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We give a proof of perturbative renormalizability of SU(2) Yang—Mills theory in
four-dimensional Euclidean space which is based on the flow equations of the renor-
malization group. The main motivation is to present a proof which does not make
appear mathematically undefined objects (as, for example, dimensionally regularized
generating functionals), which permits to parametrize the theory in terms of physical
renormalization conditions, and which allows to control the singularities of the corre-
lation functions of the theory in the infrared domain. Thus a large part of the proof is
dedicated to bounds on massless correlation functions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.5000041]

. INTRODUCTION

Renormalization theory based on the differential flow equations (Wilson, 1971; Wegner and
Houghton, 1973; and Polchinski, 1984) has allowed to build a unified approach to the analysis of
renormalizability for a wide class of theories without recourse to Feynman graphs. This method
was applied to show momentum bounds of massive ¢* theory (Kopper and Meunier, 2002), used to
prove renormalization of spontaneously broken SU(2) Yang—Mills (Kopper and Miiller, 2009) and to
establish uniform bounds on Schwinger functions of massless ¢* fields (Guida and Kopper, 2011).
Starting with the milestone studies (Yang and Mills, 1954; Faddeev and Popov, 1967; Slavnov,
1972; Taylor, 1971; Lee and Zinn-Justin, 1972; °t Hooft and Veltman, 1972; Becchi et al., 1975;
Tyutin, 1975; and Zinn-Justin, 1975) [see Lai (1981) for more references], a variety of results on the
renormalizability of nonabelian gauge theories flourished in the literature, in different contexts and
with different level of mathematical rigor. Work on this problem in the context of Flow Equations
(FE) includes Reuter and Wetterich (1994), Becchi (1996), Bonini er al. (1995), and Morris and
D’ Attanasio (1996), and, more recently, Frob ez al. (2016). The present work deals with perturbative
renormalizability and shares certain aspects with some of these articles: from Becchi (1996), we
borrow the fruitful idea that the local operator describing the violation of Slavnov—Taylor identi-
ties (STI) for the one-particle irreducible (1PI) functions (Zinn-Justin, 1975 and Kluberg-Stern and
Zuber, 1975) is constrained by the nilpotency of the underlying “Slavnov differential operator”; as
in Bonini et al. (1995) [and in contrast with Frob et al. (2016)], we define the marginal correlators by
physical boundary conditions at vanishing IR cutoff and nonexceptional momenta. Our main result
is a proof of the renormalizability of Yang—Mills theory that complements the previous work in
view of the following features: (i) Rigorous control of the IR and UV behavior of the one-particle
irreducible functions is established by means of uniform bounds in momentum space. In particular,

DElectronic mail: alexander@efremov.fr
b)Electronic mail: riccardo.guida@cea.fr; ORCID iD: 0000-0002-2854-7214; ResearcherID: N-7759-2013.
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from the bounds follow the existence of the IR limit of 1PI functions at nonexceptional momenta
and the existence of the subsequent UV limit. (ii) The vanishing of the STI violation in the UV
limit is proven. (iii) The relevant part of 1PI functions and STI violation at nonvanishing renor-
malization momenta, which gives initial conditions for the renormalization group FE, is thoroughly
identified.

Our proof refers explicitly to SU(2) Yang—Mills theory. However, it could be extended without
important conceptual changes to other semi-simple compact Lie groups.

We proceed as follows. In Sec. II, we fix the notations and introduce the classical Yang—Mills
action, generating functionals and regulators. We define the BRST transformations. Then we derive
the FE of the renormalization group, for the connected amputated Schwinger functions and for the
one-particle irreducible vertex functions. Finally, we study the STI, the Antighost Equation (AGE),
and their violation. Remark that in our context gauge invariance is broken through the presence of
the cutoffs.

Our proof of renormalizability of Yang-Mills theory is based on momentum bounds for the vertex
bounds which permit to take the limits A — 0 (IR-cutoff) and Ay — oo (UV-cutoff) for nonexcep-
tional external momenta. These bounds are an extension of those in Guida and Kopper (2011) and
are established inductively with the aid of the FE. They are expressed in terms of tree amplitudes
and polynomials of logarithms. For our trees, we only have to consider vertices of coordination
numbers 1 and 3. In Sec. III, we present the definitions of the tree structures to be considered, and
the aforementioned bounds. These bounds permit to prove the existence of the vertex functions for
nonexceptional external momenta on removal of the cutoffs. This statement also holds for vertex
functions carrying an operator insertion related the BRST transformation of the fields. These vertex
functions are required to formulate the STI. Then we also have to consider vertex functions with
operator insertions which permit to formulate the violation of the STI. Our bounds then permit to
show that, for suitable renormalization conditions, these functions describing the violation of the STI
vanish in the UV limit.

Section IV is dedicated to the proof of those bounds. The rhs of the FE is a sum of products of
vertex functions in lower loop order joined by free propagators. Our technique of proof is then based
on the fact that applying our inductive bounds on these chains, which still have to be closed by a
A-derived propagator and then integrated over the circulating loop momentum and over A, reproduce
our inductive bounds at loop order /. The proof treats irrelevant terms first, then marginal, and finally
strictly relevant ones. Particular attention has to be paid to the renormalization conditions. Section IV
ends with a proof of UV-convergence for Ag — co.

In Sec. V, we prove that the renormalization conditions required to prove the bounds of Secs. II1
and IV can actually be imposed. These renormalization conditions are such that they leave us free to
fix the physical coupling of the theory. At the same time, they permit us to vanish the relevant part of
all functions describing the violation of the STI. This is required in the previous proof.

In Appendixes A-D, we present some facts on Gaussian measures, an example of chains of
vertex functions, an analysis of linear independence of Euclidean tensor structures, a large number
of elementary bounds on integrals we encounter in the proofs. We also add a list with bounds on the
propagators and their derivatives. In Appendixes E and F, we analyse the generating functionals of
the (inserted) vertex functions, as far as they have relevant content. Appendix G is a supplement to
Sec. I D and contains the generalization of the STI and AGE to the case of nonvanishing IR cutoff.
In Appendixes H and I, we present the list of renormalization points and operator insertions to be
considered.

Il. THE FORMALISM
A. Notations

N is the set of nonnegative integers. IS| is the cardinality of a set S. Furthermore, (a, b, c, . . .) and
{a,b,c,...} denote a sequence and a set, respectively. Unless otherwise stated, sequence stands
for finite sequence. For shortness, we set [a:b]:={i€Z:a<i<b} and [b] := [1:b]. Repeated
indices are implicitly summed over, e.g., A%, := £,A%,. We choose the following basis of the Lie
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algebra:
Iqg=70g, [ta, tp] = i€apete, a,b,ce {1,2, 3}7 (1)

where o, are the Pauli matrices and €, is the Levi—Civita symbol, €123 = 1. In this article, we will
deal with tensor fields on R* in Cartesian coordinate systems with metric tensor o, . If A, B are two
Cartesian tensors of R* of rank r with components A, ., and By, , respectively, then the scalar
product (A, B) is the contraction

(A,B):= m ;JBM -Hrt (2)

Given a Cartesian tensor T, we use the norm

1
|T|:=(T,T)z2. 3
For instance, for p € R*, |p|* =%,p2. Let T, A, and B be Cartesian tensors such that Ty = A5 Bz
where f, g, and ¥ are multi-indices, for example, j:= (u, . . . , 4,). Then using the Cauchy—Schwarz
inequality,
ITP= Y1 > AusBarl® < ) > 1Aas Baol” = 1A 1B, @)
AV g AV p.é

The integral over R* of the product of two functions is denoted by

Fiofp) = / ExAEHE), s)

and the Fourier transform of a function is defined by

f(p)= / d*x e Pf(x). (©6)

The convolution of two functions f, g is denoted as below
(f * Q)= / d*yf(glx - ). )

For functions ¢;(p;) and F(py, . . ., px) with p; € R*, the symbol (F|@; . .. ¢r; p) denotes the following
integral in momentum space:

4

_ @m )4'

(FIgr ... dus ) /<2n>46(2p,+p)F<p1,...,pk)¢1<p1> ¢k<pk> ®)

We also use the shorthands

(1... 00y =(1lg1...dk:Dp), (1...0)=(1lp1 ... 0). ©))

A cumulative notation for the elementary fields and corresponding sources is
= (A2, B 20), K= (je. b0 ), (10)

where c,c¢,n, 77 are generators of an infinite-dimensional anticommuting algebra. Furthermore, we
use the following shorthand:

K - = (%, A%) + (b, B + (7%, %) + (&%, 1. (11)
We will have to consider one-particle irreducible functions, also known as vertex functions, whose
generating functional is denoted by I'. These functions are translation-invariant in position space.
Their reduced Fourier transforms I'? are defined as follows:

N—1

(1, pat) = / ([ Td*xie ™) ré@.x.. .. xe), (12)

i=1

61:€1:80 ¥20Z Aeniged 91
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where q;:: (o, - - ., Pdx—1) 1s a sequence of field labels, ¢; € {A, B, ¢, ¢}, and

) )
0do(x0)  OPn-1(xx-1)" =0
Note that, with the exception of Appendix A, derivatives with respect to Grassmannian variables are

always intended to be left derivatives, see, e.g., Berezin (1966). The complete Fourier transformed
N-point vertex function then satisfies

TG0, x1, o) = (13)

0 0

(2r)*=b r =6(> pr?, (14)
(5¢0(—P0) " Spo1(—pa- 1) Z '
where e stands for F‘g(pl, ..., Px-1)- The reduced and complete Fourier transforms with n, > 1
composite operator insertions of sources ¥ =(xo,- .., Xn,-1) and q; =(Pny»---»Pn-1) are corre-
spondingly related by
n-1 5 ny—1 5
@m*r=h 70 =0() pi )r (15)
(ll__n!( 6¢i(—pi) L_ol 5)(:’(—171 ; Z ’

where the order of the derivatives 6/ ¢; is the same as before, the derivatives /6 y; are ordered with

left-to-right increasing indices, and F)‘; stands for l"i_’,(pl , - »Pn—1). Note that n — 1 is the total number

of arguments, e.g., for I”:é,(pl, ...sPn-1), we haven=n, +N.

It will be useful to keep a bijective relation between momenta and field labels (including
possible insertion labels), p; & ¢;. Hence, we assume that pg is the negative subsum of all other
momenta,

n—1 n—1
Pyi={pER™ :p=(po,....pa1)s po=— ) pil P =) pt, (16)
i=1 i=0
and, referring to (14) and (15), we use the notation
r¢(ﬁ)=r¢(p]’-"’pN*1)’ ﬁz(p07"-’pN*])€PN’ (17)
LY@ =T2p1s- - pu-1); P=(po.-..pu-1) €P,. (18)

A momentum configuration p € P, is said exceptional iff there exists a nonempty S C [1:n—1]
such that };c¢ p; = 0. If this is not the case, p is said nonexceptional.

We rely on the multi-index formalism for derivatives with respect to momenta. Taking in account
that there are no derivatives with respect to pg, we set:

W= (Wo,1, W02, - - - » Wn-1,4), wiu €N, wo, =0, (19)

4
w =W, ..., Wa1), wi= Y Wigs (20)
W, = {w e {0} X N1 lwl]] < Wyax ), lw|| == Z wi, (21)

1 4 n—1
o= [ ‘9’ )", al“r:=(];[a,,”jf)r, (22)

where [)1’,‘ is the tensor with components dp, ...dp, , and wmax is an arbitrary integer >4 fixed
throughout the paper. The following shorthands will be helpful:

. . oré ‘

A0 = g T, 0, T? = o % :=9"T, (23)
pi’

~ 1) v

Sg(p) = (2m)* , )= ¢(—p), log, x :=log max(1,x). (24)

) 50(=p) (p)=p(=p g, g
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B. The classical action

We start with a four-dimensional Euclidean classical field theory invariant under local SU(2)
transformations and with a coupling g #0. Given G =¢'%® with @ =a“,, an element of the Lie
algebra, a gauge transformation reads

Ay = G3,G™ + GALG™, ¢ GoG™!, (25)
g

and in infinitesimal form,
Ay Ay + 0, —iglA,, al, o ¢ +igla, @], (26)

where we also show the transformation for a field ¢ in the adjoint representation of the Lie algebra.
The quantization of gauge theories using auxiliary ghost fields is presented, for example, by Slavnov
and Faddeev in their book (Slavnov and Faddeev, 1991). Following Popov and Faddeev, 1967 and
"t Hooft, 1971 with an appropriate linear gauge-fixing functional, the semiclassical Lagrangian density
takes the form

1 1
5" = g FuFiny + E@A;)? - 8,8*(Dyc)”, (27)
Dyc=0,c—ig[Au,cl, (28)
Fuv = auAv - avAy - ig[A;uAv]’ (29)

where &> 0 is the Feynman parameter and {F,,A,,c} are elements of the su(2) algebra, e.g.,
Ay =1"Aj;. We will study the quantum theory in a framework which breaks local gauge invariance
due to the presence of momentum space regulators. However, the Lagrangian respects global SU(2)
symmetry and Euclidean isometries ISO(4) and has ghost number zero. We admit all counterterms
compatible with these symmetries,

_.0,ecec=b b-a a 0,ccAA_b b sa sa 0,6cAA—a b sa ,b
Lo =r ettt + A AL T, cicPALA
+ AU AL ASAG + rPMAMAL AL ASAS + Degper® MM (0,ADALAG

- r?’ACC eabd(a,,a“)Af, ¢ - rg’ACCeade”AZ B + 2052

1 1
- EZ?““AAZ((?Z(SW — 8,0,)A% + EZ?’AA((?HA:’,)Z

1
+ S OMUAGAL, — om 2. (30)

There are eleven marginal counterterms and two strictly relevant counterterms. To denote the marginal
counterterms, we use the symbols 0 and X°. For the strictly relevant counterterms, we use 6m§ " and

2
omz,..

C. Generating functionals and flow equations

In Secs. I C and II D, we introduce the essential structural tools required for our proof of
renormalizability of nonabelian Yang—Mills theory. These tools on the one hand are the differential
flow equations of the renormalization group, and on the other hand the (violated) Slavnov—Taylor
identities. They are both obtained from the functional integral representation of the theory.

Functional integrals are known to exist, beyond perturbation theory, if suitably regularized
(Glimm and Jaffe, 1987). To restrict their support to sufficiently regular functions in position space,
one has to introduce an ultraviolet (UV) cutoff. To avoid infrared problems, one has to introduce a cor-
responding infrared cutoff, the most practical one being a finite volume cutoff, introduced by putting
the system on a torus with periodic boundary conditions. For an analysis of the support properties of
(Gaussian) functional integrals, see Reed (1973).

61:€1:80 ¥20Z Aeniged 91
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We do not make explicit the finite volume cutoff in this paper, which would still blow up the
manuscript to some degree. For some more details in this respect, see Miiller (2003). On the other
hand, the UV cutoff is explicit.

Once the finite volume cutoff has been introduced, the FEs (with UV regulators) can be shown to
holdupto A =0, and A being the flow parameter, even beyond perturbation theory (as far as the bosonic
degrees of freedom are concerned). One can then construct perturbative solutions of the FEs, which
are well-defined and regular in the open domain of nonexceptional external momenta, and which
satisfy the Slavnov—Taylor identities, in the limits where the flow parameter is sent to zero and the
UV cutoff is sent to infinity. If keeping the finite volume until the end, one then has to show that these
solutions have uniform limits (in compact subsets of the open domain of nonexceptional momenta)
once the volume is sent to infinity. Short-circuiting this reasoning, as we do here, is tantamount to
postulating from the beginning that the FEs and the (violated) Slavnov—Taylor identities hold, for
nonexceptional momenta, also in the limit A — 0.

By definition, the characteristic function of a finite measure dv is its Fourier transform, see, e.g.,
Dalecky and Fomin (1991) and Glimm and Jaffe (1987),

Y(K) = / dv(®) eiK®, 31)
We consider a Gaussian measure dva, with a characteristic function
MG, b, 7, ) = eF TSN 5G.CND= 5 0, (32)
and we denote as usual
(CM)), () = / d*y G (e, )iy (), (33)
d*p .
AA p —y) ~AA
Cpy ' (x,y) = / PP ePEICAN (), (34)
where in momentum space the regularized propagators are defined by the expressions
1 PuPv
Cor(p)= 5 Oy + (6 = 1) ;2 ), Cor’ (@) =Cv (@) Tan, @D, (39)
1
Sp)= 5 S0 (p) =S (p) T ane (PP, (36)
2
TAN(8) = Ay (8) — TA(S), o a(s) =exp(— (37

F .
For shortness, we will also write CX}\[) instead of (C*%0)~!. The parameters A and Ag, such that
0 < A <Ay, are, respectively, IR and UV cutoffs.

Definition 1. Let dupp, be the measure defined by
1
duan,(A, B, c,¢) :=dvap,(A, B - iEaA,C, ). (38)

For ®=(A,B,c,c) and K =(j,b,77,17) and an infinitesimal variation 6® = (dA, 0, dc, 6¢), using the
properties of Gaussian measures from Appendix A, we have

1 1
dupny (@ + 6D) =d,uAAO(<D)(1 + %@, Sin,0C) + ;—_l<5C,SA}\0C>
1 _ L. 1
- (A, Cra,0A) — (0B - zgaA), 5A)). (39)

Definition 2. The free partition function Z(I)\ Ao g defined by

ZM(K) = / dpan, (@)™, (40)
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It follows that
L oo 1 ) L
ZMG b, 7, m) = XM (=i - E&b, —ib,—if,—in), (41)
ZM0(K) = KR, (42)

where C20 is a 7 X 7 matrix,

chM, §hhop,,, 0, 0
CAAO - —SAA()pV7 E(l - O—AA0)7 07 0 (43)
0, 0, 0, —SAo
0, 0, AN, 0
For A < Ag, CM is invertible,
1 1
Cangur = gPubvs P 0. 0
Cyy = Py &, 0, 0 1. (44)
! 0, 0, 0,  Sih,
0, 0, SK Ay’ 0
We write the bosonic part of CE\O as PTQMP, where Pis a diagonal matrix with P,,,, = |p| for each
index ue{l,...,4} and P55 = 1. The eigenvalues g, of QAAO are
» Enng (f,Z\A — 40 )2
4123 =0 pp,» qas = > , Eang =&+ E(O-AAO D).

The fact that the real part of these eigenvalues is positive is known to be a prerequisite for the definition
of a Gaussian measure for the bosonic part of the theory.
A useful relation follows from (32) and (41),

1
/ dpuany () BeiK® = : / dpan, (@) (b +i0A) TP, (45)

Definition 3. The partition function Z™ of SU(2) Yang—Mills field theory is given by

Z/\/\()(K) ::/dﬂAAO((D) e*%LAOAO e%K'(D’ LA()/\() = /d4x EA(]A(). (46)
The interaction Lagrangian density LN := EQUA" + Eé\t"/\” is given by (30) and
AoA g
Lo = geapc(BuADALAS + 7 ecabechAyAVAZAf, 8€abc (T )ALCE. (47)

Since we restrict to perturbation theory, all generating functionals are formal series in terms of 7 and
of their source/field arguments. We also emphasize that EQOAO does not depend on the B field.

From the expression for Caolo and Eq. (47), one deduces the full tree level Lagrangian density

1
Ly = F#VF,,V + i

The Lagrangian density £§" is invariant under the infinitesimal BRST transformation (Tyutin, 1975
and Becchi et al., 1975),

B? - iB8,A, — 8,Dyc. (48)

1
6BRSA=6DC, 5BRSC=e§ig{c,c}, 6BRSC—EzB 6BRSB=O, (49)

where € is a Grassmann parameter, and {c, el =iegpacic® . Defining the classical operator s by
5BRS® = es®, one shows that s is nilpotent.
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Definition 4. The generating functional of the Connected Schwinger (CS) functions is
et WK = ZM (), (50)

The derivation of the FE is usually given considering the generating functional LA of the Connected
Amputated Schwinger (CAS) functions.

Definition 5. The generating functional L™ of CAS functions is
e_%LAAO(ED) :: /d,uAAO((D/) e—%LADAO((I)’#D)' (51)

From Definition 2, we have for any polynomial P(®D),

d 0 ~.AAy O
7N d,uAA(,(CD)P(CD)=h/d,uAA0(CD)<5E,1C %ﬂ’(q’), (52)

where

. —64p if 0,0 €{c, ),
(1)¢¢':{ o if @, 9" €{c,c} (53)

Oppr  Otherwise.
Using Eq. (52), one obtains the FE, see, for instance, Glimm and Jaffe (1987) and Keller et al. (1992),

. h, 6 <.AA O 1 6L o Any SLAM
LAN (@)= = —.iC 0 9 yyAho _ Z i 0 ) 54
(©) 2<6(I) 6<I)> 2< oD oD ) >4
From Appendix A on Gaussian measures, it follows that
dpian(® = CANSD) = djipp, (@) HOPCOD 1 OPD), (55)
This gives the relation between the generating functionals W% and LA,
1 A
WK = 5<K, CAMoRy — LAM([.CAMK), (56)
where
- -1 if¢g=¢"=¢, R -1 if¢g=¢"=c,
)y = v=¢ . A)gg = v=¢ . (57)
Oppr Otherwise, Oppr Otherwise.

Definition 6 (Legendre transform). For 0 < A < Ag, let KM(®) be a solution of the system of
equations

SWAho WA
— | arore = O B-——| i =0 (58)
= 5 k@ = 6b k@
5wAA0 (SWAAO
— ] anyg =0 Et ———| angrg =0 (59)
= o IKkMo@) = on Ko@)
The effective action is
TA%(@) = KA (@) - @ — WA (KAO(@)). (60)

A solution of the system of Egs. (58) and (59) always exists as a formal series in 7 and in the fields.
Same statement for the system (61).

Definition 7. For 0 < A < Ay, let ®M(D) be a solution of the equation

oL

B ) o @’ 61

D= (q> — CMo
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The reduced effective action is

1 6LAA SLAM
AN . ANy AA
MARo(@) = (LM (@) - > <—5<1> ,1CMo 5 Moo © (62)
From Definitions 6 and 7, it follows that for 0 < A < Ag,
1 _
(@) =TM(®) - (@, €1, D). (63)
PMo(@) = T, CAN KMo (@), (64)
1 _
MA%(@) = (L(®) = (@ = @), Ci, (@ = O))| oy o (65)

Using Eq. (61), we observe that, before the replacement, the rhs of (65), as a function of @ for fixed
®, has an extremum at ® = ®0(P). Applying d, to Eq. (65), substituting L with the rhs of (54) and
using the property of extremum, we obtain

. AN A
AN (@) = <— ic™™ )L A°|®AA(,@ (66)
Defining
52WAAO 62I‘AAO
WA = oyt — Ao gyt —— 67
ot = T SR ek ® T ©n
it is easy to observe that
/ d w1 rkAf; i.=6(q-p). (68)
This implies that, using similar notations,
Lt = / d*k rAAO (6(k p)+ 1CAA0(p)rM°) ) (69)

Eventually, one obtains the FE for the functional I" and also for the functional I, with one operator
insertion of source y,

ho. ~ -1
[= (€ 6,05, (1+1C550,T) ). (70)
. ho. | n 1
5Xr=§<c(1+5¢5¢r01) 805041, (1+1C0650,7) ), (71)

where ¢, ¢ €{A,B, c,c}, and we omit appropriate sums over field labels. Generalization to
X=(X1,- -5 Xn,) With n, > 1 is straightforward. The FE for [" in a modern form has been intro-
duced by different authors (Wetterich, 1993; Bonini et al., 1993; Morris, 1994; Keller et al., 1997; and
Kopper and Miiller, 2009). Flow equations with composite operator insertions have been introduced
in Keller and Kopper (1992).

The mass dimension of a vertex function F ¢ w(p) with N fields ¢; € {A, B, c,c}, ny insertions of

sources y; and ||w| momentum derivatives is d. 4 — Z?’( Lxil = 27 [¢i] = llwll, where [F] stands
for the mass dimension of F in position space. We say that such a term is irrelevant if d <0, as, for
example, F;‘A”;w for [y] =2, and relevant otherwise. Furthermore, we call a relevant term marginal
if d = 0, as, for example, 444 or strictly relevant if > 0.

Expanding in formal power series in 7, we have

M@ =" W'rit@). (72)
=0

We also note that the FE, (70) and (71), admit an inductive structure in the loop number. This property
allows us to prove statements by induction, first establishing them at tree-level, then proving that if
they hold up to loop order / — 1 > 0 they are also valid at order /. The proposition that follows proves
that vertex functions I” involving B fields do vanish. We use the notation B¢ to denote sequences of
field labels with ¢; € {A, B, ¢, ¢}.
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Proposition 8. Assume vanishing renormalization conditions for all relevant terms with at least
one B field,

rpPone @ =o, 73)

where q is nonexceptional for marginal terms and vanishing otherwise. Then, for all B(E, I, w, p, and
0<A< A(),

oA G5 — 0, (74)

Rank-2 marginal terms are tensors with two vector indices, say u and v, and can be decomposed in
the basis {6, iuqjv}, Where g;, g; range over all momenta in g other than g. For rank-2 marginal
terms, only the coefficient of ¢, is set to zero in (73).

Proof. We prove the statement by induction, increasing in the loop order, / — 1 — [. Given /, we
proceed by descending from wp,x in the number of derivatives, ||w]|| — ||w|| — 1. For fixed / and w, all

possible terms I" f‘b;w are considered. By construction, for fixed / and Bé, the inductive scheme deals
first with the irrelevant terms and continues, if they exist, with the marginal terms, followed by more
and more relevant terms. The identity r§¢;M‘““’(ﬁ) =0 follows from the definition of I". Assume that
the statement of the theorem holds up to loop order / — 1 > 0. It follows that at order [ the rhs of the

FE for vertex functions with B fields vanishes. Using the FE, we integrate the irrelevant terms from

Ao downward to arbitrary A >0. The boundary conditions rf¢;A°A°;w(ﬁ) =0 and the vanishing of
the rhs of the FE imply that all irrelevant terms with B fields vanish at loop order /. The boundary
conditions rf"’“OAO;“’(q) =0 and the vanishing of the rhs of the FE imply that all marginal terms
vanish at their renormalization point for arbitrary A > 0. The derivatives with respect to momenta
of marginal terms are irrelevant terms. Consequently, we conclude that the marginal l_f'/’;M";w(ﬁ)
vanish for all p. Similar arguments hold for all strictly relevant terms. |

In the following, we will always adopt the renormalization conditions (73). Consequently,
counterterms involving B fields are not generated.
Let us denote by W, Z the functional W, Z with b set to zero,

W(,7,m):=W(,0,7,n), ZG,7,m) =Z(j,0,7,m). (75)

The covariance matrix C is obtained from C (43) by removing the column and row which correspond
to b.

Proposition 9.
1 N 1
WANG b7, = E(b, b + WA — igab, 7.1). (76)

Proof. Using the definition of the partition function Z*, one computes

1
ZMo( 4 igab, b, i1, ) = e 7L ARG b i i), (77)
LAt = oo 2 2 0y (78)
o0j o on

From definition (32), it follows
700 + iéab, b, i, 1) = eTE B =i L0 = @S 0m 35 G.CAN0) (79)
Observing that the expression multiplying e P i 7M. 77,17), we obtain
ZMN G b, 7, ) = eTE PPz iéﬁb, 7). (80)

Taking the logarithm finishes the proof. ]
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Substitution of W20 (76) into the definition of I (60) and integration by parts give

(4, B,2,¢)=(b,B - iséaf_x - %b) +I@.z,0), 81
P42, = G.A) + 4.0 + @) = WG] oy (82)
From Definition 6, it follows that b = £B — i0A. Consequently, the above expression becomes
PV, B 2.0 = 5 (6B 04, €8 - i04)+ T (A, 2.0, (83)
Differentiation with respect to A yields an important identity,
Corollary 10. " .
%ZO =i0, (B - iéﬁé“) + 65&20' (84)

For & := (A, ¢, ¢?), the functional Ao (®) is defined from LAM(®) in analogy with (62). For
0 < A <Ay, it follows that

l"—ﬂ/\A()(é) — fAA()(é) + %(@, C/_\i\o @) (85)

Substituting (63) and (85) into (83) yields o(®) = (). Note also that at A = A, we have
® =0 and
I—A()AQ(Q) - LAOAO ((D) - LAOAO ((I')) — erA() (@) — /d4x (ESOAU + £AOAO)~ (86)

ct

D. Violated Slavnov-Taylor identities

We are working in a framework where gauge invariance is broken already in the classical
lagrangian due to the gauge fixing term. It has then been realized that invariance of the lagrangian
under the BRST transformations ensures the gauge invariance of physical quantities to be calculated
from the theory (Nielsen, 1975 and Piguet and Sibold, 1985). On the level of correlation functions
(Green’s functions in the relativistic theory), this invariance leads to a system of identities between
different correlation functions which are called Slavnov—Taylor identities (STI) (Zinn-Justin, 1975;
Slavnov, 1972; and Taylor, 1971). These identities may be used to argue that physical quantities
obtained from these functions, as, for example, the pole of the propagators for all physical fields of
the Standard Model, are gauge invariant (Gambino and Grassi, 2000).

In our framework, gauge invariance is also violated in an even more serious way by the presence of
the regulators in (35) and (36). We want to show that for a suitable class of renormalization conditions,
which does not restrict the freedom in fixing the physical coupling constant and the normalization of
the fields, gauge invariance can be recovered in the renormalized theory. This means that we want to
show that the STI hold once we take the limits A — 0 and Ay — oo.

The first step is then to write a system of violated STI suitable for our subsequent analysis of
their restoration. To do so, we thus analyse the behavior of the regularized generating functionals of
the correlation functions under BRST transformations. The infinitesimal BRST transformations can
be generated by composite operator insertions for which we also have a freedom of normalization,
as encoded by the constants R; introduced below Kopper and Miiller (2009).

We derive the violated STI setting A = 0. Remember the comments in the beginning of Sec. II C
as regards the implications of this choice for the generating functionals on the IR side. We consider
the functional Z’*° defined with the modified Lagrangian density

vst

El\o/\o — EAOAO + ’)’lﬁAO + wQAO, L/\()/\o — /d4x [:A"AO, (87)

vst vst vst
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where y and w are external sources, and

1
Y™ =RMAc - igRY[A, cl, QM= Ry (e ), RM=1+0(M).  (88)

The requirement that, at zero loop order, ¥*0 and Q*° correspond to the classical BRST variation
implies that the constants Rl'.\‘) are equal to one at the tree level. At higher orders, we admit countert-
erms for the BRST transformation (Kopper and Miiller, 2009). Performing the change of variables
D D+ 6D, we obtain the identity

A A Ag A
—7‘1/<5€(cl,quoe’%L"-g 0)e%’('q’=/d/10Ao€7%L”3 rikog . 0e(D), (39)
where

OeA =€ 00p, * (//AO, 0eCi=—€00p, * QMo 0eCi=€00p, * iB. 90)

Using formula (39) for an infinitesimal change of variables and substituting the variation §¢® with
its explicit form (90), we have

=T 6e(d pony (D) = dpon, (@) € IlAO(CD), 91)
—TiSe(e” %LL\SAO (<D)) - e‘%LZ\SAO(@)E [é\o (D), 92)

where

IM(@):=(A, C'yM) — (2,571 QM) — i(B, S ')

1
+i{0(B - igaA), Tong * U), (93)
AoAo 6LAOA0
A .
(@) i=(aong * =) = (Ton, * —5—, Q™)
. Aofo Ao Ao 4
+z<B,crOAO*—6E )+ Y. Qpy) +{w, Qpd) ) (94)

Q0. =g(RY" — RY"e™ (0ron, * w0y’
+ gR;\OR;\O 6abs(CS(0_OAO % a'uch) — Tong * (csaﬂcb))
+ &2 RIORY €4 e (0o, * (ALt — Ab(aron, * (c'¢))), 95)
0000 =(8RY) ¢ (Ton, * (). (96)
The terms Q9 and Qh?, originate from the variations 6¢(yy) and 6 (wQ™), see (87). Substituting
B~ é(b +idA), see (45), in both terms IiAO, we get

Ao AoAo, 1

Ao -1 1g. Ao —1 .
/d,uOA() Ii 0o #Llost +hK<D:/dMOAOJi 0o ilos t7K (I), (97)

where
1
TR@) = (A, Ty — (2, 571QM) + E<aA, s7ley

1
- ZE(b, S7le + ogn, * Y)Y, (98)

AoAo LMoo

MY — (oo * = , Qo)

5L
T(®) = (aon, * =
AoAg

1 SL
+ig<b+i6A, Tony * —5=—) + (¥, 20 + (w, 000). (99)
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Introducing the operators Q//)\O and Q%°

Ay . OLM0M0 fo_ SLAMo 1 sL oM

: O0A,
P (5AH 0

1

+ACT Mo —zsTIQM 4 EaAS-lc,

SLA0Mo
oc

ng = 00Ag * 6¢A°) - _lC,

we have |
T4 N = ié;(b, Q") + (7, Qpy) +(w, Qi) + / d*x 05°(x).

We may now express the lhs of (89) as

Ao
‘ /d#OI\o(JlAO + Jé\o) e_lng LS _GDZ(%\)CO >
p.B=0
where
D:= / d*xn (b nd ),
5p( ) f op
Zow! = / djtong (@) Lo +FEO.
Ao A Ao A A A
Lo = Lo5™ + p0p° + py 0Lt o+ pw Q00 + BOL’
Defining

0 0 0
S = (jv O-OAO * h5> + <777 O-OA() * h%) l<0-0/\0 * h v 77>

we write the rhs of (89) in the following form:

/ dion, € LK O 5 @ = esz,?j}o_—eszgm

p.p=0"
Using Eqgs. (103) and (108), we write identity (89) as follows:

0A OA
DZauxo ‘p B=0 = SZauxo

pp=0"

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

Then we perform the Legendre transform on the auxiliary functional W,,,,, :=7log Z,,,. This defines

the functional I, from which are obtained I, see (83), and the functionals
» 6FOAO
0Ay . 0A 4 FOA
M= —amx o F 0 /d r (x‘;,
ox =0 P

where y € {p, B}, and y and w are arbitrary. Equation (109) then gives
N 1 - 1
PO+ (B + £00), Fg) =580,

where

- - 1
I:OA() = i(B, @) + I:OAO, IﬁOAo = 0Mo 4 E<é’ 00 A),

and §:=S5; + Sy — S, with

sT0%0 5 ST 5
S4 = —_’ — VY (——
A = U'OAo*éy> ( 57 ,O0Ag * 6A>
5r°A0 5 )
Spi=(—— + —)
C < 5C O-OAO 5 - > < (S(l) O-OAO * 6E'>
ST0M0 § . or% 6
c = — 5 — )+ {—, -~/
( 5 T0A * 6w> ( 50 Tom * 62)
0 0
= )=

(110)

(111)

(112)

(113)

(114)

(115)

(116)
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We rewrite Eq. (111) in the following form:

y 1 5.
(GB.T™) = S8:LO = (B, o, * L"), (117)
1 .
= ZSFOA“ (118)
where
=8-S, F0 =0 4 ‘f(aA, f0noy, (119)

The introduction of the functional I" leads to relation (118) and to the consistency condition given

in (121). They are important in the analysis of the renormalization conditions for f(l)Ao;¢, see
Sec. V.
An algebraic computation shows that

(SiSj+ 88 =0, Vije(A,c.E). (120)
Consequently ST 9% = 0. Thus application of the operator S to Eq. (118) yields
S =0, (121)
Using again (120), we also have
1 - = ar 0
538+ S:5)%0 =0, andthus S+ ogp, * 6—1:?“’ 0. (122)
Finally, we set y,w =01n (117) and (118) to get the AGE and the STI,
=0A¢
= L =0A
PO = oron, * ( —— — oL, ) (AGE), (123)
~0Ag =0Ag
~0A L = 0A L = 0A
FN0=¢( 7 soone ¥ L") =« o NS B (STI). (124)

The goal is to show that 9% =0 and F‘fm =0, in the sense of Theorems 3 and 4. In Appendix G, we
give a version of these two equations valid for 0 < A < Ayp.
1. The antighost equation

In this section, we extend the AGE for arbitrary A € [0, Ag]. In notations (11), (75), and (110)
and with Eﬁ,%\(’ given in (106), we have

0 ~ 172000 156
AAoZAA AA Ao ~LIM0ML 1R G
Wﬁ OZustO 5[3Z(mx0|p, /d/.lQ 0 ot AR (125)
where dfi:= dupn,(®), ®:= (A, c,¢), and K := (j, 7, n). Integration by parts, see (A11), yields
SLMM Noko, 1 .
/dﬂ( 5 —Sxkoc—n)e%g e o (126)

From definition (87), we also have

SLyy" _ oL

— = (127)
oc oc
Substituting Qg from (101) into (125), then using (126) and (127), and putting v, w = 0, we obtain
5 SWANo SWANo
—WAN = o, (Sphy == + 7+ OW) =87 5 (128)
Finally, we perform the Legendre transform
=AA, s AA 1
Fﬁ OZO'OAO (SAA0C+ —6F ())—S_g
oMM A -1
=aon, * 5 - ar) °)—S c. (129)
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One can also prove identity (129) by noting that its lhs and the ["-functionals on the rhs obey FEs
of form (71). Moreover, identity (123) implies that both sides have the same boundary condition at
A=0.

lll. MOMENTUM BOUNDS

From now on, we use the following conventions:

0 < A < Ay, unless otherwise stated.
M is a fixed mass parameter such that 0 <M < Ao.

We omit the tilde for all vertex functions and insertions, for example, fq?;w — F&w, |~_¢Zw — r@w ,
and f;’;"’ - Ff;w.
We use A, ¢, and ¢ instead of A, ¢, and ¢, respectively.
A tensor monomial is a tensor product of Kronecker ¢’s and momentum variables in
p:=(1,...,pn-1), forexample, 6,,p1,p20 - Let {(5Spk} be the set of all monomials being a prod-
uct of s Kronecker ¢’s and k momenta p; and let {6Spk } be the union of the sets {5Spk } such that
r equals the rank of the monomials: » = 2s + k. For example, {62)4 = {00y 0p0s OO pvs OppOye}-
For p € P,, we define the n-function by

n@)=_min () pil.M), (130)

E‘J/)n—l\{ml icS

where @,_; denotes the power set of [n — 1] (the sum does not include py=— Z'f_l pi)- A
momentum configuration j is nonexceptional iff n(p) # 0 and exceptional otherwise.
For a fixed constant ¢ such that 0 < ¢ < 1, we define

M, = {p € P, : () > cM and p? <M*Vie [n— 1]}. (131)

Every p € M, is nonexceptional.
¥n > 2, a momentum configuration p € M, is symmetric iff p € M,
M2
M = {ﬁeMn:pipjzm(n&j— Vi,je[n—-1]}. (132)

Vn > 3, a momentum configuration j € M, is coplanar iff p € M;”,

M,? := {p € M, : dim(span(po, . . . , pu_1)) = 2}. (133)

In the following, a renormalization point is denoted by g € P,,. See Appendix H for the list of
all relevant terms and their renormalization points.

A. Weighted trees

The bounds on the vertex functions presented in Sec. III B are expressed in terms of sets of

weighted trees that are introduced by Definitions 11 and 12 below. As seen from (152), to each edge
e of a weighted tree is associated a factor (|p,| + A)~%©, p, being the momentum traversing the edge

and

0(e) being the #-weight of the edge, expressed as a sum of the p and o-weights of the edge,

see (139). The relation (141) expresses the fact that the total 8-weight of a tree is in agreement with
power counting. Nonvanishing o-weights are introduced in order to define viable tree bounds for
momentum derived vertex functions. The definition of the o-weight is inspired by how momentum
derivatives are distributed along a tree, taking care of momentum conservation. Before giving the
definition of the weighted trees, we set up some necessary notations.

A tree 7 is a connected graph with no cycles. The sets of vertices and edges of a tree T are
denoted, respectively, by V(7) and E(7), or shortly V, E. In the following, the terms “edge” and
“line” are equivalent.

Let V,, be the set of vertices of valence m. Then, V =J,;,51 Vin-

Let E; be the set of edges incident to vertices of valence 1. In other words, E; is the set of
external edges.
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* Each tree has a bijection ¢ :{0,...,n — 1} > V|, i—v; and a sequence of n field labels
G=(00s---,¢u-1), ¢i €{A,c,¢,v,w, B}, and n = IV{l. The field label ¢; defines the type of
the vertex v; € V. Let V,, C V; be the set of all vertices of type ¢, for example, V 4. Furthermore,
let £, C E/ be the set of all edges incident to vertices in V,,, for example, E, with x € {y, w}.

When needed, the edges are labeled by integers and the vertices by symbols. The edge incident
to a vertex v; € V| has the same index i. As an example, for the tree above, we have

V={co,A1,A2,C3,u,u’}, V3 ={u', u},
Vi={co,A1,A2,¢3}, Va=1{A1,A2}, Ve ={c3}, Ve ={co},
El={0’172’3}7 EA={172}7 EE:{S}’ EL:{O}

Recalling the definition of P, in (16), for every edge e € E and vertex v € V|, the momentum
assignments p,, p, are functions from the set PP, to R*, with n = [V 1, defined by the following
construction:

(a) label the vertices in V| by means of ¢ : i - v; and set p,, () :=p;;
(b) apply momentum conservation to all vertices to get p.(p).

We use similar notations for multi-indices: w, := Wy~ (p) for weW,, and v € V;. Given the
momentum assignments, a set-valued function K on FE is defined by

op.
K.:={veVi\lo): ap £0). (134)
v
For the tree given above, we have p., = —(pa, + pa, + pe;) and
Ko=1{A1,A2,¢3}, Ki={A}, K> ={A3}, (135)
K3 ={zc3}, Ky={A1,Az}. (136)

Some additional structure is needed, always in view of the bounds.

* The vertices in V3 are additionally labeled either as “regular” (e) or as “hollow” (o). The sets
of regular and hollow vertices are, respectively, denoted by V, and V,; hence V3=V, U V,. In
terms of our bounds, regular vertices do change the p-weight of incident edges, while hollow
vertices do not, see Definition 13. We use hollow vertices for the bounds on 3-point functions
and in the proof of the theorems, see, for example, Sec. IV B on the junction of weighted trees
and Definition 23.

* Edges carry zero or more labels “*.” Edges are referred to as “*-edges” if they have one or
more labels “*,” and as “regular edges” otherwise. The set of all *-edges is denoted by E... The
*-edges play a special role in our bounds because to each e € E, is associated a supplementary
factor |p.| + A, see (152) and Theorem 4.

Definition 11. Let be given a sequence of n>3 field labels, ¢=(po,...,¢n-1), with
vi €{A,c,c,y,w, B}. Let Ty denote the set of all trees that satisfy the following rules:

* There is a bijection  : {0, ...,n — 1} - V\. Each v; € V| has type ¢;.
s V=V, UVs.

e If n=3,then V3=V..

e |E.|eN.
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Definition 12. In the notations of Definition 11, let 7;3,) denote the set of all trees in Tz with
total number of labels “*” equal to s and such that V3 =V, whenever n > 3. For shortness, we set

._ 7€0) ._ 7€)
7;7.—733 and 7‘1‘;.—7; .
As an example, below we show two trees, 73 € Ticaq and 77 € Tgeczasa-

c As B Ay c3
*
5 0 4 1 3
0
1
Aq
2 2 6
Az c2 Ag

Definition 13. Fix a tree from Tg. A p-weight is a function p: E —{0,1,2} with the following
properties:

1. VeekE, p(e)=0.
2. There exists amap x : Ve — E\E/| such that

(a) if x(v)=e, then e is incident to v;
(b) VeeE\Ey, p(e)=2—|x'(le}).

Definition 14. Let be given a tree from Ty and w € W, with n =1V 1l. A o-weight is a function
o : E — N defined by
()= ) 7ule). (137)

veV

where (o, : E = N), ey, is a family of functions such that

Z oo(e) = wy, oo(€)=0if v & K,. (138)
By definition (21), wy = 0 for every w € W,,. Hence, o, (e) =0, Ve € E.

Definition 15. Let be given a tree T € Ty and w € W, with n = 1V,l. A 0-weight is a function
6 : E — N defined by

b(e) = p(e) + o (e), (139)
where p and o are a p-weight and a o-weight corresponding to w, respectively. The pair (t,0) is a
weighted tree. The total 0-weight of (1, 0) is
0(r):= " 6(e). (140)
eckE

The set of all 8-weights corresponding to given T and w is denoted by OF .

For every tree 7 € 7;3,) with n > 4, the total 6-weight is given by the formula
0(t)=n+||lw| - 4. (141)

This relation follows from Definitions 12—14, which give the sum rule ). 6(e) = ||lw|| + 2|E \ E;|
— | V3], and from the relations |E \ E|| — |V3|+ 1=0and V3l =n - 2.

As an example, we consider three trees 71, 72, 73 € Taaaa. We give three different weights 6, 65,
and 6., which all correspond to the derivative with respect to the momentum p, literally w; = 1 and
w = (0, 1, 0, 0). We find a family of weighted trees {(7;,0): 6 € OF }ic(1.2,3), where

07, =07, ={6a4, 05, 0.}, 07, ={6a, 0c}. (142)
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e c E ea eb 9(1

Ay Ag Ag Az Az Ag
; ) ) , s , 0O (1]0/0
1 ]0]0]1
1 3 1 2 1 0 2 O 0 O
Ay As A Ay A1 Ap 3 10]0/0
1 ™2 8 4 1010

B. Theorems

We always assume that the renormalization constants are independent of Ay [though weakly
Ao-dependent “renormalization constants” can also be accommodated for, see Keller et al. (1992)].
From now on, we denote % := (x1, . . .., %,,) With %; € {y, w}, n, > 0.

Hypothesis RC1: We impose on all strictly relevant terms vanishing renormalization conditions at
zero momentum and A =0,

rgf‘“;‘ﬁ;w(o)=o, if 2n, +N+|lw| <4. (143)

Hypothesis RC2: On the following marginal terms, we impose renormalization conditions at zero
momentum and A =M,

I—M/\();CE‘CE(O) — O, I—M/\(];CZ‘AA (0) — O, 6A rM/\();CZ‘A (O) — O, (144)
for the notation, see (23).

Remark that Bose—Fermi symmetry and translation invariance imply that g, FMA0:?4(0) = 0 iff
0.MMA0A%e((0) = 0. To prove Proposition 16 and Theorem 1, all remaining marginal renormalization
constants are chosen at A =0 arbitrarily but in agreement with the global symmetries of the reg-
ularized theory: SU(2), Euclidean isometries ISO(4), ghost number conservation. For instance, all
renormalization conditions must comply with the vanishing of the ghost number violating functions,
like [A-Aoseece op FA ;’ ) for %; € {7y, w}. The list of the remaining marginal renormalization constants

follows literally from (E29) and appendix F.

Proposition 16. Assume the validity of hypotheses RCI and RC2. For all sequences of N > 3 field
labels in {A, c,c} with ¢y_1 =¢, denoted by ¢c, all w=(w’,0)e Wy, all (p,0) Py, and all positive
A, Ag such that max(A, M) < Ay, )

[ARGE (5.0) =0. (145)
Note that in (145) the momentum of the indicated antighost ¢ vanishes, and there is no derivative
with respect to this momentum.

Proof. We prove the statement by induction, increasing in the loop order, [ — 1+ [. Given [,
we proceed by descending from wp,x in the number of derivatives, ||w| — ||lw| — 1. For fixed [
and w, all possible terms rj’“‘” are considered. By construction, for fixed / and 5&, the inductive
scheme deals first with the irrelevant terms and continues, if they exist, with the marginal terms,
followed by more and more relevant terms. Since the momentum of the antighost has been assumed
to vanish, the statement holds at loop order / = 0. The validity of the statement for all loop orders
|'—AA0;$Z‘;w -

I

smaller than / implies that (P, 0) =0. The irrelevant terms have vanishing boundary condi-

AoA
tions; hence I} e

ANo; ¢c w
rl

(P,0) =0. Integrating the FE from Ay downwards to arbitrary A >0, we get

(»,0) =0 for the irrelevant terms. Next, we consider the marginal terms. Since the corre-
sponding irrelevant terms have already been shown to vanish at a vanishing antighost momentum,
we use the Taylor formula to extend (144) to arbitrary momenta (B, 0), still preserving the vanishing
antighost momentum. Then, we integrate the FE from M to arbitrary A >0, which completes the

proof that F;\Ao;&;w(ﬁ, 0) =0 for marginal terms. Similar arguments hold for all the strictly relevant

terms r;”"“". n
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Corollary 17. The following counterterms vanish, see (30),

M =0, =0 (146)

rO,ccAA =0, posceee — 0, 5

1

Proof. Using (145), we have, for all py, ps3 € R* and A = Ao (omitted),
FEC0,p2,p3)=0,  T0,p2,p3)=0,  8,l"(0,p2)=0. (147)
Recall (86) and (30). [ |

Corollary 18. For all X €{B,1}, # ¢, w=w’,0), B, and all positive A, Ao such that
max(A, M) < Ay,

AAo;d;Z‘;w - _
Mz (B.0)=0. (148)
Proof. 1t follows from the definitions of the inserted functions given in (87), (88), and (106)
that at the tree level FQA‘; d(’)‘ “(p,0)=0. Then using Eq. (146), one shows that for all these terms we

have vanishing boundary conditions, FAOAO Z “(p,0)=0 V1. Assuming that the statement is true at
the loop order / — 1 > 0, by induction in l usmg (145) and integrating the FE from Ay to arbitrary A,
one shows that it holds at the loop order /. ]

From now on, for simplicity of notation, we write ng) to denote polynomials with nonnegative
coefficients and degree s where the superscript is a label to make one polynomial different from
another. We define

. Bl M) | A
PR3y = PO (1og, TXUPLM)Y i) (15 A2 14
@) =P (log, =) + P (log, 7). (149)
Pl(@)=PH®), (150)
@) =] [+ Ipeh ™, (151)
eeE
@(Aﬂpen inf X )HTAH(p) Vi|=3
Asw =y o ec fc ®w’(t
WP = , 152
) [T (A +peD) > H;\ (P), otherwise (152)
eckE, 96@.’;’ .0

where 7€ Ty, w’(i) is obtained from w by diminishing w; by one unit, and, for nonvanishing w,
I:={i:w; > 0}. The following sets are also used in Theorems 1-4:

={(A,Ag):0<A<Apand Ay >M} xP,, (153)
Y, =5 (10 Ao): Ao > M} x (FEP, 1 7(5) #0}. (154)

Theorem 1. There exists a collection of regular vertex functions r"’ on Y, +n,» complying with
the global symmetries of the theory, satisfying the FE and the renormallzatlon conditions glven by
hypotheses RCI and RC2, and with irrelevant terms vanishing at A = Ag. Furthermore, for all b, #,

all 1€ N, w € Wy, the following bounds hold on Y3, :

(@ dz0o0rN+n,=2,

AP0 Gl < (A + B PR (155)
(b) d<0,
I @< Y, 0F" (B PAE). (156)
TeTZd;

Here d =4 —2n,, — N — ||w||. If 1 =0, then r := 0, otherwise r stands for r(d, l),

_f 21, axo,
r(d, 1) = {21—1,d<0. (157)
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Theorem 1 shows in particular that the functions I'}/;Ao;"j;w are bounded uniformly in Ag. To prove
convergence in the limit Ay — co, we establish the following bounds for their derivatives with respect

to Ag.

Theorem 2. Let be given a collection of vertex functions rj;_ ,as in Theorem 1. Then, for all q?,
% all €N, w € Wy, the following bounds hold on Y{,,, :

(@ dz20o0rN+n,=2,

Bw A+M +|p|
10a, T2 " Bl < A—p(A+|p|)"PAA°(p) (158)
0
b) d<0,
A+M+|p| . .
108, P2 ) < A—p > o) P p). (159)
0 767:?5

See Theorem 1 for the definition of d and r.

Convergence of the limit A — 0* of the terms F;\Ao;‘p;w (D), On, I_;\Ao;‘p;w(ﬁ) when p is nonexceptional
(or d > 0) follows from the Cauchy criterion

A/
ok, TN ) — g T Mo )| < / 210,05 TN ), (160)
A

and the bounds from Theorems 1 and 2. Convergence of the limit Ag— co of the terms

r??A‘“‘f’;w(ﬁ) when p is nonexceptional (or d > 0) follows from Cauchy criterion and the bounds from

Theorem 2,
Ag
rOA() ¢w(p) ¢w(ﬁ)| /d/l() |6A()rg»/l();¢;w(ﬁ)|- (161)
Ao

In the following, we will consider the functions FOA(’;‘p;w, [O80:¢ which appear on the lhs,

respectively, of the ST identities (124) and of the AGE (123). The goal of Theorems 3 and 4 is to
show that I_(l):;o;‘/’;w and rg’;“”;’” vanish in the limit Ay — oo, which restores the STI and AGE. The

renormalization conditions for these functions at A = 0 are obtained from the rhs of the STI and AGE.

OAO % w [0 gatisfy the bounds

In Sec. V, we show that the required boundary marginal terms r e

of the theorems under the conditions specified in hypothesis RC3

Hypothesis RC3: We allow RA44, r/l‘A, % to be chosen arbitrarily but the remaining marginal
renormalization constants must satisfy a set of equations: R1(308), R»(327), R3(330), rgm(324),
R’;‘EC (314), R?”;AA(334), see Appendix F and (E29) in Appendix E for notations.

For shortness, we also introduce the following definition

L M+Ipl+A 1P| \ Pl
FXAAO(p):z—JrliJr (1+ (po) )P (). (162)

Theorem 3. Let be given a collection of vertex functions r;ﬁ’, p regular on Yyin,, complying with
the global symmetries of the theory, satisfying the hypotheses RC1, RC2, RC3 and the bounds of

Theorems 1 and 2. Let r;fﬁ;l be a collection of vertex functions with one insertion of the operator
QA” (101), regular on Y {4x4n,, complying with the global symmetries of the theory, satisfying the FE,
and such that the AGE (123) holds. Then, for all (5 %, all 1eN, w € Wyyyin,, the following bounds
hold on Y 1 4xin,:

(@ d=z0o0rN+n,=1,

Ly FUE) < (A + B FAN P B). (163)
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(b)y d<0,
PG < S QNG EANGPLY B (164)
T Tpzs
Hered:=3 —2n, —N— ||w|| and sg:=0. If | =0, then rg := 0 otherwise rg stands for rg(d, 1),

20 d>0,
7p(d, )= {21— 1.d<0. (165)

We note that the 1-point vertex function with integrated insertion 110 vanishes, I'II\A(’;“’”

due to SU(2) symmetry.

=0, e.g.,

Theorem 4. Let be given a collection of vertex functions r; p r i1 95 in Theorem 3. Let r‘f 21

be a collectton of vertex functions with one integrated insertion of the appropriate operator among
QA” (100), Q (95), QA" (96), regular on Yy, complying with the global symmetries of the theory,
and satisfying the FE. Assume that the STI (123) and consistency conditions (121) and (122) do hold.
Then, for all 5 %, all leN, w € Wy, the following bounds hold on Yy, :

(@ d>0orN+n,=2,

PN B) < (A + B AN GPAY (). (166)
(b) d<O0,
PGl S M) FANGPAN ). (167)
T€T 52

lm])

Here d:=5—-2n, —~N—||wl||. If L =0, then r| :=0, 51 := 0 otherwise ry, s| stand, respectively, for
ri(d, ), si1(d, 1),

3, d>0,
rd,D):=4{31-1,d=0, s1(d, ) _{l 11 izi(())’ (168)
31-2,d<0,

IV. PROOF OF THEOREMS 14

In this section, we will prove Theorems 1—4 in this order. We proceed by induction in the loop
order I. We first verify that they hold at the tree level / = 0. Afterwards we assume that they hold true
up to loop order / — 1 > 0, and we will verify the induction step from / — 1 to I.

Put Dy := 4 for all vertex functions r"’ For all inserted functions r‘” ¥ with X € {8, 1} and
lwll < Wmax, let

3,X=8,
Dy = 5. X=1, dx :=Dx —2n,, — N — ||w]|. (169)

Note that at zero loop order rj‘:go = rﬁ)(;\ ®, Using (86) and (110) and the definition of L, in 106,
one finds that in momentum space

rll\o/\o b _ Q,(/:(O();b’ /\o/\o é_ Q;/)\(O();i’ /\0/\0 & _ Q/\o ¢’ (170)

where the momentum variable correspondmg to the source pis set to zero. Everywhere in the following
0, Mo will stand for Q™ ' 0)- From definition of Q) T (100) it follows that the vertex functions Q Ao; ¢

with N =2 vanish. The nonvanishing functions Q i 0, Qﬁ, have the form hy(p, g)(1 — O’()Ao(p ),

where A, is a homogeneous tensor polynomial of degree s < 2 in the momentum variables p, q eR?
which depends at most linearly on the momentum ¢. From the definitions of Qﬁg) (96) and Q (95),

we obtain that Qﬁ}jf , has the form hy(p)(ooa, (P +9)*) — ooa, (p?)) ith s < 1. For ||w]| < s (relevant

terms) using inequalities (D49), (D55), and (D60), we have

Ao = s—llwil (121 s+1=llwll _ 1P sl
Mo @l <eng ™ (=) <c i B+ (171)
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For ||w|| > s (irrelevant terms), the same inequalities yield

AA i ¢ 1P
Mo @l <eay (G +1)

- A |[7| [lwl|—s
< + AP~ lwl| |P| + +1 ‘ 172
e(pl+ AT EES (1) (172)
Since s — ||w]| is the dimension dy, we have the following bounds:

PRS0 G < (A+ BYHFANG). X elp1). (173)

Thus the statements of Theorems 1-4 hold at loop number / = 0. The proof proceeds by induction on
! and on the number of derivatives ||w||, ascending in / and, for fixed /, descending in ||w|| from wmax
to 0.

A. Chains of vertex functions
Definition 19. A division in m parts of a finite set 1 is a sequence S := (s;)je[m) of m disjoint sets
s; €1, possibly empty, such that | Jje(m) sj = I. An ordered partition is a division with all s; nonempty.

Given a division S as above stated, a division of a sequence ¥ = (\;);c1 is the sequence of elements
\P] = (\Pi)iE.Y,') Wlth] € [m]'

Definition 20. Let S be a division in m parts of a finite set I, and Y= (W))ie1 be a sequence
of labels W; € {A, ¢, ¢, y,w, B, 1}. Denote by (¥;) the division of ¥ induced by S. A chain of vertex
functions is then defined by the expression

> O m o -
fﬁl‘y.{m = rgl\PI{l l_[ ng_j,l r(jj‘I’jgj’ (174)
where the repeated field labels {j, fj belong to {A, ¢, ¢} and are summed over (as usual).
Using this definition, the FE (70) has the form
¢ h e dPA s e Bz
FY =2 D C R 4 SR - FT, (175)
S
The sum above runs over all possible divisions of [0 : n — 1], n being the number of components of
Y. The symbol m, denotes the number of transpositions mod 2 of the anticommuting variables
{c,¢, B,y,1} in the permutation i+ n(i) such that (Wr,..., Yru-1))="¥1 ® --- & ¥),, where

@i,....ap) ® (@ps1,...,a9)=(ay,...,a,). i
A preliminary step toward the proof of Theorem 1 is to bound 9% (Cz[%¢) with ||w|| < wmax.

Proposition 21. Forall 0 <k <[, 0<w < Wmax, P € R*,

) LEAA AA Pl
||— F-; *(p)C 0 )<—. 176
=0 Pu (e o) (pl + Ay (170
Proof. Using inequality (4), we see that
w
z. !

|8w(r£(,AAOC?}\0)| < E wl'(ww w])'ww] rgfl\l\o“[)w w1cAA0| 177)

. =0

Setting wy = w — wy, it follows from (D102) and the bounds of Theorem 1 already proved inductively
for k <[ that )
l w gZAAO wy (AN Cfdwzpzk
— 2 > S [\ S—
wz!la r 160"2C.2°] TN (178)

Because w < wiax, the constants cg, dy may be absorbed in Pé\k. [ |
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Definition 22. Let be given

a sequence = (W))ier as in Definition 20;

an ordered partition S = (sj)jeim) of I;

the sequences of field labels ({})jem, (§)jeim);

4. amulti-index w € W, and a sequence W := (W;)je[m) such that W; € W, and ¥ jcip Wj = w.

N~

Then, we define a reduced chain of vertex functions as

r(u‘ﬂ(l wi 1_[ C.; r(,‘PZ, w;, (179)

g1

where T¢VEW; = aW/(r“’ ¢ are derivatives with respect to the external momenta appearmg in r“’
and the sequences ({j)je(m) (Q)Je are fixed. Introducing the auxiliary quantities T:= (T 1jelm) and

'f’j = g}‘_ﬂé, we denote (179) by ST’W or, with some abuse of notations, by Sgl\Pé;’";W

The adjective “reduced” indicates that the chains contain neither 4, "¢, nor derivatives applied
to the propagators C.
It follows from inequalities (D102) and (176) and Theorems 1-4 proved in loop order [ — 1

that there exists a common bound for the terms rf“jf WA C and FZ\PZ i 6“’2(CFZZ)G"BC This

property basically follows from an explicit check of the degree of the polynomlals in the bounds and
from the fact that, for w,, w3 supported on p, a factor (|p|+A)~1*2*31l times a weighted tree (7, 6) in the
bound of rl{“’-‘;w‘ may be bounded by the weighted tree (7, 8’) in the bound of rif;; s with 67
equal to 6 everywhere but on the edge e € E; carrying momentum p, for which 6’(e) = 6(e)+||w +ws]|.
Hence to bound r}‘, it is enough to consider a loop integral with a reduced chain

d*k . w
a0 Cp(k) S53 5™ (k. s, —h). (180)

where ﬁsj = (pi)ies;- As an example, we give in Appendix B the complete list of chains for [Adce
The appellative “reduced” may be omitted in the following, since it is always clear from the context

whether a chain is reduced or not.

B. Junction of weighted trees

Given a reduced chain S?‘W we define its amplitude S’T;W by substituting the vertex functions
and propagators with thelr corresponding bounds taken from Theorems 1-4 and inequalities (D102).
Recalling that T = ,g,, we then set

L 1

SA STaw AT w QAT w;
=S —=8" N (181)
1_2[ A+ p2))?
. (A +pD*, casea
ShTw > qu_\;w’ case b . (182)

767%./_

Here the cases a and b refer to the respective parts in Theorems 1-4.

The tree structure of the bound is spoiled if there exists an interval J¢ := [j*:j* + m® — 1] C [m]
such that all S8 for j €J¢ correspond to a strictly relevant contribution, associated with the cases
a in the theorems. A workaround for this difficulty will start with the following definition. For every
tree 7 € T, set Ey,, :={e € E] : e incident to v}.

Definition 23. Let ¢ be an arbitrary sequence with ¢; € {A,c,c, B,y,w}. A tree feTg is a
Jfragment if

(a) there exists s € {0, 1} such that |V,| + s equals the total number of “*” labels;
(b) YveV,: |Ey|22and Ev, NE, #0.
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The set of all such fragments is denoted by F9. Moreover we set Fy:= FO and Fig = FD,
& ¥ & ¥ ¢

For each s € {0, 1}, 72) c ff’;) cTg.

Let us now state a useful property which relies on the above definition. Let be given a subsequence
J4:=[j%:j%+m“—1] C [m] with any number of elements m“. Let S and ¥ be as in Definition 22. Define
the following restrictions: $¢ = §|j«, W =W|ge. Set w*:=3;c« W; and Pa .= (¥;) with i € Ujega s;.
Then, there exists a set of fragments J (¥af such that

Fultt < N ghe (183)
TeF pgag
. . . . . ~SOAY w
Here we give a proof of (183), for example, generalisation is clear. Consider an amplitude &
composed of four elements $44%w \where jef{l,...,4} and w = 0. First, let us define the following
set of fragments F (here s = 0):

1 2 3 4 1 2 3 4
0 5 0 5
1 2 3 4 1 2 3 4
0 % * b 0 * B
In each fragment the *-edge corresponds to a factor A + |p,| in the corresponding amplitude Q}\éufo.

One shows the following bound:

J lé | 2% ic| 3\,1\/ lef 4% A gQ%ZQ?;wzo, (184)

§6148 G624l §¢3AL3 §CaAls feF
or more explicitly,
l—‘lj (A +1pol) " I—‘[/ A+ 1Py
vEV] w3l VEV]
————— <27 —_. (185)
[T (A+lp)? {Z; [T (A+lp)?
e€E\E X eeE\E

Here the @-vertices stand each for corresponding SGAG w=0_see (182); the set of ®-vertices is identified
with V3 in (185); p, indicates the set of incoming momenta of the vertex v; p, denotes the momentum
corresponding to an edge e; the sum runs over the set of functions y : V3 — E\E| U {eg, es} which
map every vertex v € V3 to an edge incident to v; CI’s stand for the usual bounds on the corresponding
propagators.

Let be given a sequence of fragments f =(f1,....fwr) with fj€F ¢

¥ and a sequence
’ > "
w’ = (ij )jem] With W]f € W,,. We define the amplitude Q}\W by
AAW AW, u 1 AW,
%" =" [ | (136)

L+ g™

. . ANW .
Lemma 24. Given an amplitude Qf " as above, there exists a fragment f € F ri7 such that

A AW AW

Q" <o, (187)

Proof. We proceed by induction in m’. If there are no joints, m’ =1, the statement is evident.
Assume it is true for some m’ — 1 > 0 and consider a sequence of m’ fragments. Let v;, v, € V3 be the
left and right vertices of a joint. Recall definition in (151).
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b

(189)

* v, v, € V3\Vo.

Hftgz (A+| )2 Her’r l_[f9

Here the corresponding external edges have been merged together to form a new internal edge
with 6-weight equal to 2. The #-weight of all other edges is unchanged.
e v € V3\V,, v, €V, or vice versa.

+vl e -C e g{% < Hﬂz e (190)

Hf/ % (A + | |)2 (A+ |p|)Hf/,\,9,. =H;\,9 191)
* - {} (192)
Hfl91 (A + | 2 (A+ |p*|) —(A+ |P*|) o5 (193)
M Ul,UrEVO.
%%‘—gﬂm% < H (194)
H;l\el +pl) —— A+ | 2 (A+IP*I)H£’9r=(A+|p*|)H;‘,6 (195)
%vl; ._C__,%%) < M (196)
MM+ 1PD G | 77 (A IpDIT = T17. (197)

Hence, by merging two fragments, we can decrease the number of joints by one and then apply the
induction hypothesis. [ ]

In the simpler context of ¢* theory, a completely explicit description of the junction of trees can
be found in Guida and Kopper.

According to Egs. (D35) and (D41), the loop integral in (180) is bounded by the following
expression:

SAA 2ATW A AW A
/C{Z FH g <a 8 %,_JMZ:O, (198)
AAg pAA _
FoPy e, X=1,
Br= FptopN X =p, (199)
PAA otherwise,

20
which follows directly from the definition of r, rx, sx given in Theorems 1-4.
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For any function f depending on the variable p, and other variables which we need not specify, we
define Ry :f(...,pz,.. )= f(...,0,...)where R stands for restriction. Then we set R{Z = RgoRZ.

.. . WAPEw .
Proposition 25. For an amplitude S;\ ere , there exists a set of trees such that

(‘P( w

R85 <27 Y Rep0h). (200)

TGTN,[

Proof. Using definition (181) and inequalities (183) and (187), we obtain that SA 4 PEw is

bounded by a sum of fragment amplitudes. It remains to show that for a fragment f € F g there
exists a tree 7 € 7'(\;, b such that Rgf(Qf/.\ )< R“-(QT “). We denote by a double bar line the edges

£, and consider the case when f ¢ Tﬁ, I Based on the inequality ﬁlhﬂ <1, we find

b
< (201)
]
At any loop order /” <[ using the bound of Theorem 1 and the inequality
< A+ +(A+ R 202
A+ (A +Ip1D+ (A +1p2D) (202)
where p,, + p1 + p2 =0, one realizes that for the marginal vertex function I':,/l\,o;d"@, the following
inequality holds
‘rAAo 10102 (m‘ < 1 ( g + - ) PA (203)
’ X « « () -
il A+ ’ p%‘ l ra ()
Similarly, substituting the relevant terms rg?ﬁ 2 , N+ ||wl| <3, at loop number [’ < [ with the bounds
of Theorem 3, we have
AAoid1dacp ’ . AAo PAA
0;919203
Ly | < N e (204)

AA
|r 0,¢1¢>2| < o + 6 FAAOPT{;A;) (205)
s
AAo;
0T 502 <o o F[{‘AOP%?). (206)
1

Furthermore using the bounds of Theorem 4 which are assumed to be true for any loop order [’ </,
ARodw

we obtain the following inequalities for strictly relevant terms r”, N+ [Jw]| <5:

P0 D1
AAo; E AA AA
|r1;l’0 ¢>o¢1¢2¢s| < ( + . * 9y Tt >Fsl(l(’))Pr1(l9) (207)

®0
AANo;p001 0 AN AN
P2 <o P T P Fsl(ﬁ)Pm(ﬂ (208)
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AA
or? 0<}50¢1¢>2‘< P VIR FQA;’ P, 09)

|PAA0001w AR | A+1p| Ao pARo (210)
L/ (A+|p|)”"’“ s1(I)" ri ()

where the dots stand for omitted fragments obtained by permuting “*” over the external edges.

Substituting the bounds for T'* with those for 8:I';** yields a similar result for the relevant terms

Ff’;w with n,, > 0. Consequently the amplitude § ffxw is bounded by a sum of amplitudes Q}\;w with
feFig

C. Irrelevant terms

The irrelevant terms at arbitrary 0 < A < Ag are reconstructed by using the FE,

A
AAO Fw - AoAo:Pw ;= “ Ao Pw =
=T+ [aat e, e
Ao

At A=A for all loop orders [ > 0, for all n,, > 0, and dx <0, we have

> AgAo pAoA
Ao ) {(|p| + AN FRMPRN X € (1),

Ir (212)

X#l 0 otherwise,

where the upper inequality is obtained using the bounds on relevant terms from Theorem 1.
To integrate the FE from the boundary Ag to A, we substitute the chains S¢?0%1¢ | §¢%¢¢ with the
bounds given in Theorem 1 and use inequalities (D1) and (D11). Eventually, we get
Ao ;
PR )] < (A +1ph> 1P, lwll >2, (213)

/\Aoqbw(p)|<(A+|p|)l lolpa lw] >1. (214)

In a similar way, substitution of SEB#E , S‘]w‘”p“‘; with the bounds of Theorems 3 and 4 and then
integration from Ay to A, using (D25), give

AAo pAAg

QW w F
Ir;\;?o,rp () - AOAO P ()| < W, lwll > 2, (215)
AANo pAA
|r/\/\0:¢0¢1:w(p) _ rA0A0;¢0¢'1;w(p)| < l—l0 31—3 lwll >3 (216)
L 1l (A + |p|)||w||—3’ :

Proposition 26. Let T; € {ap’ ¢;€{A,c,c,y,w), Vil >4, keN and 6(7;)>2. Then J1r € 7;7

such that
Ao

/d/l/lR“(Q/‘ YA O\QA A (217)
A

Proof. Denote by v, € V\V] the vertices incident to e., ez € E,. First, we assume that v # 0.

The result of the restriction Rg(Qf.;w) is the amplitude of the tree 7; with two edges e; = {u;, v},
ey = {uy, v} carrying opposite momenta. Here {u, v} denotes the edge which links the vertices u, v.
Without restriction, we assume that e; = y(v). Furthermore, we define a subtree 7’ of the initial tree
7; by the substitution e — {u;, us} such that it does not include the vertices v, { nor the edges ey,

64.
(a) p(er)=1: The identity p,, = —p,, implies
A ! < ! = ! .
(A + |pe, D)~ (A +[pe, NTED (A + |pe, )7

(218)

61:€1:80 ¥20Z Aeniged 91



093503-28 Efremov, Guida, and Kopper J. Math. Phys. 58, 093503 (2017)

Consequently, AR{(Q;l;w) is bounded by the amplitude of the subtree 77 with o’(e3) = o (e2)
+ o (ey).
(b)  p(e1)=0and p(ez) >0,
1 1
A < .
(A +1pe, 1)P€2) (A + |pe, 0!

(219)

Thus, /le(Qf;w) is bounded by the amplitude of the subtree 7/ with o’(e3) = o(e3) + o (ey),
p'(e2)=plez) — 1, and x'(u1) = e.
(¢) p(e;)=0 and p(ep)=0: This implies e, € E|. Because |V;| >4, the vertex u; is incident to
an edge ¢, € E\E| such that p(e,) >0,
1 1
A < .
(A + |pe, NP (A + |p,, 0ten!

(220)

It follows that /leQf;w is bounded by the amplitude of the subtree 77 with o’(e;) = o (e3)
+o(er), p'(en) = pley) — 1, and x'(ur) = ey.

For the subtree 7’, the total weight satisfies 8(7") > 1. Consequently, we repeat the above reduction
by substituting A-multiplication with integration. Then using inequalities (D1) and (D11), we have

da P1/<l|77:0 < Pllc\+1 PI/<\+1 221)
J (A +1paDA+1ppl) ~ A+ 1pal + ool ~ A+ 1Pl

where p € {pa4, p»,Pa + Pp}. Here p, denotes the momentum of the edge used for the reduction, and
D = pyp is the momentum of an arbitrary edge with nonvanishing §-weight of the final tree 77. Because
of the previous edge reduction, we can reach the threshold |V]| = 4. In this case, we can choose freely
p to equal p,, pp, or p, + pp thus keeping the o-weight on the corresponding edge, see (D1) and
(D1D).

The case v =0 follows directly from (D1) and (D11). To see this, we denote by e € E\E; the
edge incident to v and introduce a vertex u € V3 adjacent to v. Hence, y(v) =e={v, u}. If 8, 0 are two
6-weights where the only difference is that y(u) = e for the first and y(u) # e for the second, then

1 1
m, <t yj=———1t . 222
7,0 7,0 A1 +p€€E(‘rf) 77,0 ( )
The final tree 77 is a subtree of 7; which does not include vertices ,£,v nor the corresponding edges.
Moreover, 6(1;) > 2 = 0(17) > 0. ]

Inequality (217) can be applied to bound S0 AEW T this case, ; €7, 75 and the total weight
satisfies 6(t;) > 2 — n,,. But in Theorem 1 for each edge e, € E,, we have (A + |p,|) as a denominator
which is equivalent to an additional o--weight of the edge e,,. An effective tree T with 5 (e,,) = o (e,)+1
has 6(7) > 2 and satisfies the conditions of Proposition 26.

Using (D25), a similar inequality follows for the irrelevant functions rﬁ};yﬁw, For any

T, € 7} 2676 there exists 77 € 7;;2» 7 such that
Ao
; ANy pAA A; AANg pAA
/ dAAR H(QF") Fy ™ Py ly=o < OV Fy 0Py (223)
A

ANo;diw

Before application of (D25) to the irrelevant terms rm )

, we need a minor change in (221),

Ao
/d/l(/HIp*l) FMPM <(A+|p;|)FsAA°P£ﬁ°

A+ 1pel ) A+ pal) A+ 1ppD) ~ \A+1pel) A+Ipsl

(224)
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where p’, is one out of p+ or p, in such a way that |p| := max(|p./|, |p.|). If p+ = p, the label “*” is

moved to edge e. Finally, V7; € T TS
Ao
/ AAAR(QE") FIP P o< D QX FMOPYN. (225)
A T€7—1;?¢

D. Marginal terms

AA[) ¢ w

Lemma 27. Let r denote a marginal term, n,, < 1. Then YA < n(p),

T ) - T < P @20

Proof. Note that in Theorem 1 for all I’ < [ the bounds for I';\,Il\,";‘p;w are more restrictive than the

ones for d; FAAO egw

from 7, to A

. So we will only treat the case n,, = 0 explicitly. In this case, we integrate the FE

n
|rAAO s w(p) 771\0 &; w(]7)| /d/u’r;l/\o;‘ﬁ(ﬁ)l
A

n

<)) / dA AR 7(OF") P3y_y Iy =0, (227)
€76\

where 6(7) =2. Denoting by ¢q,, g, the momenta of the edges with nonvanishing #-weight and using
Egs. (D17) and (D19) for each term of the sum, we obtain

n n

AP, - P, -

/d/l k =0 </d/l L0 ph k=20-2. (228)
(A +|gaD(A + gp]) A+ |gpl

1. rcéAA and rcécé
The renormalization condition is rj‘““‘f’ (0)=0.Forpy,p3 € R*and A’ := max(A, 7(p)), Eq. (145)
gives F;\/A(’;‘D(O@, Pp2,p3) =0, where the subscript ¢ indicates the momentum of the antighost,

1

P2 ()] < / dt |pel 18:T 2 (1pe, pa, p3)).- (229)
0

Substituting |agrf“‘”“’| with the bound of Theorem 1 and using inequality (D33), we obtain

71
N PO, <P (230)

If A’ = A, the proof is finished. Otherwise we use (226).

I8 )l < (1 +log,

2. §plreeA
The renormalization condition is da F;WAO;CEA (0)=0. For pyeR* and A’ =max(A,n(P)),
Eq. (145) gives 04 F;\,A";CEA(O, pa)=0,
1

TN A )| < / dt |pel 10:04T N 2 (1pe, pa). (231)
0
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We substitute |04 r;\,Ao;CEA(ﬁ,)I with the bound from Theorem 1 with the choice w’(2) = (0, 1,0),
see after (152) for the definition of w’. Then

’. 1 1
AO,1,1)
_ . ’ , 232
Qi {,\/+,|p5| A’+|tpz»+PA|} =

and using (D33), we obtain the inequality
164N <A @) < PN (B) < P (). (233)
If A’ = A, the proof is finished. If not, we use (226).

3. Renormalization at A = 0

First, we consider the marginal terms r“’ F;Al, rAAAA 0z F“A BFAAA 68FAA aar“ here

denoted by ri’}w. The marginal terms r"l. and r ,, Will be discussed later.
Let {6°¢}, be a basis at the renormalization pomt q. We define r"’ "“(g) in the following way:
rG= 3 niv > (234)

te{o*}, tae{s%ek>0},
where the coefficients r; are fixed by the renormalization conditions, see Appendix H and hypothesis
RC3, and the remaining coefficients {; are defined using Lemma 30. Then, from the bounds on the
irrelevant terms and Lemma 31, see (C20), it follows that r"’ w(q) complies with Theorem 1 at loop
order I. Let A’ := max(A, n(p)). It is easy to verify the followmg inequalities:

N logk M A/ A logk A,
/d/l;/l <k!+log, —, /d/l M 2(1+10ngrl ) (235)
A+M M A+M M
0 0
Recalling (198) and (200), we obtain the following bound:

P (og, My + P (log, (& )

“AAo;Piw
P @l < ( ) (236)
This implies that
N
"Nosfiw > OAo:fw ~ANg:Fw A
I @) - T @l < / I @I <Py, (log, ). (237)
0
Using inequality (D33), we get
.
N Roséh; NAgFw - ’
PR 0) - PEM @) < ) 1@ < P (0), (238)
j:l
IPA ) — PR )] < Zl,(ﬁ) <Py P), (239)
j=1
where [;(g) is the interpolation along the vector g;,
il
@)= / dr g1 1T 5N Y G+ 1)) (240)
0 i=1

Here to each vector g; € R* is associated g; € P, whose components are (§;)x = —¢;0x.0 + ¢i0x;- Once

again we have substituted |0 I_gle;‘/’;w| with the bound from Theorem 1. If A = A’, we stop here. If
not, we use (226).
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The remaining marginal terms I_Q:;(l’;"j;w with X € {3, 1} can be treated similarly. Note that the

bound from Theorem 1 for terms of the type (%I_E?;w is the same as the one for the corresponding

ccA cce cc
e r]w g é)l’lw is the
same as the proof for, respectively, 0. rﬁf‘, 00; rm which we shall consider now.

terms r“’ ;- Consequently, the proof of the bounds for the marginal terms "

Letus denote by r?(?;) o any marginal term without insertions y or w, and by g the corresponding
renormalization point as given in Appendix H. We now anticipate the important fact that the relevant
renormalization constants comply with the bounds, which will be proven in Sec. V. Then using the
bounds on irrelevant terms from Theorems 3 and 4 and Lemma 31, see (C20), we obtain

|r§)(/’\l()»¢,w(a>)| 7)(1)(10 + A;) (241)

in agreement with Theorems 3 and 4. Set A’ := max(A, M). To integrate the FE from 0 to A’, we
substitute the chain of vertex functions with the trees from Theorems 3 and 4. Then we have

, Fw. o  AN+M A
|rA Ao u( ) — rg)(/’\l(),tﬁaw(qﬂ < 733)1()( [\40) (242)

Using inequality (D33), we obtain

||—AA0¢w(0) AA0¢w( < A+M AAO

0), (243)

PR ) = Ty @) <FAA“<p)PM“(p). (244)

Note here that as compared to the case X = 8, in the case X = 1, there appears an additional factor

-

A’+|1m|< ) 1P|
A +|pal A+M’

(245)

in the tree bounds from Theorem 4. This factor leads to the polynominal Pg) in the bounds of
Theorem 4.

If A=A’, the proof is finished. If not, we integrate downwards using the FE, substitute the chain
with the tree bound from Theorems 3 and 4, and use (D21) to get

||—AA0;<5;w(l—5) _ I—%;\O,@w(ﬁ)l < FAAO (ﬁ)Pé\lé? (ﬁ)’ (246)
[P0 () — PR G < T g EMOpAM ) 247)
TET >

E. Strictly relevant terms

If n,, =0, the notation r¢ ¥ stands for F“A FAAA 6FAA and ar;‘i‘. In the case n, = 1, it stands

()A0¢ ©(0) =

for rc . Moreover we impose l_ 0 and denote by p arbitrary momenta with corresponding

n(p). We integrate the FE upwards from O to A and substitute |r”"°"’ v

Theorem 1. Then

| with the tree bound of

A A A+n
20 0)] < / A" 0) < / dA 2PN (0) < / dA 27 P3r,(0),
0 0 0

where d > 0. Inequality (D30) then gives

IPAMP0)] < (A + ) Py 0). (248)
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AAS® with the bound from Theorem 1, we obtain

Substituting dl"

1
T () = T )l < / dr IpillaiT 5 1p)

0
|p|/dt(A+t|p|)d PP T+ T, (249)
where
1
S L de M, |pl)
L A+ B [ de PO og, DXL 1PD ) 250
BIA + 1)) / 75 (log, A i) (250)
0
=+ P )(10g+ (251)
The calculations given in (D30) yield
. g M, |p))
1< BIA + B PO(log, DXL IPD) 252
BIA + 1B~ P (log, A1) (252)
This implies
PR ) — PAMP2 )] < (A + B PY ). (253)

Combining (248) and (253) proves the bounds of Theorem 1 to loop order /.

1. or?, 1% and re
171 1y

The goal of this section is to explain the expression for the polynomial degree r;. Subsequently,

we denote by |'¢ " the following terms: 944, 9, 444 and A< and we impose vanishing
renormalization conditions at the origin, r? 0 ¢ “>(0) = 0. From the bounds of Theorem 4, one realises
that the analysis for Fj; is similar to d; F‘l"z' . For an arbitrary p € P,, let A’ := max(A, n(p)). Using

(198) and (199),

’ 2. A+M
|r1]\;le¢,w(0)| SA+n) —— " ?(77711;0(0) (254)

We extend FA,A(’;‘#;W from O to p using the usual path given in Eq. (240) (with §— p), where we

/\ /\()¢ w

substitute ar with the tree bound of Theorem 4. The rational factor in this bound makes

these terms dlfferent from other strictly relevant terms, for example, 90 rgA, I_'Z,A, oro r'g. Then using
inequality (D33), we have

'Ao W - "Ag; | | - -
PN gy AR ) < (A + B (1 + log, Ap JEMO @) PN ).

If A =A’, the proof is finished. If not, we repeat the steps used to show (226) integrating the FE from
n to A and using (D19),

P @) = TP )1 < 1B FYY ) PR G,

dw ~¢%w ¢°
2. FB ,F1 ,andr1

2. 3 2.
In this section, we briefly discuss the remaining strictly relevant terms rg'w, I_‘f , and r‘f w

denoting all of them by rf;“” with X € {$, 1}. We impose renormalization conditions r§A°;¢;w(0) =0
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and integrate the FE from O to A. We use the bounds of Theorems 3 and 4 and then for an arbitrary
p extend the integration up to A + n(p),

3 A+M
IPAME ()] < (A + ) ZO PATN(0). (255)
Integration along the path given in Eq. (240) and using (D30) yield
PAR0E y AN )] < (A + B oy BIPAN (B). (256)

F. Convergence

We first prove the bounds for da, 4. Then we proceed with the other functions dx, rj; ascending
in the number of insertions n,. We use the same inductive scheme as before, based on the FE.

We start with the irrelevant terms integrating the FE from Ag to A, using the boundary conditions
AoAosdiw

; =0 and applying the derivative with respect to Ao,

A

ANo:dw _ =AoAo:Fw “AAo:dw
oa, l_ﬁ;l 0 = -ri;; R /d/l Oh, rw 0, (257)

Ao
To bound the first term of the expression, we substitute into the FE the irrelevant tree bound
~AoAoid; w Ag:w AOAO
I Ao 2 &P (258)
7671

If n, =0, then 7 € ’7;7 and 0(7) > 0. Consequently, recalling (151),

A+|PI A+|p|

o) < I}(F), andthus Q" < ———0N". (259)
Otherwise, the denominator Ao + Ipel with e, € E,, gives the inequahty
L A+l 1 (260)
AO+|p%| AO A+|p%|
In both cases, this yields
A+|p
|r/\<)/\0 B w| < Pl Z er\ wP;‘\(;\Ol) (261)

AZ
0 T€7:?d;

To analyse the second term, we apply d,’da, to the chain of vertex functions given in Definition 20.
This gives a chain with the element d,,((8," C)I";,”*) I’ < I which we bound using (D95) and (D102)
and Theorem 2,

|6A0((aw1 C)r/l/\o LHE wz)l < |(9A0(9w1C| ||—/_l»./\/0;§$§_;w2| + |aw1C| |aA0 rfﬁo?(‘ﬁzm}z'

B c (/1+Ipz||rmozq>4wz|+|6 rAAoc¢cu»z|)
T (At IpelyimIh Az A
1 A+ M+ |p| 1 AA
< swyHw) p ,0 262
EAPE— Z 0 oy D)- (262)

TET-(‘MV

We proceed as for the proof of inequality (217) substituting expression (221) with the integral

Ao ~\ pAA
(A+M +1pDP%, % .= _A+Mm 1
/d/l PDE S 5 10:=0 +M + |p| PANG), (263)

A2(ﬂ+|pal)(/1+lpb|) Ay A+pI Par

see the explanation after (221). If 7 € 7,44, we always choose p = p,, in order to preserve the factor
A + |p,| in the denominator of QQ.
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For the marginal terms, we shall integrate the FE upwards from 0 to A. For the terms with the
antighost, we use renormalization conditions (144),

rhocetdoy=0,  MCCo)=0, gm0y =0. (264)
Using Eq. (145), we obtain that for these terms at A’ = max(A, n(p)),

1
|98, M B)] < /dt 1Pl 10, 0T M (ape, . )

0
AN +M + A+M+|p
< |17| Z /dl| | QA w+1z P;\[ /\10 < — |p|P£\ll\[), (265)
TET* 0

where we have substituted 0,0z I'f;w with the bound of Theorem 2 and applied inequality (D33).

The remaining marginal terms [4444, 5.4 %% 55 %¢ and T, are renormalized at A =0
and nonvanishing momentum g, chosen in M in all cases but M444 for which § € M’ See Appendix
H for the list of all relevant terms and their renormalization points. Since the renormalization constants
are independent of A, their derivative with respect to Ag vanishes: it follows that the coefficients of
o-tensors in the decomposition of dx, rgﬁo;"i“’
irrelevant terms, we have

(¢) vanish. Hence using Lemma 31 and the bounds on

0Ao:P:w ;- 1
|aAO r,‘i;lo w(CI)| P(l 1(10g+ M ) (266)

We integrate the FE from 0 to A’ and substitute the chain with the tree bound. Using inequalities
(235) and (236), it is easy to get the following bound:

’ e e A
N ANo:psw - 0A0;;w /> 1)
1080 7 @) = 08 " (@) < ﬂ ! (log, ). (267)

Integrating back and forth along the path given in Eq. (240) and substituting the irrelevant term
8A08F:;_/IA°¢;") with its bounds and using inequality (D33), we obtain

A 'ABw - A+M

108757 (0) = 05, P59 (@) < —5— P ™(0), (268)
] N AO
’ e 5 ’ e A + M + | |

108, FE R0 (3) — 0 PE N9 () « 2T phda ), (269)
El 5 AO

If A=A’, the proof of the bounds on the marginal terms is complete. Otherwise we integrate the
FE downwards from 7 to A and repeat the arguments given to prove inequality (226) with a minor
change in the integrand

n
/ MR AP M+ |pl / 2Pl 0 (270)
J AL A+ DA+ 1D A+ ool

For the strictly relevant terms, we integrate the FE from O to A, substituting the vertex functions
and propagators with their bounds and extending the upper limit of integration to A + 7,

A+n
5 A+M
0r, PP O < 255 [ dd PN 0), @71)
where d > 0. Using inequality (D30), we obtain
o M
1080 T35 7 (0)] < —5—=(A + ) P32 (0). 272)
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To extend to momentum p, we proceed as in (249), the only change being an additional factor of
A+M+|p|
A}

V. RESTORATION OF THE STI

1 . .. . AA ;";
As mentioned before Theorems 3 and 4, we now consider all nontrivial marginal terms FX;?'(I) P

with X € {3, 1} at A =0. We want to show that these terms verify the bounds of Theorems 3 and 4.
In this section, since A =0, we will omit the parameters A, A in the notations wherever this is not
ambiguous, i.e., we write % for [0

The subsequent relations are obtained by projecting the AGE (123) and the STI (124) on the
respective monomial in the fields (for example, ¢ in Sec. V A) to read off the lhs from the rhs, taken
at the renormalization point. We will establish appropriate relations in order to make the coefficients
of the §-tensors with respect to the monomial basis at the renormalization point satisfy the bounds
of these two theorems. In this analysis, we make particular use of the consistency conditions, see
Sec. V C.InSec. V D, we prove the existence of a solution for the above mentioned system of relations
that does not depend on the UV cutoff. In Secs. V E 1-V E 10, we treat the different marginal terms
one by one.

A. Smallness relations
It is helpful to introduce the notion of small terms, which vanish in the limit Ay — co. For fixed
loop order [ and X € {8, 1}, a homogeneous function f(p, M, Ag) of mass dimension [f] is said small

on asubset ¥ ¢ M, and denoted by f xri 0, if for all w € W, with ||w|| < [f], there exists a polynomial
P(,)l() of degree rx([f] — |lwll, ), see Theorems 3 and 4, such that the following bound holds for all
Ao=M and all peY, see (131):

M=l

o A
10°F (B, M, Ao)| < A—07>£Q<10g+ - (273)

Furthermore, f Xg’lg iff [f] =[g] and f — gXZ”o. Because both relations %" and * R only

. . Yl Y, .
differ by the degree of polynomials, we have f Pl g=7f LU g. Since the loop order [ and the
renormalization point g are evident from the context, we write

Y 1,Y,l Y Y.l
fleg for fMg, 5 e for [P, (274)

L{7} Aq}
f~g for f\%% e for P9 (275)

Theorem 1 implies that for every vertex function rj; (P) there exists a constant ¢ such that Yw € W,,,
YpeM,, VAo =M,

10" T2 ()] < 2ol (276)
Using also that
w 1 M

|0 (UOA0_1)|<CwA_3) looa, — 11 <co v 277)

the terms on the rhs of the STI and the AGE satisfy the relations,
rq?l;wlawz(o_ol\o [—fz)ﬁj [ rfz;wz, (278)
0" (cron, T#) 2 T, (279)

2 BY —Gw

0" (paron, T pree. (280)

This fact will be useful in the calculations underlying Secs. V C-V E.
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B. The functional F .

In this section, we introduce the notation for the renormalization constants for the functional F;
(119). For this purpose, we define the auxiliary functional

F/\o

Lo = dab<U)’CC| ~vd vavb> + esabesdeuyAcc<,}\;g_Az_EdE‘e>

YoC C
+ <UCA|Z'dAd > + Edab<UZ‘CC|¥dV(IVb> + Edab<UzéA|édAZA€>

<UCAAA|\édAdAaALl> + <ULCCA|V17 bvaAa>

pHY oty
+ <UcccA|"avb bAa> + €beal cccAA<Z,bE,eE_dAaAa>
+ €bedM§CCAA<C dAtlAe > + Ebed CCLAA( dAaAb> (281)
where
Uy “(L,p,q) = i(p + @), (282)
UL, p) = ipep*u’, (283)
U“(L,p, q) = (p* + gui + 2pqusy™, (284)
U (1.0, @)= (pupy = aua ™ + 6,0 (0 = g us™, (285)

U (] k, D, q) —l(uCAAAk +uCAAApp + U qp)é'ﬂ,,

puv
+ l(ucAAA k, + ucAAA 4+ ugAAA PO o

+l(uCAAAk + uCAAAp,, + U q,,)épv, (286)
Ui (U, k, g, p) = ipuuf + ik 5 + igquu§™, (287)
Uz (L k, g p) =ik = quuge™, (288)

and u’s are functions of A¢ defined by the marginal renormalization conditions,

OA Ao
NEG=ENT G Y M, (289)
16{6‘6k>0

Here 2n, +N+||w|| =5, g is the renormalization point defined in Appendix H, e =(¢;)icpm) is an
orthogonal basis for the linear span of ¢, and r is the tensor rank of F?A‘W;"’(Zj). e tAO are the uniquely
defined coefficients of tensors 7. Note that we implicitly set to zero all constants associated with
strictly relevant renormalization conditions for F;. These constants are not needed because, thanks
to hypothesis RC1, the RHS of the STI and AGE at the current loop order vanishes at zero momenta.
The renormalization points g are chosen in agreement with the hypotheses of Lemma 31. From
Lemma 31, Theorem 3, and the irrelevant bounds of Theorem 4, for the marginal terms, one has
OAo:F:w ,— Ao:biw
FILo" @ ~F0 @), (290)

1,rel;%

C. Consistency conditions

Here we establish the consistency conditions implied by the nilpotency, see (121) and (122).
Below we will rely on the validity of Theorem 4 at loop orders !’ </ for all terms and at the current
order / only for irrelevant terms: these properties are true in our inductive scheme. Recall defini-
tions (116), (131), and (274). Using the AGE (123), the bounds of Theorems 1-3, and (122), we
get

M

(st5)” "™ 0, and thus (%Fl)‘”ﬂ" 0, (291)

where q;: (A1, .., ¢u-1) and ¢; € {A, c,c}. Equation (291), Theorems 1 and 2, and the bounds of
Theorem 4 for irrelevant terms yield

0 -
(5Fue)” i, ellc,e)(c.cA), (292)
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See Sec. V B for the definition of F; ,,; and of the constants u?®. In Sec. V E 5, it will be shown that

fczc‘gA ~ 0. Equation (292) then gives

yee  ,,ccc cce _n,YAcc _ ,CccA cccA _ CccA cccA
u Ui ~us", 2u uj uy uy ", Uy 0. (293)
Let us exploit (121) to obtain more constraints on the renormalization constants u®. At loop order /,

SF1y=SoF1s+ ) | SirFup. (294)
<l

By induction, (SH/Fl;p)‘; M 0 for all loop orders /” < I. Then Eq. (121) implies that

(SoF1)? "0, (295)
where
So = <5A31:0, UOAOS%Q + <5751, Lo 0’0A05A<(1r>
= (604 T0AO ) = (60T 0G0 ) (296)
and recalling the notation for 6, from (24),

2PV @) + (ipsE(PIE; @) + AL (@000 6 — 4o 4o )Top, (@)

+3e“P(FN(q. -, NALAL: ) + AR (ALALAL: g),

Oad (Lo =

dab<Aa vb. q>

SeaipLo = 8™ iput (PIAL, + VAAL + &% q) — iquyi(q) — e (@)q o5, (@)

6 (Lo =1doc 4(q) + ge

dah<vavb

o 1
6wd(q)l:(): ~8€ 61)

2
Here the notation {ip,¢%(p)é?; gy corresponds to (¢1¢2; q) with ¢1(p) = ipo-c?(p), ¢ =&
For all ¢, %, and w such that N + 2n,, + ||[w]|| = 6, we have

(SoF1)5™ = (SoF )" +Z< —yresgi AL, (297)

where AAA" —FMo _ gl o
11 1rel;l

= ¢1 @ ¢>2, An, =21 ® %2, Wy, = w1 + wy, and 7, is the number of transpositions mod 2 of anticom-
muting variables in the permutation 7. Using (296), for the terms in the sum on the rhs of (297), we
have

the sum runs over the permutations 7 = (74, 7, 7,) such that qgﬂ -

Priwy A driun < 512“11 wl boiun c¢1 w; w1 bosun
RN P Con AT T ot AZE
ﬁl;w Adr;w ((51 AN
+|1_"i]7.0‘,0'0A0 %"’_2 |+ o Ai‘f?l“’q. (298)

Let us show that the lhs of (298) is small on M,. Using Sec. V B and the bounds on irrelevant terms
of Theorems 3 and 4, we see that for all marginal terms

AP L0, andthus AZY Mo, (299)
7l 7l

The relation on the rhs can be obtained by adapting the interpolation in Egs. (242)—(244). Define N; :=
Iq;,-l and n,, :=|#%;|. Consider the sum of the first and second terms on the rhs. If 2n,, + Nz + [|wa | = 3,
then the bounds of Theorems 1, 3, and 4 and (299) imply that the sum is small. On the other hand,
if 2n,, + N1 + [[w1]| > 3, then Iwa’II > 0 and the bounds of Theorems 1 and 3 also give that the sum is
small. The analysis of the sum of the third and fourth terms on the rhs is similar. If 2n,,, + N2 + ||w2 || > 4,
then the bounds of Theorems 1, 3, and 4 and (299) imply that the sum is small. If 2n,, + N1 + [|w; || > 2,
then ||w{’|| > 0, and using the bounds of Theorems 1 and 3, we obtain again that the sum is small. It
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follows that the lhs of (298) is small. This fact and (295) imply that (SoF Lm;l)“iw M0 for all marginal
terms, which leads to the following equations:

cA
gu
guycc - _MyAcc’ MiAA + MEAA - - (300)
M?AAA - u;AAA, ugAAA ~ MZAAA - ugAAA. (301)

D. Existence of a constant solution

By our convention (which is the standard one), the renormalization constants that are solutions
of the relations listed in RC3 are not supposed to depend on Ay. We give here a proof of this property,
which is not evident because these relations contain nontrivial functions of Ag, here denoted by

{20 The relations corresponding to the marginal terms rf};w, I_Ziw have, respectively, the general

form
+0oCPo+ 30 ~0, (0= 0 CP Mo 4 PP o, (302)
P+ vPo+a Lo, 2ho = v, (303)

Here o= (rf’"', R;, 22/‘,

list of rl¢ and Appendixes E and F for the remaining terms. The sequence ¢ stands for the

Z*T‘A, %) denotes the relevant terms for vertex functions, see (E29) for the

irrelevant terms listed in Appendixes E and F and for the derivative of r?"', R; with respect to scalar
products of momenta. Finally, ¢® is a constant, Vﬁ’z are constant vectors, and C %’3 are constant
matrices.

At loop order /, the terms ¢, g"l depend only on gy of loop order I’ < [: this property holds because
each ¢, g”l is at least linear in £ and because all ¢ lﬁ% vanish. Moreover, at order [ for each relation, we
have a distinct renormalization constant. Consequently, the aforementioned relations have a solution.
The existence of a solution o; independent of A follows immediately if the limit limp,— e £ g(} exists:
in this case, it is enough to choose a solution of the following equations:

®+o0Clo+{y =0, ®+VPo+sy=0. (304)
The convergence of £ g(} relies on the validity of the bounds of Theorem 2 up to order / for all irrelevant

terms rf;’” and up to order [ — 1 for all the relevant ones. This property holds because in our inductive
scheme at fixed loop order the irrelevant terms are treated before the relevant ones.

E. Marginal renormalization conditions

C
1. Ty
The renormalization point is g = (—g, §) € M), see (132),
a azb . a
Co )% 00, (0 T () + ipu T, () 2 =54 (), (305)
f@)=x (1+I%0) - Ri(x)) . (306)
For the marginal term, we obtain
5 cpupy ;N B 12 )
3 o 0~ 26,f" (%) + 4pupuf ™ (7). (307)

The coefficient of d,,,, is small at the renormalization point iff

20R1(p2).

o (308)

’ ¢ B
fr=1=r =R =50 R0, 207 =p

This gives the renormalization condition for R;.
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A
2. 1%
The renormalization point is § = (k, p, §) € M3, see (132). With k = —p — ¢,
apd a=b
M 0.0 25 ) = i, 0. (309)
=i LM (p.q), (310)
0N (p, ) = kuRY (k, p) + purs(k, p) — gko Fon‘ (4. D). (311)

Let Aﬁf,\o :=I//}A";P v IA Moy - At zero external momenta and A = M, we have AMAO(O) =0. Then
using the bounds of Theorem 3, we get

1
|AMN ()] < / dtMlaal"g/M(’;CA| £o. (312)
0

The term Af}f,\o obeys the FE, see (129). It remains to integrate the FE from O to A and uses inequality
(D30) to obtain

A (@) — A%,A“(Z])EO, and thus AOA"(q) 0. (313)

Hence in the monomial basis {§*Q*}, with Q = (p, ), the §-component of Z’,Af”;qv is small at the
renormalization point if the following condition holds

cc Ao B

R\~ gRy = {30, ~ 0. (314)

This gives the renormalization condition for R‘lm‘.

cAA ccc
3.1 8 and Tl 8

The renormalization point is § = (l_c, 1, D,q) € M, see (132),

< “ALAS, CTAL A3
C ™ U@ BT (e p.g) = ik T, L., (315)
P
Aol Gs Ca(_,'bct(_,‘s . el es
Fo™ (p. ) R T97 (kopg) = ik T (L p. . (316)

At A=M, it follows from property (148) that these terms vanish at zero momenta. Denoting the
renormalization point by ¢, using the bounds of Theorem 3, and integrating the FE from M to 0, we
obtain

1

P80 ) < / dr 13113 1) £ o, (317)
O

Mg @ - T @l < < 7>“

hon(log, 7 Aoygy, (318)

ccece CcAAAA
4. T and ']

These functions do not have nonvanishing marginal terms,

e ALALAS AT =0, b (AT LTy = 0. (319)

viauty

CccAA
5T¢

From Eq. (148), it follows that for A =M the function vanishes if the antighost momentum is
zero. Using the bounds of Theorem 4, first, we obtain at the renormalization point | FIIWA‘”CCCAA @~
where ¢ € ML, and then integrating the FE from M to 0, we show that the term is small at A =0.
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A
6. 7
The renormalization point is g = (—g, g) € ML), see (132),

ab

Y ()~ 6P FA (DR, = 6, f (), (320)

1
)= Ele(x)ZﬁA(x). (321)

L

The marginal term satisfies

c9Ab; . ol ’ ’” "
CU P () ~ i6 (2 (P rer521,1) + 4 (P Eretoppiat) + 8pppt " (7).

For the coefficient of §-tensors, we have

aZM(p?) OR
0D =ROD(E 0D+ P ) 4P ‘(” 3 (22)
Recalling the definition of r‘f“g in Appendix E,
(p2 1 AA(pZ)
ALY 4 A2 2 A4 L ' 323
M+ AP +p? - g( @)+ Py ———) (323)
We then obtain the following sufficient condition:
U ~0 = Ri(15* +rf )+<j 0, (324)
where
rAA (p2) 1 OR
0N =r (RDTE T s NS 0y (325)

See Sec. V B for the definition of u“. Relation (324) gives us the renormalization condition for r?A.

AA
7. T¢

The renormalization point is § = (k, p, §) € M3, see (132). Withk =-p — g,
AAU Ab AL
' (.9) ~ DA . T )+ Z Froup @y (), (320

where the sum }’7, runs over all cyclic permutations of {(y, p, a), (v, g, b)}. The marginal terms are:
I'iAA;p P, I'TAA;” 4 and I'iAA;qq. Using Eq. (300), we see that u* ~0 = u{ ~ 0. Acting with 8,0,
on both sides of (326), we obtain

A4 0 = gRy (1+714) = 2R RMA + 20, ~ 0. (327)

This gives the renormalization condition for R;.

8. r{°*4 and rct
The renormalization point is § = (1, k, g, p) € M, see (132). With [ = -k — g — p,

cicbedAs

M o gup) ~ T (1 p T, (k) = T4 (1 p, T (@)
+ T4 0T (o k) T 60T (p,g)
P P
+ F2A

T:up

t=a cPedAs
+ T (Daon, (T, ™ (k. q.p). (328)

(PITE (k. g, 1) + TR (1, p)TS (k)
e
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From Eq. (293), it follows that u{“* ~ 0 and
U ~ 0 = w ~ 0,u5 A ~ 0,574 ~ 0. (329)
Consequently, we need only one condition
Ut~ 0 = g(Ry — R)RI + ¢ ~0. (330)

This gives the renormalization condition for R3.
9. r°°and Ie;
From Egs. (293) and (300), we have
U~ 0 = WA~ 0 = W~ 0 = U 5, ~0. (331)

Consequently, the marginal contribution to the functions is small.

AAA
10. I
The renormalization point is § = (1, k, g, p) € Mip, see (133). Withl=-k — g —p,

cSAL Ab Al a At Ab Ad o
L (g k) ~TAT N (p, g, 10T, (1)

a pt des
+ 3 T (T (1)
Z

r

3
A‘At A{;/
+ D 0L, (Lp.g), (332)
Z3

where F?A is defined in (E9), and the sum 3}, runs over all cyclic permutations of
{d, p,k), (b,v,q),(t, u,p)}. From (301), it follows that we need two equations

UM~ 0 = 8RIRYMA — 4gRyRMA + 700 ~0, (333)
U~ 0 = AR\RIM + 2gR R + (0~ 0. (334)

These equations give the renormalization conditions for R{444.
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APPENDIX A: PROPERTIES OF GAUSSIAN MEASURES
In the following, dv = dvc(A)dvs(c, ¢) is the measure given in (31) and (32),
dve,+c,(A)f (A) =dve,(A1)dve, (A2)f (A1 + Az), (A1)

dvic(A)f (A) = dve(A)f (12 A), (A2)

1 -1 1 —1
ﬁ<6A’CAA0 61‘1)85(A,CAA0 SA)
9

dve(A — 6A4) =dve(A)e (A3)
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d
R dvefA)=5 de<— hcAAO @, (Ad)
dve GA) |AcyL - nl F(A)=dv, hiG(A) F(A) (A5)
¢ Ao T T 5A —e\Tsa :
When integrating over Grassmann variables, one obtains
dvs,+s,(c, c)f (¢, c)=dvs,(c1,c1)dvs,(c2, C2)f (€1 + C2, 1 +C2), (A6)
dvis(c, D) (@, c) =dvs(c, D (172,17 ¢), (A7)
dvs(c — 8¢, — 67) = dv(c, B)el T5An 5 g (S SMHEEST )). (A8)
iarvsf(c c)=dv <— psiro —)f(E, ), (A9)
dA 5 6c
dvs G(© o5t 10 By = dvs (1R 6. o) Fee Al10
Vs G(C, C) _CSAAO + a (Cs C) =davs EG(Cv C) (C, C)’ ( )
. . 0\ = _ OR ~, - =
dvs G(¢,c) SanC + h; F(c,c)=dvg EEG(C, )| F(c,c), (A11)
C C

where right functional derivatives are distinguished from left ones by the label R. Properties (AS),
(A10), and (A11) are proved for

G=eri, F=eiTA), G = ot (@+11.0) Fr= eh(@n)er e, (A12)

and extended to polynomials in the fields by functional differentiation.

APPENDIX B: CHAINS OF VERTEX FUNCTIONS

For the purpose of example, we give the complete list of reduced chains which appear in the
loop integrals for [44<%% together with the corresponding “dotted” propagators. The external fields
are underlined. Moreover, Zf.‘:_ol w; = w, k being the number of vertex functions in each chain,

~TAAA; AAA; "AcC; CA; ~TAAAACT;
CTA&4W CTAAAW CTAcswr STreedsws - CTAA2acsw |

SFCAELWOSFCAEZWI SrAci;wz CrgEA;w3 SFCEAACE;w

CrAddAw CrACtn grecdin CrAtaccu craddw:

Sreddcun gpactn Cpedie, Sractctumo gRActn,

CTAAct;wo gTACT; w1 gTACT;w, , CrAAActuy gTAcwn

Sredefun crAddim cracce: SrAdactu CpAcew: (B1)
CrAdceun gpAcew CrAddn, Cradaccu gpaccun,

SreAediun CTACEw gTACTw, SrAAActuy CTACTGw

CrAcAw craddun cradte CrAdccun gpadec

Secetun grActw grActw, STAAGun CTAACTw

CTAAAAu CTACCA;w) , STAAct;wp geecc;wn

APPENDIX C: TENSORS

For the definition of the tensor monomial sets {6°¢"} and {6°¢"}, see the beginning of page 23.

Lemma 28. Let q=(q1,...,qm) where g; € RP aremeN linearly independent vectors. Then the
tensor monomials {6°q"}, of positive rank r =2s + n < 2(D — m) + 1 are linearly independent,
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Z ct=0 = ¢, =0, Vt. (Cl)
1e(55g" ),

Proof. Observe that, for m, r, D € N, the inequality r < 2(D — m) + 1 is equivalent to m + s <D

forall s,ne Nsuchthatr=n+2s.LetI:={1,...,r}. Let P, be the set of all divisions of the set / in
m + s pairwise-disjoint, possibly-empty sets,
I= (Ulv)U(Uk1k (C2)

such that S; = {s,s;}, s; <s{, and min§; <--- <min S,. There is a bijection that maps a division

(Vj, Sx) € Py to a tensor monomial ¢ € {6°g" }, constructed by the relation

buy.opy = 1_[ 1—[ Gt 1_[ MR (C3)

Jj=1 yey;

Let us first prove the statement of the lemma for orthonormal g;. In an appropriate basis of RP, their
components are

o = O jell,...,m}, pefl,...,D}. (C4)

Let us assume that ), ¢, t =0, with # € {6°q"},. We will proceed by proving inductively that ¢; = 0 for
all r € {6°¢"}, from s = D — m down to s = 0. Fix 5§ < D — m and assume that ¢, = 0 for all ¢ involving
more than § Kronecker’s tensors (which is vacuously true for 5 = D — m, due to the rank constraint).
Let us prove that ¢; =0 for an arbitrary 7 € {6°¢"}, which is associated with a division (\7j, Si) € Ps.
Fix the values of the indices fi;, with i € I, by

_ , if 3j such that i € V;,
,ui={ Jj if Jj such that i (C5)

m+k, if 3k such that i € 5.

Note that this choice is possible because m +5 < D. It is enough to show that whenever #, . 5z # 0 for
t€{6°¢"} and s <5 (i.e., n > 1), then s =5 and 7 =7: in fact this property, the inductive hypothesis, and
the vanishing of the sum }; ¢, t imply that ¢; =0. To prove the aforementioned property, introduce
the division (V;, S) € Ps defining the tensor ¢ and, using (C4), correspondingly write

0# 5. 5, = 1_[ 1_[ it l_[ (C6)

Jj=1 veV;

Relations (C5) and (C6) imply that V; C 17j for all j, which, together with the inductive condition
n > i, leads to n = 71 and, because the rank r is fixed, to s = 5. Relations (C5) and (C6), and s = 5 imply
that there is an injective map f :1 — I such that S; = S;). By definition of S, it then follows that
min Sf(l) <+ <minSy): this is only possible if f is the identity, which concludes the first part of
the proof.

Letus now prove the statement for m linearly independent vectors py, . . ., py,. The sum ) ; ¢, £ =0,
with 7 € {6°p"},, may be rewritten as

Z Z Z Chtseeesknie l_[(pk )/‘ l_[ ooy 1My =0, €N

2s+n=r 1<ky,...ky<m 7 j=1

where 7 := () and the sum over 7 runs over the right coset of permutation groups S, \(S,XS;XS3).
Expressing py in terms of m orthonormal vectors gy, px = A qr, gives a tensor transformation
leading to the coefficients in the {§°¢"}, basis,

n
/ —
€kt ooy = Chte i l_[Ak_,-kju (C8)

The validity of equation (C1) for g4 implies that ¢;, ,. =0, which, by invertibility of the matrix
100 n»

A eGL(m,R), gives cx,,...k,.x =0. [ ]
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Note that for m = ng — 1 and D = 4, the condition for linear independence of the monomials in {6* qk )
reads

r<2(4-(mg—1)+1=11-2ng. (C9)

Lemma 29. Let g=(q1, .. .,qm) with gi € RP and m nonnegative integer. The tensor monomials
{0°q"}, of positive rank r > 2(D — m + 1) are linearly dependent.

Proof. The signature of a permutation 7 is denoted by (—)".

* The Gram matrix g:=g(#, ..., ) of k tensors ¢; of equal rank is defined by its components:
gij := (t;, t;) for all i,j € [k]. The scalar product (2) is O(D)-invariant: (Rt, Ru) = (¢, u) for all
tensors ¢, u of rank r and all R :=R ® --- ® R (r times) with Re O(D). As a consequence,

gRt,...,Rty)=g(t1,...,t) for k tensors of rank r. It is a well-known fact that tensors of
equal rank #,...,# are linearly independent iff their Gram matrix g(#;, ..., #) is invertible.
It follows that 7, ..., #; are linearly independent iff R#y, ..., Rt are linearly independent for

some R as stated above.
¢ We assume that m > 0 because whenever m = 0 for each s > D + 1, one has

Z (_)ﬂélul"n(l) T 6,llsvn(s) =0. (C10)
meS
* We assume that gy, ..., q, are linearly independent because otherwise there exist ¢; not all
vanishing such that }};cp,,) ¢; gi =0, which, for every r > 0, yields
Z Ciy =+ Cip Giy ® - ®¢;, =0. (C11)
il,...,Ir€[m]

* If the tensors {6°q"}, are linearly dependent then the tensors {6°¢"},» are linearly dependent, for
every r’ > r. Proof: linear dependence of the tensors {6°¢"}, yields

c = 0,
re(5°g")s

where not all ¢; vanish. Linear independence of g, ..., q, implies that g; # 0. The proof is
concluded by applying r’ — r times the tensorial product ®¢;, which gives

D, al®@)® =0,

re{6°q"),
* For g, ..., qp linearly independent, the statement of the lemma follows from the previous fact
and a well-known relation involving the Gram matrix g :=g(q1, ..., 4qp),
S =" Qi@ i Gy (C12)
ijeD]

* It is then enough to prove the statement of the lemma for r = 2(D —m + 1), 0 <m < D, and

q1,- - .,qm linearly independent and such that qf =0 for all ge[m+1:D] and i € [m]. There
exist gm+1,...,gp orthonormal vectors such that qf’ = 6? for all ue[D] and ie[m + 1:D].
Relation (C12) then gives
Suv = D, it (871 G + O (C13)
ijelm]
where g/ :=g(q1,...,q,) and 6;, = Yieim+1:D] diugiy- For s =D —m + 1, one has
1 1 _

Z (_)” 6llm+le+7r(l) T 6llm+xvm+7r(x) - 0 (C]4)

meS;
Combining (C13) and (C14) concludes the proof of the lemma. [ |

The following lemma states a necessary condition for a regular, O(4)-invariant tensor field.
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Lemma 30. Let f(y) be a regular, O(4)-invariant tensor field of rank r where y:= (1, ..., Vm)

withy; € R*. Assume that the tensor monomials {6Syk }- as well as {6Syk }r+1 are linearly independent
pointwise for all y € O, where O is some open set. Then on O, we have

f= Z fit, af= Y. fut (C15)

re{ssyk 1 €{85yK

Furthermore for every t € {6°y k>0},, there exist j and t’' € {6syk},+1 such that f; =f;» on O.

Proof. For shortness, we consider only the case m = 2. We have

f= L wit Y, G (C16)

te{o’}, [5v k>()}

where u,, {; are regular functions of the scalar parameters X = {%y %y ,y1y2}. Apply the operator
0; to both sides of (C16). The Leibniz rule gives

") = Y (D) 6 Ohx, (C17)
xeX

&Y= D 0:0) 8"y o + 6" 0, (C18)
xeX

where d;x € {0, y1,y2}, Y :=y;, . .. yi, with i € {1,2}, and

k k k
=9 1_[ Vip = Z 0ji, I_l iy (C19)
I=1 =1 =1
q

The nonvanishing tensor monomials arising at a given j € {1, 2} from the rhs of (C17) and (C18) have
rank r + 1, are linearly independent by assumption, and are pairwise different. Each coefficient ; of the
tensor 6°y;, ...y;...y; inthe decomposition (C16) appears also as the coefficient of 6*y;, ... d...y;
in the decomposition (C18) for d;f. [ |

Lemma 31 relies on Lemma 28, which shows that, for m linearly independent vectors e =
(e1,-..,enm), the relation r + 1 <9 — 2m is a sufficient condition for the linear independence of
the tensor monomials {6* gk }» and {6° gk }r+1, see Lemma 29 for a necessary condition. The renormal-
ization points in Appendix H are chosen to comply with the aforementioned relation. The proof of
Lemma 31 is in the same spirit as the one of Lemma 30.

Lemma 31. Let F be a regular, O(4)-invariant tensor field of rank r € {2,4} on P,,. Let be given
g € M, and m > 2 linearly independent vectors e = (ey, . . ., ey,), such that span(q) = span(e). Assume
that r + 1 <9 — 2m. By Lemma 28, there exist unique coefficients F; such that F(§) =Z,¢gs ), Fit.
Furthermore,

IF@)| < cmax ((IF)e(50), MIOF @ Dicein-11)- (C20)
| > Furl < max (MI9F@ D). (c21)

tE{é"g]OO},

The bounds hold with the same constant c for all F of equal rank.

Proof. The coefficients (|1F;|),c (55), in the basis {(SSgk }» donot depend on the choice of the vectors

e. Hence it is enough to prove (C20) in the case when e;e; =M 25 ;j- For simplicity, we assume that m
= 2, the extension to other m being clear.
By hypothesis, there exists a (n — 1) X 2 matrix L such that g; = Ly;e; and

IL| = Ll = ,/Lk,LkJe %=1 Z ?) <(n-1)2. (C22)
=1
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Denote by E c R* the linear span of the vectors go, ..., gn—i. The matrix L induces a linear map
L:E? - R¥n-D, y+=> Ly, where y = (y1, y2) and (Ly)i = Ly;y;. We also define an auxiliary function on
E2: f(y):=F(Ly). Setting 8y, := d/dy; and 0 := 0/0pi, the Cauchy—Schwarz inequality and (C22)
imply that B

SEAlosf@F <ILE EiZ 10F @I < (n = 1) max(19F@)F). (C23)

For all y;,y, € E, denote as usual by {§°y*} the set of all monomials being a tensor product of k
vectors in y = (y;,y2) and of s Kronecker tensors, and by {§*y*}, the union of all {§*y*} such that

2s + k =r. By (C1), whenever r <5 and y1, y, are linearly independent, the elements of {(5‘yk}r are
linearly independent. In this case, we label the tensor monomials by fixing a family of disjoint sets
Ak.s and a family of bijections @ — ¢, from each Ay ; to {6Syk}. Furthermore, we define the auxiliary
sets

Ar= | Acs Ap= ) A Ap=AT\AL (C24)

2s+k=r 2s+k=r,k>1

For re{2,4} and y=(y1,y2) in an open neighborhood of ¢ (in Ez) for which y;, y, are linearly
independent, we write the following tensor decomposition:

fQ)= D tata+ ), Lalas (C25)

r r
aEAO acAl

where u, and ¢, are regular functions of the scalar parameters X = {% y%, %y%, y1y2}. Evaluating (C25)
at y = e and using the general fact that Itl = 2M* for € {§°¢¥}, we obtain

F@I< Y 2 lual+ Y. 1£al2°M*, (C26)

r r
a EAU acAl,

We now want to prove the existence of a constant ¢; > 0 such that

Moicalzmt <em( S 1a,r@P) " (c27)

aeA”. ie(12)

Apply the operator d,, to both sides of (C25). The Leibniz rule gives

By (U 8%) = > (Oatt) 6" yx, (C28)
xeX

0y (£ad™Y) = D (0:a) 8° ¥ 0y x + La* By, (C29)
xeX

where dy,x € {0,y1,y2}, Y* =yi, ... y;, withi; € {1,2}, and

>~

ayiyk =0y, l_[yil =
=1 Jj

6iii | | vir- (C30)
=1

7

k k

1

~—

Fix y = e. The nonvanishing tensor monomials arising at a given i € {1, 2} from the rhs of (C28) and
(C29) have rank r+ 1 € {3, 5}, are pairwise different, and are a subset of the tensor monomials in A" +
themselves linearly independent by (C1). Denote by B! *1 c A™*! the subset labeling the monomials
of type 6°6;i; [ 114 yi, arising from (C29) and (C30) at the given i. By construction, we can define the
maps ; :Bl.”r1 — Al with i € {1,2} such that

(i) if trp) € {0°€F ), then tg € {651 ek~ 1} (in this case, |t =2°M* and |t5] =25 M*T);
(ii) for each eBl.’”, the coefficient of 7z in (C29) and that of #,) in (C25) are the same,

namely, {zg);
(i) m (B{“) U nz(Bg’rl) =AL.
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The following bound holds at y = e for every tensor ¥ = 35 Wgt5/lt5| with 5 € A" "and 1’ <5, and for
every nonempty BC A" :
2_ _ 2 2
P2 = (P, W) =¥}, Ggp ¥ > Ay Z W5 >112|\1‘ﬁ| , (C31)
BeA” BeB

where 41 > 0 is the smallest eigenvalue of the Gram matrix of components Ggg' := (18, 18/)/(I2gl|15/|),
whichis positive definite by (C1). Application of (C31) to ¥; := d,,f (e) foreachi € {1, 2}, withr’" = r+1
and B= Bl.’”, gives

D10 @P A Y NPl > Z [al? @M, (C32)
ie{l,2} ie{l,2} a€cAl
BEB;‘H

from which follows the bound (C27).
Inequalities (C26), (C32), and (C23) lead to the bounds (C20) and (C21), with a constant

¢ = max (2%|A0|,(n ),/'Ar|) (C33)

]
APPENDIX D: BASIC ESTIMATES
Lemma 32. Let 0 < qg<p <P, keN. Then AC; > 0 such that
da logh £ 1+logy*!
&1 cq Atq (D1)
J (A+p)A+q) A+p+q
Proof. Let I* be the left hand side of the inequality and
P
Hon = / T % 7 (D2)
(4 +p)(/1 +q)
We begin with the case k > 1.
s A>P, IF=0.
* G<SASP M =T )
P
< 1 / da logt 2P < 2 1 ogh*! 2P
A+p A+q A+q k+1A+p+g A+gq
k+1
—_— 1), D3
A+p+q( 0%+ A+q+ ) (D3)
where il
2(log2 + 1)**
Ay = ————, D4
g k+1 (D4)
and we have used the inequality
1 +log?2
28T OB b log2. (D5)
(1 +1og? x)n
. k
A<qg<P,I —IAq]+I
P P
da 1 da « 2P
[ P < log log
@ A+p A+q /1+q A+p A+gq A+q
q
A
£ (logh™ —— + 1), (D6)

<
A+p+gq A+g
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1 P P
I <—/d/llok—<— ~log =
Nl (A+P)(/\+61)j20]! ¢y
k! 2P 2ek! P
< (logh +1) < —L (logk +2). (D7)
A+p A+gq A+p+gq A+gq

It remains to consider the case k = 0.
* A>p. Thisimplies2(1+g)>A+p+2g>A1+p, VA >A.

+00

da 4
°=2 < . (D8)
(A+p? A+p+gq
A
. _70 0
A<p,] I[Ap]+1[p+oo
+00
da 1 3
1) o <2 <-< , (DY)
(A+p? p A+p+g
P
P
0 1 da 2P
1 < < log
WPL"A+p )] A+q A+p+q A+gq
A
< (log2 +1 P ) (D10)
—— (o og, —).
A+p+gq & g+A+q
[
Lemma 33. Let 0< g <p, n:=min(M, q), k € N. Then ACy > 0 such that
+00
da logk & 1+loght! & +loght! &
g+M A+77 (Dll)

J A+pA+q ~F A+p+q

Proof. Denote by I* the lhs of equation (D11). If k = 0, then the inequality follows from (D1)
with P =p. Let k > 1 and p=max(A, M).

* p<A,
400 +00
2log +logh &
1"</cu £ ”2’ \/d/lf (/1)<2k+2kv\/'ﬂ (D12)
(1+p) +p+q
H M
k!2k+1 k logkﬂil
A)=— M D13
f=-= ,Zo: P (D13)
* A<p,
4 ok 4 X +eo kA
= 2] 2loght &
:/d/l *M, k<—+/dﬂﬂ. (D14)
A+gq A+p+q (1 +p)?
M

The integral on the rhs of I* is exactly the same as in the case p < A. For the integral J* using
the inequality

A A A
log+M<log2+log+m+log+M, (D15)
we have
A
3k+1 1+1 k+1 p Io k+1 . D16
k< ( + log} A+17+ g, o (D16)
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Lemma 34. For 0<A<n<M, keN,

n
1 P!
/d/l logh = <1.
A+7n M
A

J. Math. Phys. 58, 093503 (2017)

(D17)

Proof. Denote by I* the Ihs of Eq. (D17). If k > 0, then I* = 0. It remains to consider the integral

7

dA 2

/ =log i <log2.
A+n A+n

A

Lemma 35. Let 0 <A <n <P, keN. Then ACy > 0 such that

di | P . P

logh = < Ci (1 +logh ——).

/mnogw K Og+A+n)
A

Proof. Denote by Il"A - the lhs of equation (D19),

n
P
k /d/l logk = <2kl (1 +logk
0

k
1 [0.7]

(A <1

1
<_
n

Lemma 36. Let 0 < A<M <P,0<n <M, keN. Then ACy > 0 such that

M
da P P
logt — < Ci(1 +logh*! ——).
//Hn ogh 7 < Cu(l +log; A+n)
A

Proof. Denote by I{‘A’M] the lhs of Eq. (D21). If A >, then

M
da 2P 2k+1 P
Ik < log < 1 + logh+! )
[AM] //1+;7 %y Tyl +logd A+r])
A

k ok k
Ifn>A, thenI” < I[o,n] + I[U,M] where

n

da P P
k_ kL 2 k
1[0,,7]_/“" log} ~ <2kle (1+1ogt _77+A)’

da 2P i P
IF = logk < 1 +loghtt ——).
(. M] //1+n Rl k+1< 8+ A+n)
n

Lemma 37. For g >0, ke N, P> 0, there exists a constant Cy > 0 such that

Ao

da P P Ao
logk = < Ci (1 + loght! —— +1 — ).
//l+q 0g+/1< k( og, A+q Og+A+q)
A

Proof. Denote by I[]‘A’ Aol the lhs of Eq. (D25). If k = 0, then

)

(D18)

(D19)

(D20)

(D21)

(D22)

(D23)

(D24)

(D25)
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A
0 0
I[/\,/\()] <1 +10g+ A_-l-q (D26)
Fork>0and A >gq
. k+1 ol
+
I[A’A()]<—k+1( +logk —A+q). (D27)
k
Ifk>0and A <gq, thenl[AA <1|04] I[q’AO],where
1 i P
k k k+1
I < q/d/l logt — <kle 2(1 +1ogk A+q), (D28)
0
. k+1 el
+
lyn <75 1(1+1 ok A+q)' (D29)
]
Lemma 38. Let a,d >0, b>0 and m,k € N. Then ACy ,, > 0 such that
/ad mogt 4 < "+ (1 + logk d ) (D30)
xx™log, —— < Cyma ogl —— ).
o B pax Tk &b
Proof. By direct calculations, it is easy to show that
d klxmH (m+ 1)/
"logh —— <f”, = : D31
Wlog o<t f (m+1)k+1120: ! g]+b+x ®31)
Consequently, the lhs of Eq. (D30) is bounded above by f(a),
k .
k! m+1 (m+1)] i d
= 1
J @ =y ;‘ Y
A S pd
< Wﬂ (1 +10gJr m) (D32)
]
Lemma 39. Let p,geR*, A’>0, A’ >n>0. Then
1
Ipl Ipl
dt ———— <2(log4 +1 D33
/ A+ |1 +¢] (Og Ny ) (D33)

Proof. Let Io 17 denote the lhs of Eq. (D33). There exists #; € [0, 1] such that |p +g| > |p||t — 1]
for all £ € [0, 1]. (To prove this fact, write g = —1, p + ¢*, with p.g* =0, in such a way that |t p — ¢|
> |t —t,] |pl; then set ¢y := 0 for#, <0, #; := 1 for tq >1, and t; =1, otherwise.)

I | | |
To,1 =10, + I1ny,17 < 210g +1p

Ip|
<2(log4 +log, an ) (D34)
[

Lemma 40. Let r>0, w €N, and x,y € R*,

-’ w!max(2, 1 + 2 )

. z (D35)

<
I+ x=yh* d+lyh*
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Proof. Choosing the Cartesian coordinate system such that one of the basis vectors ey, is along

y we have
2 —

e
—— < f(D), =, (D36)
T TO= G e

where t, g are the longitudinal coordinates, x = x7 + fey and y = tger, to = Iyl. If > 19, then f is strictly
decreasing. If r < 1y, then f(¢) = g(¢), where

—rt?
1) = , t=1+1. D37
0= | 0 (D37)
If t <11, then g is either increasing or has a local maximum at 7_.

t F VA
gM<0if(A>0)A(-<t<ty), ty = ! +2\/_, (D38)
¢'() > 0 otherwise , A= 22 (D39)

r
Consequently, f(#) < max(g(z-), g(t)), where
et v g 2 wl(l+5)"
t_)= —=—, )= g ——2 D40
$00= " < = T gl = <=5 (D40)
[
Lemma 41. Let r > 0. There is a constant C such that
2 M, \/ + 52 1 M,
e A log, max(M, vp~ +5°) ) log+—+1 2, w. (D41)
Proof. Using the following inequality
M, \p? +5? M
A A
we bound the lhs of the statement by
max(M, p) 1 11 _ 5
log+—+log2+§10g+;+§eZlog+z, z::rp. (D43)
The inequality e~%log, z < ¢! finishes the proof. ]

Lemma 42. Let x,y,m>0, POx)= Z ax® a polynomial of the degree n, log, x

=log, max(x, m). Then there exist polynomlals 77“) and P® of the degree n such that
PO(log,, y? +x2) < PD(log,, y) + PP(log,, x). (D44)

Proof. Substitution of the inequalities

max(4/y? + x2, m) < max(y + x, m) < max(y, m) + max(x, m), (D45)
max(a + b, 1) < max(a, 1) + max(b, 1) < 2 max(a, 1) max(b, 1), (D46)

into the definition log, a :=log max(a, 1) yields
log,, 7/y* + x% <log,, y + log,, x + log 2. (D47)

This gives

n

POlog,, \[x% +y?) < Z a3k (log’;l y+logh x + 1) . (D43)
k=0
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Lemma 43. For a fixed s € N, there exists a constant ¢ such that Yu < wWmax and ¥x € R,

s+1—u <
0 (x25(1 - ™)) | < W™ s, (D49)
1, otherwise.
Proof. First, we consider the case u < s,
1442
0" (1 = e DI < [0 - e+ Y AT s P (D50)
1550 up.uyp.
For the derivatives on the right, we have
|x|s—u+1 |x|4u2—1
A" B3| < (5 4+ 3up)! . D51
R S S Gy = 1) 0s1)
Furthermore, Yk e N,
k s n
|)IC<_|' ad |x|‘ e =il <o, (D52)
! i on!
Noting that 1 — e < |x|, we obtain the bound in the case u < s,
sl|x|si-u elx|sti-u u!4*2(s + 3uy)! s+l
+ < . D53
G-w!  (-u+l)! u;ﬂ TS clxl (D53)
For u > s using (D52), we have
wld2(s +3up)!  |x[sHemm y
Z T P T TR <(s+3uw)!5 e <c. (D54)
[}

Lemma 44. For a fixed s € N\{0}, there exists a constant ¢ such that for all u,v < wmax and all
x = (xq, x2) with x; € R*,

v ®s—11 _ —xt e[ ud v <,
10,0y (xz ®x (1-e 1)) |<c { x| + 1, otherwise. (D33)
Proof. First, let v € {0, 1}. Using Lemma 43, we obtain for 0 <u <s,

16"(rs ® x5 (1 — e ™)) < el (D56)
10200y ® x5 (1 = )| < el (D57)

and for u > s, we also have
X ®x, (1—e ?))I < clx|, (D58)

10 02 @ 17 (1 = 7™

10001 (ry ® x271(1 = e )] <. (D59)
Finally, for v > 1, 820"(x, ® x®'(1 - 1)) =0. n

Lemma 45. For s € {0, 1}, there exists a constant ¢ such that for all u,v < wmax and all x = (x1,
Xo) with x; € R,

+1—u—v
v au ®s _le; _ —(xp0)t < |x|5 , u+v<s, D
100 (xl (e € )) I<e x| + 1, otherwise. (D60)
Proof. First, let s =0. Foru=v =0, puty =x; + x, and assume |x;| < |y| <1,
e—x‘l‘ _ e_y“ — e-x‘l‘(l _ e—(y4_x‘l‘)) <y4 _ x‘l‘ < |y| <2lx. (D61)

Inequality (D52) implies that
9%e™ < e(3w)!5h, (D62)
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Consequently, for u + v >0,
020" (™ — &P < |gte ™| + 020t e P ) | < oy (D63)

Finally, we consider the case s = 1. Using (D61) and (D62), we get

(e — e Y <2, (D64)
102(x1 (€™ — e+ < [x]0a(e™ — e ) < 3], (D65)
10101 (e — e @) < ey, (D66)
and foru+v>1,
10103 (x1 (e — e ))] < 5+ L. (D67)
| |

Lemma 46. Let 0< <1, x>0, and

F@)i= (e e, (D68)
X
ThenYw €N,
w w!
Proof. We have an identity

1
0"f(x)=(=1)"gu(x), guw(x) = / dyy e . (D70)

B

It follows

1 1
0<gw(X) < /d,y,yweﬂ()ﬁl)ey <e/d,y,ywe—y(x+l)
0

1 Tw+1
<e—/dzz‘“e*:ew. (D71)

Lemma 47. Let0< <1, x>0, and

1

h(x):= )—C(e_'B)C2 - e_x2). (D72)
ThenVw eN,¥VC > 1,
(24/eC)"

0| < wle(C+ D m

(D73)

Proof.
10”h(x)| < [x0"f ()] + lwd”~ f ()], f(x?) = %hm. (D74)
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Using an auxiliary variable y,

" )= (—+2x3) FOm

(@ )"
2k<w '(2]( _ 1)”
) Z (w = 2k)!(2k)! ( ) (2)‘_) FOly=r2
2k<w w! ™ P w—k
= 2w ™ 5 - D75
; w20 > (5y) SOly= (D75)

Equation (D69) gives

2k<w —2k+1
1 (w=k)! oy x®

w 2 w
[x0¥fF(x)| <w!2¥e . ﬁ(w 20! TS (D76)
With an arbitrary constant C > 1, we have
X 1 (w —k)!
——<—, (I+xH>-(1+x)?% ——— <ot D77
T “Tex PO UE0N o ©77)
Consequently,
w!Ce(2C)” XL w0k w!Ce(2+/eC)*
7 < L () miceeveey. s
" {0 < ST Z alac) <o (D78)
Similarly, we obtain
_ 2w!le(2NeC)?!
AU« /1 D79
w0 < =1 (D79)
|
Lemma 48. Let f(p?) be a scalar function. Then
w 9 5 2k<w w! . P w-k )
— <2v —|p|*” — . D80
'1_1[ ool @) % PRI |(ap2) F@?) (D80)

Proof. With the aid of an auxiliary variable y,

7 9 0
]:[8— ¥*)= ]_[( 2pma—y)f<y>|y_pz. (D81)

A vpartial derivative with respect to p, contributes only if it can be paired with the 2p, term.
Consequently, we can compute the right hand side by considering the possible pairs,

3 0 9 9 a\*
(Bp,l, 2D By )(6 " +2p”’8 )= 26”[”’8_y +2p,,[2pﬂj (6_y) . (D82)
It gives
2k<w k w
= 1 Z 1 ]—[ ( 0 ) ( 0
D [ 126w, 5| |1 (2P5-] (D83)
o W= 20N o 2Rk Oy dy

where the outer and inner sums run over w!, (2k)! permutations, respectively. Using the inequality
|AzBy| < |Az||By|, we obtain the upper bound. [ |

Lemma 49. Let C > 1,

w 2,3 ~2\w
| 1_[ %SAAO(PN <2w!le(C + 1)%

. D8&4
L L op,, (A +[p)»*2 (b5
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Proof. We change the variable x, =p, /A,

1 &% 4
§AA 2 n?
H 550 T ﬂaxﬂ‘ ().

Equations (D80) and (D73) yield

2k<w

w2t w! (w=k)! X 2eC)
107h <2%e(C+ 1) ;) K (0 —2K)] (1 + x2)wkel

Lemma 50. Let C > 1,

3
AA 3 2 (2%e3CP)”
'H_C "PI<PwleC+1+E+ DC +IN I
Proof.
Y y wp DPv
107 Cp ()] < 4187 SM0 ()] +1¢ — 119" 2L §A ).

093503 (2017)

(D85)

(D86)

(D87)

(D88)

The first term is bounded in (D84). Using x;, = p,, /A, we have an upper bound for the last term

10°F D]+ 2wlx] 18V (] + 4w — DOV ),
where f (x*) is the same as in (D69). Equation (D69) gives

2wle(2+/eC)?
(1 +x)w?2

2dwle(22ei C2)v
(1+ x)w+4

10“f (x?)] < , 10“F (x| <

Consequently,

202, 3\w
w 4 3 2 (2 C 64)
[0%x,x,f (X)) <2°(C +3)ew!—(1 P

Lemma 51. Forallp e ]R4, there exists a constant C such that
AAo P

1
I ()l < —e .

. . . 2 _ x o - .
Proof. Using the inequality xe™ < xe!™* =xe! e ™ < ™, we obtain

1 > B
1SA (p)| = 4xe ™ < Se, x=1

|CAAO@)|<41+|§ e

Lemma 52. Forallpe R4, there exists a constant C such that
1
Ao(Ag + [pl)>*lwl”

0% 0, C*M (p)l < C

Proof. Let f = ¢~ xx then using |0%|g|| < |0 g|, we have

42+ 18 - 1DIOS
AlwT

497
Allwl+3°
0

105 9, CM0 (p)] < , 16 O, SM 0 (p)| <

. . 3
where introducing C| = 22*mx (4w + 2)!,

100F1< Cre™ (P12 4+ 1) < eCre™ (xP10142 4. 1),

(D89)

(D90)

(D91)

(D92)

(D93)

(D9%4)

(D95)

(D96)

(D97)
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Then it is easy to see that for 0 < m < 3wmax + 2,
max(e™ (¢ + 1)) <max(e ™ 1™ + 1 <2008 5-D 1 1 < 0, (D98)

To go further, we need the following inequality for all y > 0 and k € N:

2c(y) <k, gk =1 +yfe”, (D99)
which is obtained looking for the maximum y; =k — 1 and using go(39) = 1,
8k (k) = kgr—109k) < kgr-1(k-1) = gk (y) < gk (k) <k!. (D100)
Defining C3 := ¢>CC5 and using inequality (D99), we have
- 2! llwll! 2 C3 Wmax!
fI<Cze ™ <C < . D101
OIS ST S SR Tl S o et (bIob
]

Lemma 53. Let CM be one of the propagators S0 or CAAO, as defined in (35) and (36).
There are positive constants ¢y, c1, and d such that for all w €N, p e R*, and 0 < A < Ao, and with
Cgi=Cot fCl,

w
(9 w! dw Cé‘ . AA C-f _i
—— )Mo <—") o <—=Ze A7, D102
|(L_1[ 5 H‘) Ol < Ay C )l < e (D102)
Proof. The statement follows from (D84), (D87), and (D92). [ |

APPENDIX E: THE FUNCTIONAL I',¢4

We expand the generating functional T%2(A, ¢, ¢) of (82) as a formal series in A, c, ¢. As usual,
we adopt the shorthand notation T2 (A, ¢, ¢) for T%%0(4, ¢, ©),

0% = 0% 4 [0Ao o Z oo, (E1)

n<4 n>5’ n<4

0/\0

where n counts the number of fields. The functionals I’ with n <4 contain both relevant and

irrelevant terms. We assume hypothesis RC1. In general, the tensors ¢ I‘fl---,ur appearing in the form

factors F;f () are elements of span({d*p k>0},>0), where;z: P15+ s Pn=1)-

1. One-point function

There are no local terms that preserve Euclidean invariance and global SU(2) symmetry. It follows
that I'; = 0.

2. Two-point functions

= <F;}éAZA3> +(Fegaeay, (E2)

Far(p) = Ouwp” = pup)ogn, (02 + 27 (07)

1
+ fp,,pv«rm[,(p )+ 2%, (E3)
F(p)i=—p (a5, (P") + (7). (E4)
We assume that the form factors 44 and 2% include all loop corrections. Note that for the functional
l_"gAO, we have

o= —<Fﬁ;‘AZA“> +(FEEe, (ES)
Fin(p):=Fi(p) - L. (E6)

2

61:€1:80 ¥20Z Aeniged 91



093503-57 Efremov, Guida, and Kopper

J. Math. Phys. 58, 093503 (2017)

With p? = M? substitution of the above definitions into the expressions oor, FA4, ooa, F¢ appearing

in AGE (123) and STI (124) gives

Tony(02) F(p) £ =p2(1 + £ (p2),

Ton ) EX () K P, ().
1

é_.pupvzéA@Z)-

F0(P) = Gop” = pupy)(1+ 274 (7)) +

Using (85) for the functional rgAO, we have

1 Canva s .
Fo% = SCFALAD) + (Fedees),
1

gpﬂpyzz““(pzx

Fao®) = 6p” — pupy)Z7 () +

FZ‘C(p) — _p2zE‘C(p2).

For marginal terms, we obtain

AA; o
F,uv PpP. (P) — 26”1/5[)0_7-‘14‘4 + 2(6#[’6"0' + 5,,;;5/10-)7914 + gﬁépa7

FECPoPe (p) = 26,001 (0?) + {5y

ZAA 2
) = SR 4 L)

op?
1
2= 2507 - I,
cc . cc 6250@2)
r(p?) = - (p?) ‘an—pz'

3. Three-point functions

TN = CeapaFomiASAL ALY + (eqan FATALEEY),
Fi(k, p, q) = ipuR{ (D, @) + iqury“ (. @),
R“(p.q) =g +1r“(p.q).
Fpill (k@) = i6,0(pp = 4p)R* (9, @) + i6,kp 244 (p, @)
+il00 (ps ),
RY¥(p,q) = %g + (. q).

Here RA4(p, q) is a symmetric function whereas (444(p, ¢) is antisymmetric.

4. Four-point functions

x~

O0Ao _ /7AAAA XD %b xa ja CccAA%bvb pa pa
T = (FAMMAAL APACAS + FieadzbebAa Ad

opuv Luv
+ FMEEPALAD + roecebebiae),
Frzzclﬁé = #vrgCAA + {:’lc;qu’
Fos .= RAAS, + LM,

1
Ra’p,uv = E(éﬂpdva— + 6/1()'6py)R?AAA + 5”V60_pR§{AAA

1
+ 5(6[1[)61/0' - 5ya'6pv)§fAAA,

(E7)

(E8)

(E9)

(E10)

(E11)

(E12)

(E13)
(E14)

(E15)

(E16)

(E17)

(E18)
(E19)
(E20)

(E21)

(E22)

(E23)
(E24)
(E25)

(E26)
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2

R = S i, (E27)
2

8

RAAMA = T ryAda, (E28)
Here the terms
rAA’ rAA’ rE'c, RA(—,'C’ VAEC, RAAA’
! 2 1oz (E29)
RAAAA RAAAA’ TCAA’ I‘SCAA, rcccc’

are scalar functions of momenta, Ao, and M. All 11 renormalization constants are fine-tuned by
imposing appropriate renormalization conditions.

APPENDIX F: THE FUNCTIONALS I",,.,<2 AND I",,;,<2
With T (p) 1= 8, M 20,

Mt (P) = Riipuc”(p) + g€ (Floy |ALE : p), (F1)
FI (k. q) = 8, Ra + (i (k. ), (F2)
gk, q) = ﬂqyﬂ A kg + bk O + g, O (F3)
Mo @)= 5 L ges(Ra)ee: p). (F4)

Here Ry, R,, and R3 are scalar functions of momenta, A, and M.

APPENDIX G: VIOLATED STIFORA >0

In this section, we present, omitting the details of the calculation, the extension of some results
of Sec. II D to arbitrary 0 < A < Ay,

_ GFMo 6FAN
AAo _
FAR =g, * . -0 5 ) (G1)
ang  OFMo GFMo  GEAN 5FMo
AN 27 o N o -
( oA ,O0Ag * 57 ( 5 S T0n ¥ )
1 FAMO
- E(&A, oA, * Y+ hAM, (G2)
- - 1~ ~-1 =
FAAO ::I_AAO + §<97 COA()CD>’ (G3)
~ S2FAA 1 62 Mo
AN = (04, 0,0)(1+ ic™)
505D 5Doy
S2F M0 Aagy—1 62 AN
+{0,0,0)(1 + 1C™° —
(©0.7,0)( 55D ) s®ow
827 AN, A\ —1 B
—((048,0,0)(1 + 535 ic*™) 6—(%). (G4)

Note that in relations (G1) and (G2) there still appears a convolution with oa, since we have
chosen to define the regularized BRST transformation to include a convolution with this function,
see (90).

Using the bounds of Theorem 1, one can show that lima AN = at nonexceptional momenta.
It follows that lima _,( Ao - f?’\“ at nonexceptional momenta. More information can be found in
Efremov (2017).
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APPENDIX H: LIST OF THE RENORMALIZATION POINTS
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List of all terms preserving the global symmetries, with an arbitrary number of y, w insertions,
and with at most one § or 1 insertion (not both). Notation: [X] is the mass dimension of X (reduced
Fourier transform); ry is the tensor rank; ny is the total number of fields and sources (not including
1); 9 stands for a momentum derivative; “ren.p.” stands for “renormalization point.” * in the rank
entry means that the condition rp,, := 11 —2ny > r + 1 is violated for a term X: as stated in Lemma 28,
the tensor monomials {634_]" }r+1 are not linearly independent for ¢ = (go, q € M, ; hence they are not
suitable as a basis for the form-factor decomposition of dX. See Lemma 31 and Secs. VE 4, VE 5,
and V E 10.

APPENDIX I: LIST OF INSERTIONS

X [X] gh(X) Definition
I 2 1 (88)

Yy 2 -1

Qe 2 2 (88)

w*? 2 -2

Op 5 1 (100)

Opy 3 2 95)

Opw 3 3 (96)

Jol -1 -1

Op 3 1 (101)

B 1 -1

List of operators and sources, and their quantum numbers. Notation: [X] stands for the mass
dimension of X in position space; the ghost charge of the ghost field is gh(c) := 1.
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