛ0 ), 0, 0

0, 0, 0, −SΛΛ0

0, 0, SΛΛ0 , 0

+//////
-

. (43)

For Λ<Λ0, CΛΛ0 is invertible,

C−1
ΛΛ0
=

*......
,

C−1
ΛΛ0;µν −

1
ξ

pµpν , −pµ, 0, 0

pν , ξ, 0, 0
0, 0, 0, S−1

ΛΛ0

0, 0, −S−1
ΛΛ0

, 0

+//////
-

. (44)

We write the bosonic part of C−1
ΛΛ0

as PT QΛΛ0 P, where P is a diagonal matrix with Pµµ = |p| for each

index µ ∈ {1, . . . , 4} and P55 = 1. The eigenvalues qα of QΛΛ0 are

q1,2,3 =σ
−1
ΛΛ0

, q4,5 =
ξΛΛ0 ± (ξ2

ΛΛ0
− 4σ−1

ΛΛ0
)

1
2

2
, ξΛΛ0 B ξ +

1
ξ

(σ−1
ΛΛ0
− 1).

The fact that the real part of these eigenvalues is positive is known to be a prerequisite for the definition
of a Gaussian measure for the bosonic part of the theory.

A useful relation follows from (32) and (41),∫
dµΛΛ0 (Φ) B e

1
~K ·Φ =

1
ξ

∫
dµΛΛ0 (Φ) (b + i∂A) e

1
~K ·Φ. (45)

Definition 3. The partition function ZΛΛ0 of SU(2) Yang–Mills field theory is given by

ZΛΛ0 (K)B
∫

dµΛΛ0 (Φ) e−
1
~LΛ0Λ0 e

1
~K ·Φ, LΛ0Λ0 B

∫
d4x LΛ0Λ0 . (46)

The interaction Lagrangian density LΛ0Λ0 :=LΛ0Λ0
0 + LΛ0Λ0

ct is given by (30) and

LΛ0Λ0
0 B gεabc(∂µAa

ν)Ab
µAc

ν +
g2

4
εcabεcdsA

a
µAb

νAd
µAs

ν − gεabc(∂µ c̄a)Ab
µcc. (47)

Since we restrict to perturbation theory, all generating functionals are formal series in terms of ~ and
of their source/field arguments. We also emphasize that LΛ0Λ0

0 does not depend on the B field.
From the expression for C−1

0∞ and Eq. (47), one deduces the full tree level Lagrangian density

Ltot
0 =

1
4

FµνFµν +
ξ

2
B2 − iB∂µAµ − ∂µ c̄Dµc. (48)

The Lagrangian density Ltot
0 is invariant under the infinitesimal BRST transformation (Tyutin, 1975

and Becchi et al., 1975),

δBRSA= ε Dc, δBRSc= ε
1
2

ig{c, c}, δBRS c̄= ε iB, δBRSB= 0, (49)

where ε is a Grassmann parameter, and {c, c}d = iεabdcacb. Defining the classical operator s by
δBRSΦ= εsΦ, one shows that s is nilpotent.
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Definition 4. The generating functional of the Connected Schwinger (CS) functions is

e
1
~WΛΛ0 (K)BZΛΛ0 (K). (50)

The derivation of the FE is usually given considering the generating functional LΛΛ0 of the Connected
Amputated Schwinger (CAS) functions.

Definition 5. The generating functional LΛΛ0 of CAS functions is

e−
1
~LΛΛ0 (Φ)B

∫
dµΛΛ0 (Φ′) e−

1
~LΛ0Λ0 (Φ′+Φ). (51)

From Definition 2, we have for any polynomial P(Φ),

d
dΛ

∫
dµΛΛ0 (Φ)P(Φ)= ~

∫
dµΛΛ0 (Φ)〈

δ

δΦ
, 1̂Ċ

ΛΛ0 δ

δΦ
〉P(Φ), (52)

where

(1̂)φφ′ =



−δφφ′ if φ, φ′ ∈ {c, c̄},

δφφ′ otherwise.
(53)

Using Eq. (52), one obtains the FE, see, for instance, Glimm and Jaffe (1987) and Keller et al. (1992),

L̇ΛΛ0 (Φ)=
~

2
〈
δ

δΦ
, 1̂Ċ

ΛΛ0 δ

δΦ
〉LΛΛ0 −

1
2
〈
δLΛΛ0

δΦ
, 1̂Ċ

ΛΛ0 δLΛΛ0

δΦ
〉. (54)

From Appendix A on Gaussian measures, it follows that

dµΛΛ0 (Φ − CΛΛ0δΦ)= dµΛΛ0 (Φ)e−
1

2~ 〈δΦ,CΛΛ0 δΦ〉e
1
~ 〈δΦ,Φ〉. (55)

This gives the relation between the generating functionals WΛΛ0 and LΛΛ0 ,

WΛΛ0 (K)=
1
2
〈K , CΛΛ0 K〉 − LΛΛ0 (1̂c̄CΛΛ0 K), (56)

where

(1̂c̄)φφ′ =



−1 if φ= φ′ = c̄,

δφφ′ otherwise,
(1̂c)φφ′ =




−1 if φ= φ′ = c,

δφφ′ otherwise.
(57)

Definition 6 (Legendre transform). For 0 <Λ<Λ0, let KΛΛ0 (Φ) be a solution of the system of
equations

A −
δWΛΛ0

δj
���KΛΛ0 (Φ)

= 0, B −
δWΛΛ0

δb
���KΛΛ0 (Φ)

= 0, (58)

c −
δWΛΛ0

δη̄
���KΛΛ0 (Φ)

= 0, c̄ +
δWΛΛ0

δη
���KΛΛ0 (Φ)

= 0. (59)

The effective action is

Γ
ΛΛ0 (Φ)BKΛΛ0 (Φ) · Φ −WΛΛ0 (KΛΛ0 (Φ)). (60)

A solution of the system of Eqs. (58) and (59) always exists as a formal series in ~ and in the fields.
Same statement for the system (61).

Definition 7. For 0 <Λ 6Λ0, let ΦΛΛ0 (Φ) be a solution of the equation

Φ=

(
Φ − CΛΛ0

δLΛΛ0

δΦ

)
���ΦΛΛ0 (Φ)

. (61)
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The reduced effective action is

ΓΛΛ0 (Φ)B
(
LΛΛ0 (Φ) −

1
2
〈
δLΛΛ0

δΦ
, 1̂CΛΛ0

δLΛΛ0

δΦ
〉
) ���ΦΛΛ0 (Φ)

. (62)

From Definitions 6 and 7, it follows that for 0 <Λ<Λ0,

ΓΛΛ0 (Φ)= ΓΛΛ0 (Φ) −
1
2
〈Φ, C−1

ΛΛ0
Φ〉, (63)

Φ
ΛΛ0 (Φ)= 1̂c̄CΛΛ0 KΛΛ0 (Φ), (64)

ΓΛΛ0 (Φ)=
(
LΛΛ0 (Φ) −

1
2
〈(Φ − Φ), C−1

ΛΛ0
(Φ − Φ)〉

) ���ΦΛΛ0 (Φ)
. (65)

Using Eq. (61), we observe that, before the replacement, the rhs of (65), as a function of Φ for fixed
Φ, has an extremum at Φ=ΦΛΛ0 (Φ). Applying ∂Λ to Eq. (65), substituting L̇ with the rhs of (54) and
using the property of extremum, we obtain

Γ̇ΛΛ0 (Φ)=
~

2
〈
δ

δΦ
, 1̂Ċ

ΛΛ0 δ

δΦ
〉LΛΛ0 ���ΦΛΛ0 (Φ)

. (66)

Defining

WΛΛ0
q,−k B (2π)4 δ2WΛΛ0

δK(−q)δK(k)
Γ
ΛΛ0
q,−k B (2π)4 δ2ΓΛΛ0

δΦ(−q)δΦ(k)
, (67)

it is easy to observe that ∫
d4k WΛΛ0

q,−k 1̂c̄ Γ
ΛΛ0
k,−p 1̂c = δ(q − p). (68)

This implies that, using similar notations,

LΛΛ0
q,−p =

∫
d4k ΓΛΛ0

q,−k

(
δ(k − p) + 1̂CΛΛ0 (p)ΓΛΛ0

−p,k

)−1
. (69)

Eventually, one obtains the FE for the functional Γ and also for the functional Γχ with one operator
insertion of source χ,

Γ̇= ~
2
〈Ċ δφδφ̄Γ,

(
1 + 1̂C δφ̄δφΓ

)−1
〉, (70)

δχΓ̇= ~
2
〈Ċ

(
1 + δφ̄δφΓ C1̂

)−1
δχδφ̄δφΓ,

(
1 + 1̂C δφ̄δφΓ

)−1
〉, (71)

where φ, φ̄ ∈ {A, B, c, c̄}, and we omit appropriate sums over field labels. Generalization to
~χ = (χ1, . . . , χnχ ) with nχ > 1 is straightforward. The FE for Γ in a modern form has been intro-
duced by different authors (Wetterich, 1993; Bonini et al., 1993; Morris, 1994; Keller et al., 1997; and
Kopper and Müller, 2009). Flow equations with composite operator insertions have been introduced
in Keller and Kopper (1992).

The mass dimension of a vertex function Γ
~φ;w
~χ

(~p) with n fields φi ∈ {A, B, c, c̄}, nχ insertions of

sources χi and ‖w‖ momentum derivatives is d := 4 −
∑nχ

i [χi] −
∑n

i [φi] − ‖w‖, where [F] stands
for the mass dimension of F in position space. We say that such a term is irrelevant if d < 0, as, for
example, ΓAAc;w

γ for [γ]= 2, and relevant otherwise. Furthermore, we call a relevant term marginal
if d = 0, as, for example, ΓAAAA, or strictly relevant if d > 0.

Expanding in formal power series in ~, we have

ΓΛΛ0 (Φ)=
∞∑

l=0

~lΓΛΛ0
l (Φ). (72)

We also note that the FE, (70) and (71), admit an inductive structure in the loop number. This property
allows us to prove statements by induction, first establishing them at tree-level, then proving that if
they hold up to loop order l − 1 > 0 they are also valid at order l. The proposition that follows proves
that vertex functions Γ involving B fields do vanish. We use the notation B~φ to denote sequences of
field labels with φi ∈ {A, B, c, c̄}.
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Proposition 8. Assume vanishing renormalization conditions for all relevant terms with at least
one B field,

ΓB~φ;0Λ0;w
l (~q)= 0, (73)

where ~q is nonexceptional for marginal terms and vanishing otherwise. Then, for all B~φ, l, w, ~p, and
0 <Λ 6Λ0,

ΓB~φ;ΛΛ0;w
l (~p)= 0. (74)

Rank-2 marginal terms are tensors with two vector indices, say µ and ν, and can be decomposed in
the basis {δµν , qiµqjν }, where qi, qj range over all momenta in ~q other than q0. For rank-2 marginal
terms, only the coefficient of δµν is set to zero in (73).

Proof. We prove the statement by induction, increasing in the loop order, l − 1 7→ l. Given l, we
proceed by descending from wmax in the number of derivatives, ‖w‖ 7→ ‖w‖ −1. For fixed l and w, all

possible terms ΓB~φ;w
l are considered. By construction, for fixed l and B~φ, the inductive scheme deals

first with the irrelevant terms and continues, if they exist, with the marginal terms, followed by more

and more relevant terms. The identity ΓB~φ;ΛΛ0;w
0 (~p)= 0 follows from the definition of Γ. Assume that

the statement of the theorem holds up to loop order l − 1 > 0. It follows that at order l the rhs of the
FE for vertex functions with B fields vanishes. Using the FE, we integrate the irrelevant terms from

Λ0 downward to arbitrary Λ> 0. The boundary conditions ΓB~φ;Λ0Λ0;w
l (~p)= 0 and the vanishing of

the rhs of the FE imply that all irrelevant terms with B fields vanish at loop order l. The boundary

conditions ΓB~φr ;0Λ0;w
l (~q)= 0 and the vanishing of the rhs of the FE imply that all marginal terms

vanish at their renormalization point for arbitrary Λ> 0. The derivatives with respect to momenta

of marginal terms are irrelevant terms. Consequently, we conclude that the marginal ΓB~φ;ΛΛ0;w
l (~p)

vanish for all ~p. Similar arguments hold for all strictly relevant terms. �

In the following, we will always adopt the renormalization conditions (73). Consequently,
counterterms involving B fields are not generated.

Let us denote by W̃ , Z̃ the functional W, Z with b set to zero,

W̃ (j, η̄, η)BW (j, 0, η̄, η), Z̃(j, η̄, η)BZ(j, 0, η̄, η). (75)

The covariance matrix C̃ is obtained from C (43) by removing the column and row which correspond
to b.

Proposition 9.

WΛΛ0 (j, b, η̄, η)=
1

2ξ
〈b, b〉 + W̃ΛΛ0 (j − i

1
ξ
∂b, η̄, η). (76)

Proof. Using the definition of the partition function ZΛΛ0 , one computes

ZΛΛ0 (j + i
1
ξ
∂b, b, η̄, η)= e−

1
~L

Λ0Λ0
χΛΛ0 (ij, ib, iη̄, iη), (77)

LΛ0Λ0 BLΛ0Λ0 (
δ

δj
,
δ

δη̄
,
δ

δη
). (78)

From definition (32), it follows

ZΛΛ0 (j + i
1
ξ
∂b, b, η̄, η)= e

1
2~ξ 〈b,b〉e−

1
~L

Λ0Λ0 e−
1
~ 〈η̄,SΛΛ0η〉+ 1

2~ 〈j,C
ΛΛ0 j〉. (79)

Observing that the expression multiplying e
1

2~ξ 〈b,b〉 is Z̃ΛΛ0 (j, η̄, η), we obtain

ZΛΛ0 (j, b, η̄, η)= e
1

2~ξ 〈b,b〉Z̃ΛΛ0 (j − i
1
ξ
∂b, η̄, η). (80)

Taking the logarithm finishes the proof. �
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Substitution of WΛΛ0 (76) into the definition of ΓΛΛ0 (60) and integration by parts give

Γ
ΛΛ0 (A, B, c̄, c)= 〈b, B − i

1
ξ
∂A −

1
2

b〉 + Γ̃ΛΛ0 (A, c̄, c), (81)

Γ̃
ΛΛ0 (A, c̄, c)B 〈j, A〉 + 〈η̄, c〉 + 〈c̄, η〉 − W̃ΛΛ0 (j, η̄, η)���KΛΛ0 (Φ)

. (82)

From Definition 6, it follows that b= ξB − i∂A. Consequently, the above expression becomes

Γ
ΛΛ0 (A, B, c̄, c)=

1
2ξ
〈ξB − i∂A, ξB − i∂A〉 + Γ̃ΛΛ0 (A, c̄, c). (83)

Differentiation with respect to A yields an important identity,

Corollary 10.
δΓΛΛ0

δAa
µ

= i∂µ(Ba − i
1
ξ
∂Aa) +

δΓ̃ΛΛ0

δAa
µ

. (84)

For Φ̃ := (Aa
µ, ca, c̄a), the functional Γ̃ΛΛ0 (Φ̃) is defined from LΛΛ0 (Φ̃) in analogy with (62). For

0 <Λ<Λ0, it follows that

Γ̃
ΛΛ0 (Φ̃)= Γ̃ΛΛ0 (Φ̃) +

1
2
〈Φ̃, C̃

−1
ΛΛ0

Φ̃〉. (85)

Substituting (63) and (85) into (83) yields ΓΛΛ0 (Φ)= Γ̃ΛΛ0 (Φ̃). Note also that at Λ=Λ0, we have
Φ=Φ and

ΓΛ0Λ0 (Φ)=LΛ0Λ0 (Φ)=LΛ0Λ0 (Φ̃)= Γ̃Λ0Λ0 (Φ̃)=
∫

d4x (LΛ0Λ0
0 + LΛ0Λ0

ct ). (86)

D. Violated Slavnov–Taylor identities

We are working in a framework where gauge invariance is broken already in the classical
lagrangian due to the gauge fixing term. It has then been realized that invariance of the lagrangian
under the BRST transformations ensures the gauge invariance of physical quantities to be calculated
from the theory (Nielsen, 1975 and Piguet and Sibold, 1985). On the level of correlation functions
(Green’s functions in the relativistic theory), this invariance leads to a system of identities between
different correlation functions which are called Slavnov–Taylor identities (STI) (Zinn-Justin, 1975;
Slavnov, 1972; and Taylor, 1971). These identities may be used to argue that physical quantities
obtained from these functions, as, for example, the pole of the propagators for all physical fields of
the Standard Model, are gauge invariant (Gambino and Grassi, 2000).

In our framework, gauge invariance is also violated in an even more serious way by the presence of
the regulators in (35) and (36). We want to show that for a suitable class of renormalization conditions,
which does not restrict the freedom in fixing the physical coupling constant and the normalization of
the fields, gauge invariance can be recovered in the renormalized theory. This means that we want to
show that the STI hold once we take the limits Λ→ 0 and Λ0→∞.

The first step is then to write a system of violated STI suitable for our subsequent analysis of
their restoration. To do so, we thus analyse the behavior of the regularized generating functionals of
the correlation functions under BRST transformations. The infinitesimal BRST transformations can
be generated by composite operator insertions for which we also have a freedom of normalization,
as encoded by the constants Ri introduced below Kopper and Müller (2009).

We derive the violated STI setting Λ= 0. Remember the comments in the beginning of Sec. II C
as regards the implications of this choice for the generating functionals on the IR side. We consider
the functional Z0Λ0

vst defined with the modified Lagrangian density

LΛ0Λ0
vst BLΛ0Λ0 + γψΛ0 + ωΩΛ0 , LΛ0Λ0

vst B

∫
d4x LΛ0Λ0

vst , (87)
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where γ and ω are external sources, and

ψΛ0 BRΛ0
1 ∂c − igRΛ0

2 [A, c], Ω
Λ0 B

1
2i

gRΛ0
3 {c, c}, RΛ0

i = 1 + O(~). (88)

The requirement that, at zero loop order, ψΛ0 and ΩΛ0 correspond to the classical BRST variation
implies that the constants RΛ0

i are equal to one at the tree level. At higher orders, we admit countert-
erms for the BRST transformation (Kopper and Müller, 2009). Performing the change of variables
Φ 7→Φ + δεΦ, we obtain the identity

−~

∫
δε (dµ0Λ0 e−

1
~L

Λ0Λ0
vst ) e

1
~K ·Φ =

∫
dµ0Λ0 e−

1
~L

Λ0Λ0
vst + 1

~K ·ΦK · δε (Φ), (89)

where

δεAB ε σ0Λ0 ∗ ψ
Λ0 , δεcB−ε σ0Λ0 ∗Ω

Λ0 , δε c̄B ε σ0Λ0 ∗ iB. (90)

Using formula (39) for an infinitesimal change of variables and substituting the variation δεΦ with
its explicit form (90), we have

−~ δε (dµ0Λ0 (Φ))= dµ0Λ0 (Φ) ε IΛ0
1 (Φ), (91)

−~ δε (e−
1
~L

Λ0Λ0
vst (Φ))= e−

1
~L

Λ0Λ0
vst (Φ)ε IΛ0

2 (Φ), (92)

where

IΛ0
1 (Φ)B〈A, C−1ψΛ0〉 − 〈c̄, S−1

Ω
Λ0〉 − i〈B, S−1c〉

+ i〈∂(B − i
1
ξ
∂A),σ0Λ0 ∗ ψ

Λ0〉, (93)

IΛ0
2 (Φ)B〈σ0Λ0 ∗

δLΛ0Λ0

δA
,ψΛ0〉 − 〈σ0Λ0 ∗

δLΛ0Λ0

δc
,ΩΛ0〉

+ i〈B,σ0Λ0 ∗
δLΛ0Λ0

δc̄
〉 + 〈γ, QΛ0

ργ〉 + 〈ω, QΛ0
ρω〉, (94)

QΛ0
ργa

µ
Bg(RΛ0

3 − RΛ0
2 )εabs(σ0Λ0 ∗ ψ

Λ0 )b
µcs

+ gRΛ0
1 RΛ0

3 εabs(cs(σ0Λ0 ∗ ∂µcb) − σ0Λ0 ∗ (cs∂µcb))

+ g2RΛ0
2 RΛ0

3 εaseεebt((σ0Λ0 ∗ (Ab
µct))cs − Ab

µ(σ0Λ0 ∗ (ctcs))), (95)

QΛ0
ρωa B(gRΛ0

3 )2cs(σ0Λ0 ∗ (cacs)). (96)

The terms QΛ0
ργ and QΛ0

ρω originate from the variations δε (γψΛ0 ) and δε (ωΩΛ0 ), see (87). Substituting

B 7→ 1
ξ (b + i∂A), see (45), in both terms IΛ0

i , we get

∫
dµ0Λ0 IΛ0

i e−
1
~L

Λ0Λ0
vst + 1

~K ·Φ =

∫
dµ0Λ0 JΛ0

i e−
1
~L

Λ0Λ0
vst + 1

~K ·Φ, (97)

where

JΛ0
1 (Φ)B 〈A, C−1ψΛ0〉 − 〈c̄, S−1

Ω
Λ0〉 +

1
ξ
〈∂A, S−1c〉

− i
1
ξ
〈b, S−1c + σ0Λ0 ∗ ∂ψ

Λ0〉, (98)

JΛ0
2 (Φ)B 〈σ0Λ0 ∗

δLΛ0Λ0

δA
,ψΛ0〉 − 〈σ0Λ0 ∗

δLΛ0Λ0

δc
,ΩΛ0〉

+ i
1
ξ
〈b + i∂A,σ0Λ0 ∗

δLΛ0Λ0

δc̄
〉 + 〈γ, QΛ0

ργ〉 + 〈ω, QΛ0
ρω〉. (99)
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Introducing the operators QΛ0
ρ and QΛ0

β ,

QΛ0
ρ B

δLΛ0Λ0

δAµ
σ0Λ0 ∗ ψ

Λ0
µ −

δLΛ0Λ0

δc
σ0Λ0 ∗Ω

Λ0 −
1
ξ

δLΛ0Λ0

δc̄
σ0Λ0 ∗ ∂A

+ AC−1ψΛ0 − c̄S−1
Ω
Λ0 +

1
ξ
∂AS−1c, (100)

QΛ0
β Bσ0Λ0 ∗

( δLΛ0Λ0

δc̄
− ∂ψΛ0

)
− S−1c, (101)

we have

JΛ0
1 + JΛ0

2 = i
1
ξ
〈b, QΛ0

β 〉 + 〈γ, QΛ0
ργ〉 + 〈ω, QΛ0

ρω〉 +
∫

d4x QΛ0
ρ (x). (102)

We may now express the lhs of (89) as

ε

∫
dµ0Λ0 (JΛ0

1 + JΛ0
2 ) e−

1
~L

Λ0Λ0
vst + 1

~K ·Φ =−ε DZ0Λ0
aux

���ρ,β=0
, (103)

where

DB
∫

d4x ~
δ

δρ(x)
+ i

1
ξ
〈b, ~

δ

δ β
〉, (104)

Z0Λ0
aux B

∫
dµ0Λ0 (Φ) e−

1
~L

Λ0Λ0
aux + 1

~K ·Φ, (105)

LΛ0Λ0
aux BLΛ0Λ0

vst + ρQΛ0
ρ + ργa

µQΛ0
ργa

µ
+ ρωaQΛ0

ρωa + βQΛ0
β . (106)

Defining

SB 〈j,σ0Λ0 ∗ ~
δ

δγ
〉 + 〈η̄,σ0Λ0 ∗ ~

δ

δω
〉 − i〈σ0Λ0 ∗ ~

δ

δb
, η〉, (107)

we write the rhs of (89) in the following form:∫
dµ0Λ0 e−

1
~L

Λ0Λ0
vst + 1

~K ·ΦK · δεΦ=−ε SZ0Λ0
vst =−ε SZ0Λ0

aux
���ρ,β=0

. (108)

Using Eqs. (103) and (108), we write identity (89) as follows:

DZ0Λ0
aux

���ρ,β=0
=SZ0Λ0

aux
���ρ,β=0

. (109)

Then we perform the Legendre transform on the auxiliary functional Waux := ~ log Zaux. This defines
the functional Γaux, from which are obtained Γ̃aux, see (83), and the functionals

Γ̃0Λ0
χ B

δΓ̃0Λ0
aux

δ χ
���χ=0

, Γ̃0Λ0
1 B

∫
d4x Γ̃0Λ0

ρ(x), (110)

where χ ∈ {ρ, β}, and γ and ω are arbitrary. Equation (109) then gives

Γ̃0Λ0
1 + 〈(iB +

1
ξ
∂A), Γ̃0Λ0

β 〉=
1
2
SΓ0Λ0 , (111)

where

Γ
0Λ0 B i〈B, ω̄〉 + Γ̃

0Λ0 , Γ̃
0Λ0 B Γ̃0Λ0 +

1
2ξ
〈A, ∂∂ A〉, (112)

and S :=Sc̃ + SA − Sc, with

SAB 〈
δΓ0Λ0

δA
,σ0Λ0 ∗

δ

δγ
〉 + 〈

δΓ0Λ0

δγ
,σ0Λ0 ∗

δ

δA
〉, (113)

Sc̃B 〈
δΓ0Λ0

δc̃
,σ0Λ0 ∗

δ

δω̄
〉 + 〈

δΓ0Λ0

δω̄
,σ0Λ0 ∗

δ

δc̃
〉, (114)

ScB 〈
δΓ0Λ0

δc
,σ0Λ0 ∗

δ

δω
〉 + 〈

δΓ0Λ0

δω
,σ0Λ0 ∗

δ

δc
〉, (115)

δ

δc̃
B

δ

δc̄
− ∂

δ

δγ
. (116)
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We rewrite Eq. (111) in the following form:

〈iB, Γ̃0Λ0
β 〉=

1
2
Sc̃Γ

0Λ0 = 〈iB,σ0Λ0 ∗
δ

δc̃
Γ̃

0Λ0
〉, (117)

F̃
0Λ0
1 =

1
2

S̃Γ̃
0Λ0 , (118)

where

S̃BSA − Sc, F̃
0Λ0
1 B Γ̃0Λ0

1 +
1
ξ
〈∂A, Γ̃0Λ0

β 〉. (119)

The introduction of the functional Γ̃ leads to relation (118) and to the consistency condition given

in (121). They are important in the analysis of the renormalization conditions for Γ̃0Λ0;~φ
1 , see

Sec. V.
An algebraic computation shows that

(SiSj + SjSi)Γ
0Λ0 = 0, ∀i, j ∈ {A, c, c̃}. (120)

Consequently S̃2Γ̃
0Λ0 = 0. Thus application of the operator S̃ to Eq. (118) yields

S̃F̃
0Λ0
1 = 0. (121)

Using again (120), we also have

1
2

(S̃Sc̃ + Sc̃S̃)Γ0Λ0 = 0, and thus S̃Γ̃β + σ0Λ0 ∗
δ

δc̃
F̃

0Λ0
1 = 0. (122)

Finally, we set γ,ω = 0 in (117) and (118) to get the AGE and the STI,

Γ̃0Λ0
β =σ0Λ0 ∗

( δΓ̃0Λ0

δc̄
− ∂Γ̃

0Λ0
γ

)
(AGE), (123)

F̃
0Λ0
1 = 〈

δΓ̃
0Λ0

δA
,σ0Λ0 ∗ Γ̃

0Λ0
γ 〉 − 〈

δΓ̃
0Λ0

δc
,σ0Λ0 ∗ Γ̃

0Λ0
ω 〉 (STI). (124)

The goal is to show that Γ̃0∞
β = 0 and Γ̃0∞

1 = 0, in the sense of Theorems 3 and 4. In Appendix G, we
give a version of these two equations valid for 0 <Λ<Λ0.

1. The antighost equation

In this section, we extend the AGE for arbitrary Λ ∈ [0,Λ0]. In notations (11), (75), and (110)
and with LΛ0Λ0

aux given in (106), we have

−W̃ΛΛ0
β Z̃ΛΛ0

vst =−~
δ

δ β
Z̃ΛΛ0

aux
���ρ,β=0

=

∫
d µ̃QΛ0

β e−
1
~L

Λ0Λ0
vst + 1

~ K̃ ·Φ̃, (125)

where d µ̃ := dµΛΛ0 (Φ̃), Φ̃ := (A, c, c̄), and K̃ := (j, η̄, η). Integration by parts, see (A11), yields∫
d µ̃ *

,

δLΛ0Λ0
vst

δc̄
− S−1

ΛΛ0
c − η+

-
e−

1
~L

Λ0Λ0
vst + 1

~ K̃ ·Φ̃ = 0. (126)

From definition (87), we also have
δLΛ0Λ0

vst

δc̄
=
δLΛ0Λ0

δc̄
. (127)

Substituting Qβ from (101) into (125), then using (126) and (127), and putting γ,ω = 0, we obtain

−W̃ΛΛ0
β =σ0Λ0 ∗

(
S−1
ΛΛ0

δW̃ΛΛ0

δη̄
+ η + ∂W̃ΛΛ0

γ

)
− S−1 δW̃ΛΛ0

δη̄
. (128)

Finally, we perform the Legendre transform

Γ̃ΛΛ0
β =σ0Λ0 ∗

(
S−1
ΛΛ0

c +
δΓ̃ΛΛ0

δc̄
− ∂Γ̃ΛΛ0

γ

)
− S−1c

=σ0Λ0 ∗
( δΓ̃ΛΛ0

δc̄
− ∂Γ̃ΛΛ0

γ

)
− S−1c. (129)

 16 February 2024 08:13:49



093503-15 Efremov, Guida, and Kopper J. Math. Phys. 58, 093503 (2017)

One can also prove identity (129) by noting that its lhs and the Γ-functionals on the rhs obey FEs
of form (71). Moreover, identity (123) implies that both sides have the same boundary condition at
Λ= 0.

III. MOMENTUM BOUNDS

From now on, we use the following conventions:

� 0 <Λ 6Λ0, unless otherwise stated.
� M is a fixed mass parameter such that 0 <M 6Λ0.
� We omit the tilde for all vertex functions and insertions, for example, Γ̃ ~φ;w 7→ Γ

~φ;w , Γ̃~φ;w 7→Γ~φ;w ,

and Γ̃
~φ;w
χ 7→ Γ

~φ;w
χ .

� We use A, c, and c̄ instead of A, c, and c̄, respectively.
� A tensor monomial is a tensor product of Kronecker δ’s and momentum variables in

p := (p1, . . . , pn−1), for example, δµνp1ρp2σ . Let {δspk } be the set of all monomials being a prod-
uct of s Kronecker δ’s and k momenta pi and let {δspk }r be the union of the sets {δspk } such that
r equals the rank of the monomials: r = 2s + k. For example, {δ2}4 = {δµνδρσ , δµσδρν , δµρδνσ }.

� For ~p ∈ Pn, we define the η-function by

η(~p)B min
S∈℘n−1\{∅}

(|
∑
i∈S

pi |, M), (130)

where ℘n−1 denotes the power set of [n � 1] (the sum does not include p0 =−
∑n−1

1 pi). A
momentum configuration ~p is nonexceptional iff η(~p), 0 and exceptional otherwise.

� For a fixed constant c such that 0 < c < 1, we define

MnB {~p ∈ Pn : η(~p)> cM and p2
i 6M2 ∀i ∈ [n − 1]}. (131)

Every ~p ∈Mn is nonexceptional.
� ∀n > 2, a momentum configuration ~p ∈Mn is symmetric iff ~p ∈Ms

n,

Ms
nB {~p ∈Mn : pipj =

M2

n − 1
(n δij − 1)∀i, j ∈ [n − 1]}. (132)

� ∀n > 3, a momentum configuration ~p ∈Mn is coplanar iff ~p ∈Mcp
n ,

Mcp
n B {~p ∈Mn : dim(span(p0, . . . , pn−1))= 2}. (133)

� In the following, a renormalization point is denoted by ~q ∈ Pn. See Appendix H for the list of
all relevant terms and their renormalization points.

A. Weighted trees

The bounds on the vertex functions presented in Sec. III B are expressed in terms of sets of
weighted trees that are introduced by Definitions 11 and 12 below. As seen from (152), to each edge
e of a weighted tree is associated a factor (|pe | +Λ)−θ(e), pe being the momentum traversing the edge
and θ(e) being the θ-weight of the edge, expressed as a sum of the ρ and σ-weights of the edge,
see (139). The relation (141) expresses the fact that the total θ-weight of a tree is in agreement with
power counting. Nonvanishing σ-weights are introduced in order to define viable tree bounds for
momentum derived vertex functions. The definition of the σ-weight is inspired by how momentum
derivatives are distributed along a tree, taking care of momentum conservation. Before giving the
definition of the weighted trees, we set up some necessary notations.

� A tree τ is a connected graph with no cycles. The sets of vertices and edges of a tree τ are
denoted, respectively, by V (τ) and E(τ), or shortly V, E. In the following, the terms “edge” and
“line” are equivalent.

� Let Vm be the set of vertices of valence m. Then, V =
⋃

m>1 Vm.
� Let E1 be the set of edges incident to vertices of valence 1. In other words, E1 is the set of

external edges.
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� Each tree has a bijection ψ : {0, . . . , n − 1}→V1, i 7→ vi and a sequence of n field labels
~ϕ= (ϕ0, . . . , ϕn−1), ϕi ∈ {A, c, c̄, γ,ω, β}, and n = |V1|. The field label ϕi defines the type of
the vertex vi ∈ V1. Let Vϕ ⊆ V1 be the set of all vertices of type ϕ, for example, VA. Furthermore,
let Eϕ ⊆ E1 be the set of all edges incident to vertices in Vϕ , for example, E< with < ∈ {γ,ω}.

When needed, the edges are labeled by integers and the vertices by symbols. The edge incident
to a vertex vi ∈ V1 has the same index i. As an example, for the tree above, we have

V = {c0, A1, A2, c̄3, u, u′}, V3 = {u′, u},
V1 = {c0, A1, A2, c̄3}, VA = {A1, A2}, Vc̄ = {c̄3}, Vc = {c0},
E1 = {0, 1, 2, 3}, EA = {1, 2}, Ec̄ = {3}, Ec = {0}.

� Recalling the definition of Pn in (16), for every edge e ∈ E and vertex v ∈ V1, the momentum
assignments pe, pv are functions from the set Pn to R4, with n = |V1|, defined by the following
construction:

(a) label the vertices in V1 by means of ψ : i 7→ vi and set pvi (~p) := pi;
(b) apply momentum conservation to all vertices to get pe(~p).

We use similar notations for multi-indices: wv := wψ−1(v) for w ∈Wn and v ∈ V1. Given the
momentum assignments, a set-valued function K on E is defined by

KeB {v ∈ V1\{v0} :
∂pe

∂pv
, 0}. (134)

For the tree given above, we have pc0 =−(pA1 + pA2 + pc̄3 ) and

K0 = {A1, A2, c̄3}, K1 = {A1}, K2 = {A2}, (135)

K3 = {c̄3}, K4 = {A1, A2}. (136)

Some additional structure is needed, always in view of the bounds.

� The vertices in V3 are additionally labeled either as “regular” (•) or as “hollow” (◦). The sets
of regular and hollow vertices are, respectively, denoted by V• and V◦; hence V3 =V• ∪ V◦. In
terms of our bounds, regular vertices do change the ρ-weight of incident edges, while hollow
vertices do not, see Definition 13. We use hollow vertices for the bounds on 3-point functions
and in the proof of the theorems, see, for example, Sec. IV B on the junction of weighted trees
and Definition 23.

� Edges carry zero or more labels “*.” Edges are referred to as “*-edges” if they have one or
more labels “*,” and as “regular edges” otherwise. The set of all *-edges is denoted by E∗. The
*-edges play a special role in our bounds because to each e ∈ E∗ is associated a supplementary
factor |pe | + Λ, see (152) and Theorem 4.

Definition 11. Let be given a sequence of n > 3 field labels, ~ϕ= (ϕ0, . . . , ϕn−1), with
ϕi ∈ {A, c, c̄, γ,ω, β}. Let T~ϕ denote the set of all trees that satisfy the following rules:

� There is a bijection ψ : {0, . . . , n − 1}→V1. Each vi ∈ V1 has type ϕi.
� V =V1 ∪ V3.
� If n = 3, then V3 =V◦.
� |E∗ | ∈N.
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Definition 12. In the notations of Definition 11, let T(s)
~ϕ

denote the set of all trees in T~ϕ with
total number of labels “*” equal to s and such that V3 =V• whenever n > 3. For shortness, we set
T~ϕ := T(0)

~ϕ
and T1~ϕ := T(1)

~ϕ
.

As an example, below we show two trees, τ3 ∈ T1cAA and τ7 ∈ Tβccc̄AAA.

Definition 13. Fix a tree from T~ϕ . A ρ-weight is a function ρ : E→{0, 1, 2} with the following
properties:

1. ∀e ∈ E1, ρ(e)= 0.
2. There exists a map χ : V•→E\E1 such that

(a) if χ(v)= e, then e is incident to v;
(b) ∀e ∈ E\E1, ρ(e)= 2 − ���χ

−1({e})��� .

Definition 14. Let be given a tree from T~ϕ and w ∈Wn, with n = |V1|. A σ-weight is a function
σ : E→N defined by

σ(e)B
∑
v∈V1

σv(e), (137)

where (σv : E→N)v∈V1 is a family of functions such that∑
e∈E

σv(e)= wv , σv(e)= 0 if v <Ke. (138)

By definition (21), w0 = 0 for every w ∈Wn. Hence, σv0 (e)= 0, ∀e ∈ E.

Definition 15. Let be given a tree τ ∈T~ϕ and w ∈Wn, with n = |V1|. A θ-weight is a function
θ : E→N defined by

θ(e)B ρ(e) + σ(e), (139)

where ρ and σ are a ρ-weight and a σ-weight corresponding to w, respectively. The pair (τ, θ) is a
weighted tree. The total θ-weight of (τ, θ) is

θ(τ)B
∑
e∈E

θ(e). (140)

The set of all θ-weights corresponding to given τ and w is denoted by Θwτ .

For every tree τ ∈ T(s)
~ϕ

with n > 4, the total θ-weight is given by the formula

θ(τ)= n + ‖w‖ − 4. (141)

This relation follows from Definitions 12–14, which give the sum rule
∑

e∈E θ(e)= ‖w‖ + 2|E \ E1 |

− |V3 |, and from the relations |E \ E1 | − |V3 | + 1= 0 and |V3| = n � 2.
As an example, we consider three trees τ1, τ2, τ3 ∈ TAAAA. We give three different weights θa, θb,

and θc, which all correspond to the derivative with respect to the momentum p1, literally w1 = 1 and
w = (0, 1, 0, 0). We find a family of weighted trees {(τi, θ) : θ ∈Θwτi

}i∈{1,2,3}, where

Θ
w
τ3
=Θwτ1

= {θa, θb, θc}, Θ
w
τ2
= {θa, θc}. (142)
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B. Theorems

We always assume that the renormalization constants are independent of Λ0 [though weakly
Λ0-dependent “renormalization constants” can also be accommodated for, see Keller et al. (1992)].
From now on, we denote ~< := (<1, . . . ., <n< ) with <i ∈ {γ,ω}, n< > 0.

Hypothesis RC1: We impose on all strictly relevant terms vanishing renormalization conditions at
zero momentum and Λ= 0,

Γ0Λ0;~φ;w
~< (0)= 0, if 2n< + n + ‖w‖ < 4. (143)

Hypothesis RC2: On the following marginal terms, we impose renormalization conditions at zero
momentum and Λ=M,

ΓMΛ0;cc̄cc̄(0)= 0, ΓMΛ0;cc̄AA(0)= 0, ∂AΓMΛ0;cc̄A(0)= 0, (144)

for the notation, see (23).

Remark that Bose–Fermi symmetry and translation invariance imply that ∂AΓMΛ0;cc̄A(0)= 0 iff
∂cΓMΛ0;Ac̄c(0)= 0. To prove Proposition 16 and Theorem 1, all remaining marginal renormalization
constants are chosen at Λ= 0 arbitrarily but in agreement with the global symmetries of the reg-
ularized theory: SU(2), Euclidean isometries ISO(4), ghost number conservation. For instance, all
renormalization conditions must comply with the vanishing of the ghost number violating functions,
like ΓΛ,Λ0;cccc or ΓΛ,Λ0

(<0,<1) for <i ∈ {γ,ω}. The list of the remaining marginal renormalization constants
follows literally from (E29) and appendix F.

Proposition 16. Assume the validity of hypotheses RC1 and RC2. For all sequences of n > 3 field
labels in {A, c, c̄} with φn−1 = c̄, denoted by ~φc̄, all w = (w ′, 0) ∈Wn, all (~p, 0) ∈ Pn, and all positive
Λ, Λ0 such that max(Λ, M) 6Λ0,

ΓΛΛ0;~φc̄;w(~p, 0)= 0. (145)

Note that in (145) the momentum of the indicated antighost c̄ vanishes, and there is no derivative
with respect to this momentum.

Proof. We prove the statement by induction, increasing in the loop order, l − 1 7→ l. Given l,
we proceed by descending from wmax in the number of derivatives, ‖w‖ 7→ ‖w‖ − 1. For fixed l

and w, all possible terms Γ~φc̄;w
l are considered. By construction, for fixed l and ~φc̄, the inductive

scheme deals first with the irrelevant terms and continues, if they exist, with the marginal terms,
followed by more and more relevant terms. Since the momentum of the antighost has been assumed
to vanish, the statement holds at loop order l = 0. The validity of the statement for all loop orders

smaller than l implies that Γ̇ΛΛ0;~φc̄;w
l (~p, 0)= 0. The irrelevant terms have vanishing boundary condi-

tions; hence ΓΛ0Λ0;~φc̄;w
l (~p, 0)= 0. Integrating the FE from Λ0 downwards to arbitrary Λ> 0, we get

ΓΛΛ0;~φc̄;w
l (~p, 0)= 0 for the irrelevant terms. Next, we consider the marginal terms. Since the corre-

sponding irrelevant terms have already been shown to vanish at a vanishing antighost momentum,
we use the Taylor formula to extend (144) to arbitrary momenta (~p, 0), still preserving the vanishing
antighost momentum. Then, we integrate the FE from M to arbitrary Λ> 0, which completes the

proof that ΓΛΛ0;~φc̄;w
l (~p, 0)= 0 for marginal terms. Similar arguments hold for all the strictly relevant

terms Γ~φc̄;w
l . �
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Corollary 17. The following counterterms vanish, see (30),

r0,c̄cAA
1 = 0, r0,c̄cc̄c = 0, r0,c̄cAA

2 = 0, r0,Ac̄c
2 = 0. (146)

Proof. Using (145), we have, for all p2, p3 ∈R4 and Λ=Λ0 (omitted),

Γcc̄cc̄(0, p2, p3)= 0, Γcc̄AA(0, p2, p3)= 0, ∂p2 ΓAc̄c(0, p2)= 0. (147)

Recall (86) and (30). �

Corollary 18. For all X ∈ {β, 1}, ~<, ~φc̄, w = (w ′, 0), ~p, and all positive Λ, Λ0 such that
max(Λ, M) 6Λ0,

ΓΛΛ0;~φc̄;w
X~< (~p, 0)= 0. (148)

Proof. It follows from the definitions of the inserted functions given in (87), (88), and (106)

that at the tree level ΓΛΛ0;~φc̄;w
X~<;l=0

(~p, 0)= 0. Then using Eq. (146), one shows that for all these terms we

have vanishing boundary conditions, ΓΛ0Λ0;~φc̄;w
X~<;l

(~p, 0)= 0 ∀l. Assuming that the statement is true at
the loop order l − 1 > 0, by induction in l, using (145) and integrating the FE from Λ0 to arbitrary Λ,
one shows that it holds at the loop order l. �

From now on, for simplicity of notation, we write P(k)
s to denote polynomials with nonnegative

coefficients and degree s where the superscript is a label to make one polynomial different from
another. We define

Pλ1λ2
s (~p)BP(0)

s

(
log+

max(|~p|, M)
λ1 + η(~p)

)
+ P(1)

s

(
log+

λ2

M

)
, (149)

Pλs (~p)BPλλs (~p), (150)

Π
λ
τ,θ (~p)B

∏
e∈E

(λ + |pe |)
−θ(e) , (151)

QΛ;w
τ (~p)B

∏
e∈E∗

(Λ + |pe |)∏
e∈E<

(Λ + |pe |)




inf
i∈I

∑
θ∈Θ

w′(i)
τ

ΠΛτ,θ (~p), |V1 | = 3∑
θ∈Θwτ

ΠΛτ,θ (~p), otherwise
, (152)

where τ ∈T~ϕ , w ′(i) is obtained from w by diminishing wi by one unit, and, for nonvanishing w,
I := {i : wi > 0}. The following sets are also used in Theorems 1–4:

Y+
n B {(Λ,Λ0) : 0 <Λ 6Λ0 and Λ0 >M} × Pn, (153)

YnBY+
n

⋃
{(0,Λ0) :Λ0 >M} × {~p ∈ Pn : η(~p), 0}. (154)

Theorem 1. There exists a collection of regular vertex functions Γ~φ

~<;l
on Y+

n+n< , complying with
the global symmetries of the theory, satisfying the FE and the renormalization conditions given by
hypotheses RC1 and RC2, and with irrelevant terms vanishing at Λ=Λ0. Furthermore, for all ~φ, ~<,
all l ∈N, w ∈Wn+n< , the following bounds hold on Y+

n+n< :

(a) d > 0 or n + n< = 2,

|ΓΛΛ0;~φ;w
~<;l

(~p)| 6 (Λ + |~p|)dPΛr (~p). (155)

(b) d < 0,

|ΓΛΛ0;~φ;w
~<;l

(~p)| 6
∑
τ∈T~<~φ

QΛ;w
τ (~p) PΛr (~p). (156)

Here d := 4 − 2n< − n − ‖w‖. If l = 0, then r := 0, otherwise r stands for r(d, l),

r(d, l)B

{
2l, d > 0,

2l − 1, d < 0.
(157)
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Theorem 1 shows in particular that the functions ΓΛΛ0;~φ;w
~< are bounded uniformly in Λ0. To prove

convergence in the limitΛ0→∞, we establish the following bounds for their derivatives with respect
to Λ0.

Theorem 2. Let be given a collection of vertex functions Γ~φ

~<;l
as in Theorem 1. Then, for all ~φ,

~<, all l ∈N, w ∈Wn+n< , the following bounds hold on Y+
n+n< :

(a) d > 0 or n + n< = 2,

|∂Λ0 ΓΛΛ0;~φ;w
~<;l

(~p)| 6
Λ + M + |~p|

Λ2
0

(Λ + |p|)dPΛΛ0
r (~p). (158)

(b) d < 0,

|∂Λ0 ΓΛΛ0;~φ;w
~<;l

(~p)| 6
Λ + M + |~p|

Λ2
0

∑
τ∈T~<~φ

QΛ;w
τ (~p) PΛΛ0

r (~p). (159)

See Theorem 1 for the definition of d and r.

Convergence of the limit Λ→ 0+ of the terms ΓΛΛ0;~φ;w
~< (~p), ∂Λ0 ΓΛΛ0;~φ;w

~< (~p) when ~p is nonexceptional
(or d > 0) follows from the Cauchy criterion

|∂k
Λ0

ΓΛΛ0;~φ;w
~< (~p) − ∂k

Λ0
ΓΛ

′Λ0;~φ;w
~< (~p)| 6

Λ′∫
Λ

dλ |∂λ∂
k
Λ0

ΓλΛ0;~φ;w
~< (~p)|, (160)

and the bounds from Theorems 1 and 2. Convergence of the limit Λ0→∞ of the terms

Γ0Λ0;~φ;w
~< (~p) when ~p is nonexceptional (or d > 0) follows from Cauchy criterion and the bounds from

Theorem 2,

|Γ0Λ0;~φ;w
~< (~p) − Γ0Λ′0;~φ;w

~< (~p)| 6

Λ′0∫
Λ0

dλ0 |∂λ0 Γ0λ0;~φ;w
~< (~p)|. (161)

In the following, we will consider the functions Γ0Λ0;~φ;w
1~< , Γ0Λ0;~φ;w

β~< which appear on the lhs,
respectively, of the ST identities (124) and of the AGE (123). The goal of Theorems 3 and 4 is to

show that Γ0Λ0;~φ;w
1~< and Γ0Λ0;~φ;w

β~< vanish in the limit Λ0→∞, which restores the STI and AGE. The
renormalization conditions for these functions atΛ= 0 are obtained from the rhs of the STI and AGE.
In Sec. V, we show that the required boundary marginal terms Γ0Λ0;~φ;w

1~< , Γ0Λ0;~φ;w
β~< satisfy the bounds

of the theorems under the conditions specified in hypothesis RC3.

Hypothesis RC3: We allow RAAA, rAA
1 , r c̄c to be chosen arbitrarily but the remaining marginal

renormalization constants must satisfy a set of equations: R1(308), R2(327), R3(330), rAA
2 (324),

RAc̄c
1 (314), RAAAA

1,2 (334), see Appendix F and (E29) in Appendix E for notations.
For shortness, we also introduce the following definition

FΛΛ0
s (~p)B

M + |~p| + Λ
Λ0

(
1 +

( |~p|
Λ0

)wmax )P(2)
s

( |~p|
Λ + M

)
. (162)

Theorem 3. Let be given a collection of vertex functions Γ~φ

~<;l
, regular on Yn+n< , complying with

the global symmetries of the theory, satisfying the hypotheses RC1, RC2, RC3 and the bounds of

Theorems 1 and 2. Let Γ~φ

β,~<;l
be a collection of vertex functions with one insertion of the operator

QΛ0
β (101), regular on Y1+n+n< , complying with the global symmetries of the theory, satisfying the FE,

and such that the AGE (123) holds. Then, for all ~φ, ~<, all l ∈N, w ∈W1+n+n< , the following bounds
hold on Y1+n+n< :

(a) d > 0 or n + n< = 1,

|ΓΛΛ0;~φ;w
β~<;l

(~p)| 6 (Λ + |~p|)dFΛΛ0
sβ (~p)PΛΛ0

rβ (~p). (163)
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(b) d < 0,

|ΓΛΛ0;~φ;w
β~<;l

(~p)| 6
∑

τ∈Tβ~<~φ

QΛ;w
τ (~p) FΛΛ0

sβ (~p)PΛΛ0
rβ (~p). (164)

Here d := 3 − 2n< − n − ‖w‖ and sβ := 0. If l = 0, then rβ := 0 otherwise rβ stands for rβ(d, l),

rβ(d, l)B

{
2l, d > 0,

2l − 1, d < 0.
(165)

We note that the 1-point vertex function with integrated insertion 110 vanishes, ΓΛΛ0;c;w
1 = 0, e.g.,

due to SU(2) symmetry.

Theorem 4. Let be given a collection of vertex functions Γ~φ

~<;l
, Γ~φ

β~<;l
as in Theorem 3. Let Γ~φ

1,~<;l
be a collection of vertex functions with one integrated insertion of the appropriate operator among
QΛ0
ρ (100), QΛ0

ργ (95), QΛ0
ρω (96), regular on Yn+n< , complying with the global symmetries of the theory,

and satisfying the FE. Assume that the STI (123) and consistency conditions (121) and (122) do hold.
Then, for all ~φ, ~<, all l ∈N, w ∈Wn+n< , the following bounds hold on Yn+n< :

(a) d > 0 or n + n< = 2,

|ΓΛΛ0;~φ;w
1~<;l

(~p)| 6 (Λ + |~p|)dFΛΛ0
s1

(~p)PΛΛ0
r1

(~p). (166)

(b) d 6 0,

|ΓΛΛ0;~φ;w
1~<;l

(~p)| 6
∑

τ∈T1~<~φ

QΛ;w
τ (~p) FΛΛ0

s1
(~p)PΛΛ0

r1
(~p). (167)

Here d := 5 − 2n< − n − ‖w‖. If l = 0, then r1 := 0, s1 := 0 otherwise r1, s1 stand, respectively, for
r1(d, l), s1(d, l),

r1(d, l) :=



3l, d > 0 ,
3l − 1, d = 0 ,
3l − 2, d < 0 ,

s1(d, l) :=

{
l, d > 0 ,

l − 1, d < 0.
(168)

IV. PROOF OF THEOREMS 1–4

In this section, we will prove Theorems 1–4 in this order. We proceed by induction in the loop
order l. We first verify that they hold at the tree level l = 0. Afterwards we assume that they hold true
up to loop order l − 1 > 0, and we will verify the induction step from l � 1 to l.

Put DX := 4 for all vertex functions Γ~φ

~< . For all inserted functions Γ~φ;w
X~< with X ∈ {β, 1} and

‖w‖ 6 wmax, let

DX :=



3, X = β ,

5, X = 1 ,
dX :=DX − 2n< − n − ‖w‖. (169)

Note that at zero loop order ΓΛΛ0
l=0 =ΓΛ0Λ0

l=0 . Using (86) and (110) and the definition of Laux in 106,
one finds that in momentum space

ΓΛ0Λ0;~φ
1 =QΛ0;~φ

ρ(0) , ΓΛ0Λ0;~φ
1< =QΛ0;~φ

ρ(0)<, ΓΛ0Λ0;~φ
β =QΛ0;~φ

β , (170)

where the momentum variable corresponding to the source ρ is set to zero. Everywhere in the following

QΛ0
ρ will stand for QΛ0

ρ(0). From definition of QΛ0
ρ in (100), it follows that the vertex functions QΛ0;~φ

ρ;l=0

with n= 2 vanish. The nonvanishing functions QΛ0;~φ
ρ;l=0, QΛ0;~φ

β;l=0 have the form hs(p, q)(1 − σ0Λ0 (p2)),

where hs is a homogeneous tensor polynomial of degree s 6 2 in the momentum variables p, q ∈R4

which depends at most linearly on the momentum q. From the definitions of QΛ0
ρω (96) and QΛ0

ργ (95),

we obtain that QΛ0;~φ
ρ<;l=0 has the form hs(p)(σ0Λ0 ((p + q)2)−σ0Λ0 (p2)) with s 6 1. For ‖w‖ 6 s (relevant

terms) using inequalities (D49), (D55), and (D60), we have

|ΓΛΛ0;~φ;w
X~<;l=0

(~p)| 6 cΛs−‖w ‖
0

( |~p|
Λ0

)s+1−‖w ‖
6 c
|~p|
Λ0

(|~p| + Λ)s−‖w ‖ . (171)
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For ‖w‖ > s (irrelevant terms), the same inequalities yield

|ΓΛΛ0;~φ;w
X~<;l=0

(~p)| 6 cΛs−‖w ‖
0

( |~p|
Λ0

+ 1
)

6 c (|~p| + Λ)s−‖w ‖ |~p| + Λ
Λ0

( |~p|
Λ0

+ 1
) ‖w ‖−s

. (172)

Since s − ‖w‖ is the dimension dX , we have the following bounds:

|ΓΛΛ0;~φ;w
X~<;l=0

(~p)| 6 (Λ + |~p|)dX FΛΛ0
0 (~p), X ∈ {β, 1}. (173)

Thus the statements of Theorems 1–4 hold at loop number l = 0. The proof proceeds by induction on
l and on the number of derivatives ‖w‖, ascending in l and, for fixed l, descending in ‖w‖ from wmax

to 0.

A. Chains of vertex functions

Definition 19. A division in m parts of a finite set I is a sequence S := (sj)j∈[m] of m disjoint sets
sj ⊆ I, possibly empty, such that

⋃
j∈[m] sj = I. An ordered partition is a division with all sj nonempty.

Given a division S as above stated, a division of a sequence ~Ψ= (Ψi)i∈I is the sequence of elements
~Ψj := (Ψi)i∈sj , with j ∈ [m].

Definition 20. Let S be a division in m parts of a finite set I, and ~Ψ= (Ψi)i∈I be a sequence
of labels Ψi ∈ {A, c, c̄, γ,ω, β, 1}. Denote by (~Ψj) the division of ~Ψ induced by S. A chain of vertex
functions is then defined by the expression

Fζ1~Ψζ̄m

S BΓζ1~Ψ1 ζ̄1

m∏
j=2

Cζj ζ̄j−1
Γζj ~Ψj ζ̄j , (174)

where the repeated field labels ζj, ζ̄j belong to {A, c, c̄} and are summed over (as usual).

Using this definition, the FE (70) has the form

Γ̇~Ψ = ~
2

∑
S

(−)πa〈ĊFA~ΨA
S + Ṡ(Fc̄~Ψc

S − Fc~Ψc̄
S )〉. (175)

The sum above runs over all possible divisions of [0 : n � 1], n being the number of components of
~Ψ. The symbol πa denotes the number of transpositions mod 2 of the anticommuting variables
{c, c̄, β, γ, 1} in the permutation i 7→ π(i) such that (Ψπ(0), . . . ,Ψπ(n−1))= ~Ψ1 ⊕ · · · ⊕ ~Ψm, where
(a1, . . . , ap) ⊕ (ap+1, . . . , aq)= (a1, . . . , aq).

A preliminary step toward the proof of Theorem 1 is to bound ∂w(Cζ ζ̄Γζ ζ̄ ) with ‖w‖ 6 wmax.

Proposition 21. For all 0 < k < l, 0 6 w 6 wmax, p ∈R4,

���
( w∏

i=0

∂

∂pµi

) (
Γζ ζ̄ ;ΛΛ0

k (p)CΛΛ0

ζ ζ̄
(p)

) ��� 6
PΛ2k

(|p| + Λ)w
. (176)

Proof. Using inequality (4), we see that

|∂w(Γζ ζ̄ ;ΛΛ0
k CΛΛ0

ζ ζ̄
)| 6

w∑
w1=0

w!
w1!(w − w1)!

|∂w1 Γζ ζ̄ ;ΛΛ0
k | |∂w−w1 CΛΛ0

ζ ζ̄
|. (177)

Setting w2 = w � w1, it follows from (D102) and the bounds of Theorem 1 already proved inductively
for k < l that

1
w2!
|∂w1 Γζ ζ̄ ;ΛΛ0

k | |∂w2 CΛΛ0

ζ ζ̄
| 6

cξdw2 PΛ2k

(|p| + Λ)w1+w2
. (178)

Because w 6 wmax, the constants cξ , dw2 may be absorbed in PΛ2k . �
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Definition 22. Let be given

1. a sequence ~Ψ= (Ψi)i∈I as in Definition 20;
2. an ordered partition S = (sj)j∈[m] of I;
3. the sequences of field labels (ζj)j∈[m], (ζ̄j)j∈[m];
4. a multi-index w ∈Wn and a sequence w := (w j)j∈[m] such that w j ∈Wn and

∑
j∈[m] w j = w.

Then, we define a reduced chain of vertex functions as

Γζ1~Ψ1 ζ̄1;w1

m∏
j=2

Cζj ζ̄j−1
Γζj ~Ψj ζ̄j ;w j , (179)

where Γζ ~Ψj ζ̄ ;w j = ∂w j (Γζ ~Ψj ζ̄ ) are derivatives with respect to the external momenta appearing in Γ̇~Ψ,
and the sequences (ζj)j∈[m], (ζ̄j)j∈[m] are fixed. Introducing the auxiliary quantities Υ̊ := (~Υj)j∈[m] and

~Υj := ζj~Ψj ζ̄j, we denote (179) by SΥ̊;w or, with some abuse of notations, by Sζ1~Ψζ̄m;w
S .

The adjective “reduced” indicates that the chains contain neither ΓAA, Γcc̄, nor derivatives applied
to the propagators C.

It follows from inequalities (D102) and (176) and Theorems 1–4 proved in loop order l � 1

that there exists a common bound for the terms Γζ ~Ψζ̄ ;w1+w2+w3
l1+l2

C and Γζ ~Ψζ̄ ;w1
l1

∂w2 (CΓζ ζ̄l2
)∂w3 C. This

property basically follows from an explicit check of the degree of the polynomials in the bounds and
from the fact that, forw2,w3 supported on p, a factor (|p|+Λ)−‖w2+w3 ‖ times a weighted tree (τ, θ) in the

bound of Γζ ~Ψζ̄ ;w1
l1

may be bounded by the weighted tree (τ, θ ′) in the bound of Γζ ~Ψζ̄ ;w1+w2+w3
l1+l2

, with θ ′

equal to θ everywhere but on the edge e ∈ E1 carrying momentum p, for which θ ′(e)= θ(e)+‖w2 +w3‖.

Hence to bound Γ̇~Ψl , it is enough to consider a loop integral with a reduced chain∫
d4k

(2π)4
Ċζ ζ̄ (k)Sζ ~Ψζ̄ ;w

S;l−1 (k,~pS ,−k), (180)

where ~psj = (pi)i∈sj . As an example, we give in Appendix B the complete list of chains for ΓAAcc̄.
The appellative “reduced” may be omitted in the following, since it is always clear from the context
whether a chain is reduced or not.

B. Junction of weighted trees

Given a reduced chain SΥ̊;w, we define its amplitude ŜΥ̊;w
by substituting the vertex functions

and propagators with their corresponding bounds taken from Theorems 1–4 and inequalities (D102).
Recalling that ~Υj := ζj~Ψj ζ̄j, we then set

ŜΛ;Υ̊;w
B ŜΛ;~Υ1;w1

m∏
j=2

1

(Λ + |pζj |)2
ŜΛ;~Υj ;wj , (181)

ŜΛ;~Υj ;wB



(Λ + |~p|)dX , case a∑
τ∈T~Υj

QΛ;w
τ , case b . (182)

Here the cases a and b refer to the respective parts in Theorems 1–4.
The tree structure of the bound is spoiled if there exists an interval Ja := [ja : ja + ma − 1] ⊂ [m]

such that all ŜΛ;~Υj ;w for j ∈ Ja correspond to a strictly relevant contribution, associated with the cases
a in the theorems. A workaround for this difficulty will start with the following definition. For every
tree τ ∈T~ϕ , set E1;v := {e ∈ E1 : e incident to v }.

Definition 23. Let ~ϕ be an arbitrary sequence with ϕi ∈ {A, c, c̄, β, γ,ω}. A tree f ∈T~ϕ is a
fragment if

(a) there exists s ∈ {0, 1} such that |V◦ | + s equals the total number of “*” labels;
(b) ∀v ∈ V◦: |E1;v | > 2 and E1;v ∩ E∗ , ∅.
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The set of all such fragments is denoted by F(s)
~ϕ

. Moreover we set F~ϕ :=F(0)
~ϕ

and F1~ϕ :=F(1)
~ϕ

.

For each s ∈ {0, 1}, T(s)
~ϕ
⊂F(s)

~ϕ
⊂T~ϕ .

Let us now state a useful property which relies on the above definition. Let be given a subsequence
Ja := [ja : ja +ma−1] ⊂ [m] with any number of elements ma. Let S and ~Ψ be as in Definition 22. Define
the following restrictions: Sa = S |Ja , wa =w|Ja . Set wa :=

∑
j∈Ja wj and ~Ψa := (Ψi) with i ∈ ∪j∈Ja sj.

Then, there exists a set of fragments F
ζ ~Ψa ζ̄

such that

ŜΛ;ζ ~Ψa ζ̄ ;wa

Sa 6 2
|Sa |

2

∑
f ∈F

ζ ~Ψa ζ̄

QΛ;wa

f . (183)

Here we give a proof of (183), for example, generalisation is clear. Consider an amplitude Ŝζ1A4 ζ̄4;w

composed of four elements ŜζjAζ̄j ;w where j ∈ {1, . . . , 4} and w = 0. First, let us define the following
set of fragments F (here s = 0):

In each fragment the *-edge corresponds to a factor Λ + |pe | in the corresponding amplitude QΛ;w=0
f ∈F .

One shows the following bound:

(184)

or more explicitly, ∏
v∈V3

(Λ + |~pv |)∏
e∈E\E1

(Λ + |pe |)2
6 2

|V3 |
2

∑
{χ }

∏
v∈V3

(Λ + |pχ(v) |)∏
e∈E\E1

(Λ + |pe |)2
. (185)

Here the⊕-vertices stand each for corresponding ŜζjAζ̄j ;w=0, see (182); the set of⊕-vertices is identified
with V3 in (185);~pv indicates the set of incoming momenta of the vertex v; pe denotes the momentum
corresponding to an edge e; the sum runs over the set of functions χ : V3→E\E1 ∪ {e0, e5} which
map every vertex v ∈ V3 to an edge incident to v; |C|’s stand for the usual bounds on the corresponding
propagators.

Let be given a sequence of fragments ~f := (f1, . . . , fm′) with fj ∈Fζ ~Ψj ζ̄
and a sequence

w′ = (w′j )j∈[m′] with w′j ∈Wn. We define the amplitude Q̂Λ;w′
~f

by

Q̂Λ;w′
~f
B Q

Λ;w′1
f1

m′∏
j=2

1

(Λ + |pζj |)2
Q
Λ;w′j
fj

. (186)

Lemma 24. Given an amplitude Q̂Λ;w′
~f

as above, there exists a fragment f ∈F
ζ ~Ψζ̄

such that

Q̂Λ;w′
~f
6QΛ;w′

f . (187)

Proof. We proceed by induction in m′. If there are no joints, m′ = 1, the statement is evident.
Assume it is true for some m′ − 1 > 0 and consider a sequence of m′ fragments. Let vl, vr ∈ V3 be the
left and right vertices of a joint. Recall definition in (151).
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� vl, vr ∈ V3\V◦.

(188)

Π
Λ
fl ,θl

1

(Λ + |p|)2
Π
Λ
fr ,θr
=ΠΛf ,θ . (189)

Here the corresponding external edges have been merged together to form a new internal edge
with θ-weight equal to 2. The θ-weight of all other edges is unchanged.

� vl ∈ V3\V◦, vr ∈ V◦ or vice versa.

(190)

Π
Λ
fl ,θl

1

(Λ + |p|)2
(Λ + |p|)ΠΛfr ,θr

=ΠΛf ,θ (191)

(192)

Π
Λ
fl ,θl

1

(Λ + |p|)2
(Λ + |p∗ |)Π

Λ
fr ,θr
= (Λ + |p∗ |)Π

Λ
f ,θ , (193)

� vl, vr ∈ V◦.

(194)

Π
Λ
fl ,θl

(Λ + |p|)
1

(Λ + |p|)2
(Λ + |p∗ |)Π

Λ
fr ,θr
= (Λ + |p∗ |)Π

Λ
f ,θ (195)

(196)

Π
Λ
fl ,θl

(Λ + |p|)
1

(Λ + |p|)2
(Λ + |p|)ΠΛfr ,θr

=ΠΛf ,θ . (197)

Hence, by merging two fragments, we can decrease the number of joints by one and then apply the
induction hypothesis. �

In the simpler context of φ4 theory, a completely explicit description of the junction of trees can
be found in Guida and Kopper.

According to Eqs. (D35) and (D41), the loop integral in (180) is bounded by the following
expression: ∫

Ċ
ΛΛ0

ζ ζ̄ ŜΛ;Υ̊;w
P
Λ
l−1 6Λ ŜΛ;Υ̊;w

P
Λ
l−1

���pζ ,pζ̄=0
, (198)

P
Λ
l B




FΛΛ0
l PΛΛ0

3l , X = 1,

FΛΛ0
0 PΛΛ0

2l , X = β,

PΛΛ2l , otherwise,

(199)

which follows directly from the definition of r, rX , sX given in Theorems 1–4.
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For any function f depending on the variable pζ , and other variables which we need not specify, we
defineRζ : f (. . . , pζ , . . .) 7→ f (. . . , 0, . . .) whereR stands for restriction. Then we setRζ ζ̄ :=Rζ◦Rζ̄ .

Proposition 25. For an amplitude ŜΛ;ζ ~Ψζ̄ ;w
S , there exists a set of trees such that

Rζ ζ̄ (ŜΛ;ζ ~Ψζ̄ ;w
S ) 6 2

|S |
2

∑
τ∈T

ζ ~Ψζ̄

Rζ ζ̄ (QΛ;w
τ ). (200)

Proof. Using definition (181) and inequalities (183) and (187), we obtain that ŜΛ;ζ ~Ψζ̄ ;w
S is

bounded by a sum of fragment amplitudes. It remains to show that for a fragment f ∈F
ζ ~Ψζ̄

, there

exists a tree τ ∈ T
ζ ~Ψζ̄

such that Rζ ζ̄ (QΛ;w
f ) 6Rζ ζ̄ (QΛ;w

τ ). We denote by a double bar line the edges

ζ , ζ̄ and consider the case when f < T
ζ ~Ψζ̄

. Based on the inequality Λ
Λ+ |pφ |

6 1, we find

(201)

�
At any loop order l′ < l using the bound of Theorem 1 and the inequality

1 6
1

Λ + |p< |
((Λ + |p1 |) + (Λ + |p2 |)) , (202)

where p< + p1 + p2 = 0, one realizes that for the marginal vertex function ΓΛΛ0;φ1φ2
<;l′ , the following

inequality holds

(203)

Similarly, substituting the relevant terms ΓΛΛ0;~φ;w
β;l′ , n+ ‖w‖ 6 3, at loop number l′ < l with the bounds

of Theorem 3, we have

(204)

(205)

(206)

Furthermore using the bounds of Theorem 4 which are assumed to be true for any loop order l′ < l,

we obtain the following inequalities for strictly relevant terms ΓΛΛ0 ~φ;w
1;l′ , n + ‖w‖ < 5:

(207)

(208)
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(209)

|ΓΛΛ0;φ0φ1;w
1;l′ CΛΛ0 | 6

Λ + |p|

(Λ + |p|)‖w ‖
FΛΛ0

s1(l′)P
ΛΛ0
r1(l′), (210)

where the dots stand for omitted fragments obtained by permuting “*” over the external edges.

Substituting the bounds for Γ
~φ;w
1< with those for ∂c̄Γ

c̄~φ;w
1 yields a similar result for the relevant terms

Γ
~φ;w
1,~< with n< > 0. Consequently the amplitude ŜΛ;~φ;w

1~< is bounded by a sum of amplitudes QΛ;w
f with

f ∈F1~ϕ .

C. Irrelevant terms

The irrelevant terms at arbitrary 0 <Λ 6Λ0 are reconstructed by using the FE,

ΓΛΛ0;~φ;w
X~<;l

(~p)=ΓΛ0Λ0;~φ;w
X~<;l

(~p) +

Λ∫
Λ0

dλ Γ̇λΛ0;~φ;w
X~<;l

(~p). (211)

At Λ=Λ0 for all loop orders l > 0, for all n< > 0, and dX < 0, we have

|ΓΛ0Λ0;~φ;w
X~<;l

(~p)| 6



(|~p| + Λ0)dX FΛ0Λ0
sX

PΛ0Λ0
rX

X ∈ {β, 1},

0 otherwise,
(212)

where the upper inequality is obtained using the bounds on relevant terms from Theorem 1.
To integrate the FE from the boundaryΛ0 toΛ, we substitute the chains Sζφ0φ1 ζ̄ , Sζ<φζ̄ with the

bounds given in Theorem 1 and use inequalities (D1) and (D11). Eventually, we get

|ΓΛΛ0;φ0φ1;w
l (p)| 6 (Λ + |p|)2−‖w ‖PΛ2l−1, ‖w‖ >2, (213)

|ΓΛΛ0;φ;w
<;l (p)| 6 (Λ + |p|)1−‖w ‖PΛ2l−1, ‖w‖ >1. (214)

In a similar way, substitution of Sζβφζ̄ , Sζφ0φ1 ζ̄
1 with the bounds of Theorems 3 and 4 and then

integration from Λ0 to Λ, using (D25), give

|ΓΛΛ0;φ;w
β;l (p) − ΓΛ0Λ0;φ;w

β;l (p)| <
FΛΛ0

0 PΛΛ0
2l−1

(Λ + |p|)‖w ‖−2
, ‖w‖ > 2, (215)

|ΓΛΛ0;φ0φ1;w
1;l (p) − ΓΛ0Λ0;φ0φ1;w

1;l (p)| <
FΛΛ0

l−1 PΛΛ0
3l−2

(Λ + |p|)‖w ‖−3
, ‖w‖ > 3. (216)

Proposition 26. Let τi ∈ Tζ ζ̄ ~φ , φj ∈ {A, c, c̄, γ,ω}, |V1 | > 4, k ∈N and θ(τi)> 2. Then ∃τf ∈ T~φ
such that

Λ0∫
Λ

dλ λRζ ζ̄ (Qλ;w
τi

) Pλk |η=0 6QΛ;w
τf

PΛk+1. (217)

Proof. Denote by v , v̄ ∈ V\V1 the vertices incident to eζ , eζ̄ ∈ E1. First, we assume that v , v̄ .

The result of the restriction Rζ (Qλ;w
τi ) is the amplitude of the tree τi with two edges e1 = {u1, v},

e2 = {u2, v} carrying opposite momenta. Here {u, v} denotes the edge which links the vertices u, v .
Without restriction, we assume that e1 = χ(v). Furthermore, we define a subtree τ′ of the initial tree
τi by the substitution e2 7→ {u1, u2} such that it does not include the vertices v , ζ nor the edges e1,
eζ .

(a) ρ(e1)= 1: The identity pe1 =−pe2 implies

λ
1

(λ + |pe1 |)θ(e1)
6

1

(λ + |pe1 |)σ(e1)
=

1

(λ + |pe2 |)σ(e1)
. (218)
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Consequently, λRζ (Qλ;w
τi ) is bounded by the amplitude of the subtree τ′ with σ′(e2)=σ(e2)

+ σ(e1).
(b) ρ(e1)= 0 and ρ(e2)> 0,

λ
1

(λ + |pe2 |)θ(e2)
6

1

(λ + |pe2 |)θ(e2)−1
. (219)

Thus, λRζ (Qλ;w
τi ) is bounded by the amplitude of the subtree τ′ with σ′(e2)=σ(e2) +σ(e1),

ρ′(e2)= ρ(e2) − 1, and χ′(u1)= e2.
(c) ρ(e1)= 0 and ρ(e2)= 0: This implies e2 ∈ E1. Because |V1 | > 4, the vertex u1 is incident to

an edge eu ∈ E\E1 such that ρ(eu)> 0,

λ
1

(λ + |peu |)θ(eu)
6

1

(λ + |peu |)θ(eu)−1
. (220)

It follows that λRζQλ;w
τi is bounded by the amplitude of the subtree τ′ with σ′(e2)=σ(e2)

+ σ(e1), ρ′(eu)= ρ(eu) − 1, and χ′(u1)= eu.

For the subtree τ′, the total weight satisfies θ(τ′)> 1. Consequently, we repeat the above reduction
by substituting λ-multiplication with integration. Then using inequalities (D1) and (D11), we have

Λ0∫
Λ

dλ Pλk |η=0

(λ + |pa |)(λ + |pb |)
6

PΛk+1

Λ + |pa | + |pb |
6

PΛk+1

Λ + |p̂|
, (221)

where p̂ ∈ {pa, pb, pa + pb}. Here pa denotes the momentum of the edge used for the reduction, and
p̂= pb is the momentum of an arbitrary edge with nonvanishing θ-weight of the final tree τf . Because
of the previous edge reduction, we can reach the threshold |V ′1 | = 4. In this case, we can choose freely
p̂ to equal pa, pb, or pa + pb thus keeping the σ-weight on the corresponding edge, see (D1) and
(D11).

The case v = v̄ follows directly from (D1) and (D11). To see this, we denote by e ∈ E\E1 the
edge incident to v and introduce a vertex u ∈ V3 adjacent to v. Hence, χ(v)= e= {v , u}. If θ̃, θ are two
θ-weights where the only difference is that χ(u)= e for the first and χ(u), e for the second, then

Π
λ
τi ,θ̃
6Πλτi ,θ =

1
λ

1
λ + pe∈E(τf )

Π
λ
τf ,θ . (222)

The final tree τf is a subtree of τi which does not include vertices ζ ,ζ̄ ,v nor the corresponding edges.
Moreover, θ(τi)> 2 =⇒ θ(τf )> 0. �

Inequality (217) can be applied to bound SΛΛ0;~<~φ;w . In this case, τi ∈ Tζ ζ̄~<~φ and the total weight
satisfies θ(τi)> 2 − n<. But in Theorem 1 for each edge e< ∈ E<, we have (Λ + |p< |) as a denominator
which is equivalent to an additionalσ-weight of the edge e<. An effective tree τ̃with σ̃(e<)=σ(e<)+1
has θ(τ̃)> 2 and satisfies the conditions of Proposition 26.

Using (D25), a similar inequality follows for the irrelevant functions ΓΛΛ0;~φ;w
β~<;l

. For any
τi ∈ Tζ ζ̄β~<~φ , there exists τf ∈ Tβ~<~φ such that

Λ0∫
Λ

dλ λRζ ζ̄ (Qλ;w
τi

) FλΛ0
0 PλΛ0

2(l−1) |η=0 6QΛ;w
τf

FΛΛ0
0 PΛΛ0

2l−1. (223)

Before application of (D25) to the irrelevant terms ΓΛΛ0;~φ;w
1~<;l

, we need a minor change in (221),

Λ0∫
Λ

dλ

(
λ + |p∗ |
λ + |pe |

)
FλΛ0

s PλΛ0
k |η=0

(λ + |pa |)(λ + |pb |)
6

(
Λ + |p′∗ |
Λ + |pe |

)
FΛΛ0

s PΛΛ0
k+1

Λ + |pb |
, (224)
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where p′∗ is one out of p* or pe in such a way that |p′∗ | :=max(|p∗ |, |pe |). If p* = pe, the label “*” is
moved to edge e. Finally, ∀τi ∈ T1ζ ζ̄~<~φ ,

Λ0∫
Λ

dλ λRζ ζ̄ (Qλ;w
τi

) FλΛ0
l−1 PλΛ0

3(l−1) |η=0 6
∑

τ∈T1~<~φ

QΛ;w
τ FΛΛ0

l−1 PΛΛ0
3l−2. (225)

D. Marginal terms

Lemma 27. Let ΓΛΛ0;~φ;w
~<;l

denote a marginal term, n< 6 1. Then ∀Λ< η(~p),

|ΓΛΛ0;~φ;w
~<;l

(~p) − ΓηΛ0;~φ;w
~<;l

(~p)| 6 PΛ2l−2(~p). (226)

Proof. Note that in Theorem 1 for all l′ < l the bounds for ΓΛΛ0;~φ;w
<;l′ are more restrictive than the

ones for ∂c̄ΓΛΛ0;c̄~φ;w
l′ . So we will only treat the case n< = 0 explicitly. In this case, we integrate the FE

from η to Λ,

|ΓΛΛ0;~φ;w
l (~p) − ΓηΛ0;~φ;w

l (~p)| 6

η∫
Λ

dλ |Γ̇λΛ0;~φ
l (~p)|

6
∑

τ∈Tζ ζ̄ ~φ

η∫
Λ

dλ λRζ ζ̄ (Qλ;w
τ ) Pλ2l−2 |ητ=0, (227)

where θ(τ)= 2. Denoting by qa, qb the momenta of the edges with nonvanishing θ-weight and using
Eqs. (D17) and (D19) for each term of the sum, we obtain

η∫
Λ

dλ
λ Pλk |ητ=0

(λ + |qa |)(λ + |qb |)
6

η∫
Λ

dλ
Pλk |ητ=0

λ + |qb |
6 PΛk , k = 2l − 2. (228)

�

1. Γcc̄AA and Γcc̄cc̄

The renormalization condition is ΓMΛ0;~φ
l (0)= 0. For p2, p3 ∈R4 andΛ′ :=max(Λ, η(~p)), Eq. (145)

gives ΓΛ
′Λ0;~φ

l (0c̄, p2, p3)= 0, where the subscript c̄ indicates the momentum of the antighost,

|ΓΛ
′Λ0;~φ

l (~p)| 6

1∫
0

dt |pc̄ | |∂c̄ΓΛ
′Λ0;~φ

l (tpc̄, p2, p3)|. (229)

Substituting |∂c̄ΓΛ
′Λ0;~φ

l | with the bound of Theorem 1 and using inequality (D33), we obtain

|ΓΛ
′Λ0;~φ

l (~p)| 6
(
1 + log+

|~p|
Λ′ + η

)
PΛ

′Λ′

2l−1 (~p)���η=0
6 PΛ2l(~p). (230)

If Λ′ =Λ, the proof is finished. Otherwise we use (226).

2. ∂AΓcc̄A

The renormalization condition is ∂AΓMΛ0;cc̄A
l (0)= 0. For pA ∈R4 and Λ′ =max(Λ, η(~p)),

Eq. (145) gives ∂AΓΛ
′Λ0;cc̄A

l (0, pA)= 0,

|∂AΓΛ
′Λ0;cc̄A

l (~p)| 6

1∫
0

dt |pc̄ | |∂c̄∂AΓΛ
′Λ0;cc̄A

l (tpc̄, pA)|. (231)
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We substitute |∂c̄∂AΓΛ
′Λ0;cc̄A

l (~pt)| with the bound from Theorem 1 with the choice w ′(2)= (0, 1, 0),
see after (152) for the definition of w ′. Then

QΛ′;(0,1,1)
cc̄A ∈

{
1

Λ′ + t |pc̄ |
,

1
Λ′ + |tpc̄ + pA |

}
, (232)

and using (D33), we obtain the inequality

|∂AΓΛ
′Λ0;cc̄A

l (~p)| 6 PΛ
′Λ′

2l (~p) 6 PΛ2l(~p). (233)

If Λ′ =Λ, the proof is finished. If not, we use (226).

3. Renormalization at Λ = 0

First, we consider the marginal terms Γcc
ω;l, ΓcA

γ;l, ΓAAAA
l , ∂c̄Γcc̄A

l , ∂ΓAAA
l , ∂∂ΓAA

l , ∂∂Γcc̄
l , here

denoted by Γ~φ;w
~<;l

. The marginal terms Γ~φ

1~<;l
and Γ~φ

β;l will be discussed later.

Let {δse}r be a basis at the renormalization point ~q. We define Γ~φ;w
~<;l

(~q) in the following way:

Γ0Λ0;~φ;w
~<;l

(~q)B
∑

t∈{δs }r

rt t +
∑

tα∈{δsek>0 }r

ζt t, (234)

where the coefficients rt are fixed by the renormalization conditions, see Appendix H and hypothesis
RC3, and the remaining coefficients ζt are defined using Lemma 30. Then, from the bounds on the

irrelevant terms and Lemma 31, see (C20), it follows that Γ~φ;w
~<;l

(~q) complies with Theorem 1 at loop
order l. Let Λ′ :=max(Λ, η(~p)). It is easy to verify the following inequalities:

Λ′∫
0

dλ
logk

+
M
λ

λ + M
< k! + log+

Λ′

M
,

Λ′∫
0

dλ
logk

+
λ
M

λ + M
< 2

(
1 + logk+1

+
Λ′

M

)
. (235)

Recalling (198) and (200), we obtain the following bound:

|Γ̇λΛ0;~φ;w
~<;l

(~q)| 6 λ
P(0)

2l−2(log+
M
λ ) + P(1)

2l−2(log+( λM ))

(λ + M)2
. (236)

This implies that

|ΓΛ
′Λ0;~φ;w

~<;l
(~q) − Γ0Λ0;~φ;w

~<;l
(~q)| 6

Λ′∫
0

dλ |Γ̇λΛ0;~φ;w
~<;l

(~q)| 6P(1)
2l−1

(
log+

Λ

M

)
. (237)

Using inequality (D33), we get

|ΓΛ
′Λ0;~φ;w

~<;l
(0) − ΓΛ

′Λ0;~φ;w
~<;l

(~q)| 6
n−1∑
j=1

Ij(~q) 6 PΛ
′

2l (0), (238)

|ΓΛ
′Λ0;~φ;w

~<;l
(~p) − ΓΛ

′Λ0;~φ;w
~<;l

(0)| 6
n−1∑
j=1

Ij(~p) 6 PΛ2l(~p), (239)

where Ij(~q) is the interpolation along the vector qj,

Ij(~q)=

1∫
0

dt |qj | |∂jΓΛ
′Λ0;~φ;w

~<;l
(

j−1∑
i=1

~qi + t~qj)|. (240)

Here to each vector qi ∈R4 is associated ~qi ∈ Pn whose components are (~qi)k =−qiδk,0 + qiδk,i. Once

again we have substituted |∂jΓMΛ0;~φ;w
~<;l

| with the bound from Theorem 1. If Λ=Λ′, we stop here. If
not, we use (226).
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The remaining marginal terms ΓΛΛ0;~φ;w
X~<;l

with X ∈ {β, 1} can be treated similarly. Note that the

bound from Theorem 1 for terms of the type ∂c̄Γc̄~φ;w
1;l is the same as the one for the corresponding

terms Γ~φ;w
1<;l . Consequently, the proof of the bounds for the marginal terms ΓccA

1γ;l, Γccc
1ω;l, ∂Γcc

1γ;l is the

same as the proof for, respectively, ∂c̄Γc̄ccA
1;l , ∂∂c̄Γc̄cc

1;l which we shall consider now.

Let us denote by Γ0Λ0;~φ;w
X;l any marginal term without insertions γ orω, and by~q the corresponding

renormalization point as given in Appendix H. We now anticipate the important fact that the relevant
renormalization constants comply with the bounds, which will be proven in Sec. V. Then using the
bounds on irrelevant terms from Theorems 3 and 4 and Lemma 31, see (C20), we obtain

|Γ0Λ0;~φ;w
X;l (~q)| 6

M
Λ0

P(1)
rX

(
log+

Λ0

M

)
, (241)

in agreement with Theorems 3 and 4. Set Λ′ :=max(Λ, M). To integrate the FE from 0 to Λ′, we
substitute the chain of vertex functions with the trees from Theorems 3 and 4. Then we have

|ΓΛ
′Λ0;~φ;w

X,l (~q) − Γ0Λ0;~φ;w
X,l (~q)| 6

Λ + M
Λ0

P(1)
rX

(
log+

Λ0

M

)
. (242)

Using inequality (D33), we obtain

|ΓΛ
′Λ0;~φ;w

X;l (0) − ΓΛ
′Λ0;~φ;w

X;l (~q)| 6
Λ + M
Λ0

PΛ
′Λ0

rX
(0), (243)

|ΓΛ
′Λ0;~φ;w

X;l (0) − ΓΛ
′Λ0;~φ;w

X;l (~p)| 6 FΛΛ0
sX

(~p)PΛΛ0
rX

(~p). (244)

Note here that as compared to the case X = β, in the case X = 1, there appears an additional factor

Λ′ + |p∗ |
Λ′ + |pa |

6 1 + 2
|~p|

Λ + M
, (245)

in the tree bounds from Theorem 4. This factor leads to the polynominal P(2)
s1

in the bounds of
Theorem 4.

IfΛ=Λ′, the proof is finished. If not, we integrate downwards using the FE, substitute the chain
with the tree bound from Theorems 3 and 4, and use (D21) to get

|ΓΛΛ0;~φ;w
β;l (~p) − ΓMΛ0;~φ;w

β;l (~p)| 6 FΛΛ0
0 (~p)PΛΛ0

2l−1(~p), (246)

|ΓΛΛ0;~φ;w
1;l (0) − ΓMΛ0;~φ;w

1;l (~p)| 6
∑
τ∈T1~φ

QΛ;w
τ FΛΛ0

l−1 PΛΛ0
3l−2(~p). (247)

E. Strictly relevant terms

If n< = 0, the notation Γ~φ;w
~<;l

stands for Γcc̄A
l , ΓAAA

l , ∂ΓAA
l , and ∂Γcc̄

l . In the case n< = 1, it stands

for Γc
γ;l. Moreover we impose Γ0Λ0 ~φ;w

~<;l
(0)= 0 and denote by ~p arbitrary momenta with corresponding

η(~p). We integrate the FE upwards from 0 to Λ and substitute |Γ̇λΛ0 ~φ;w
~<;l

| with the tree bound of
Theorem 1. Then

|ΓΛΛ0 ~φ;w
~<;l

(0)| 6

Λ∫
0

dλ |Γ̇λΛ0 ~φ;w
~<;l

(0)| 6

Λ∫
0

dλ λd−1PλΛ2l−2(0) 6

Λ+η∫
0

dλ λd−1PλΛ2l−2(0),

where d > 0. Inequality (D30) then gives

|ΓΛΛ0 ~φ;w
~<;l

(0)| 6 (Λ + η)dPΛ+ηΛ
2l−2 (0). (248)
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Substituting ∂ΓΛΛ0 ~φ;w
~<;l

with the bound from Theorem 1, we obtain

|ΓΛΛ0 ~φ;w
~<;l

(~p) − ΓΛΛ0 ~φ;w
~<;l

(0)| 6

1∫
0

dt |pi | |∂iΓΛΛ0 ~φ;w
~<;l

(t~p)|

6 |~p|

1∫
0

dt (Λ + t |~p|)d−1PΛ2l(t~p) 6 I + I ′, (249)

where

IB |~p|(Λ + |~p|)d−1

1∫
0

dt P(0)
2l (log+

max(M, |~p|)
Λ + tη(~p)

), (250)

I ′B (Λ + |~p|)d P(1)
2l (log+

Λ

M
). (251)

The calculations given in (D30) yield

I 6 |~p|(Λ + |~p|)d−1 P(0)
2l (log+

max(M, |~p|)
Λ + η(~p)

). (252)

This implies

|ΓΛΛ0 ~φ;w
~<;l

(~p) − ΓΛΛ0 ~φ;w
~<;l

(0)| 6 (Λ + |~p|)dPΛ2l(~p). (253)

Combining (248) and (253) proves the bounds of Theorem 1 to loop order l.

1. ∂Γφ
3

1
, Γφ

4

1
, and Γcc

1γ

The goal of this section is to explain the expression for the polynomial degree r1. Subsequently,

we denote by Γ~φ;w
1 the following terms: ∂ΓcAA

1 , ∂Γccc̄
1 , ΓcAAA

1 , and ΓcAcc̄
1 and we impose vanishing

renormalization conditions at the origin, Γ0Λ0;~φ;w;
1 (0)= 0. From the bounds of Theorem 4, one realises

that the analysis for Γcc
1γ is similar to ∂c̄Γccc̄

1 . For an arbitrary ~p ∈ Pn, let Λ′ :=max(Λ, η(~p)). Using
(198) and (199),

|ΓΛ
′Λ0 ~φ;w

1;l (0)| 6 (Λ + η)
Λ + M
Λ0

PΛ+ηΛ0
3(l−1) (0). (254)

We extend ΓΛ
′Λ0;~φ;w

1;l from 0 to ~p using the usual path given in Eq. (240) (with ~q 7→~p), where we

substitute ∂ΓΛ
′Λ0 ~φ;w

1;l with the tree bound of Theorem 4. The rational factor in this bound makes

these terms different from other strictly relevant terms, for example, ∂∂ΓcA
1 , ΓcA

β , or ∂Γc
β . Then using

inequality (D33), we have

|ΓΛ
′Λ0;~φ;w

1;l (~p) − ΓΛ
′Λ0;~φ;w

1;l (0)| 6 (Λ + |~p|)
(
1 + log+

|~p|
Λ + η

)
FΛΛ0

l (~p) PΛΛ0
3l−1(~p).

If Λ=Λ′, the proof is finished. If not, we repeat the steps used to show (226) integrating the FE from
η to Λ and using (D19),

|ΓΛΛ0;~φ;w
1;l (~p) − ΓηΛ0;~φ;w

1;l (~p)| 6 |~p| FΛΛ0
l−1 (~p) PΛΛ0

3l−2(~p).

2. Γ~φ;w
β

, Γφ
2;w

1
, and Γφ

3

1

In this section, we briefly discuss the remaining strictly relevant terms Γ~φ;w
β , Γφ

3

1 , and Γφ
2;w

1

denoting all of them by Γ~φ;w
X with X ∈ {β, 1}. We impose renormalization conditions Γ0Λ0;~φ;w

X (0)= 0

 16 February 2024 08:13:49



093503-33 Efremov, Guida, and Kopper J. Math. Phys. 58, 093503 (2017)

and integrate the FE from 0 to Λ. We use the bounds of Theorems 3 and 4 and then for an arbitrary
~p extend the integration up to Λ + η(~p),

|ΓΛΛ0;~φ;w
X (0)| 6 (Λ + η)dX

Λ + M
Λ0

PΛ+ηΛ0
rX

(0). (255)

Integration along the path given in Eq. (240) and using (D30) yield

|ΓΛΛ0;~φ;w
X (~p) − ΓΛΛ0;~φ;w

X (0)| 6 (Λ + |~p|)dX FsX (~p)PΛΛ0
sX

(~p). (256)

F. Convergence

We first prove the bounds for ∂Λ0 Γ~φ . Then we proceed with the other functions ∂Λ0 Γ~φ

~< ascending
in the number of insertions n<. We use the same inductive scheme as before, based on the FE.

We start with the irrelevant terms integrating the FE fromΛ0 toΛ, using the boundary conditions

ΓΛ0Λ0;~φ;w
l = 0 and applying the derivative with respect to Λ0,

∂Λ0 ΓΛΛ0;~φ;w
~<;l

=−Γ̇Λ0Λ0;~φ;w
~<;l

+

Λ∫
Λ0

dλ ∂Λ0 Γ̇λΛ0;~φ;w
~<;l

. (257)

To bound the first term of the expression, we substitute into the FE the irrelevant tree bound

|Γ̇Λ0Λ0;~φ;w
~<;l

| 6
1
Λ0

∑
τ∈T~<~φ

QΛ0;w
τ PΛ0Λ0

2(l−1). (258)

If n< = 0, then τ ∈ T~φ and θ(τ)> 0. Consequently, recalling (151),

Π
Λ0
τ,θ (~p) 6

Λ + |~p|
Λ0

Π
Λ
τ,θ (~p), and thus QΛ0;w

τ 6
Λ + |~p|
Λ0

QΛ;w
τ . (259)

Otherwise, the denominator Λ0 + |pe | with e< ∈ E< gives the inequality

1
Λ0 + |p< |

6
Λ + |~p|
Λ0

1
Λ + |p< |

. (260)

In both cases, this yields

|Γ̇Λ0Λ0;~φ;w
~<;l

| 6
Λ + |~p|

Λ2
0

∑
τ∈T~<~φ

QΛ;w
τ PΛΛ0

2(l−1). (261)

To analyse the second term, we apply ∂wp ∂Λ0 to the chain of vertex functions given in Definition 20.
This gives a chain with the element ∂Λ0 ((∂w1

p C)Γ;w2
l′ ) l′ < l which we bound using (D95) and (D102)

and Theorem 2,

|∂Λ0 ((∂w1
p C)ΓλΛ0;ζ ~φζ̄ ;w2

~<;l′
)| 6 |∂Λ0∂

w1
p C| |ΓλΛ0;ζ ~φζ̄ ;w2

~<;l′
| + |∂w1

p C| |∂Λ0 ΓλΛ0;ζ ~φζ̄ ;w2

~<;l′
|

6
c

(λ + |pζ |)2+‖w1 ‖

( λ + |pζ |

Λ2
0

|ΓλΛ0;ζ ~φζ̄ ;w2

~<;l′
| + |∂Λ0 ΓλΛ0;ζ ~φζ̄ ;w2

~<;l′
|
)

6
1

(λ + |pζ |)2

λ + M + |~p|

Λ2
0

∑
τ∈T~<ζ ~φζ̄

Qλ;w2+w1
τ PλΛ0

r(l′) (~p). (262)

We proceed as for the proof of inequality (217) substituting expression (221) with the integral

Λ0∫
Λ

dλ
(λ + M + |~p|)PλΛ0

2l−2 |ητ=0

Λ2
0(λ + |pa |)(λ + |pb |)

6
Λ + M + |~p|

Λ2
0

1
Λ + |p̂|

PΛΛ0
2l−1(~p), (263)

see the explanation after (221). If τ ∈ T<φφ , we always choose p̂= p< in order to preserve the factor
Λ + |p< | in the denominator of QΛ

τ .
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For the marginal terms, we shall integrate the FE upwards from 0 to Λ. For the terms with the
antighost, we use renormalization conditions (144),

ΓMΛ0;cc̄AA
l (0)= 0, ΓMΛ0;cc̄cc̄

l (0)= 0, ∂AΓMΛ0;cc̄A
l (0)= 0. (264)

Using Eq. (145), we obtain that for these terms at Λ′ =max(Λ, η(~p)),

|∂Λ0 ΓΛ
′Λ0;~φ;w

l (~p)| 6

1∫
0

dt |pc̄ | |∂Λ0∂c̄ΓΛ
′Λ0;~φ;w

l (tpc̄, . . .)|

6
Λ′ + M + |~p|

Λ2
0

∑
τ∈T~φ

1∫
0

dt |pc̄ |Q
Λ′;w+1c̄
τ PΛ

′Λ0
2l−1 6

Λ + M + |~p|

Λ2
0

PΛΛ0
2l , (265)

where we have substituted ∂Λ0∂c̄Γ~φ;w
l with the bound of Theorem 2 and applied inequality (D33).

The remaining marginal terms ΓAAAA, ∂c̄Γcc̄A, Γφφ< , ∂∂Γφφ , and ∂Γc
γ are renormalized at Λ= 0

and nonvanishing momentum~q, chosen inMs
n in all cases but ΓAAAA for which~q ∈Mcp

4 . See Appendix
H for the list of all relevant terms and their renormalization points. Since the renormalization constants
are independent of Λ0, their derivative with respect to Λ0 vanishes: it follows that the coefficients of

δ-tensors in the decomposition of ∂Λ0 Γ0Λ0;~φ;w
~<;l

(~q) vanish. Hence using Lemma 31 and the bounds on
irrelevant terms, we have

|∂Λ0 Γ0Λ0;~φ;w
~<;l

(~q)| 6
M

Λ2
0

P(1)
2l−1(log+

Λ0

M
). (266)

We integrate the FE from 0 to Λ′ and substitute the chain with the tree bound. Using inequalities
(235) and (236), it is easy to get the following bound:

|∂Λ0 ΓΛ
′Λ0;~φ;w

~<;l
(~q) − ∂Λ0 Γ0Λ0;~φ;w

~<;l
(~q)| 6

Λ + M

Λ2
0

P(1)
2l−1(log+

Λ0

M
). (267)

Integrating back and forth along the path given in Eq. (240) and substituting the irrelevant term

∂Λ0∂ΓΛ
′Λ0 ~φ;w

~<;l
with its bounds and using inequality (D33), we obtain

|∂Λ0 ΓΛ
′Λ0;~φ;w

~<;l
(0) − ∂Λ0 ΓΛ

′Λ0;~φ;w
~<;l

(~q)| 6
Λ + M

Λ2
0

PΛ
′Λ0

2l (0), (268)

|∂Λ0 ΓΛ
′Λ0;~φ;w

~<;l
(~p) − ∂Λ0 ΓΛ

′Λ0;~φ;w
~<;l

(0)| 6
Λ + M + |~p|

Λ2
0

PΛΛ0
2l (~p). (269)

If Λ=Λ′, the proof of the bounds on the marginal terms is complete. Otherwise we integrate the
FE downwards from η to Λ and repeat the arguments given to prove inequality (226) with a minor
change in the integrand

η∫
Λ

dλ
λ + M + |~p|

Λ2
0

λ PλΛ0
k |ητ=0

(λ + |pa |)(λ + |pb |)
6

M + |~p|

Λ2
0

η∫
Λ

dλ
2PλΛ0

k |ητ=0

λ + |pb |
. (270)

For the strictly relevant terms, we integrate the FE from 0 to Λ, substituting the vertex functions
and propagators with their bounds and extending the upper limit of integration to Λ + η,

|∂Λ0 ΓΛΛ0 ~φ;w
~<;l

(0)| 6
Λ + M

Λ2
0

Λ+η∫
0

dλ λd−1PλΛ0
2l−2(0), (271)

where d > 0. Using inequality (D30), we obtain

|∂Λ0 ΓΛΛ0 ~φ;w
~<;l

(0)| 6
Λ + M

Λ2
0

(Λ + η)dPΛ+ηΛ0
2l−2 (0). (272)
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To extend to momentum ~p, we proceed as in (249), the only change being an additional factor of
Λ+M+ |~p |

Λ2
0

.

V. RESTORATION OF THE STI

As mentioned before Theorems 3 and 4, we now consider all nontrivial marginal terms ΓΛΛ0;~φ;w
X~<;l

with X ∈ {β, 1} at Λ= 0. We want to show that these terms verify the bounds of Theorems 3 and 4.
In this section, since Λ= 0, we will omit the parameters Λ, Λ0 in the notations wherever this is not
ambiguous, i.e., we write Γ~φ for Γ0Λ0;~φ .

The subsequent relations are obtained by projecting the AGE (123) and the STI (124) on the
respective monomial in the fields (for example, c in Sec. V A) to read off the lhs from the rhs, taken
at the renormalization point. We will establish appropriate relations in order to make the coefficients
of the δ-tensors with respect to the monomial basis at the renormalization point satisfy the bounds
of these two theorems. In this analysis, we make particular use of the consistency conditions, see
Sec. V C. In Sec. V D, we prove the existence of a solution for the above mentioned system of relations
that does not depend on the UV cutoff. In Secs. V E 1–V E 10, we treat the different marginal terms
one by one.

A. Smallness relations

It is helpful to introduce the notion of small terms, which vanish in the limit Λ0→∞. For fixed
loop order l and X ∈ {β, 1}, a homogeneous function f (~p, M,Λ0) of mass dimension [f ] is said small

on a subset Y ⊂Mn and denoted by f
X,Y ,l
∼ 0, if for all w ∈Wn with ‖w‖ 6 [f ], there exists a polynomial

P(1)
rX

of degree rX ([f ] − ‖w‖, l), see Theorems 3 and 4, such that the following bound holds for all
Λ0 >M and all ~p ∈ Y , see (131):

|∂wp f (~p, M,Λ0)| 6
M1+[f ]−‖w ‖

Λ0
P(1)

rX
(log+

Λ0

M
). (273)

Furthermore, f
X ,Y ,l
∼ g iff [f ] = [g] and f − g

X,Y ,l
∼ 0. Because both relations 1,Y ,l

∼ and
β,Y ,l
∼ only

differ by the degree of polynomials, we have f
β,Y ,l
∼ g =⇒ f

1,Y ,l
∼ g. Since the loop order l and the

renormalization point ~q are evident from the context, we write

f Y
∼ g for f

1,Y ,l
∼ g, f

β,Y
∼ g for f

β,Y ,l
∼ g, (274)

f ∼ g for f
1,{~q }
∼ g, f

β
∼ g for f

β,{~q }
∼ g. (275)

Theorem 1 implies that for every vertex function Γ~φ

~< (~p) there exists a constant c such that∀w ∈Wn,
∀~p ∈Mn, ∀Λ0 >M,

|∂wΓ~φ

~< (~p)| 6 cM4−2n<−n−‖w ‖ . (276)

Using also that

|∂w(σ0Λ0 − 1)| < cw
1
Λw0

|σ0Λ0 − 1| < c0
M
Λ0

, (277)

the terms on the rhs of the STI and the AGE satisfy the relations,

Γ~φ1;w1∂w2 (σ0Λ0 Γ~φ2< )
β,Y
∼ Γ~φ1;w1 Γ~φ2;w2< , (278)

∂w(σ0Λ0 Γ~φ)
β,Y
∼ Γ~φ;w , (279)

∂w(pσ0Λ0 Γ~φ
γ )

β,Y
∼ pΓ~φ;w

γ . (280)

This fact will be useful in the calculations underlying Secs. V C–V E.
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B. The functional F1, rel

In this section, we introduce the notation for the renormalization constants for the functional F1

(119). For this purpose, we define the auxiliary functional

FΛ0
1,relBε

dab〈Uγcc
σ |γ̌

d
σ čačb〉 + ε sabε sdeuγAcc〈γ̌a

σǍb
σ čd če〉

+ 〈UcA
σ |č

dǍd
σ〉 + εdab〈U c̄cc | ˇ̄cd čačb〉 + εdab〈UcAA

µν |č
dǍa

µǍb
ν〉

+ 〈UcAAA
ρµν |č

dǍd
ρǍa

µǍa
ν〉 + 〈U c̄ccA

1;µ |
ˇ̄cbčbčaǍa

µ〉

+ 〈U c̄ccA
2;µ |

ˇ̄cačbčbǍa
µ〉 + εbeducc̄cAA

1 〈čb ˇ̄cečd Ǎa
µǍa

µ〉

+ εbeducc̄cAA
2 〈čb ˇ̄cačdǍa

µǍe
µ〉 + εbeducc̄cAA

3 〈ča ˇ̄cečdǍa
µǍb

µ〉, (281)

where

Uγcc
σ (l, p, q)B i(p + q)σuγcc, (282)

UcA
σ (l, p)B ipσp2ucA, (283)

U c̄cc(l, p, q)B (p2 + q2)uc̄cc
1 + 2pquc̄cc

2 , (284)

UcAA
µν (l, p, q)B (pµpν − qµqν)ucAA

1 + δµν(p2 − q2)ucAA
2 , (285)

UcAAA
ρµν (l, k, p, q)B i(ucAAA

1 kρ + ucAAA
2 pρ + ucAAA

2 qρ)δµν

+ i(ucAAA
3 kν + ucAAA

4 qν + ucAAA
5 pν)δρµ

+ i(ucAAA
3 kµ + ucAAA

4 pµ + ucAAA
5 qµ)δρν , (286)

U c̄ccA
1;µ (l, k, q, p)B ipµuc̄ccA

1 + ikµuc̄ccA
2 + iqµuc̄ccA

3 , (287)

U c̄ccA
2;µ (l, k, q, p)B i(kµ − qµ)uc̄ccA

4 , (288)

and u’s are functions of Λ0 defined by the marginal renormalization conditions,

F0Λ0;~φ;w
1;~< (~q)=FΛ0;~φ;w

1,rel;~< (~q) +
∑

t∈{δsek>0 }r

ζΛ0
t t. (289)

Here 2n< + n+ ‖w‖ = 5, ~q is the renormalization point defined in Appendix H, e= (ei)i∈[m] is an

orthogonal basis for the linear span of ~q, and r is the tensor rank of F0Λ0;~φ;w
1 (~q). ζΛ0

t are the uniquely
defined coefficients of tensors t. Note that we implicitly set to zero all constants associated with
strictly relevant renormalization conditions for F1. These constants are not needed because, thanks
to hypothesis RC1, the RHS of the STI and AGE at the current loop order vanishes at zero momenta.

The renormalization points ~q are chosen in agreement with the hypotheses of Lemma 31. From
Lemma 31, Theorem 3, and the irrelevant bounds of Theorem 4, for the marginal terms, one has

F0Λ0;~φ;w
1;~< (~q)∼FΛ0;~φ;w

1,rel;~< (~q). (290)

C. Consistency conditions

Here we establish the consistency conditions implied by the nilpotency, see (121) and (122).
Below we will rely on the validity of Theorem 4 at loop orders l′ < l for all terms and at the current
order l only for irrelevant terms: these properties are true in our inductive scheme. Recall defini-
tions (116), (131), and (274). Using the AGE (123), the bounds of Theorems 1–3, and (122), we
get (

SΓβ
) ~φ Mn
∼ 0, and thus

( δ
δc̃

F1

) ~φ Mn
∼ 0, (291)

where ~φ= (φ1, . . . , φn−1) and φi ∈ {A, c, c̄}. Equation (291), Theorems 1 and 2, and the bounds of
Theorem 4 for irrelevant terms yield( δ

δc̃
F1,rel

) ~φ Mn
∼ 0, ~φ ∈ {(c, c), (c, c, A)}. (292)
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See Sec. V B for the definition of F1,rel and of the constants uΦ. In Sec. V E 5, it will be shown that
ucc̄cAA

1,2,3 ∼ 0. Equation (292) then gives

uγcc ∼ uc̄cc
1 ∼ uc̄cc

2 , −2uγAcc ∼ uc̄ccA
1 ∼ uc̄ccA

2 ∼ uc̄ccA
3 , uc̄ccA

4 ∼ 0. (293)

Let us exploit (121) to obtain more constraints on the renormalization constants uΦ. At loop order l,

SF1;l = S0F1;l +
∑
l′<l

Sl−l′F1;l′ . (294)

By induction, (Sl−l′F1;l′)
~φ Mn
∼ 0 for all loop orders l′ < l. Then Eq. (121) implies that

(S0F1;l)
~φ Mn
∼ 0, (295)

where

S0 = 〈δ̃Ad
σ
Γ0,σ0Λ0 δ̃γd

σ
〉 + 〈δ̃γd

σ
Γ0,σ0Λ0 δ̃Ad

σ
〉

− 〈δ̃cdΓ0,σ0Λ0 δ̃ωd 〉 − 〈δ̃ωdΓ0,σ0Λ0 δ̃cd 〉, (296)

and recalling the notation for δ̃φ from (24),

δ̃Ad
σ (q)Γ0 = gεadb(〈γ̌a

σ čb; q〉 + 〈ipσ ˇ̄ca(p)čb; q〉) + Ad
σ′(q)(δσ′σq2 − qσ′qσ)σ−1

0Λ0
(q2)

+ 3εdab〈FAAA
σµν(q, ·, ·)|Ǎa

µǍb
ν; q〉 + 4RAAAA

σρµν〈Ǎ
d
ρǍa

µǍa
ν; q〉,

δ̃γd
σ (q)Γ0 = iqσcd(q) + gεdab〈Ǎa

σ čb; q〉,

δ̃cd (q)Γ0 = gεdab〈ipµ ˇ̄ca(p)Ǎb
µ + γ̌a

µǍb
µ + ω̌bča; q〉 − iqµγ

d
µ(q) − c̄d(q)q2σ−1

0Λ0
(q2),

δ̃ωd (q)Γ0 =
1
2

gεdab〈čačb; q〉.

Here the notation 〈ipσ ˇ̄ca(p)čb; q〉 corresponds to 〈φ1φ2; q〉 with φ1(p)= ipσ ˇ̄ca(p), φ2 = čb.
For all ~φ, ~<, and w such that n + 2n< + ‖w‖ = 6, we have

(S0F1;l)
~φ;w
~< = (S0F1,rel;l)

~φ;w
~< +

∑
π

(−)πa S
~φ1;w1

0,~<1
∆
~φ2;w2

~<2;l
, (297)

where ∆ΛΛ0
l :=FΛΛ0

1;l − FΛ0
1,rel;l , the sum runs over the permutations π = (πφ , π<, πw) such that ~φπφ

= ~φ1 ⊕ ~φ2, ~<π< =~<1 ⊕ ~<2, wπw = w1 + w2, and πa is the number of transpositions mod 2 of anticom-
muting variables in the permutation π. Using (296), for the terms in the sum on the rhs of (297), we
have

|S
~φ1;w1

0,~<1
∆
~φ2;w2

~<2;l
| 6 |Γ

A~φ1;w′1
~<1;0

,σ
w′′1
0Λ0
∆
~φ2;w2

~<2γ;l
| + |Γ

c~φ1;w′1
~<1;0

,σ
w′′1
0Λ0
∆
~φ2;w2

~<2ω;l
|

+ |Γ
~φ1;w′1
~<1γ;0

,σ
w′′1
0Λ0
∆

A ~φ2;w2

~<2;l
| + |Γ

~φ1;w′1
~<1ω;0

,σw
′′
1 ∆

c ~φ2;w2

~<2;l
|. (298)

Let us show that the lhs of (298) is small on Mn. Using Sec. V B and the bounds on irrelevant terms
of Theorems 3 and 4, we see that for all marginal terms

∆
~φ;w
~<;l
∼ 0, and thus ∆

~φ;w
~<;l

Mn
∼ 0. (299)

The relation on the rhs can be obtained by adapting the interpolation in Eqs. (242)–(244). Define ni :=
| ~φi | and n<i := |~<i |. Consider the sum of the first and second terms on the rhs. If 2n<2 + n2 + ‖w2‖ > 3,
then the bounds of Theorems 1, 3, and 4 and (299) imply that the sum is small. On the other hand,
if 2n<1 + n1 + ‖w1‖ > 3, then ‖w ′′1 ‖ > 0 and the bounds of Theorems 1 and 3 also give that the sum is
small. The analysis of the sum of the third and fourth terms on the rhs is similar. If 2n<2 + n2 + ‖w2‖ > 4,
then the bounds of Theorems 1, 3, and 4 and (299) imply that the sum is small. If 2n<1 +n1 + ‖w1‖ > 2,
then ‖w ′′1 ‖ > 0, and using the bounds of Theorems 1 and 3, we obtain again that the sum is small. It
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follows that the lhs of (298) is small. This fact and (295) imply that (S0F1,rel;l)
~φ;w Mn
∼ 0 for all marginal

terms, which leads to the following equations:

guγcc ∼−uγAcc, ucAA
1 + ucAA

2 ∼
gucA

2
, (300)

ucAAA
1 ∼ ucAAA

2 , ucAAA
3 ∼ ucAAA

4 ∼ ucAAA
5 . (301)

D. Existence of a constant solution

By our convention (which is the standard one), the renormalization constants that are solutions
of the relations listed in RC3 are not supposed to depend onΛ0. We give here a proof of this property,
which is not evident because these relations contain nontrivial functions of Λ0, here denoted by

ζΛ0
Φ

. The relations corresponding to the marginal terms Γ~φ;w
1~< , Γ~φ;w

β~< have, respectively, the general
form

cΦ + %CΦ
1 % + ζΛ0

Φ
∼ 0, ζΛ0

Φ
B %CΦ

2 ζ
Λ0 + ζΛ0 CΦ

3 ζ
Λ0 , (302)

cΦ + VΦ
1 % + ζΛ0

Φ

β
∼ 0, ζΛ0

Φ
BVΦ

2 ζ
Λ0 . (303)

Here %= (rφ...i , Ri, ΣAA
L , ΣAA

T , Σc̄c) denotes the relevant terms for vertex functions, see (E29) for the

list of rφ...i and Appendixes E and F for the remaining terms. The sequence ζΛ0 stands for the

irrelevant terms listed in Appendixes E and F and for the derivative of rφ...i , Ri with respect to scalar
products of momenta. Finally, cΦ is a constant, VΦ

1,2 are constant vectors, and CΦ
1,2,3 are constant

matrices.
At loop order l, the terms ζΛ0

Φ,l depend only on %l′ of loop order l′ < l: this property holds because

each ζΛ0
Φ,l is at least linear in ζΛ0 and because all ζΛ0

l=0 vanish. Moreover, at order l for each relation, we
have a distinct renormalization constant. Consequently, the aforementioned relations have a solution.
The existence of a solution %l independent ofΛ0 follows immediately if the limit limΛ0→∞ ζ

Λ0
Φ,l exists:

in this case, it is enough to choose a solution of the following equations:

cΦ + %CΦ
1 % + ζ∞Φ = 0, cΦ + VΦ

1 % + ζ∞Φ = 0. (304)

The convergence of ζΛ0
Φ,l relies on the validity of the bounds of Theorem 2 up to order l for all irrelevant

terms Γ~φ;w
~< and up to order l � 1 for all the relevant ones. This property holds because in our inductive

scheme at fixed loop order the irrelevant terms are treated before the relevant ones.

E. Marginal renormalization conditions
1. Γc

β

The renormalization point is ~q= (−q̄, q̄) ∈Ms
2, see (132),

Γca

βb (p)
β
∼σ0Λ0 (p2) Γca c̄b

(p) + ipµΓ
ca

γb
µ
(p)

β
∼−δabf (p2), (305)

f (x)B x
(
1 + Σc̄c(x) − R1(x)

)
. (306)

For the marginal term, we obtain

−
δab

3
Γca;pµpν
βb (p)

β
∼ 2δµνf ′(p2) + 4pµpνf ′′(p2). (307)

The coefficient of δµν is small at the renormalization point iff

f ′ = 1 − r c̄c − R1 − ζ
Λ0
βc

β
∼ 0, ζΛ0

βc (p2)B p2 ∂R1(p2)

∂p2
. (308)

This gives the renormalization condition for R1.
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2. ΓcA
β

The renormalization point is ~q= (k̄, p̄, q̄) ∈Ms
3, see (132). With k = �p � q,

ΓcaAd
µ

βb (p, q)
β
∼ ΓAd

µca c̄b
(p, k) − ikρΓ

caAd
µ

γb
ρ

(p, q) (309)

= iεdabI0Λ0
µ (p, q), (310)

I0Λ0
µ (p, q)= kµRAc̄c

1 (k, p) + pµrAc̄c
2 (k, p) − gkρFγAc

ρµ (q, p). (311)

Let ∆ΛΛ0
µν := IΛΛ0;pν

µ − IΛΛ0;qν
µ . At zero external momenta and Λ=M, we have ∆MΛ0

µν (0)= 0. Then
using the bounds of Theorem 3, we get

|∆
MΛ0
µν (~q)| 6

1∫
0

dt M |∂∂ΓMΛ0;cA
β |

β
∼ 0. (312)

The term ∆
ΛΛ0
µν obeys the FE, see (129). It remains to integrate the FE from 0 toΛ and uses inequality

(D30) to obtain

∆
0Λ0
µν (~q) − ∆MΛ0

µν (~q)
β
∼ 0, and thus ∆

0Λ0
µν (~q)

β
∼ 0. (313)

Hence in the monomial basis {δsQk }2 with Q= (p̄, q̄), the δ-component of IAc̄c;qν
µ is small at the

renormalization point if the following condition holds

RAc̄c
1 − gR2 − ζ

Λ0
βcA

β
∼ 0. (314)

This gives the renormalization condition for RAc̄c
1 .

3. ΓcAA
β and Γccc̄

β

The renormalization point is ~q= (k̄, l̄, p̄, q̄) ∈Ms
4, see (132),

ΓcaAt
µAs

ν

βb (l, p, q)
β
∼ Γca c̄bAt

µAs
ν (k, p, q) − ikρΓ

caAt
µAs

ν

γb
ρ

(l, p, q), (315)

Γcact c̄s

βb (l, p, q)
β
∼ Γca c̄bct c̄s

(k, p, q) − ikρΓ
cact c̄s

γb
ρ

(l, p, q). (316)

At Λ=M, it follows from property (148) that these terms vanish at zero momenta. Denoting the
renormalization point by ~q, using the bounds of Theorem 3, and integrating the FE from M to 0, we
obtain

|ΓMΛ0;~φ
β (~q)| 6

1∫
0

dt |~q| |∂ΓMΛ0;~φ
β (t~q)|

β
∼ 0, (317)

|Γ0Λ0;~φ
β (~q) − ΓMΛ0;~φ

β (~q)| 6
M
Λ0

P(1)
2(l−1)(log+

Λ0

M
)
β
∼ 0. (318)

4. Γcc̄cc̄c
1 and ΓcAAAA

1

These functions do not have nonvanishing marginal terms,

εdab〈čdǍa
µǍb

νǍs
µǍs

ν〉= 0, εdab〈čd ˇ̄csča ˇ̄csčb〉= 0. (319)

5. Γc̄ccAA
1

From Eq. (148), it follows that for Λ=M the function vanishes if the antighost momentum is
zero. Using the bounds of Theorem 4, first, we obtain at the renormalization point |ΓMΛ0;c̄ccAA

1 (~q)| ∼ 0,
where ~q ∈Ms

5, and then integrating the FE from M to 0, we show that the term is small at Λ= 0.
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6. ΓcA
1

The renormalization point is ~q= (−q̄, q̄) ∈Ms
2, see (132),

ΓcaAb
µ

1 (p)∼ iδabFAA
T ;µν(p)R1pν = iδabpµf (p2), (320)

f (x)B
1
ξ

xR1(x)ΣAA
L (x). (321)

The marginal term satisfies

ΓcaAb;ppp
1 (p)∼ iδab

(
2f ′(p2)(Σt∈{δ2 }4

t) + 4f ′′(p2)(Σt∈{δpp}4 t) + 8ppppf ′′′(p2)
)
.

For the coefficient of δ-tensors, we have

ξf ′(p2)=R1(p2)
(
Σ

AA
L (p2) + p2 ∂Σ

AA
L (p2)

∂p2

)
+ p2

Σ
AA
L (p2)

∂R1(p2)

∂p2
. (322)

Recalling the definition of rAA
1,2 in Appendix E,

rAA
2 (p2) + rAA

1 (p2) + p2 ∂rAA
2 (p2)

∂p2
=

1
ξ

(
Σ

AA
L (p2) + p2 ∂Σ

AA
L (p2)

∂p2

)
. (323)

We then obtain the following sufficient condition:

ucA ∼ 0⇐⇒R1(rAA
2 + rAA

1 ) + ζΛ0
cA ∼ 0, (324)

where

ζΛ0
cA (p2)B p2

(
R1(p2)

∂rAA
2 (p2)

∂p2
+

1
ξ
Σ

AA
L (p2)

∂R1(p2)

∂p2

)
. (325)

See Sec. V B for the definition of ucA. Relation (324) gives us the renormalization condition for rAA
2 .

7. ΓcAA
1

The renormalization point is ~q= (k̄, p̄, q̄) ∈Ms
3, see (132). With k = �p � q,

ΓcsAa
µAb

ν

1 (p, q)∼ ΓAt
ρAa

µAb
ν (p, q)Γcs

γt
ρ
(k) +

∑
Z2

FAA
T ;µρ(p)ΓcsAb

ν

γa
ρ

(k, q), (326)

where the sum
∑

Z2
runs over all cyclic permutations of {(µ, p, a), (ν, q, b)}. The marginal terms are:

ΓcAA;pp
1 , ΓcAA;pq

1 , and ΓcAA;qq
1 . Using Eq. (300), we see that ucAA

2 ∼ 0 =⇒ ucAA
1 ∼ 0. Acting with ∂p∂p

on both sides of (326), we obtain

ucAA
2 ∼ 0 ⇐⇒ gR2

(
1 + rAA

1

)
− 2R1RAAA + ζΛ0

cAA ∼ 0. (327)

This gives the renormalization condition for R2.

8. Γc̄ccA
1 and ΓccA

1γ

The renormalization point is ~q= (l̄, k̄, q̄, p̄) ∈Ms
4, see (132). With l = �k � q � p,

Γc̄acbcd As
µ

1 (k, q, p)∼ Γcd c̄aAs
µAt

ρ (l, p, k)Γcb

γt
ρ
(k) − Γcb c̄aAs

µAt
ρ (l, p, q)Γcd

γt
ρ
(q)

+ Γ
At
ρcd c̄a

(q, l)Γ
As
µcb

γt
ρ

(p, k) − ΓAt
ρcb c̄a

(k, l)Γ
As
µcd

γt
ρ

(p, q)

+ FAA
T ;µρ(p)Γcbcd c̄a

γs
ρ

(k, q, l) + Γct c̄aAs
µ (l, p)Γcbcd

ωt (k, q)

+ Γ
ct c̄a

(l)σ0Λ0 (l2)Γ
cbcd As

µ

ωt (k, q, p). (328)
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From Eq. (293), it follows that uc̄ccA
4 ∼ 0 and

uc̄ccA
1 ∼ 0 =⇒ uγAcc ∼ 0, uc̄ccA

2 ∼ 0, uc̄ccA
3 ∼ 0. (329)

Consequently, we need only one condition

uc̄ccA
1 ∼ 0 ⇐⇒ g(R2 − R3)RAc̄c

1 + ζΛ0
c̄ccA ∼ 0. (330)

This gives the renormalization condition for R3.

9. Γc̄cc
1 and Γcc

1γ

From Eqs. (293) and (300), we have

uc̄ccA
1 ∼ 0 =⇒ uγAcc ∼ 0 =⇒ uγcc ∼ 0 =⇒ uc̄cc

i∈{1,2} ∼ 0. (331)

Consequently, the marginal contribution to the functions is small.

10. ΓcAAA
1

The renormalization point is ~q= (l̄, k̄, q̄, p̄) ∈Mcp
4 , see (133). With l = �k � q � p,

ΓcsAt
µAb

νAd
ρ

1 (p, q, k)∼ΓAa
σAt

µAb
νAd

ρ (p, q, k)Γcs

γa
σ

(l)

+
∑
Z3

Γ
Aa
σAt

µAb
ν (p, q)Γ

Ad
ρcs

γa
σ

(k, l)

+
∑
Z3

FAA
T ;ρα(k)Γ

csAt
µAb

ν

γd
α

(l, p, q), (332)

where FAA
T is defined in (E9), and the sum

∑
Z3

runs over all cyclic permutations of
{(d, ρ, k), (b, ν, q), (t, µ, p)}. From (301), it follows that we need two equations

ucAAA
1 ∼ 0 ⇐⇒ 8R1RAAAA

2 − 4gR2RAAA + ζΛ0
cAAA,1 ∼ 0, (333)

ucAAA
3 ∼ 0 ⇐⇒ 4R1RAAAA

1 + 2gR2RAAA + ζΛ0
cAAA,3 ∼ 0. (334)

These equations give the renormalization conditions for RAAAA
1,2 .
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APPENDIX A: PROPERTIES OF GAUSSIAN MEASURES

In the following, dν = dνC(A)dνS(c, c̄) is the measure given in (31) and (32),

dνC1+C2 (A)f (A)= dνC1 (A1)dνC2 (A2)f (A1 + A2), (A1)

dνtC(A)f (A)= dνC(A)f (t
1
2 A), (A2)

dνC(A − δA)= dνC(A)e
− 1

2~ 〈δA,C−1
ΛΛ0

δA〉
e

1
~ 〈A,C−1

ΛΛ0
δA〉

, (A3)
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d
dΛ

dνC f (A)=
1
2

dνC〈
δ

δA
, ~ĊΛΛ0

δ

δA
〉f (A), (A4)

dνC G(A)

(
AC−1

ΛΛ0
− ~

δ

δA

)
F(A)= dνC

(
~
δ

δA
G(A)

)
F(A). (A5)

When integrating over Grassmann variables, one obtains

dνS1+S2 (c, c̄)f (c̄, c)= dνS1 (c1, c̄1)dνS2 (c2, c̄2)f (c̄1 + c̄2, c1 + c2), (A6)

dνtS(c, c̄)f (c̄, c)= dνS(c, c̄)f (t
1
2 c̄, t

1
2 c), (A7)

dνS(c − δc, c̄ − δc̄)= dν(c, c̄)e
1
~ 〈δc̄,S−1

ΛΛ0
δc〉

e
− 1
~ (〈c̄,S−1

ΛΛ0
δc〉+〈δc̄,S−1

ΛΛ0
c〉)

, (A8)

d
dΛ

dνSf (c̄, c)= dνS〈
δ

δc
, ~ṠΛΛ0

δ

δc̄
〉f (c̄, c), (A9)

dνS G̃(c̄, c)

(
−c̄S−1

ΛΛ0
+ ~

δ

δc

)
F̃(c̄, c)= dνS

(
~
δR

δc
G̃(c̄, c)

)
F̃(c̄, c), (A10)

dνS G̃(c̄, c)

(
S−1
ΛΛ0

c + ~
δ

δc̄

)
F̃(c̄, c)= dνS

(
~
δR

δc̄
G̃(c̄, c)

)
F̃(c̄, c), (A11)

where right functional derivatives are distinguished from left ones by the label R. Properties (A5),
(A10), and (A11) are proved for

G= e
i
~ 〈j,A〉, F = e

i
~ 〈j
′,A〉, G̃= e

i
~ (〈c̄,η〉+〈η̄,c〉), F̃ = e

i
~ (〈c̄,η′〉+〈η̄′,c〉), (A12)

and extended to polynomials in the fields by functional differentiation.

APPENDIX B: CHAINS OF VERTEX FUNCTIONS

For the purpose of example, we give the complete list of reduced chains which appear in the
loop integrals for Γ̇AAcc̄;w , together with the corresponding “dotted” propagators. The external fields
are underlined. Moreover,

∑k−1
i=0 wi = w, k being the number of vertex functions in each chain,

ĊΓAAA;w0 CΓAAA;w1 CΓAcc̄;w2 SΓcc̄A;w3 , ĊΓAAAAcc̄;w ,

ṠΓcAc̄;w0 SΓcAc̄;w1 SΓAcc̄;w2 CΓcc̄A;w3 , ṠΓcc̄AAcc̄;w ,

ĊΓAAAA;w0 CΓAcc̄;w1 SΓcc̄A;w2 , ĊΓAAAcc̄;w0 CΓAAA;w1 ,

ṠΓcAAc̄;w0 SΓAcc̄;w1 CΓcc̄A;w2 , ṠΓAcc̄cc̄;w0 SΓAcc̄;w1 ,

ĊΓAAcc̄;w0 SΓAcc̄;w1 SΓAcc̄;w2 , ĊΓAAAcc̄;w0 SΓAcc̄;w1 ,

ṠΓc̄AcA;w0 CΓAAA;w1 CΓAcc̄;w2 , ṠΓAAAcc̄;w0 CΓAcc̄;w1 ,

ĊΓAAc̄c;w0 SΓAcc̄;w1 CΓAAA;w2 , ĊΓAAAcc̄;w0 SΓAcc̄;w1 ,

ṠΓcAc̄A;w0 CΓAcc̄;w1 SΓAcc̄;w2 , ṠΓAAAcc̄;w0 CΓAcc̄;w1 ,

ĊΓAcc̄A;w0 CΓAAA;w1 CΓAAA;w2 , ĊΓAAcc̄;w0 SΓAAcc̄;w1 ,

ṠΓccc̄c̄;w0 SΓAcc̄;w1 SΓAcc̄;w2 , ṠΓAAcc̄;w0 CΓAAcc̄;w1 ,

ĊΓAAAA;w0 CΓAcc̄A;w1 , ṠΓAAcc̄;w0 SΓcc̄cc̄;w1 .

(B1)

APPENDIX C: TENSORS

For the definition of the tensor monomial sets {δsqn} and {δsqn}r see the beginning of page 23.

Lemma 28. Let q= (q1, . . . , qm) where qi ∈RD are m ∈N linearly independent vectors. Then the
tensor monomials {δsqn}r of positive rank r = 2s + n 6 2(D − m) + 1 are linearly independent,
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t∈{δsqn }r

ct t = 0 =⇒ ct = 0, ∀t. (C1)

Proof. Observe that, for m, r, D ∈N, the inequality r 6 2(D − m) + 1 is equivalent to m + s 6D
for all s, n ∈N such that r = n + 2s. Let I := {1, . . . , r}. Let Ps be the set of all divisions of the set I in
m + s pairwise-disjoint, possibly-empty sets,

I =
(
∪m

j=1 Vj
) ⋃ (

∪s
k=1 Sk

)
, (C2)

such that Sk = {s1
k , s2

k }, s1
k < s2

k , and min S1 < · · · <min Ss. There is a bijection that maps a division
(Vj, Sk) ∈Ps to a tensor monomial t ∈ {δsqn}, constructed by the relation

tµ1...µr =

m∏
j=1

∏
vj ∈Vj

qj;µvj

s∏
k=1

δµ
s1
k
µ

s2
k

. (C3)

Let us first prove the statement of the lemma for orthonormal qj. In an appropriate basis of RD, their
components are

qj;µ = δjµ, j ∈ {1, . . . , m}, µ ∈ {1, . . . , D}. (C4)

Let us assume that
∑

t ct t = 0, with t ∈ {δsqn}r . We will proceed by proving inductively that ct = 0 for
all t ∈ {δsqn}, from s = D � m down to s = 0. Fix s̄ ≤D −m and assume that ct = 0 for all t involving
more than s̄ Kronecker’s tensors (which is vacuously true for s̄=D − m, due to the rank constraint).
Let us prove that ct̄ = 0 for an arbitrary t̄ ∈ {δs̄qn̄}, which is associated with a division (V̄j, S̄k) ∈Ps̄.
Fix the values of the indices µ̄i, with i ∈ I , by

µ̄i =

{
j, if ∃j such that i ∈ V̄j,

m + k, if ∃k such that i ∈ S̄k .
(C5)

Note that this choice is possible because m + s̄ 6D. It is enough to show that whenever tµ̄1...µ̄r , 0 for
t ∈ {δsqn} and s 6 s̄ (i.e., n > n̄), then s= s̄ and t = t̄: in fact this property, the inductive hypothesis, and
the vanishing of the sum

∑
t ct t imply that ct̄ = 0. To prove the aforementioned property, introduce

the division (Vj, Sk) ∈Ps defining the tensor t and, using (C4), correspondingly write

0, tµ̄1...µ̄r =

m∏
j=1

∏
vj ∈Vj

δjµ̄vj

s∏
k=1

δµ̄
s1
k
µ̄

s2
k

. (C6)

Relations (C5) and (C6) imply that Vj ⊆ V̄j for all j, which, together with the inductive condition
n > n̄, leads to n= n̄ and, because the rank r is fixed, to s= s̄. Relations (C5) and (C6), and s= s̄ imply
that there is an injective map f : I→ I such that Sj = S̄f (j). By definition of Sj, it then follows that
min S̄f (1) < · · · <min S̄f (1): this is only possible if f is the identity, which concludes the first part of
the proof.

Let us now prove the statement for m linearly independent vectors p1, . . . , pm. The sum
∑

t ct t = 0,
with t ∈ {δspn}r , may be rewritten as∑

2s+n=r

∑
16k1,...,kn6m

∑
π

ck1,...,kn;π

n∏
j=1

(pkj )µπj

s∏
j′=1

δµπ
m+2j′−1

µπ
m+2j′
= 0, (C7)

where µπj := µπ(j) and the sum over π runs over the right coset of permutation groups Sr\(Sn×Ss×Ss
2).

Expressing pk in terms of m orthonormal vectors qk′ , pk =Akk′qk′ , gives a tensor transformation
leading to the coefficients in the {δsqn}r basis,

c′k′1,...,k′n;π = ck1,...,kn;π

n∏
j=1

Akjk′j
. (C8)

The validity of equation (C1) for qk implies that c′k′1,...,k′n;π = 0, which, by invertibility of the matrix

A ∈GL(m,R), gives ck1,...,kn;π = 0. �
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Note that for m= nφ −1 and D = 4, the condition for linear independence of the monomials in {δsqk }r

reads
r 6 2(4 − (nφ − 1)) + 1= 11 − 2nφ . (C9)

Lemma 29. Let q= (q1, . . . , qm) with qi ∈RD and m nonnegative integer. The tensor monomials
{δsqn}r of positive rank r > 2(D − m + 1) are linearly dependent.

Proof. The signature of a permutation π is denoted by (−)π .

� The Gram matrix g := g(t1, . . . , tk) of k tensors ti of equal rank is defined by its components:
gij := (ti, tj) for all i, j ∈ [k]. The scalar product (2) is O(D)-invariant: (R t, R u)= (t, u) for all
tensors t, u of rank r and all R :=R ⊗ · · · ⊗ R (r times) with R ∈O(D). As a consequence,
g(R t1, . . . , R tk)= g(t1, . . . , tk) for k tensors of rank r. It is a well-known fact that tensors of
equal rank t1, . . . , tk are linearly independent iff their Gram matrix g(t1, . . . , tk) is invertible.
It follows that t1, . . . , tk are linearly independent iff R t1, . . . , R tk are linearly independent for
some R as stated above.

� We assume that m > 0 because whenever m = 0 for each s >D + 1, one has∑
π∈Ss

(−)πδµ1νπ(1) · · · δµsνπ(s) = 0. (C10)

� We assume that q1, . . . , qm are linearly independent because otherwise there exist ci not all
vanishing such that

∑
i∈[m] ci qi = 0, which, for every r > 0, yields∑

i1,...,ir ∈[m]

ci1 · · · cir qi1 ⊗ · · · ⊗ qir = 0. (C11)

� If the tensors {δsqn}r are linearly dependent then the tensors {δsqn}r′ are linearly dependent, for
every r ′ > r. Proof: linear dependence of the tensors {δsqn}r yields∑

t∈{δsqn }r

ct t = 0,

where not all ct vanish. Linear independence of q1, . . . , qm implies that q1 , 0. The proof is
concluded by applying r ′ − r times the tensorial product ⊗q1, which gives∑

t∈{δsqn }r

ct t ⊗ (q1)⊗r′−r = 0.

� For q1, . . . , qD linearly independent, the statement of the lemma follows from the previous fact
and a well-known relation involving the Gram matrix g := g(q1, . . . , qD),

δµν =
∑

i,j∈[D]

qi,µ (g−1)ij qj,ν . (C12)

� It is then enough to prove the statement of the lemma for r = 2(D � m + 1), 0 <m <D, and
q1, . . . , qm linearly independent and such that qµi = 0 for all µ ∈ [m + 1 : D] and i ∈ [m]. There
exist qm+1, . . . , qD orthonormal vectors such that qµi = δ

µ
i for all µ ∈ [D] and i ∈ [m + 1 : D].

Relation (C12) then gives

δµν =
∑

i,j∈[m]

qi,µ (g−1
⫽ )ij qj,ν + δ⊥µν , (C13)

where g⫽ := g(q1, . . . , qm) and δ⊥µν :=
∑

i∈[m+1:D] qi,µqi,ν . For s = D � m + 1, one has∑
π∈Ss

(−)π δ⊥µm+1νm+π(1)
· · · δ⊥µm+sνm+π(s)

= 0. (C14)

Combining (C13) and (C14) concludes the proof of the lemma. �

The following lemma states a necessary condition for a regular, O(4)-invariant tensor field.
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Lemma 30. Let f (y) be a regular, O(4)-invariant tensor field of rank r where y := (y1, . . . , ym)

with yj ∈R4. Assume that the tensor monomials {δsyk }r as well as {δsyk }r+1 are linearly independent
pointwise for all y ∈O, where O is some open set. Then on O, we have

f =
∑

t∈{δsyk }r

ft t, ∂jf =
∑

t′∈{δsyk }r+1

fj,t′ t
′. (C15)

Furthermore for every t ∈ {δsyk>0}r , there exist j and t ′ ∈ {δsyk }r+1 such that ft = fj,t′ on O.

Proof. For shortness, we consider only the case m = 2. We have

f =
∑

t∈{δs }r

ut t +
∑

t∈{δsyk>0 }r

ζt t, (C16)

where ut , ζt are regular functions of the scalar parameters X= { 1
2 y2

1, 1
2 y2

2, y1y2}. Apply the operator
∂j to both sides of (C16). The Leibniz rule gives

∂j(utδ
s)=

∑
x∈X

(∂xut) δ
s ∂jx, (C17)

∂j(ζtδ
syk)=

∑
x∈X

(∂xζt) δ
s yk∂jx + ζtδ

s ∂jy
k , (C18)

where ∂jx ∈ {0, y1, y2}, yk := yi1 . . . yik with il ∈ {1, 2}, and

∂jy
k = ∂j

k∏
l=1

yil =

k∑
q=1

δj,iq

k∏
l=1
l,q

yil . (C19)

The nonvanishing tensor monomials arising at a given j ∈ {1, 2} from the rhs of (C17) and (C18) have
rank r + 1, are linearly independent by assumption, and are pairwise different. Each coefficient ζt of the
tensor δsyi1 . . . yj . . . yik in the decomposition (C16) appears also as the coefficient of δsyi1 . . . δ . . . yik
in the decomposition (C18) for ∂jf . �

Lemma 31 relies on Lemma 28, which shows that, for m linearly independent vectors e=
(e1, . . . , em), the relation r + 1 6 9 − 2m is a sufficient condition for the linear independence of
the tensor monomials {δsek }r and {δsek }r+1, see Lemma 29 for a necessary condition. The renormal-
ization points in Appendix H are chosen to comply with the aforementioned relation. The proof of
Lemma 31 is in the same spirit as the one of Lemma 30.

Lemma 31. Let F be a regular, O(4)-invariant tensor field of rank r ∈ {2, 4} on Pn. Let be given
~q ∈Mn and m > 2 linearly independent vectors e= (e1, . . . , em), such that span(~q)= span(e). Assume
that r + 1 6 9 − 2m. By Lemma 28, there exist unique coefficients F t such that F(~q)= Σt∈{δsek }r

Ft t.
Furthermore,

|F(~q)| 6 c max
((
|Ft |

)
t∈{δs }r

, (M |∂kF(~q)|)k∈[n−1]

)
, (C20)

��
∑

t∈{δsek>0 }r

Ft t�� 6 c max
(
(M |∂kF(~q)|)k∈[n−1]

)
. (C21)

The bounds hold with the same constant c for all F of equal rank.

Proof. The coefficients
(
|Ft |

)
t∈{δs }r

in the basis {δsek }r do not depend on the choice of the vectors
e. Hence it is enough to prove (C20) in the case when eiej =M2δij. For simplicity, we assume that m
= 2, the extension to other m being clear.

By hypothesis, there exists a (n − 1) × 2 matrix L such that qk = Lkiei and

|L |B
√

LkiLki =
1
M

√
LkiLkjeiej =

1
M

( n−1∑
k=1

q2
k

) 1
2 6 (n − 1)

1
2 . (C22)
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Denote by E ⊂R4 the linear span of the vectors q0, . . . , qn�1. The matrix L induces a linear map
L :E2→R4(n−1), y 7→Ly, where y= (y1, y2) and (Ly)k =Lkiyi. We also define an auxiliary function on

E2: f (y) :=F(Ly). Setting ∂yi := ∂/∂yi and ∂k := ∂/∂pk , the Cauchy–Schwarz inequality and (C22)
imply that ∑2

i=1 |∂yi f (e)|2 6 |L |2
∑n−1

k=1 |∂kF(~q)|2 6 (n − 1)2 max
k

(|∂kF(~q)|2). (C23)

For all y1, y2 ∈E, denote as usual by {δsyk } the set of all monomials being a tensor product of k

vectors in y= (y1, y2) and of s Kronecker tensors, and by {δsyk }r the union of all {δsyk } such that

2s + k = r. By (C1), whenever r 6 5 and y1, y2 are linearly independent, the elements of {δsyk }r are
linearly independent. In this case, we label the tensor monomials by fixing a family of disjoint sets
Ak ,s and a family of bijections α 7→ tα from each Ak ,s to {δsyk }. Furthermore, we define the auxiliary
sets

Ar B
⋃

2s+k=r

Ak,s, Ar
+B

⋃
2s+k=r, k>1

Ak,s, Ar
0BAr \ Ar

+. (C24)

For r ∈ {2, 4} and y= (y1, y2) in an open neighborhood of e (in E2) for which y1, y2 are linearly
independent, we write the following tensor decomposition:

f (y)=
∑
α∈Ar

0

uαtα +
∑
α∈Ar

+

ζαtα, (C25)

where uα and ζα are regular functions of the scalar parameters X= { 1
2 y2

1, 1
2 y2

2, y1y2}. Evaluating (C25)
at y= e and using the general fact that |t| = 2sMk for t ∈ {δsek }, we obtain

|f (e)| 6
∑
α∈Ar

0

2s |uα | +
∑
α∈Ar

+

|ζα | 2
sMk . (C26)

We now want to prove the existence of a constant c1 > 0 such that∑
α∈Ar

+

|ζα | 2
sMk 6 c1M

( ∑
i∈{1,2}

|∂yi f (e)|2
)1/2

. (C27)

Apply the operator ∂yi to both sides of (C25). The Leibniz rule gives

∂yi (uαδ
s)=

∑
x∈X

(∂xuα) δs ∂yi x, (C28)

∂yi (ζαδ
syk)=

∑
x∈X

(∂xζα) δs yk∂yi x + ζαδ
s ∂yi y

k , (C29)

where ∂yi x ∈ {0, y1, y2}, yk = yi1 . . . yik with il ∈ {1, 2}, and

∂yi y
k = ∂yi

k∏
l=1

yil =

k∑
j=1

δi,ij

k∏
l=1
l,j

yil . (C30)

Fix y= e. The nonvanishing tensor monomials arising at a given i ∈ {1, 2} from the rhs of (C28) and

(C29) have rank r +1 ∈ {3, 5}, are pairwise different, and are a subset of the tensor monomials in Ar+1,
themselves linearly independent by (C1). Denote by Br+1

i ⊂ Ar+1
+ the subset labeling the monomials

of type δsδi,ij
∏

l,j yil arising from (C29) and (C30) at the given i. By construction, we can define the
maps πi : Br+1

i →Ar
+ with i ∈ {1, 2} such that

(i) if tπi(β) ∈ {δ
sek }, then tβ ∈ {δs+1ek−1} (in this case, |tπi(β) | = 2sMk and |tβ | = 2s+1Mk−1);

(ii) for each β ∈ Br+1
i , the coefficient of tβ in (C29) and that of tπi(β) in (C25) are the same,

namely, ζπi(β);
(iii) π1(Br+1

1 ) ∪ π2(Br+1
2 )=Ar

+.
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The following bound holds at y= e for every tensor Ψ=
∑
β Ψβtβ/|tβ | with β ∈ Ar′ and r ′ 6 5, and for

every nonempty B ⊂ Ar′ :

|Ψ|2 = (Ψ,Ψ)=Ψ∗β Gββ′ Ψβ′ > λ1

∑
β∈Ar′

|Ψβ |
2 > λ1

∑
β∈B

|Ψβ |
2, (C31)

where λ1 > 0 is the smallest eigenvalue of the Gram matrix of components Gββ′ := (tβ , tβ′)/(|tβ | |tβ′ |),
which is positive definite by (C1). Application of (C31) toΨi := ∂yi f (e) for each i ∈ {1, 2}, with r ′ = r+1
and B=Br+1

i , gives∑
i∈{1,2}

|∂yi f (e)|2 > λ1

∑
i∈{1,2}
β∈Br+1

i

|ζπi(β) |
2 |tβ |

2 >
4λ1

M2

∑
α∈Ar

+

|ζα |
2 (2sMk)2, (C32)

from which follows the bound (C27).
Inequalities (C26), (C32), and (C23) lead to the bounds (C20) and (C21), with a constant

c=max
(
2

r
2 |A0 |, (n − 1)

√
|Ar

+ |

4λ1

)
. (C33)

�

APPENDIX D: BASIC ESTIMATES

Lemma 32. Let 0 6 q 6 p 6 P, k ∈N. Then ∃Ck > 0 such that
+∞∫
Λ

dλ logk
+

P
λ

(λ + p)(λ + q)
6Ck

1 + logk+1
+

P
Λ+q

Λ + p + q
. (D1)

Proof. Let Ik be the left hand side of the inequality and

Ik
[a,b]B

b∫
a

dλ
(λ + p)(λ + q)

logk
+

P
λ

. (D2)

We begin with the case k > 1.

� Λ> P, Ik = 0.
� q 6Λ 6 P, Ik = Ik

[Λ,P],

Ik 6
1

Λ + p

∫ P

Λ

dλ
λ + q

logk 2P
λ + q

6
2

k + 1
1

Λ + p + q
logk+1 2P

Λ + q

6
Ak

Λ + p + q
(logk+1

+
P

Λ + q
+ 1), (D3)

where

AkB
2(log 2 + 1)k+1

k + 1
, (D4)

and we have used the inequality

log+ x + log 2

(1 + logn
+ x)

1
n

< 1 + log 2. (D5)

� Λ< q 6 P, Ik = Ik
[Λ,q] + Ik

[q,P],

Ik
[q,P] 6

1
Λ + p

P∫
q

dλ
λ + q

logk 2P
λ + q

6
1

Λ + p

P∫
Λ

dλ
λ + q

logk 2P
λ + q

6
Ak

Λ + p + q
(logk+1

+
P

Λ + q
+ 1), (D6)
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Ik
[Λ,q] 6

1
(Λ + p)(Λ + q)

q∫
0

dλ logk P
λ
<

qk!
(Λ + p)(Λ + q)

k∑
j=0

1
j!

logj P
q

<
ek!
Λ + p

(logk 2P
Λ + q

+ 1)<
2ek!

Λ + p + q
(logk

+
P

Λ + q
+ 2). (D7)

It remains to consider the case k = 0.
� Λ> p. This implies 2(λ + q)> λ + p + 2q > λ + p, ∀λ >Λ.

I0 = 2

+∞∫
Λ

dλ

(λ + p)2
<

4
Λ + p + q

. (D8)

� Λ 6 p, I0 = I0
[Λ,p] + I0

[p,+∞],

I0
[p,+∞] <2

+∞∫
p

dλ

(λ + p)2
<

1
p
<

3
Λ + p + q

, (D9)

I0
[Λ,p] <

1
Λ + p

p∫
Λ

dλ
λ + q

<
2

Λ + p + q
log

2P
Λ + q

<
2

Λ + p + q
(log 2 + log+

P
Λ + q

). (D10)

�

Lemma 33. Let 0 6 q 6 p, η :=min(M, q), k ∈N. Then ∃Ck > 0 such that

+∞∫
Λ

dλ logk
+
λ
M

(λ + p)(λ + q)
6Ck

1 + logk+1
+

p
Λ+η + logk+1

+
Λ
M

Λ + p + q
. (D11)

Proof. Denote by Ik the lhs of equation (D11). If k = 0, then the inequality follows from (D1)
with P = p. Let k > 1 and µ=max(Λ, M).

� p 6Λ,

Ik 6

+∞∫
µ

dλ
2 logk λ

M

(λ + p)2
6

+∞∫
µ

dλf ′(λ) 6 2k+2k!
√

e
1 + logk

+
Λ
M

Λ + p + q
, (D12)

f (λ)B−
k!2k+1

λ + p

k∑
j=0

logk λ
M

j!2j
. (D13)

� Λ< p,

JkB

p∫
Λ

dλ
logk

+
λ
M

λ + q
, Ik 6

2Jk

Λ + p + q
+

+∞∫
µ

dλ
2 logk

+
λ
M

(λ + p)2
. (D14)

The integral on the rhs of Ik is exactly the same as in the case p 6Λ. For the integral Jk using
the inequality

log+
λ

M
6 log 2 + log+

λ

Λ + M
+ log+

Λ

M
, (D15)

we have

Jk < 3k+1
(
1 + logk+1

+
p

Λ + η
+ logk+1

+
Λ

M

)
. (D16)

�
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Lemma 34. For 0 <Λ< η 6M, k ∈N,

η∫
Λ

dλ
1

λ + η
logk

+
λ

M
< 1. (D17)

Proof. Denote by Ik the lhs of Eq. (D17). If k > 0, then Ik = 0. It remains to consider the integral

η∫
Λ

dλ
λ + η

= log
2η
Λ + η

< log 2. (D18)

�

Lemma 35. Let 0 <Λ< η 6 P, k ∈N. Then ∃Ck > 0 such that

η∫
Λ

dλ
λ + η

logk
+

P
λ
<Ck

(
1 + logk

+
P

Λ + η

)
. (D19)

Proof. Denote by Ik
[Λ,η] the lhs of equation (D19),

Ik
[Λ,η] < Ik

[0,η] <
1
η

η∫
0

dλ logk
+

P
λ
< 2k!e2

(
1 + logk

+
P

η + Λ

)
. (D20)

�

Lemma 36. Let 0 <Λ<M 6 P, 0 6 η 6M, k ∈N. Then ∃Ck > 0 such that

M∫
Λ

dλ
λ + η

logk
+

P
λ
<Ck

(
1 + logk+1

+
P

Λ + η

)
. (D21)

Proof. Denote by Ik
[Λ,M] the lhs of Eq. (D21). If Λ > η, then

Ik
[Λ,M] 6

M∫
Λ

dλ
λ + η

logk
+

2P
λ + η

6
2k+1

k + 1

(
1 + logk+1

+
P

Λ + η

)
. (D22)

If η >Λ, then Ik < Ik
[0,η] + Ik

[η,M] where

Ik
[0,η] =

η∫
0

dλ
λ + η

logk
+

P
λ
< 2k!e2

(
1 + logk

+
P

η + Λ

)
, (D23)

Ik
[η,M] =

M∫
η

dλ
λ + η

logk
+

2P
λ + η

<
2k+1

k + 1

(
1 + logk+1

+
P

Λ + η

)
. (D24)

�

Lemma 37. For q > 0, k ∈N, P > 0, there exists a constant Ck > 0 such that

Λ0∫
Λ

dλ
λ + q

logk
+

P
λ
<Ck

(
1 + logk+1

+
P

Λ + q
+ log+

Λ0

Λ + q

)
. (D25)

Proof. Denote by Ik
[Λ,Λ0] the lhs of Eq. (D25). If k = 0, then
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I0
[Λ,Λ0] < 1 + log+

Λ0

Λ + q
. (D26)

For k > 0 and Λ > q,

Ik
[Λ,Λ0] <

2k+1

k + 1

(
1 + logk+1

+
P

Λ + q

)
. (D27)

If k > 0 and Λ< q, then Ik
[Λ,Λ0] < Ik

[0,q] + Ik
[q,Λ0], where

Ik
[0,q] <

1
q

q∫
0

dλ logk
+

P
λ
< k!e2

(
1 + logk+1

+
P

Λ + q

)
, (D28)

Ik
[q,Λ0] <

2k+1

k + 1

(
1 + logk+1

+
P

Λ + q

)
. (D29)

�

Lemma 38. Let a, d > 0, b > 0 and m, k ∈N. Then ∃Ck,m > 0 such that∫ a

0
dx xm logk

+
d

b + x
6Ck,mam+1

(
1 + logk

+
d

a + b

)
. (D30)

Proof. By direct calculations, it is easy to show that

xm logk
+

d
b + x

6 f ′, f B
k!xm+1

(m + 1)k+1

k∑
j=0

(m + 1)j

j!
logj

+
d

b + x
. (D31)

Consequently, the lhs of Eq. (D30) is bounded above by f (a),

f (a)=
k!

(m + 1)k+1
am+1

k∑
j=0

(m + 1)j

j!
logj

+
d

a + b

6
em+1k!

(m + 1)k+1
am+1

(
1 + logk

+
d

a + b

)
. (D32)

�

Lemma 39. Let p, q ∈R4, Λ′ > 0, Λ′ > η > 0. Then

1∫
0

dt
|p|

Λ′ + |tp + q|
6 2

(
log 4 + log+

|p|
Λ′ + η

)
. (D33)

Proof. Let I [0,1] denote the lhs of Eq. (D33). There exists t1 ∈ [0, 1] such that |tp + q| > |p| |t − t1 |
for all t ∈ [0, 1]. (To prove this fact, write q=−tq p + q⊥, with p.q⊥ = 0, in such a way that |t p − q|
> |t − tq | |p|; then set t1 := 0 for tq < 0, t1 := 1 for tq > 1, and t1 = tq otherwise.)

I[0,1] =I[0,t1] + I[t1,1] 6 2 log
Λ′ + |p|
Λ′

6 2 log 4 max(1,
|p|

Λ′ + η
)

6 2
(

log 4 + log+
|p|

Λ′ + η

)
. (D34)

�

Lemma 40. Let r > 0, w ∈N, and x, y ∈R4,

e−rx2

(1 + |x − y|)w
6
w! max(2, 1 + 1

2r )w

(1 + |y|)w
. (D35)
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Proof. Choosing the Cartesian coordinate system such that one of the basis vectors eL is along
y we have

e−rx2

(1 + |x − y|)w
6 f (t), f (t)B

e−rt2

(1 + |t − t0 |)w
, (D36)

where t, t0 are the longitudinal coordinates, x = xT + teL and y = t0eL, t0 = |y|. If t > t0, then f is strictly
decreasing. If t 6 t0, then f (t) = g(t), where

g(t)B
e−rt2

(t1 − t)w
, t1B 1 + t0. (D37)

If t < t1, then g is either increasing or has a local maximum at t
�

.

g′(t) 6 0 if (∆ > 0) ∧ (t− 6 t 6 t+), t∓B
t1 ∓
√
∆

2
, (D38)

g′(t) > 0 otherwise , ∆B t2
1 − 2

w

r
. (D39)

Consequently, f (t) 6max(g(t−), g(t0)), where

g(t−)=
e−rt2

−

tw+
6

2w

tw1
=

2w

(1 + t0)w
, g(t0)= e−rt2

0 6
w!(1 + 1

2r )w

(1 + t0)w
. (D40)

�

Lemma 41. Let r > 0. There is a constant C such that

e−r s2

Λ2 log+
max(M,

√
p2 + s2)

Λ
<C +

1
2

log+
1
r

+ log+
max(M, p)

Λ
. (D41)

Proof. Using the following inequality

max(M,
√

p2 + s2)
Λ

6 2 max(1,
s
Λ

) max(1,
max(M, p)

Λ
), (D42)

we bound the lhs of the statement by

log+
max(M, p)

Λ
+ log 2 +

1
2

log+
1
r

+
1
2

e−z log+ z, zB r
s2

Λ2
. (D43)

The inequality e−z log+ z < e−1 finishes the proof. �

Lemma 42. Let x, y, m > 0, P(0)(x)=
n∑

k=0
ckxk a polynomial of the degree n, logm x :

= log+ max(x, m). Then there exist polynomials P(1) and P(2) of the degree n such that

P(0)(logm

√
y2 + x2) 6P(1)(logm y) + P(2)(logm x). (D44)

Proof. Substitution of the inequalities

max(
√

y2 + x2, m) 6max(y + x, m) 6max(y, m) + max(x, m), (D45)

max(a + b, 1) 6max(a, 1) + max(b, 1) 6 2 max(a, 1) max(b, 1), (D46)

into the definition log+ a := log max(a, 1) yields

logm

√
y2 + x2 6 logm y + logm x + log 2. (D47)

This gives

P(0)(logm

√
x2 + y2) 6

n∑
k=0

ck3k
(
logk

m y + logk
m x + 1

)
. (D48)

�
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Lemma 43. For a fixed s ∈N, there exists a constant c such that ∀u 6 wmax and ∀x ∈R4,

|∂u
(
x⊗s(1 − e−x4

)
)
| 6 c




|x |s+1−u, u 6 s,

1, otherwise.
(D49)

Proof. First, we consider the case u 6 s,

|∂u(x⊗s(1 − e−x4
))| 6 |∂ux⊗s |(1 − e−x4

) +
∑
u2>0

u!4u2

u1!u2!
|∂u1 x⊗s+3u2 | e−x4

. (D50)

For the derivatives on the right, we have

|∂u1 x⊗s+3u2 | 6 (s + 3u2)!
|x |s−u+1

(s − u + 1)!
|x |4u2−1

(4u2 − 1)!
. (D51)

Furthermore, ∀k ∈N,
|x |k

k!
e−x4

<

∞∑
n=0

|x |n

n!
e−x4
= e−x4+ |x | < e. (D52)

Noting that 1 − e−x4
6 |x |, we obtain the bound in the case u 6 s,

s!|x |s+1−u

(s − u)!
+

e|x |s+1−u

(s − u + 1)!

∑
u2>0

u!4u2 (s + 3u2)!
u1!u2!

6 c|x |s+1−u. (D53)

For u > s using (D52), we have∑ u!4u2 (s + 3u2)!
u1!u2!

|x |s+3u2−u1

(s + 3u2 − u1)!
e−x4
6 (s + 3u)!5ue 6 c. (D54)

�

Lemma 44. For a fixed s ∈N\{0}, there exists a constant c such that for all u, v 6 wmax and all
x = (x1, x2) with xi ∈R4,

|∂v2 ∂
u
1

(
x2 ⊗ x⊗s−1

1 (1 − e−x4
1 )
)
| 6 c

{
|x |s+1−u−v , u + v 6 s,
|x | + 1, otherwise.

(D55)

Proof. First, let v ∈ {0, 1}. Using Lemma 43, we obtain for 0 6 u 6 s,

|∂u
1 (x2 ⊗ x⊗s−1

1 (1 − e−x4
1 ))| 6 c|x |s+1−u, (D56)

|∂2∂
u
1 (x2 ⊗ x⊗s−1

1 (1 − e−x4
1 ))| 6 c|x |s−u, (D57)

and for u > s, we also have

|∂u
1 (x2 ⊗ x⊗s−1

1 (1 − e−x4
1 ))| 6 c|x |, (D58)

|∂2∂
u
1 (x2 ⊗ x⊗s−1

1 (1 − e−x4
1 ))| 6 c. (D59)

Finally, for v > 1, ∂v2 ∂
u
1 (x2 ⊗ x⊗s−1

1 (1 − e−x4
1 ))= 0. �

Lemma 45. For s ∈ {0, 1}, there exists a constant c such that for all u, v 6 wmax and all x = (x1,
x2) with xi ∈R4,

|∂v2 ∂
u
1

(
x⊗s

1 (e−x4
1 − e−(x1+x2)4

)
)
| 6 c

{
|x |s+1−u−v , u + v 6 s,
|x | + 1, otherwise.

(D60)

Proof. First, let s = 0. For u = v = 0, put y = x1 + x2 and assume |x1 | 6 |y| 6 1,

e−x4
1 − e−y4

= e−x4
1 (1 − e−(y4−x4

1 )) 6 y4 − x4
1 6 |y| 6 2|x |. (D61)

Inequality (D52) implies that
∂we−x4

< e(3w)!54. (D62)
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Consequently, for u + v > 0,

|∂v2 ∂
u
1 (e−x4

1 − e−(x1+x2)4
)| 6 |∂u

1 e−x4
1 | + |∂v2 ∂

u
1 e−(x1+x2)4

) | 6 c2. (D63)

Finally, we consider the case s = 1. Using (D61) and (D62), we get

|x1(e−x4
1 − e−(x1+x2)4

)| 6 2|x |2, (D64)

|∂2(x1(e−x4
1 − e−x1+x2

4
))| 6 |x | |∂2(e−x4

1 − e−(x1+x2)4
)| 6 c3 |x |, (D65)

|∂1(x1(e−x4
1 − e−(x1+x2)4

))| 6 c4 |x |, (D66)

and for u + v > 1,

|∂u
1 ∂

v
2 (x1(e−x4

1 − e−(x1+x2)4
))| 6 c5 + |x |c6. (D67)

�

Lemma 46. Let 0 6 β 6 1, x > 0, and

f (x)B
1
x

(e−βx − e−x). (D68)

Then ∀w ∈N,

|∂wf (x)| < e
w!

(1 + x)w+1
. (D69)

Proof. We have an identity

∂wf (x)= (−1)wgw(x), gw(x)B

1∫
β

dγ γwe−γx. (D70)

It follows

0 6 gw(x) 6

1∫
0

dγ γwe−γ(x+1)eγ < e

1∫
0

dγ γwe−γ(x+1)

< e
1

(x + 1)w+1

∞∫
0

dz zwe−z = e
Γ(w + 1)

(x + 1)w+1
. (D71)

�

Lemma 47. Let 0 6 β 6 1, x > 0, and

h(x)B
1
x

(e−βx2
− e−x2

). (D72)

Then ∀w ∈N, ∀C > 1,

|∂wh(x)| < w!e(C + 1)
(2
√

eC)w

(1 + x)w+1
. (D73)

Proof.

|∂wh(x)| 6 |x∂wf (x2)| + |w∂w−1f (x2)|, f (x2)B
1
x

h(x). (D74)
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Using an auxiliary variable y,

∂w

(∂x)w
f (x2)=

(
∂

∂x
+ 2x

∂

∂y

)w
f (y)|y=x2

=

2k6w∑
k=0

w!(2k − 1)!!
(w − 2k)!(2k)!

(
2
∂

∂y

)k (
2x

∂

∂y

)w−2k

f (y)|y=x2

=

2k6w∑
k=0

w!
(w − 2k)!k!

(2x)w−2k
(
∂

∂y

)w−k

f (y)|y=x2 . (D75)

Equation (D69) gives

|x∂wf (x2)| < w!2we
2k6w∑
k=0

1
k!

(w − k)!
(w − 2k)!

2−2k xw−2k+1

(1 + x2)w−k+1
. (D76)

With an arbitrary constant C > 1, we have

x

1 + x2
<

C
1 + x

, (1 + x2) >
1
2

(1 + x)2,
(w − k)!

(w − 2k)!
6 wk . (D77)

Consequently,

|x∂wf (x2)| <
w!Ce(2C)w

(1 + x)w+1

2k6w∑
k=0

1
k!

(
w

2C2

)k
<
w!Ce(2

√
eC)w

(1 + x)w+1
. (D78)

Similarly, we obtain

|w∂w−1f (x2)| <
2w!e(2

√
eC)w−1

(1 + x)w+1
. (D79)

�

Lemma 48. Let f (p2) be a scalar function. Then

|

w∏
i=1

∂

∂pµi

f (p2)| 6 2w
2k6w∑
k=0

w!
(w − 2k)!k!

|p|w−2k |

(
∂

∂p2

)w−k

f (p2)|. (D80)

Proof. With the aid of an auxiliary variable y,
w∏

i=1

∂

∂pµi

f (p2)=
w∏

i=1

(
∂

∂pµi

+ 2pµi

∂

∂y

)
f (y)|y=p2 . (D81)

A partial derivative with respect to pµ contributes only if it can be paired with the 2pµ term.
Consequently, we can compute the right hand side by considering the possible pairs,

(
∂

∂pµi

+ 2pµi

∂

∂y
)(

∂

∂pµj

+ 2pµj

∂

∂y
)= 2δµiµj

∂

∂y
+ 2pµi 2pµj

(
∂

∂y

)2

. (D82)

It gives
2k6w∑
k=0,π

1
(w − 2k)!(2k)!

∑
σ,π′Bσπ

1

2kk!

k∏
i=1

(
2δπ′i π′i+1

∂

∂y

) w∏
i=2k+1

(
2pπi

∂

∂y

)
, (D83)

where the outer and inner sums run over w!, (2k)! permutations, respectively. Using the inequality
|A~µB~ν | 6 |A~µ | |B~ν |, we obtain the upper bound. �

Lemma 49. Let C > 1,

|

w∏
i=1

∂

∂pµi

SΛΛ0 (p)| < 2w!e(C + 1)
(22e

3
2 C2)w

(Λ + |p|)w+2
. (D84)
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Proof. We change the variable xµ = pµ/Λ,
w∏

i=1

∂

∂pµi

SΛΛ0 (p)=
1

Λ2w+2

w∏
i=1

∂

∂xµi

h(x2). (D85)

Equations (D80) and (D73) yield

|∂wh(x2)| < 2we(C + 1)
2k6w∑
k=0

w!
k!

(w − k)!
(w − 2k)!

xw−2k(2
√

eC)w−k

(1 + x2)w−k+1
. (D86)

�

Lemma 50. Let C > 1,

|

w∏
i=1

∂

∂pµi

CΛΛ0
µν (p)| < 23w!e(C + 1 + (ξ + 1)(C2 + 3))

(22e
3
2 C2)w

(Λ + |p|)w+2
. (D87)

Proof.

|∂wCΛΛ0
µν (p)| 6 4|∂wSΛΛ0 (p)| + |ξ − 1| |∂w

pµpν
p2

SΛΛ0 (p)|. (D88)

The first term is bounded in (D84). Using xµ = pµ/Λ, we have an upper bound for the last term

x2 |∂wf (x4)| + 23w |x | |∂w−1f (x4)| + 42w(w − 1)|∂w−2f (x4)|, (D89)

where f (x4) is the same as in (D69). Equation (D69) gives

|∂wf (x2)| <
2w!e(2

√
eC)w

(1 + x)w+2
, |∂wf (x4)| <

23w!e(22e
3
4 C2)w

(1 + x)w+4
. (D90)

Consequently,

|∂wxµxνf (x4)| < 23(C2 + 3)ew!
(22C2e

3
4 )w

(1 + x)w+2
. (D91)

�

Lemma 51. For all p ∈R4, there exists a constant C such that

|Ċ
ΛΛ0 (p)| 6C

1

Λ3
e−

p2

Λ2 . (D92)

Proof. Using the inequality xe−x2
6 xe1−2x = xe1−xe−x 6 e−x, we obtain

|ṠΛΛ0 (p)| = 4
1

Λ3
xe−x2

6
4

Λ3
e−x, xB

p2

Λ2
, (D93)

|ĊΛΛ0
µν (p)| 6 4

1 + |ξ − 1|

Λ3
xe−x2

. (D94)

�

Lemma 52. For all p ∈R4, there exists a constant C such that

|∂wp ∂Λ0 CΛΛ0 (p)| 6C
1

Λ0(Λ0 + |p|)2+‖w ‖
. (D95)

Proof. Let f = e−x4
xx then using |∂wx |g| | 6 |∂

w
x g|, we have

|∂wp ∂Λ0 CΛΛ0 (p)| 6
4(2 + |ξ − 1|)|∂wx f |

Λ
‖w ‖+3
0

, |∂wp ∂Λ0 SΛΛ0 (p)| 6
4|∂wx f |

Λ
‖w ‖+3
0

, (D96)

where introducing C1 = 2
3
2wmax (4wmax + 2)!,

|∂wx f | 6C1e−x4
(|x |3‖w ‖+2 + 1) 6 eC1e−2x2

(|x |3‖w ‖+2 + 1). (D97)
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Then it is easy to see that for 0 6m 6 3wmax + 2,

max(e−x2
(xm + 1)) 6max(e−x2

xm) + 1 6 e
m
2 (log m

2 −1) + 1 6C2. (D98)

To go further, we need the following inequality for all y > 0 and k ∈N:

gk(y) 6 k!, gk(y)B (1 + y)ke−y, (D99)

which is obtained looking for the maximum ȳk = k − 1 and using g0(ȳ0)= 1,

gk(ȳk)= kgk−1(ȳk) 6 kgk−1(ȳk−1) =⇒ gk(y) 6 gk(ȳk) 6 k!. (D100)

Defining C3 := e2C1C2 and using inequality (D99), we have

|∂wx f | 6C3e−2x 6C3
2!

(1 + |x |)2

‖w‖!

(1 + x)‖w ‖
6

2 C3 wmax!

(1 + |x |)2+‖w ‖
. (D101)

�

Lemma 53. Let CΛΛ0 be one of the propagators SΛΛ0 or CΛΛ0
µν , as defined in (35) and (36).

There are positive constants c0, c1, and d such that for all w ∈N, p ∈R4, and 0 <Λ 6Λ0, and with
cξ := c0 + ξc1,

|
( w∏

i=1

∂

∂pµi

)
CΛΛ0 (p)| <

w! dwcξ
(|p| + Λ)w+2

, |ĊΛΛ0 (p)| <
cξ
Λ3

e−
p2

Λ2 . (D102)

Proof. The statement follows from (D84), (D87), and (D92). �

APPENDIX E: THE FUNCTIONAL Γn64

We expand the generating functional Γ̃0Λ0 (A, c, c̄) of (82) as a formal series in A, c, c̄. As usual,
we adopt the shorthand notation Γ0Λ0 (A, c̄, c) for Γ̃0Λ0 (A, c, c̄),

Γ
0Λ0 = Γ

0Λ0
n64 + Γ0Λ0

n>5 , Γ
0Λ0
n64B

4∑
n=1

Γ
0Λ0
n , (E1)

where n counts the number of fields. The functionals Γ0Λ0
n with n 6 4 contain both relevant and

irrelevant terms. We assume hypothesis RC1. In general, the tensors ζ
~φ
µ1...µr appearing in the form

factors F
~φ
µ1...µr (~p) are elements of span({δspk>0}r>0), where p= (p1, . . . , pn−1).

1. One-point function

There are no local terms that preserve Euclidean invariance and global SU(2) symmetry. It follows
that Γ1 = 0.

2. Two-point functions

Γ
0Λ0
2 =

1
2
〈FAA
µν Ǎa

µǍa
ν〉 + 〈F c̄c ˇ̄cača〉, (E2)

FAA
µν (p)B (δµνp2 − pµpν)(σ−1

0Λ0
(p2) + ΣAA

T (p2))

+
1
ξ

pµpν(σ−1
0Λ0

(p2) + ΣAA
L (p2)), (E3)

F c̄c(p)B−p2(σ−1
0Λ0

(p2) + Σc̄c(p2)). (E4)

We assume that the form factors ΣAA and Σc̄c include all loop corrections. Note that for the functional
Γ

0Λ0
2 , we have

Γ
0Λ0
2 =

1
2
〈FAA

µν Ǎa
µǍa

ν〉 + 〈F c̄c ˇ̄cača〉, (E5)

FAA
µν (p)BFAA

µν (p) −
1

2ξ
pµpν . (E6)
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With p2 = M2 substitution of the above definitions into the expressions σ0Λ0 FAA, σ0Λ0 F c̄c appearing
in AGE (123) and STI (124) gives

σ0Λ0 (p2) F c̄c(p)
β
∼−p2(1 + Σc̄c(p2)), (E7)

σ0Λ0 (p2) FAA
µν (p)

β
∼FAA

T ;µν(p), (E8)

FAA
T ;µν(p)B (δµνp2 − pµpν)(1 + ΣAA

T (p2)) +
1
ξ

pµpνΣ
AA
L (p2). (E9)

Using (85) for the functional Γ0Λ0
2 , we have

Γ0Λ0
2 =

1
2
〈FAA
µν Ǎa

µǍa
ν〉 + 〈Fc̄c ˇ̄cača〉, (E10)

FAA
µν (p)B (δµνp2 − pµpν)ΣAA

T (p2) +
1
ξ

pµpνΣ
AA
L (p2), (E11)

Fc̄c(p)B−p2
Σ

c̄c(p2). (E12)

For marginal terms, we obtain

FAA;pρpσ
µν (p)= 2δµνδρσrAA

1 + 2(δµρδνσ + δνρδµσ)rAA
2 + ζAA

µνρσ , (E13)

Fc̄c;pρpσ (p)= 2δρσr c̄c(p2) + ζ c̄c
ρσ , (E14)

rAA
1 (p2)B ΣAA

T (p2) + p2 ∂Σ
AA
T (p2)

∂p2
, (E15)

rAA
2 (p2)B

1
ξ
Σ

AA
L (p2) − ΣAA

T (p2), (E16)

r c̄c(p2)B−Σc̄c(p2) − p2 ∂Σ
c̄c(p2)

∂p2
. (E17)

3. Three-point functions

Γ
0Λ0
3 = 〈εabdFAAA

ρµν Ǎa
ρǍb

µǍd
ν〉 + 〈εadbFAc̄c

µ Ǎa
µ

ˇ̄cbčd〉, (E18)

FAc̄c
µ (k, p, q)B ipµRAc̄c

1 (p, q) + iqµrAc̄c
2 (p, q), (E19)

RAc̄c
1 (p, q)B g + rAc̄c

1 (p, q), (E20)

FAAA
ρµν (k, p, q)B iδµν(pρ − qρ)RAAA(p, q) + iδµνkρζ

AAA
− (p, q)

+ iζAAA
ρµν (p, q), (E21)

RAAA(p, q)B
1
2

g + rAAA(p, q). (E22)

Here RAAA(p, q) is a symmetric function whereas ζAAA
− (p, q) is antisymmetric.

4. Four-point functions

Γ
0Λ0
4 = 〈FAAAA

σρµνǍb
σǍb

ρǍa
µǍa

ν + F c̄cAA
1,µν

ˇ̄cbčbǍa
µǍa

ν

+ F c̄cAA
2,µν

ˇ̄cačbǍa
µǍb

ν + r c̄cc̄c ˇ̄cbčb ˇ̄cača〉, (E23)

F c̄cAA
n,µν B δµνr c̄cAA

n + ζ c̄cAA
n,µν , (E24)

FAAAA
σρµνBRAAAA

σρµν + ζAAAA
σρµν , (E25)

RAAAA
σρµνB

1
2

(δµρδνσ + δµσδρν)RAAAA
1 + δµνδσρRAAAA

2

+
1
2

(δµρδνσ − δµσδρν)ζAAAA
− , (E26)
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RAAAA
1 B−

g2

4
+ rAAAA

1 , (E27)

RAAAA
2 B

g2

4
+ rAAAA

2 . (E28)

Here the terms

rAA
1 , rAA

2 , r c̄c, RAc̄c
1 , rAc̄c

2 , RAAA,

RAAAA
1 , RAAAA

2 , r c̄cAA
1 , r c̄cAA

2 , r c̄cc̄c,
(E29)

are scalar functions of momenta, Λ0, and M. All 11 renormalization constants are fine-tuned by
imposing appropriate renormalization conditions.

APPENDIX F: THE FUNCTIONALS Γγ;n62 AND Γω;n62

With Γ0Λ0< (p) := δ̃<(p)Γ0Λ0 |<=0,

Γ0Λ0
γa
µ ;n62(p)=R1ipµca(p) + gεabs〈FγAc

µν |Ǎ
b
ν čs; p〉, (F1)

FγAc
µν (k, q)B δµνR2 + ζγAc

µν (k, q), (F2)

ζ
γAc
µν (k, q)B kµqνζ

γAc
1 + kνqµζ

γAc
2 + kµkνζ

γAc
3 + qµqνζ

γAc
4 , (F3)

Γ0Λ0
ωa;n62(p)=

1
2

gεabs〈R3 |č
bčs; p〉. (F4)

Here R1, R2, and R3 are scalar functions of momenta, Λ0, and M.

APPENDIX G: VIOLATED STI FOR Λ > 0

In this section, we present, omitting the details of the calculation, the extension of some results
of Sec. II D to arbitrary 0 <Λ<Λ0,

Γ̃ΛΛ0
β =σ0Λ0 ∗

( δz̃ΛΛ0

δc̄
− ∂

δz̃ΛΛ0

δγ

)
, (G1)

Γ̃ΛΛ0
1 =〈

δz̃ΛΛ0

δA
,σ0Λ0 ∗

δz̃ΛΛ0

δγ
〉 − 〈

δz̃ΛΛ0

δc
,σ0Λ0 ∗

δz̃ΛΛ0

δω
〉

−
1
ξ
〈∂A,σ0Λ0 ∗

δz̃ΛΛ0

δc̄
〉 + ~∆̃ΛΛ0 , (G2)

z̃ΛΛ0 BΓ̃ΛΛ0 +
1
2
〈Φ̃, C̃

−1
0Λ0
Φ̃〉, (G3)

∆̃
ΛΛ0 B〈(σΛ, 0, 0)

(
1 +

δ2Γ̃ΛΛ0

δΦ̃δΦ̃
1̂C̃

ΛΛ0
)−1 δ2Γ̃ΛΛ0

δΦ̃δγ
〉

+ 〈(0,σΛ, 0)
(
1 +

δ2Γ̃ΛΛ0

δΦ̃δΦ̃
1̂C̃

ΛΛ0
)−1 δ2Γ̃ΛΛ0

δΦ̃δω
〉

− 〈(σΛ∂, 0, 0)
(
1 +

δ2Γ̃ΛΛ0

δΦ̃δΦ̃
1̂C̃

ΛΛ0
)−1 δc

δΦ̃
〉. (G4)

Note that in relations (G1) and (G2) there still appears a convolution with σ0Λ0 since we have
chosen to define the regularized BRST transformation to include a convolution with this function,
see (90).

Using the bounds of Theorem 1, one can show that limΛ→0 ∆
ΛΛ0 = 0 at nonexceptional momenta.

It follows that limΛ→0 Γ̃ΛΛ0
1 = Γ̃0Λ0

1 at nonexceptional momenta. More information can be found in
Efremov (2017).
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APPENDIX H: LIST OF THE RENORMALIZATION POINTS

X [X] nX rm rX ren.p.

∂∂Γc̄c 0 2 7 0 Λ= 0, ~q ∈Ms
2

∂Γc
γ 0 2 7 2 Λ= 0, ~q ∈Ms

2
∂∂ΓAA 0 2 7 4 Λ= 0, ~q ∈Ms

2
Γcc
ω 0 3 5 0 Λ= 0, ~q ∈Ms

3
∂AΓcc̄A 0 3 5 2 Λ=M, ~q= 0
∂c̄Γcc̄A 0 3 5 2 Λ= 0, ~q ∈Ms

3
ΓcA
γ 0 3 5 2 Λ= 0, ~q ∈Ms

3
ΓAA
γ 0 3 5 3 Λ= 0, ~q ∈Ms

3
∂ΓAAA 0 3 5 4 Λ= 0, ~q ∈Ms

3
Γc̄cc̄c 0 4 3 0 Λ=M, ~q= 0
Γc̄cAA 0 4 3 2 Λ=M, ~q= 0
ΓAAAA 0 4 3 4* Λ= 0, ~q ∈Mcp

4
∂∂Γc

β 0 2 7 2 Λ= 0, ~q ∈Ms
2

∂∂∂ΓcA
1 0 2 7 4 Λ= 0, ~q ∈Ms

2
∂∂Γcc̄c

1 0 3 5 2 Λ= 0, ~q ∈Ms
3

∂Γcc
1,γ 0 3 5 2 Λ= 0, ~q ∈Ms

3

∂∂ΓcAA
1 0 3 5 4 Λ= 0, ~q ∈Ms

3
Γcc̄c
β 0 4 3 0 Λ= 0, ~q ∈Ms

4

Γccc
1,ω 0 4 3 0 Λ= 0, ~q ∈Ms

4

ΓcAA
β 0 4 3 2 Λ= 0, ~q ∈Ms

4

∂Γcc̄cA
1 0 4 3 2 Λ= 0, ~q ∈Ms

4
ΓccA

1,γ 0 4 3 2 Λ= 0, ~q ∈Ms
4

∂ΓcAAA
1 0 4 3 4* Λ= 0, ~q ∈Mcp

4
Γcc̄cc̄c

1 0 5 1 0 Λ= 0, ~q ∈Ms
5

Γcc̄cAA
1 0 5 1 2* Λ= 0, ~q ∈Ms

5
ΓcAAAA

1 0 5 1 4* Λ= 0, ~q ∈Mcp
5

∂Γc̄c 1 2 1 Λ= 0, ~q= 0
∂ΓAA 1 2 3 Λ= 0, ~q= 0
Γc̄cA 1 3 1 Λ= 0, ~q= 0
ΓAAA 1 3 3 Λ= 0, ~q= 0
Γc̄c 2 2 0 Λ= 0, ~q= 0
ΓAA 2 2 2 Λ= 0, ~q= 0
∂Γc

β 1 2 1 Λ= 0, ~q= 0

∂∂ΓcA
1 1 2 3 Λ= 0, ~q= 0

ΓcA
β 1 3 1 Λ= 0, ~q= 0
∂Γcc̄c

1 1 3 1 Λ= 0, ~q= 0
Γcc

1,γ 1 3 1 Λ= 0, ~q= 0

∂ΓcAA
1 1 3 3 Λ= 0, ~q= 0

Γcc̄cA
1 1 4 1 Λ= 0, ~q= 0

ΓcAAA
1 1 4 3 Λ= 0, ~q= 0

Γc
β 2 2 0 Λ= 0, ~q= 0

∂ΓcA
1 2 2 2 Λ= 0, ~q= 0

Γcc̄c
1 2 3 0 Λ= 0, ~q= 0

ΓcAA
1 2 3 2 Λ= 0, ~q= 0

ΓcA
1 3 2 1 Λ= 0, ~q= 0
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List of all terms preserving the global symmetries, with an arbitrary number of γ,ω insertions,
and with at most one β or 1 insertion (not both). Notation: [X] is the mass dimension of X (reduced
Fourier transform); rX is the tensor rank; nX is the total number of fields and sources (not including
1); ∂ stands for a momentum derivative; “ren.p.” stands for “renormalization point.” * in the rank
entry means that the condition rm := 11− 2nX ≥ r + 1 is violated for a term X: as stated in Lemma 28,
the tensor monomials {δsqk }r+1 are not linearly independent for ~q= (q0, q) ∈Ms

nX
; hence they are not

suitable as a basis for the form-factor decomposition of ∂X . See Lemma 31 and Secs. V E 4, V E 5,
and V E 10.

APPENDIX I: LIST OF INSERTIONS

X [X] gh(X) Definition

ψa
µ 2 1 (88)

γa
µ 2 �1

Ωa 2 2 (88)
ωa 2 �2

Qρ 5 1 (100)
Qργ 3 2 (95)
Qρω 3 3 (96)
ρ �1 �1

Qβ 3 1 (101)
β 1 �1

List of operators and sources, and their quantum numbers. Notation: [X] stands for the mass
dimension of X in position space; the ghost charge of the ghost field is gh(c) := 1.
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