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We study in this paper the structure of solutions in the random hypergraph coloring problem and
the phase transitions they undergo when the density of constraints is varied. Hypergraph coloring is
a constraint satisfaction problem where each constraint includes K variables that must be assigned
one out of q colors in such a way that there are no monochromatic constraints, i.e. there are at least
two distinct colors in the set of variables belonging to every constraint. This problem generalizes
naturally coloring of random graphs (K = 2) and bicoloring of random hypergraphs (q = 2), both
of which were extensively studied in past works. The study of random hypergraph coloring gives
us access to a case where both the size q of the domain of the variables and the arity K of the
constraints can be varied at will. Our work provides explicit values and predictions for a number of
phase transitions that were discovered in other constraint satisfaction problems but never evaluated
before in hypergraph coloring. Among other cases we revisit the hypergraph bicoloring problem
(q = 2) where we find that for K = 3 and K = 4 the colorability threshold is not given by the
one-step-replica-symmetry-breaking analysis as the latter is unstable towards more levels of replica
symmetry breaking. We also unveil and discuss the coexistence of two different 1RSB solutions in
the case of q = 2, K ≥ 4. Finally we present asymptotic expansions for the density of constraints
at which various phase transitions occur, in the limit where q and/or K diverge.

PACS numbers: Classification, Keywords

I. INTRODUCTION

Constraint satisfaction problems (CSPs) where values
are assigned to a set of variables in such a way to satisfy a
given set of constraints arise in many areas of science. In
particular they stand at the core of the theory of compu-
tational complexity [1] and analysis of algorithms. The
study of random constraint satisfaction problems became
popular in the endeavor to analyze the computational
complexity of typical instances, instead of the worst pos-
sible case [2, 3]. In random CSPs the set of constraints is
chosen from some simply defined probability distribution,
typical instances being those sampled with high proba-
bility from this distribution. Random CSPs are formally
closely related to models considered in statistical physics
of disordered systems and spin glasses [4, 5], and the

application of statistical mechanics methods to random
CSPs turned out to be particularly fruitful.

The most widely studied random CSP is satisfiability
of random Boolean formulas (K-SAT). A series of works
coming from statistical physics brought an explicit pre-
diction for the so-called satisfiability threshold – a den-
sity of constraints beyond which the formula is with high
probability unsatisfiable [6, 7]. These studies also un-
veiled a peculiar structure of the satisfiable assignments
in the satisfiable phase and additional phase transitions,
besides the satisfiability one, at which the qualitative
structure of the set of solutions changes drastically [6, 8–
10]. This understanding inspired the development of a
new class of message-passing-based satisfiability solvers
that outperform existing ones for randomly generated
formulas [6]. While many of these results were origi-
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nally obtained using non-rigorous methodology (namely
the cavity and the replica method), in recent years a
large part of these results and the associated picture
was established rigorously, see e.g. [11–15], leading to a
new methodology in probability theory able to deal with
probability distributions associated to randomly gener-
ated constraints on a large set of Boolean variables.

Studies of random CSPs were of course not restricted
to random K-SAT, the statistical mechanics method-
ology being very versatile and easily adapted to other
type of constraints and of variables. For instance ran-
dom graph coloring is an eminent example in which the
variables can take more than two values [16–18]. On
the other hand in graph coloring every constraint corre-
sponds to an edge and hence contains only two variables.
Some of these results have been rigorously established,
see e.g. in [19–23], although the larger size of variables
domain does complicate the situation. Some of the tech-
niques are simpler for a version of the random graph col-
oring problem where every edge forbids a random set of
neighboring colors [24]. This “permutated” version of the
coloring problem is conjectured to be equivalent to the
usual one in terms of the structure of solutions and the
phase transitions. However, proving this rigorously re-
mains an open problem.

Another popular random CSP with Boolean vari-
ables and K-ary constraints is Not-All-Equal satisfiabil-
ity (NAE-SAT) where each constraint contains K ran-
dom literals (i.e. variables randomly negated or not).
This problem possesses a symmetry that is absent in ran-
dom K-SAT and renders the problem simpler to analyze.
A conjecture that follows from the statistical physics
analysis is that the structure of solutions and associated
phase transitions in random NAE-SAT are the same for
bicoloring of random hypergraphs, where each constraint
contains K variables and states that they should not all
take the same value. Hypergraphs generalize the concept
of a graph in the sense that hyperedges connect to an ar-
bitrary number of variables (K in our case) whereas in
graph an edge connects two variables. Statistical physics
studies of the hypergraph bicoloring can be found in [25–
27]. Again, large part of the resulting picture was estab-
lished rigorously [12, 14, 28–32].

Hypergraph coloring is another very natural CSP
that generalized both graph coloring and hypergraph bi-
coloring. Coloring of hypergraphs as defined in [33] con-
sists of requiring that in the set of K nodes belonging to
a given constraint each of the q colors appears at most γ
times, with 1 ≤ γ ≤ K − 1. The authors of [34, 35] then
analyzed coloring of random hypergraphs for γ = K − 1,
i.e. the constraints only forbid configurations where all
the nodes that belong to one constraint have the same
color. This is also the version of the problem we consider
in the present paper, in which the statistical mechanics
methodology is applied for the first time to the random
hypergraph coloring with arbitrary values of K and q,
yielding results on the structure of solutions and phase
transitions comparable to the state-of-the-art for random

graph coloring and random K-SAT.
Besides the quantitative computation of the thresholds

for various phase transitions in this problem, we shall
present a number of qualitatively new results. While
the bicoloring (q = 2) problem was studied previously
in a number of papers, we found indeed some behaviors
and results that were missed. Our first main result con-
cerns the fact that on Erdős-Rényi random K-uniform
hypergraphs with K = 3 and K = 4 the colorability
threshold is not given by the one-step-replica-symmetry
breaking (1RSB) analysis. An explicit prediction for the
colorability threshold in those cases thus remains an open
problem. This contrasts with the conjectures existing for
random graph coloring, and random satisfiability [17, 36].
The second main result is the coexistence of two distinct
1RSB solutions for q = 2 and K = 4 in the satisfiable
region. Finally, another important outcome of this paper
consists in asymptotic expansions for the phase transi-
tion thresholds in a model where both the parameters K
and q can diverge, as far as we know no such case was
discussed previously in the statistical mechanics litera-
ture.

The rest of the paper is organized as follows. In Sec. II
we define precisely the model under study, phrase it as
a statistical mechanics problem and discuss qualitatively
the various phase transitions it undergoes. In Sec. III we
derive the equations that describe the problem in the for-
malism of the cavity method (including the phenomenon
of replica symmetry breaking). Our main results are pre-
sented in Sec. IV, where we discuss the numerical res-
olution of these equations, as well as their asymptotic
expansions for large K and/or q. We present our con-
clusions and perspectives for future work in Section V,
while a series of Appendices contain some more technical
details.

II. STATISTICAL PHYSICS FORMULATION
OF HYPERGRAPH q-COL

A. Model

1. Constraint satisfaction problems as interacting spin
models

In a constraint satisfaction problem (CSP) N variables
{xi}Ni=1, each taking values in a finite set Q, are required
to satisfy a set of M constraints. The µ-th constraint
(also called clause, and indexed with µ ∈ {1, . . . ,M})
involves a subset ∂µ ⊂ {1, . . . , N} of the variables, and is
defined by a function ∆µ(x∂µ) equal to 1 if the constraint
is satisfied, and 0 otherwise (here and in the following we
denote xS = {xi}i∈S the configuration of a subset S of
the variables). An assignment x = {x1, .., xN} ∈ QN
of the variables is called a solution if it simultaneously
satisfies all the constraints. A CSP is said to be satisfiable
if it admits at least one solution.

Such a CSP can be conveniently represented by a factor
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graph of N vertices andM factors, drawn respectively as
circles and squares in Fig. 1. Each vertex i carries the
variable xi, each factor µ is associated to the clause ∆µ,
an edge being drawn between a factor µ and a variable i
if and only if ∆µ depends on xi. This gives a graphical
interpretation of ∂µ as the variables adjacent to µ in the
factor graph, and we shall denote similarly ∂i the set of
contraints the variable xi is involved in.

A bridge towards statistical mechanics is built by in-
terpreting the variables xi as spins taking a finite num-
ber of distinct values (Q = {−1, 1} for Ising spins,
Q = {1, . . . , q} for Potts ones) and defining an Hamil-
tonian (or energy, or cost function) on the set of spin
configurations as

H(x) =

M∑
µ=1

(1−∆µ(x∂µ)) , (1)

which counts the number of unsatisfied constraints. Each
spin interacts with its nearest neighbors along the CSP
factor graph: a clause µ involving K spins models a K-
wise interaction, so that the energy shift for breaking the
constraint is equal to 1. Solutions of the CSP corresponds
to zero energy configurations, hence an instance of a CSP
is satisfiable if and only if its groundstate (minimal) en-
ergy is equal to zero. The Gibbs Boltzmann probability
density over the configuration space associated to this
Hamiltonian is

p(x) =
e−βH(x)

Z(β)
, (2)

where β is a parameter known as the inverse temperature
and the partition function Z(β) normalizes this proba-
bility law. In the zero temperature limit (β → ∞) p
concentrates on the optimal configurations minimizing
the number of unsatisfied constraints. In particular if
the instance is satisfiable p becomes in this limit the uni-
form measure over the solutions, and Z counts then the
number of these satisfying assignments.

2. Hypergraph q-Col

We shall consider in this paper the hypergraph q-
coloring problem: it consists in assigning one color,
among q available, to each vertex i so that none of the
hyperedges µ is monochromatic (an hyperedge is said to
be monochromatic if all the vertices it involves carry the
same color).

This definition fits naturally in the framework de-
fined above, by choosing the alphabet Q = {1, 2, .., q}
to encode the possible colors of the vertices, denot-
ing N and M the number of vertices and hyperedges
of the hypergraph, and associating to each hyperedge
µ a constraint function ∆µ(x∂µ) = 1− δ (x∂µ), with
δ(x1, . . . , xK) = 1 if all elements in x1, . . . , xK are equal
and δ(x1, . . . , xK) = 0 otherwise, in such a way that

∆µ equals 1 if and only if the µ-th hyperedge is non-
monochromatic. The Hamiltonian thus becomes

H(x) =

M∑
µ=1

δ(xµ) , (3)

a generalization of the usual Potts antiferromagnet from
graphs (K = 2) to hypergraph (K ≥ 3) interactions.

3. Random ensembles for typical case analysis

As explained in the introduction random ensembles of
instances provide useful benchmarks to assess the typical
difficulty of a CSP; in the case of hypergraph q-coloring
an instance is fully specified by an hypergraph, we shall
thus consider ensembles of random hypergraphs, and in
particular the following two distributions:

(i) the K-uniform `-regular random hypergraph, for
which each hyperedge links K vertices, and each ver-
tex belongs to ` hyperedges, all the hypergraphs fulfill-
ing these conditions being equiprobable in this ensemble.
The numbers N of vertices and M of hyperedges must
obviously obey the relationship N` = MK.

(ii) the K-uniform Erdős - Rényi (ER) hypergraph,
where M hyperedges are chosen uniformly at random
among all

(
N
K

)
possible K-uplets of distinct variables.

Explicit analytic results can be obtained for the typi-
cal properties of such random structures in the large size
limit (called thermodynamic limit in physics jargon), in
which both N and M go to infinity at a fixed ratio de-
noted α = M/N . A crucial property shared by these two
ensembles is the local convergence in this limit to an hy-
pertree: the neighborhood within a fixed distance around
an uniformly chosen vertex is, with a probability going
to 1 in the thermodynamic limit, acyclic. This limit tree
can be described in terms of a Galton-Watson branching
process, in which the root has a number d of neighbor-
ing hyperedges with probability pd, each of the d(K − 1)
vertices at distance 1 from the root giving themselves
birth to a number of offsprings with a probability distri-
bution denoted rd, and so on and so forth. The excess
degree distribution rd is the probability that one vertex
in an uniformly chosen hyperedge has degree d + 1, and
is related to pd through

rd =
(d+ 1)pd+1
∞∑
d′=1

d′ pd′
. (4)

In the regular ensemble, case (i) above, all vertices have
degree `, hence pd = δd,` and rd = δd,`−1 with δ denoting
here the Kronecker symbol. The ratio α of constraints
by variables is given in terms of the parameters of this
ensemble as α = `/K.

In the Erdős - Rényi case both pd and rd are found to
be Poisson laws of average αK. With a slight abuse of
notation we shall denote ` = αK the average degree in
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this case, there should be no possibility of confusion with
the degree of the regular ensemble.

Some of our results will be obtained in the large degree
limit (taken after the thermodynamic limit), in which a
Poisson distributed random variable concentrates around
its mean and hence the two ensembles become essentially
equivalent, which will allow us to use the one in which
the computations are the simplest.

B. Phase transitions and thresholds

The random ensembles of hypergraph q-coloring are
parametrized by q, the number of colors, K the arity of
the constraints, and α the ratio of the number of con-
straints per variable (or equivalently ` = αK the av-
erage degree of the variables). For a given choice of q
and K the problem becomes more and more constrained
as ` increases, and one can naturally expect the exis-
tence of a critical value `col below which typical random
hypergraphs are q-colorable, while with high probabil-
ity they are un-colorable for ` > `col. This satisfiability
phase transition (or threshold phenomenon) is actually
accompanied by a series of phase transitions affecting the
structure of the space of solutions in the satisfiable phase
` < `col. These structural phase transitions have been
discovered by the applications of statistical mechanics
methods, they are essentially the same as those discussed
in the mean field theory of structural glasses [37], and are
largely independent of the details in the definition of the
random CSP [5, 10]. In the next section we first ex-
plain these phase transitions in a qualitative way, before
moving gradually to a more quantitative and technical
description.

1. Qualitative picture of the phase diagram

At low density of constraints all solutions are found in
one “connected” portion of configuration space, meaning
that it is possible to go from any solution to any other
solution by “flipping” only one (or a number sub-linear in
N) variable at each step without breaking any constraint
along the path. Equivalently, the set of solutions is an
ergodic subspace and Monte Carlo Markov chains can
achieve efficient sampling of solutions.

As the density of constraints is increased a first remark-
able transition is encountered: at the clustering transi-
tion the set of solutions decomposes in an exponential (in
N) number of “disconnected” smaller sets, called clusters.
Following the physics formulation of CSPs presented in
the previous section, there are either energetic or entropic
barriers between different clusters while there exist zero
energy paths between solutions in the same cluster. The
precise definition of a cluster may vary among authors
of previous works, we shall clarify our operational defini-
tion of this threshold `clust in Sec. III while detailing our
computations.

Further increasing ` beyond `clust, a condensation tran-
sition occurs at `cond: it separates a regime in which an
exponential number of clusters contain most of the solu-
tions, to a situation for ` > `cond in which most of the
solutions are found in an only sub-exponential number of
clusters.

Eventually, the disappearance of the last surviving
clusters of solutions marks the colorability (or satisfia-
bility for a generic CSP) threshold, at `col.

The partition of the set of solutions into clusters al-
lows to define the notion of the frozen variables of a so-
lution: these are the variables which take the same color
in all the solutions of the corresponding cluster. One can
then further refine the description of the clustered phase
and introduce two new phase transitions: the rigidity
transition, denoted `r, above which the typical solutions
contain an extensive number of frozen variables, and the
freezing transition `f , above which all solutions have this
property (this latter threshold is much more difficult to
compute as it requires a control of all solutions, including
atypical ones, and has been estimated analytically only
for the bicoloring of hypergraphs [27]).

As various notations have been used across different
works, we recap the definition of the commonly encoun-
tered thresholds in the study of random CSPs along with
our notations in Appendix A .

By definition of the different thresholds the inequalities
`clust ≤ `cond ≤ `col and `clust ≤ `r ≤ `col must hold. A
common phenomenon observed in many CSPs, such as q-
coloring [18], bicoloring of K-regular graphs [26, 27], or
K-SAT [38], is the saturation of some of these bounds
when the parameters q or K are small (for instance
`clust = `cond in the 3-coloring of random graphs [18]).
On the contrary when q or K are sufficiently large the
generic order for the thresholds becomes `clust < `r <
`cond < `col. Additionally, asymptotic expansions per-
formed in the limit of diverging q or K [7, 18] revealed
the existence of two main scales for these various thresh-
olds, namely `clust ∼ `r � `cond ∼ `col.

Note that the asymptotic expansions of the thresholds
predicted by the statistical mechanics methods have been
performed up to now in models in which only one param-
eter could be taken to infinity (K was fixed to 2 for the
q-coloring of random graphs, and q was fixed to 2 for
the bicoloring of random hypergraphs). In the presently
studied model one can perform asymptotic expansions
in which q and/or K can be taken to infinity. We will
come back in Sec. IVC on these expansions and on the
interplay between these two possible limits.

In the following section we review how the cavity ap-
proach reveals the location of the different transitions.

2. Overview of the cavity approach and key observables

A central objective of the statistical mechanics ap-
proach to random CSP is the computation of the
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quenched free-entropy density

φ(β) = lim
N→∞

1

N
E[lnZ(β)] , (5)

where Z is the partition function normalizing the proba-
bility law (2), and the average is over the random hyper-
graph ensemble. Indeed the free-entropy lnZ is expected
to concentrate around its mean (a property called self-
averaging in physics), which is thus representative of the
properties of the typical hypergraphs of the ensemble.
The behavior of φ in the zero-temperature limit β →∞
depends on whether the typical graphs are colorable or
not. If they are the limit of φ, to be denoted s, is the
exponential rate of growth of the number of solutions,
called entropy. If they are not φ diverges with β, with
a proportionality constant that gives the minimal num-
ber of unsatisfied constraints. For simplicity in the rest
of this section we assume that we are in the satisfiable
phase and we keep the zero-temperature limit implicit,
the reader can adapt this discussion to the positive tem-
perature case without difficulties.

The belief propagation (BP) algorithm [39] provides a
tractable procedure (see Sec. III) to compute the Bethe
approximation of the entropy density s = lnZ/N for a
given hypergraph. The replica symmetric (RS) cavity
method is a way to average this prediction over the ran-
dom hypergraph ensemble in the thermodynamic limit.
BP yields an exact result for a tree factor graph. As we
have seen above the random graph ensembles studied in
this paper, with the sparsity assumption we made keep-
ing α = M/N finite, are locally tree-like, their shortest
loops are typically of length O(lnN). As a consequence
the predictions of BP are asymptotically exact provided
the longer loops do not induce long range correlations
between far away variables. This is precisely the case in
the unclustered phase ` < `clust, but becomes wrong for
larger average degrees.

The clustered structure of the configuration space
causes indeed the birth of a form of correlation between
variables (measured by a so called point-to-set correla-
tion function), the connection between these two prop-
erties being reminiscent of the link between spatial and
temporal mixing in the studies of Monte Carlo Markov
Chain dynamics. It is thus necessary to correct the RS
cavity method above the clustering threshold, by pro-
moting it to the Replica Symmetry Breaking (RSB) cav-
ity method. A crucial idea of this method is to exploit
the partition of the solution space into disjoint clusters
{C}, assuming that the measure (2) restricted to the solu-
tions x of one cluster C enjoy the decorrelation property
described above. This restricted measure can thus be
treated within the RS formalism, and what remains to
do is to describe the statistical properties of the cluster
decomposition. More precisely, this revised formalism
introduces a measure over the set of clusters {C},

p1 (C) =
Z(C)m
Z1(m)

=
emNs(C)

Z1(m)
, (6)

where Z(C) and s(C) = lnZ(C)/N are respectively the
number of solutions in C and the internal entropy of C,
and where m is a parameter playing a role similar to
the temperature called the Parisi parameter. The 1RSB
normalizing function Z1 is thus given by

Z1(m) =
∑
{C}

emNs(C) =

∫
ds eN(ms+Σ(s)) (7)

where we introduced the complexity Σ(s), defined as the
logarithm of the average number of clusters of internal
entropy s (divided by N). The saddle point evaluation
of this integral yields a thermodynamic potential that we
shall call replicated entropy,

Φ(m) = lim
N→∞

1

N
lnZ1(m) = ms(m) + Σ(m) , (8)

where we defined

s(m) = argmax
s

[ms+ Σ(s)] , (9)

and Σ(m) = Σ(s(m)).
Exploiting the decomposition of the solution set into

clusters we can express the total entropy as

stot = lim
N→∞

1

N
ln

∫
ds eN(s+Σ(s))

= sup
s/Σ(s)≥0

[s+ Σ(s)] , (10)

where the second equality results again from a saddle-
point evaluation, the condition Σ(s) ≥ 0 ensuring that
the corresponding clusters exist in the thermodynamic
limit. The total entropy thus results from a competi-
tion between most numerous clusters (that have a large
complexity) and bigger clusters (that have a large in-
ternal entropy). Within the exponential approximation
the total entropy is dominated by the contribution of the
clusters of internal entropy hereafter called s? achieving
the supremum of Eq. (10), we thus call a solution typical
if it belongs to a cluster of internal entropy s?.

If Σ(s?) > 0, there is an exponential number of clusters
contributing to the total entropy, we are thus in the clus-
tered phase as defined in the previous section. On the
contrary if Σ(s?) = 0, either it corresponds to connec-
tivities smaller than `clust where there is only one giant
cluster, or more interestingly, to the condensed phase,
where a sub-exponential number of clusters contains the
vast majority of solutions.

The computation of the complexity at m = 1 gives
access to `clust and `cond: in (9) the maximization is
not constrained by the condition Σ(s) ≥ 0, hence the
total entropy stot is equal to Φ(m = 1) if and only if
Σ(m = 1) > 0, while Σ(m = 1) < 0 is the signature
of the condensation phenomenon. In the clustered un-
condensed regime the prediction Φ(m = 1) actually co-
incides with the RS prediction: the superposition of the
exponentially large number of clusters create relatively
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weak correlations, that can be only detected by a point-
to-set correlation function and not correlation between a
finite number of variables, see [40, 41] for recent rigorous
proofs of the exactness of the RS predictions up to the
condensation phase transition.

Another equivalent and compact way of summarizing
the thermodynamics prescription is the formula:

stot = inf
m∈[0,1]

Φ(m)

m
, (11)

which is valid irrespectively of the type of phase: in an
unclustured situation, with a single cluster of entropy
stot, equation (7) shows that Φ(m) = mstot, hence the
parameter m is irrelevant in the right hand side of (11).
In presence of clusters the minimizer in (11), that we
shall call ms for the static value of the Parisi parame-
ter, is either ms = 1 if an exponential number of clusters
contribute to the total entropy, or some value ms < 1
if the measure condensates on a sub-exponential number
of clusters. Indeed, one can see that d

dm (Φ(m)/m) =

−Σ(m)/m2, hence in the condensed phase the minimiza-
tion selects the largest existing clusters, with Σ(ms) = 0,
as in (10).

Finally the colorability threshold can be obtained from
the computation of Φ(m = 0) = Σ(m = 0) = maxs Σ(s):
this gives the exponential rate of growth for the total
number of clusters of solutions, irrespectively of their
sizes. The colorability transition occurs when this num-
ber vanishes, marking the disappearance of the last clus-
ters of solutions.

III. CAVITY EQUATIONS AND THRESHOLDS
CHARACTERIZATIONS

In this section we derive the cavity equations of hyper-
graph q-coloring at finite temperature β. The zero tem-
perature equations follow straightforwardly in the limit
e−β → 0. These equations cover the special cases of
graph q-coloring (when K = 2) [17, 18], and hypergraph
bi-coloring or NAESAT (when q = 2) [25–27].

A. Replica symmetric formalism

1. Cavity equations and Bethe entropy

a. Messages Consider first the problem of comput-
ing the partition function Z(β) and characterizing the
marginals of the probability law p(x) defined in (2) when
the factor graph encoding the dependencies between vari-
ables is a tree. Then the problem can be solved exactly
and very easily by exploiting the recursive nature of trees,
with a procedure called dynamic programming or Belief
Propagation [39].

We denote by χν→i (xi) the marginal probability of the
variable xi in the law encoded by the amputated factor

�⌫!i(xi)

 i!µ(xi)

i

µ

⌫
jxj

xi

FIG. 1: Sketch of a local architecture of hypergraph illus-
trating notations for the derivations of the cavity equation.
Vertices are represented with circles, and hyperedges with
squares.

graph in which all edges around i have been cut except
the one connecting it to ν, and similarly ψi→µ (xi) for the
amputated factor graph where only the edge between i
and µ has been cut (see the illustration in Fig. 1). If
the factor graph is a tree these “messages” sent between
neighboring variable and factor nodes are easily seen to
obey the following exact equations:

χν→i (xi) =
1

Ẑν→i0

∑
x∂ν\i

e−β(1−∆ν(x∂ν))
∏

j∈∂ν\i
ψj→ν (xj) ,

(12)

and

ψi→µ (xi) =
1

Ẑi→µ0

∏
ν∈∂i\µ

χν→i(xi) , (13)

where we recall that ∂i and ∂µ denote respectively the set
of factor nodes around variable i and the set of variable
nodes around factor µ, and Ẑν→i0 and Ẑi→µ0 are normal-
ization factors ensuring that both χν→i and ψi→µ sum
up to one, i.e.

q∑
x=1

χν→i (x) =

q∑
x=1

ψi→µ (x) = 1. (14)

Equation (12) has been written for a generic CSP; spe-
cializing it to the hypergraph q-coloring case yields

χν→i (xi) =
1

Ẑν→i0

1 + (e−β − 1)
∏

j∈∂ν\i
ψj→ν (xi)

 ,

(15)

as given xi the only penalized configuration is the one
in which all neighbors j of clause ν take this same color
xj = xi.

From (13) and (15) we deduce a closed recursion on
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messages from nodes to hyperedges

ψi→µ (xi) =
1

Zi→µ0

∏
ν∈∂i\µ

1 + (e−β − 1)
∏

j∈∂ν\i
ψj→ν (xi)

 ,

Zi→µ0 =

q∑
x=1

∏
ν∈∂i\µ

1 + (e−β − 1)
∏

j∈∂ν\i
ψj→ν (x)

 ,

(16)

and define the shorthand notation

ψi→µ ≡ FRS({ψj→ν}ν∈∂i\µ,j∈∂ν\i) ≡ FRS({ψj→ν}) ,
(17)

for this relation.
The marginal probability of variable xi in the full fac-

tor graph can then be obtained from the messages as

pi (xi) =
1

Zi0
∏
ν∈∂i

χν→i(xi) , (18)

where Zi0 is the marginal partition function

Zi0 =

q∑
x=1

∏
ν∈∂i

χν→i(x) . (19)

If the factor graph is a tree there exists a single solu-
tion to the consistency equations between messages, and
the prediction thus obtained for the marginals of p(x) is
exact. One can however look for a fixed point of Eq. (17)
on an arbitrary hypergraph even if it has loops: this is
precisely the BP algorithm, that we expect to converge
for typical random hypergraphs of small enough average
degree.

The replica symmetric cavity method provides a way
to deal with such random (hyper)graphs ensembles. Con-
sider the thought experiment in which one generates at
random a large hypergraph with a degree distribution pd,
finds the fixed point of BP on this particular hypergraph
(assuming it exists and is unique), and choose uniformly
at random a directed edge i→ µ in this hypergraph. The
message ψi→µ thus obtained is random, and we denote
PRS(ψ) its probability distribution. For consistency rea-
sons this distribution has to obey the following equation

PRS(ψ) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dψj→νPRS(ψj→ν)

δ
[
ψ −FRS({ψj→ν})

]
,

(20)

where δ[] is the Dirac distribution, and rd the excess de-
gree distribution associated to pd according to (4).

b. Bethe free energy On a tree factor graph the mes-
sages solution of (17) can be used to compute exactly the
associated partition function. One finds indeed that

φBethe =
1

N
lnZ =

1

N

N∑
i=1

lnZi+∂i0 − (K − 1)

N

M∑
µ=1

lnZµ0 ,

(21)
where in the general CSP formalism

Zµ0 =
∑
x∂µ

e−β(1−∆µ(x∂µ))
∏
i∈∂µ

ψi→µ (xj) , (22)

Zi+∂i0 =

q∑
xi=1

∏
µ∈∂i

∑
x∂µ\i

e−β(1−∆µ(x∂µ))
∏

j∈∂µ\i
ψj→µ (xj) ,

(23)

which yields for the hypergraph q-coloring interactions

Zµ0 = 1 + (e−β − 1)

q∑
x=1

∏
i∈∂µ

ψi→µ (x) , (24)

Zi+∂i0 =

q∑
x=1

∏
µ∈∂i

1 + (e−β − 1)
∏

j∈∂µ\i
ψj→µ (x)

 .

(25)

If the factor graph is not a tree, but if BP converges, one
can use the same expressions with the messages solution
of the BP equations: this yields the Bethe approximation
for the free entropy density.

The prediction of the cavity method at the RS level
for the quenched free entropy density φ(β) defined in (5)
is then obtained by averaging this Bethe approximation
with respect to the message distribution PRS(ψ) and the
degree distribution pd, yielding
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φRS(β) =

∞∑
d=0

pd

∫ d∏
µ=1

K−1∏
j=1

dψj→µPRS(ψj→µ) lnZi+∂i0 ({ψj→µ})−
`(K − 1)

K

∫ K∏
i=1

dψiPRS(ψi) lnZµ0 (ψ1, . . . , ψK) ,

(26)

with ` the average of pd.

2. Replica symmetric solution at zero temperature

The replica symmetric cavity equation (17) admits as
a trivial fixed point, independently of the precise hyper-
graph, the uniform distribution,

∀i, µ, xi ψi→µ(xi) = χµ→i(xi) = ψ(xi) =
1

q
. (27)

It is actually the relevant one: as the interactions are
antiferromagnetic the symmetry between colors cannot
be broken in a pattern compatible with the existence of
loops of all lengths in the hypergraph.

The RS prediction for the quenched entropy at zero
temperature is thus found by inserting the solution
PRS(ψ) = δ[ψ − ψ] and setting e−β = 0 in (26), yielding

sRS = ln q +
`

K
ln

(
1− 1

qK−1

)
. (28)

This expression is actually equal to the annealed entropy
limN→∞ 1

N lnE[Z(β =∞)] counting the average number
of solutions, and is hence an upper bound on the true
quenched entropy. As a consequence the average degree
above which the RS entropy is negative is an upper bound
on the coloring threshold

`RS = −K ln q/ ln
(
1− 1/qK−1

)
> `col . (29)

This corresponds to the first moment argument ex-
tensively used in computer science to obtain such up-
perbounds on the satisfiability transition, see for in-
stance [33–35] for its use in the context of hypergraph
q-coloring.

B. One step replica symmetry broken formalism

As already discussed in Sec. II B the hypothesis un-
derlying the RS formalism are violated for sufficiently

large average degree, as the clustering phenomenon in-
duce long-range correlations between variables that are
neglected at the RS level. We shall now describe a more
elaborate version of the cavity method, called 1RSB for
“one step of replica symmetry breaking”, that is able to
tackle this clustering phenomenon, and then explain how
to quantitatively determine the clustering, condensation
and colorability thresholds.

1. Cavity equations

The crucial hypothesis of the 1RSB cavity method is
that the decomposition of the Gibbs measure (2) in the
clusters partitioning the configuration space is a “pure
state” decomposition in the mathematical physics sense,
namely that the restriction of the Gibbs measure to one
cluster C enjoy the decorrelation properties used at the
RS level. Hence each cluster C is described by a set of BP
messages {ψCi→µ}, solution of the BP fixed-point equa-
tions:

ψCi→µ = FRS(
{
ψCj→ν

}
) . (30)

Our goal is now to compute the 1RSB partition function
(7) that sums the contribution of the different clusters to
describe the thermodynamics of the space of solutions.
As we assume that each cluster C is well described by a
BP fixed point, we can use the Bethe approximation to
compute the partition function restricted to C and write

Z1(m) =
∑
{C}

emNφ
Bethe(C) , (31)

where the internal free entropy density φBethe(C) is
φBethe(

{
ψCi→µ

}
) defined in Eq. (21). Using this corre-

spondence between clusters and BP fixed points, Z1 can
be rewritten as an integral over BP messages:

Z1(m) =

∫ ∏
(iµ)

dψi→µ

∏
(iµ)

δ
[
ψi→µ −FRS ({ψj→ν})

] emNφ
Bethe({ψi→µ}) , (32)
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where (iµ) spans all the edges of the factor graph, and we
used the shorthand notation FRS defined in (17). The
Dirac distributions in Eq. (32) make the integral equiv-
alent to the former sum over clusters of Eq. (31), by
selecting only the messages that are BP fixed points. Us-
ing the expression of φBethe given in (21) we can interpret
Eq. (32) as the partition function of an auxiliary statis-
tical physics problem [5] where now the variables are the
messages {ψi→µ} instead of the spin variables {xi}, and

the interactions arise from the partition functions Zi+∂i0

and Zµ0 in φBethe. The factor graph encoding this auxil-
iary problem on the variables {ψi→µ} is as locally tree-
like as the original graph, one can thus treat it with the
Belief Propagation approach explained above, with the
messages in this auxiliary problem becoming probabil-
ity distributions Pi→µ (ψi→µ) over the variables {ψi→µ}.
The 1RSB equations are nothing but the BP equations
of this auxiliary problem, that read

Pi→µ (ψi→µ) =
1

Zi→µ1

∫  ∏
ν∈∂i\µ

∏
j∈∂ν\i

dψj→νPj→ν (ψj→ν)

 δ
[
ψi→µ −FRS ({ψj→ν})

] (
Zi→µ0 ({ψj→ν})

)m
, (33)

where Zi→µ1 is a normalization that depends on the
{Pj→ν} and on m; we shall write in short (33) as

Pi→µ ≡ F1RSB ({Pj→ν}) . (34)

The probability distributions Pi→µ have to be interpreted
as the probability to observe a BP message ψCi→µ = ψi→µ
when a cluster C is chosen randomly. As explained above
we do not expect the symmetry between colors to be

spontaneously broken, hence we impose that on average
over the various clusters no color is privileged at any
vertex, i.e. ∫

dψi→µPi→µ (ψi→µ)ψi→µ = ψ (35)

where we had already defined ψ as the uniform distribu-
tion over Q, with ψ(x) = 1/q.

The Bethe free-entropy of this auxiliary model yields the 1RSB estimate of the replicated free-entropy defined in
(8), in terms of the auxiliary messages {Pi→µ}:

ΦBethe(m) =
1

N

N∑
i=1

lnZi+∂i1 (m)− K − 1

N

M∑
µ=1

lnZµ1 (m) , (36)

where

Zi+∂i1 ({Pj→ν} ;m) =

∫ ∏
µ∈∂i

∏
j∈∂µ\i

dψj→µPj→µ (ψj→µ)
(
Zi+∂i0

)m
(37)

and

Zµ1 ({Pi→µ} ;m) =

∫ ∏
i∈∂µ

dψi→µPi→µ (ψi→µ) (Zµ0 )
m
. (38)

In order to deal with random graph ensembles we introduce a probability distributions of 1RSB messages P1RSB(P )
that obey the analog of (20), namely

P1RSB(P ) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dPj→νP1RSB(Pj→ν)δ
[
P −F1RSB({Pj→ν})

]
. (39)

From the solution of this equation one can compute the 1RSB estimate of the typical replicated free-entropy for a
random hypergraph with degree distribution pd. The formula is the analog of the one given in (26) at the RS level,
i.e.

Φ1RSB(m) =

∞∑
d=0

pd

∫ d∏
µ=1

K−1∏
j=1

dPj→µP1RSB(Pj→µ) lnZi+∂i1 ({Pj→µ};m)

− `(K − 1)

K

∫ K∏
i=1

dPiP1RSB(Pi) lnZµ1 (P1, . . . , PK ;m) . (40)
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The estimate of the complexity Σ(m) is then deduced as

Σ(m) = Φ1RSB(m)−m d

dm
Φ1RSB(m) , (41)

following the discussion of Sec. II B 2. To compute this
derivative it is enough to take into account only the ex-
plicit dependency on m of the functions Z1, as the po-
tential (40) is stationary with respect to the variations
of P1RSB whenever the 1RSB cavity equation (39) is ful-
filled.

Note that the 1RSB formalism contains as a special
case the RS one when the P ’s in the support of P1RSB(P )
are Dirac distributions; in the following we shall call this
a trivial solution of the 1RSB equations. Such a solution
expresses indeed the absence of clustering in the config-
uration space, as the randomness over the choice of the
clusters becomes deterministic in this case.

2. Hard fields and frozen variables

We have introduced in Sec. II B 1 the notion of frozen
variables as the ones taking the same value in all the
solutions of a cluster. In the cavity formalism a cluster is
described in terms of BP messages, hence frozen variables
are to be associated with “hard fields”, i.e. messages that
constrain one variable to a single color. More precisely,
let us define ψx the distribution over Q concentrated on
the color x, i.e. ψx(x′) = δx,x′ , and decompose the 1RSB
distributions as

Pi→µ (ψi→µ) =

q∑
x=1

ηxi→µδ[ψi→µ − ψx] (42)

+ η0
i→µP̃i→µ(ψi→µ) ,

where ηxi→µ is to be interpreted as the probability un-
der Pi→µ of an hard field imposing the color x, η0

i→µ =
1 −∑x η

x
i→µ is the complementary probability of “soft

fields”, and P̃i→µ the distribution of the latter. When
the symmetry between colors is respected we shall de-
note more simply ηxi→µ = ηi→µ, then η0

i→µ = 1− qηi→µ.
Obviously this phenomenon of hard-fields can only occur
at zero temperature; in the opposite case all configura-
tions have positive probability, hence no marginals can
be supported on a single color.

3. Computation of the thresholds and of the free-entropy

Now that we have set up the cavity formalism at the
1RSB level we can come back on the definitions of the
thresholds given in Sec. II B and explain their practical
computation:

• `clust is the smallest average degree for which there
exists a non-trivial solution of the 1RSB equations
at m = 1. An analysis of the local stability of

the trivial RS solution yields an upperbound on
this threshold (sometimes called the Kesten-Stigum
bound),

`clust ≤ `RS
stab =

(
qK−1 − 1

)2
K − 1

(43)

for Poisson degree distributions, as we shall prove
in Appendix B. This bound is not tight in general
because a bifurcation can cause the non-trivial so-
lution to appear in a discontinuous way, far from
the trivial solution, a phenomenon which cannot be
detected by a local analysis.

• `cond is the smallest average degree for which there
exists a non-trivial solution of the 1RSB equations
at m = 1 with Σ(m = 1) < 0.

• `col is the smallest average degree for which the
complexity at m = 0 is negative.

• the prediction of the free-entropy that encompasses
the RS and 1RSB formalism is

inf
m∈[0,1]

Φ1RSB(m)

m
, (44)

as follows from the 1RSB estimate of the poten-
tial Φ in the expression (11) (for some models this
prediction was proven rigorously to be an upper-
bound on φ [42, 43]). At low degrees the 1RSB
cavity equations only admits the trivial RS solu-
tion for which Φ1RSB(m) = mφRS and one recov-
ers the RS estimate; in the presence of clusters
the minimizer is reached either in ms(`) = 1 if
lclust < ` < `cond, or in some non-trivial value
ms(`) < 1 when ` > `cond.

• `r is the smallest average degree for which the solu-
tion of the 1RSB equation at the static value ms of
the Parisi parameter has a positive fraction of hard
fields. We will also denote `r(m) the threshold de-
fined similarly but at a fixed value of m. We will
compute in particular `r(m = 1), and note that if
`r(m = 1) < `cond then `r = `r(m = 1).

The numerical resolution of the cavity equations can be
done via “population dynamics” algorithms (also known
as particle representations in the context of filtering),
that rely on the approximation of probability laws by the
empirical measure of a large sample (population) of rep-
resentative elements. For instance to solve the RS equa-
tion (20) one considers a sample of ψ’s, approximate PRS

in the right hand side by the empirical distribution of the
sample, and represent the left hand side as a new popula-
tion of ψ’s. This procedure is repeated until convergence
towards a fixed point solution of the equation, the numer-
ical accuracy improving when the sample size increases.
The same idea can be followed at the 1RSB level, with an
additional difficulty: each P in the sample representing
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P1RSB is itself a probability distribution, that has to be
represented in an approximate way. This leads to a rep-
resentation of P1RSB by a “population of populations of
ψ’s”, whose numerical accuracy is strongly limited by the
memory available on current computers. Fortunately we
have seen above that the determination of the thresholds
`clust, `cond and `col involves the resolution of the 1RSB
equations only at m = 1 and m = 0. It turns out that
these two specific values of m allow great analytical sim-
plifications, which we explain in the rest of this section
before presenting our numerical results.

4. Simplifications at m = 1

The special role played by the value m = 1, as well
as the connection between the 1RSB equations in this
case and the tree reconstruction problem [44], were first
discussed in [10, 18, 38, 45], to which we refer the reader
for more extensive discussions.

The first step in the simplification of (39) consists in
considering the normalization Zi→µ1 in (33). At m = 1,
and thanks to the condition (35), one sees that Zi→µ1 =

Zi→µ0 where Zi→µ0 is the value of (16) computed with
ψj→ν = ψ for all incoming messages. As the denominator
Zi→µ1 is thus independent on the {Pj→ν} one realizes that
the functional F1RSB is linear in each of its argument.
This allows us to introduce the average of P1RSB,

P =

∫
dP P1RSB(P )P , (45)

and write a closed equation on it,

P (ψ) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dψj→νP (ψj→ν)

δ
[
ψ −FRS({ψj→ν})

] Z0({ψj→ν})
Z0

. (46)

that easily follows from (39).
This is already a great simplification with respect to

the general 1RSB formalism, as the unknown to solve for,
P , is simply a distribution over ψ’s instead of the distri-
bution of distributions P1RSB. There is still an annoying

feature in this equation, namely the reweighting factor
Z0, that we shall now get rid of.

To do this let us define, for all x = 1, . . . , q, a biased
version of P according to

P x(ψ) = q ψ(x)P (ψ) , (47)

that we shall call a conditional version of P . Each of
these q measures are normalized to 1 thanks to (35), and
can thus be interpreted as probability distributions. Re-
ciprocally one can express P in terms of its conditional
versions according to

P (ψ) =
1

q

q∑
x=1

P x(ψ) . (48)

Plugging these definitions into (46) leads to the following
equations on the P x’s,

P
(n+1)

x (ψ) =

∞∑
d=0

rd
∑
x

p(x|x)

∫ d∏
ν=1

K−1∏
j=1

dψj→νP
(n)

xν,j (ψj→ν)

δ
[
ψ −FRS({ψj→ν})

]
, (49)

where we have added for future convenience some indices
n + 1 and n in the left and right hand side respectively,
and where x = {xν,j}j=1,...,K−1

ν=1,...,d , with

p(x|x) =

d∏
ν=1

1 + (e−β − 1)I(x = xν,1 = · · · = xν,K−1)

qK−1 + e−β − 1
;

(50)

here and in the following I(E) the indicator function of
the event E. This is now a very convenient form for nu-
merical resolution, as it only involves a finite number q
of probability distributions, without any reweighting fac-
tor. It is also sufficient to compute the thermodynamic
properties of the model. Besides Φ1RSB(m = 1) which
is simply equal to φRS one needs the derivative of the
replicated potential in order to deduce the complexity.
This can be obtained by taking the derivative with re-
spect to the explicit dependence in m of (40); expressing
it in terms of the P x yields

d

dm
Φ1RSB(m)

∣∣∣∣
m=1

=

∞∑
d=0

pd
1

q

∑
x,x

p(x|x)

∫ d∏
µ=1

K−1∏
j=1

dψj→µP xµ,j (ψj→µ)Zi+∂i0 lnZi+∂i0

− `(K − 1)

K

∑
x1,...,xK

p(x1, . . . , xK)

∫ K∏
i=1

dψiP xi(ψi)Zµ0 lnZµ0 , (51)

where in the second term

p(x1, . . . , xK) =
1 + (e−β − 1)I(x1 = · · · = xK)

qK + q(e−β − 1)
. (52)

In addition to its numerical convenience this formu-
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lation has an enlightening interpretation in terms of the
tree reconstruction problem [44, 45] that we shall now de-
scribe. Consider indeed a Galton Watson hypertree with
offspring distribution rd, and draw at random a coloring
of its vertices from the free boundary Gibbs measure at
inverse temperature β. By this we mean the broadcast-
ing procedure in which one draws the color x of the root
uniformly at random, then independently for each of the
hyperedges around the root the colors of the K−1 other
variables are chosen with probability proportional to e−β
if the hyperedge is monochromatic, 1 otherwise, and so
on and so forth for the next levels of the tree. Suppose
now that the color of the vertices at distance n from the
root are revealed to an observer, whom is asked to guess
the value of x from this sole information. The best strat-
egy the observer can follow is a Bayesian one, computing
the marginal probability of the root conditional on the
observations. As the problem is defined on a tree this
computation can be done exactly with the Belief Propa-
gation algorithm. A moment of though should convince
the reader that the distribution of this marginal proba-
bility, conditional on the root being of color x during the
broadcast process, is nothing but the distribution P

(n)

x

obtained after n iterations of (49) from the initial condi-
tion

P
(0)

x (ψ) = δ[ψ − ψx] . (53)

Let us denote P x = limn→∞ P
(n)

x the fixed point solu-
tion of (49) reached for infinitely deep trees. Two situ-
ations can arise: either P x(ψ) = δ(ψ − ψ), or the limit
is non-trivial. In the first case one says that the tree
problem is not reconstructible, as no information on the
color of the root can be deduced from the observation
of far away vertices, in the second it is reconstructible,
as an observer can estimate the color of the root with
a probability larger than from a random guess. As we
have defined the clustering transition in terms of the ex-
istence of a non-trivial solution of the 1RSB equations at
m = 1, which we showed to be equivalent to (49), this
non-reconstructible to reconstructible transition for the
tree problem coincides with the clustering transition.

To quantify the distance between P x and the trivial
fixed-point we define the following overlap,

C(n) =
1

1− 1/q

∫
dψP

(n)

x (ψ)

q∑
x′=1

(ψ(x′)− 1/q)2 , (54)

which is independent of x thanks to the symmetry be-
tween colors, and in which the prefactor ensures the nor-
malization C(0) = 0. The reconstructibility of the tree
problem, i.e. the condition ` > `clust, is then equivalent
to limn→∞ C(n) > 0.

We shall now complete our study of the special case
m = 1 of the 1RSB formalism by studying the rigid-
ity threshold `r(m = 1). We recall that we defined this
transition in terms of the appearance of hard-fields in the
1RSB solution at zero temperature, see in particular (42).
We have thus to compute the probability of an hard-field
ψx under the distribution P , that we shall denote η, or
equivalently the probability qη of ψx under P x (which
does not contain hard-fields of colors x′ 6= x, see (47)).
In terms of the tree reconstruction problem explained
above, the question is now whether an observer can de-
duce the color of the root without any probability of error
(rather than more accurately than a random guess) from
the colors of far away vertices; this is sometimes called a
naive reconstruction algorithm, as the observer only uses
part of the information available by concentrating on the
hard-fields.

To be more precise, let us call qη(n) = P
(n)

x (ψx) and de-
rive from (49) a recursion relation of the form η(n+1) =
f(η(n)). From (16) we see that FRS({ψi→µ}) = ψx if
and only if each of the q − 1 colors x′ distinct from x
is forbidden by at least one adjacent constraint µ; the
latter event means that the K − 1 other variables in µ
are forced to the color x′, i.e. that ψi→µ = ψx

′
. For

concreteness let us assume that x = 1 and denote dx′
the number of adjacent constraints forbidding the color
x′ = 2, . . . , q, and d0 = d − (d2 + · · · + dq) the number
of adjacent constraints that do not forbid any color. As
the various constraints are independent in (49) the vector
(d0, d2, . . . , dq) has a multinomial distribution, the prob-
ability of one constraint µ forbidding one color x′ being
1/(qK−1− 1), the probability of xµ,1 = · · · = xµ,K−1 un-
der p(x|x), multiplied by (qη(n))K−1, the probability of
picking only hard fields from the P

(n)

x′ . Combining these
observations leads easily to the following formula:

qη(n+1) =

∞∑
d=0

rd
∑

d0,d2,...,dq
d0+d2+···+dq=d

d!

d0!d2! . . . dq!

(
1− (q − 1)(qη(n))K−1

qK−1 − 1

)d0 (
(qη(n))K−1

qK−1 − 1

)d2+···+dq
I(d2 > 0) . . . I(dq > 0)

(55)
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To put this recursion under a more tractable form we use
the following identity:

I(d2 > 0) . . . I(dq > 0) = (1− δd2,0) . . . (1− δdq,0)

=

q−1∑
p=0

(−1)p
(
q − 1

p

)
δd2,0 . . . δd2+p−1,0 , (56)

where we made a slight abuse of notation in the second
line, symmetrizing all possible choices of p colors. This
identity is an analytical expression for the combinatorial
inclusion-exclusion principle, expressing the conjunction
of q−1 events in terms of conjuctions of the complemen-
tary events. Inserting (56) in (55) one can perform the
multinomial sums and obtain

η(n+1) =
1

q

∞∑
d=0

rd

q−1∑
p=0

(−1)p
(
q − 1

p

) (
1− p (qη(n))K−1

qK−1 − 1

)d
.

(57)
In the case of a Poissonian degree distribution of average
` this expression can be further simplified into

η(n+1) =
1

q

(
1− exp

[
−` (qη(n))K−1

qK−1 − 1

])q−1

. (58)

This recursion always admits the fixed-point solution η =
0; the rigidity thrshold `r(m = 1) can be computed as the
smallest ` such that a non-trivial fixed-point η > 0 exists.

5. Simplifications at m = 0 and β =∞

We shall now explain the simplifications of the 1RSB
cavity formalism that appears in the limit m→ 0, taken
after the zero-temperature limit β → ∞, and re-obtain
the Survey Propagation (SP) equations first obtained for
the K-SAT problem in [6], then for the q-coloring for
graphs in [17] (the order of the limits in β and m is
slightly different in these papers but the final result is
the same).
a. SP equations and complexity The first point to

notice is that the Parisi parameter m always appear in
quantities of the form Zm0 , that can be thus replaced in
the m → 0 limit by I(Z0 > 0). The probability that
Z0 vanishes turns out to depend only on the intensity of
hard-fields in the 1RSB distributions, which is the key to
the simplifications in the SP formalism.

More precisely, let us first focus on the expression of
Zi→µ0 given in (16). This quantity vanishes if and only
if each of the q colors x is forbidden by at least one con-
straint around it, which in turns means that the K − 1
other variables are forced by an hard-field to be of color
x. With the same kind of reasoning as the one we did to
arrive at (55-57), we see that the normalization Zi→µ1 of
equation (33) becomes in the m = 0 limit:

Zi→µ1 =

q∑
p=1

(−1)p+1

(
q

p

) ∏
ν∈∂i\µ

1− p
∏

j∈∂ν\i
ηj→ν


(59)

Similarly the integral in (33) will give rise to δ[ψi→µ−ψx]
if the q−1 colors distinct from x are forbidden while x is
not (the ill-defined situation with the q colors forbidden
is cancelled out by the factor Z0 in the integral). Putting
together these two observations allows us to project (33)
onto the intensity of hard-fields alone, that obey the re-
cursion:

ηi→µ =

q−1∑
p=0

(−1)p
(
q − 1

p

) ∏
ν∈∂i\µ

1− (p+ 1)
∏

j∈∂ν\i
ηj→ν


q∑
p=1

(−1)p+1

(
q

p

) ∏
ν∈∂i\µ

1− p
∏

j∈∂ν\i
ηj→ν


≡ FSP({ηj→ν}) , (60)

The probability distribution P1RSB(P ) of the generic
1RSB treatment of random hypergraph ensembles can be
simplified into a distribution PSP(η) for the intensity of
hard-fields. From (39) one obtains easily the fixed-point
equation it obeys, namely

PSP(η) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dηj→νPSP(ηj→ν)

δ
[
η −FSP({ηj→ν})

]
. (61)

The m = 0 complexity, whose vanishing will yield the
colorability threshold, can be computed from the solution
of this equation. From (41) we see that Σ(m = 0) =
Φ1RSB(m = 0), because when m = 0 all the clusters
are counted in the same way, irrespectively of their sizes.
Taking the limit m → 0 in the expression (40) of Φ1RSB

gives

Σ(m = 0) =

∞∑
d=0

pd

∫ d∏
µ=1

K−1∏
j=1

dηj→µPSP(ηj→µ) lnZi+∂iSP

− `(K − 1)

K

∫ K∏
i=1

dηiPSP(ηi) lnZµSP , (62)

where the expressions of ZSP are obtained from (37,38)
in the limit m → 0. Analyzing once more the proba-
bilities that Zi+∂i0 and Zµ0 does not vanish because of
contradicting hard-fields yields

Zi+∂iSP ({ηj→µ}) =

q∑
p=1

(−1)p+1

(
q

p

) d∏
µ=1

1− p
K−1∏
j=1

ηj→µ

 , (63)

which is one minus the probability that the q colors are
forbidden by neighboring constraints, and

ZµSP(η1, . . . , ηK) = 1− q
K∏
i=1

ηi , (64)

where one recognizes in
∏
ηi the probability that an hy-

peredge is forced to be monochromatic of one given color.
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b. Stability analysis As its name suggests the 1RSB
version of the cavity method is only the first level of a
hierarchy of refinements. In the p-RSB version there are
p steps of replica symmetry breaking, which means that
the pure states (clusters) introduced at the 1RSB level
are themselves organized in a hierarchical structure with
p levels. The equations at the p-th level admit as special
cases the solutions of the equations at all the p′ < p levels
(we saw above that the RS formalism was recovered as a
trivial solution of the 1RSB equations). In principle the
correct (in the sense of the cavity method) description of
a mean-field model should be sought for in all the levels
of RSB; in simple situations this hierarchy is expected
to collapse on the RS and 1RSB level only, i.e. in such
cases the p-RSB equations do not admit solutions that
do not reduce to the RS or 1RSB ones. Solving the cav-
ity equations with an arbitray level of RSB in a sparse
mean-field model is an extremely challenging task, hence
this program cannot be implemented in practice. One
can however test the local stability of the 1RSB solu-
tion into the larger set of 2RSB solutions, which allows
to assess the existence, or not, of nearby proper 2RSB
solutions which presumably strictly improve the 1RSB
bound (44). This local stability analysis of the 1RSB
solutions for sparse models was introduced in [36, 46],
see also [7, 17, 47] for other presentations of the method.
The 2RSB description of the set of solutions of a CSP in-
troduces clusters of configurations, which are themselves
organized into groups of clusters. As a consequence there
are two ways in which this can be reduced to the 1RSB
description: either there is a single group, or each clus-
ter contains a single configuration. These two reductions
yield two different type of instabilities of the 1RSB so-
lution, termed respectively type I or noise propagation
instability, and type II or bug proliferation instability.
To quantify these phenomena one introduces two posi-
tive numbers λI and λII, in such a way that one type of
perturbation of the 1RSB solution is stable (resp. un-
stable) if the corresponding λ is strictly smaller (resp.
larger) than 1. One finds generically that λI grows with
the density of constraints `, crossing the critical value 1
at a threshold denoted `SP

I , the 1RSB solution being thus
stable for ` < `SP

I . Conversely λII is usually found to be
decreasing with `, the stability regime being thus of the
form ` > `SP

II . We defer the details of the computations
of the λ parameters for the hypergraph coloring problem
to Appendix C, the numerical results being presented in
the next Section.

IV. RESULTS

We present in this Section the results obtained on the
coloring of random hypergraphs through the application
of the cavity method presented above. We shall first
give the numerical values of the various thresholds of the
Erdős-Rényi ensemble in Sec. IVA, then study briefly a
regular case (cf. Sec. IVB), and finally present analytical

asymptotic expansions of the thresholds for large values
of K and/or q in Sec. IVC.

A. The thresholds of the Erdős-Rényi ensembles

Our main results are summarized in Table I in which
we give, for a few small values of K ≥ 3 (the graph case
K = 2 has already been studied in [17, 18]) and q, the
average degree ` at which the various phase transitions
occur in the Erdős-Rényi ensemble, i.e. when the degree
and excess degree distributions pd and rd are Poissonian
laws of average `.

Some of these thresholds have been obtained analyti-
cally or by solving numerically a simple scalar equation:
the upperbound `RS on the colorability threshold and
the Kesten-Stigum bound `RS

stab can be read directly from
(29) and (43), and the rigidity threshold `r(m = 1) is the
smallest ` such that (58) admits a positive fixed-point
solution.

The determination of the other thresholds have re-
quired an heavier numerical work. As explained in
Sec. III B 3 they are defined in terms of the solution of
the 1RSB equations for the values m = 1 and m = 0
of the Parisi parameter. For these two special cases
we have derived above some fixed-point equations where
the unknowns are probability distributions of scalars (or
q-dimensional vectors), see in particular (49) and (61).
These equations can thus be handled numerically by pop-
ulation dynamics algorithms where the unknown prob-
ability distributions are approximated by the empirical
distribution of large samples of random representants,
that are iteratively updated until numerical convergence
(see for instances the appendices of [48] for more details
on algorithmic implementation issues).

To be more specific we shall first consider the last line
of Table I, i.e. the case q = 4, K = 3, and explain the
steps that led us to the numbers displayed in the Ta-
ble. On the left panel of Figure 2 we plot the overlap
C(n) (also known as the point-to-set function) defined in
Eq. (54), as a function of the number of iterations n, for
several values of `. By definition the clustering threshold
is the smallest value of ` such that this function does not
decay to zero at large n, as it marks the appearance of
a non-trivial solution of the 1RSB equations at m = 1.
One can clearly see on this plot that the bifurcation is
here discontinuous: the large n limit of C(n) jumps from
zero to a strictly positive value when ` crosses `clust. Ac-
cordingly we have here `clust < `RS

stab: this transition is
unrelated to the Kesten-Stigum local instability of the
trivial solution. A precursor of the transition when ` ap-
proaches `clust from below is the divergence of the length
of the “plateau” in C(n), that we quantify by n∗(C), the
number of iterations necessary to make the correlation
drop below a specified level C. As illustrated on the
right panel of Fig. 2 we have thus estimated `clust by fit-
ting the divergence of n∗(C) as (` − `clust)

−1/2 close to
the transition (see [49] for a justification of this critical
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`clust `r(m = 1) `cond `col `RS `RS
stab `SPI `SPII

q = 2 K = 3 4.50 (7.37) 4.50 (6.32) 7.23 4.50 6.07 6.16
q = 2 K = 4 16.33 (21.62) 16.33 (19.62) 20.76 16.33 19.35 17.84
q = 2 K = 5 47.4 (52.63) 51.5 52.32 53.70 56.25 59.42 43.9
q = 3 K = 3 25.06 (28.07) 26.2 26.92 27.98 32.00 33.62 23.9
q = 3 K = 4 97.7 105.88 114.3 115.04 116.44 225.33 225.51 90.7
q = 4 K = 3 56.20 61.09 62.7 63.3 64.44 112.50 112.78 52.7

TABLE I: The thresholds of q-coloring of K-uniform Erdős-Rényi random hypergraphs, given in terms of their average degree
`. The definitions of the thresholds are given in the text and summarized in Table II. Bold font numbers indicate significant
instabilities. Numbers given by unstable or invalid ansatz are put between parenthesis: (i) The prediction of the colorability
threshold for the two first rows is hindered by the SP type I instability. (ii) The m = 1 rigidity threshold does not coincide
with the true rigidity threshold for the four first rows because `cond < `r(m = 1): the rigidity should be evaluated at the static
Parisi parameter ms < 1 in those cases.

exponent). We turn now our attention to Figure 3. On
its left part we continue the presentation of the results at
m = 1 initiated in Figure 2; the upper left panel displays
indeed the large n limit of the overlap C(n) for ` > `clust.
The bottom left panel shows the value of the associated
complexity Σ(m = 1): it is strictly positive at the birth
of the non-trivial solution, and decreases with increasing
`. The condensation threshold `cond is deduced from this
data as the point where the complexity vanishes. The
right part of Figure 3 is devoted to the results of the Sur-
vey Propagation equations (i.e. the 1RSB equations at
m = 0). On the upper right panel we plotted the com-
plexity Σ(m = 0), whose vanishing marks the colorability
transition `col, while the lower right panel demonstrates
that this prediction falls into a regime where the SP solu-
tion is locally stable, according to the analysis presented
in Appendix C.

Let us underline the main qualitative features that
arise from the analysis of the data we just presented in
the case q = 4, K = 3: (i) the clustering transition
occurs discontinuously, hence `clust < `RS

stab (ii) at this
point the m = 1 complexity is strictly positive, yielding
`clust < `cond (iii) the SP formalism is stable at ` = `col,
we have thus no reason to discard this prediction as a
conjecture for the exact colorability threshold. We found
the same qualitative features in the analysis of the cases
(q,K) = (2, 5), (3, 3), (3, 4), see the Table for the numer-
ical values which are of course quantitatively different,
and we expect this to be the generic scenario for all larger
values of q andK (i.e. for q = 2 andK ≥ 5, and for q ≥ 3
and K ≥ 3).

There are however two cases which do not correspond
to this generic scenario, namely the bicoloring (q = 2)
of K = 3 and K = 4-uniform hypergraphs, see the first
two lines of Table I. The first aspect in which they dif-
fer is that the SP formalism is unstable (with respect to
the noise propagation instability) for ` = `col: the 1RSB
computation does not give the correct prediction for the
colorability threshold in such a situation, however one
expects on the basis of the bounds of [42, 43, 50] the

1RSB result to be an upperbound on the location of the
colorability transition (in fact one expects this bound to
be strict, assuming that the instability implies the exis-
tence of a proper 2RSB solution that strictly improves
the 1RSB bound of (44)).

They also have a different pattern of transitions in the
solution of their 1RSB equations at m = 1. To demon-
strate this more clearly we present in Figure 4 the over-
lap and complexity at m = 1 for the bicoloring (q = 2)
of K = 3, 4 and 5-uniform ER hypergraphs. The case
K = 3 on the left exhibits a continuous transition, with
`clust = `cond = `RS

stab. The non-trivial solution of the
1RSB equation bifurcates continuously from the trivial
one at the Kesten-Stigum threshold, its complexity is al-
ways negative hence there is no clustered un-condensed
phase; this scenario was also found in the 3-coloring of
ER graphs (K = 2, q = 3) in [18].

The middle panel presents the rather peculiar results
of the K = 4 case. One sees the overlap growing con-
tinuously for ` > `RS

stab = `clust, as in the K = 3 case,
but it undergoes an upward jump for a larger value
of the average degree. More precisely there is a do-
main of coexistence of two distinct stable solutions of the
m = 1 1RSB equations, for ` roughly between 18.5 and
19. We call these two solutions the high and low over-
lap (HO/LO) branches, with two spinodals at which one
of these branches disappear, both spinodals occuring for
some ` > `clust. In this domain of coexistence one obtains
the HO branch by initializing the resolution of (49) with
the initial condition (53), corresponing to the usual tree
reconstruction problem, while the LO solution is reached
from an initialization very close to the unstable trivial
fixed-point δ[ψ−ψ] (that we perturb by a small fraction
of hard-fields), that implements the so-called robust ver-
sion of the reconstruction problem [51]. One can see on
the middle bottom panel of Fig. 4 that the m = 1 com-
plexity of the LO branch is always negative, while a small
part of the HO branch, for ` slightly above its spinodal, is
positive. This phenomenon is puzzling at first sight, and
its interpretation requires a moment of thought. One
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FIG. 2: Left: the overlap (or point-to-set correlation function) C(n) of equation (54) as a function of the number n of iterations,
for the q = 4-coloring of K = 3-uniform ER hypergraphs. The different curves corresponds to the following values of the average
degree `, from left to right : 55.8, 55.85, 55.9, 55.95, 56.0, 56.05, 56.1, 56.125, 56.15, 56.175, 56.1788, 56.1825, 56.19, 56.195,
56.2, 56.3. This last value corresponds to ` > `clust, hence the overlap does not decay to 0. Right: the divergence of the number
n∗(0.5) of iterations after which the overlap drops below 0.5 (black crosses), along with a fit of the form A × (` − `clust)−1/2

(green line) over the adjustable parameters A and `clust, which yields the estimate `clust ≈ 56.2 reported in Table I.

could think that in this regime the HO branch is the
relevant one, hence that a small clustered un-condensed
regime lies between two condensed ones. It turns out
that this interpretation is wrong: in the variational pre-
scription for the computation of the free-entropy recalled
in (44) one should also minimize over the different solu-
tions of the cavity equations in case several do coexist
(the rigorous bounds of [42, 43, 50] actually hold for ar-
bitrary order parameters, not necessarily solutions of the
cavity equations). It is useful at this point to take a look
at the sketch of the function Φ(m)/m presented in Fig-
ure 5, recalling that the slope of this function is given in
terms of the complexity by d

dm (Φ(m)/m) = −Σ(m)/m2.
This should convince the reader that the existence of one
solution of the 1RSB equations with Σ(m = 1) < 0 im-
plies that φ < φRS and that the model is in a condensed
phase, even if other solutions have a positive complexity.
The minimum of Φ(m)/m occurs indeed at a non-trivial
static Parisi parameterms < 1, and most probably on the
branch continuously connected to the solution with the
most negative complexity at m = 1 (if one excludes addi-
tional crossings of the branches as functions of m). The
conclusion of this analysis is that `clust = `cond = `RS

stab in
the case q = 2, K = 4, and that the coexistence of solu-
tions of the 1RSB equations at m = 1 is not thermody-
namically relevant here: the minimum in (44) is reached
at a non-trivial value ms < 1, hence neither of the so-
lutions at m = 1 yields the correct 1RSB prediction for
the entropy. Note that this peculiar bifurcation scenario
remained, as far as we know, unobserved previously, and
that it caused a slight mistake in [27].

Finally the right panel of Figure 4 shows that there
are also coexisting 1RSB solutions for K = 5, but at
variance with the K = 4 case the spinodal of the HO

branch occurs before the Kesten-Stigum transition, as
well as the vanishing of the associated complexity. Hence
in this case `clust < `cond < `RS

stab: from a thermodynamics
point of view we are in the generic case explained above
for q = 4, K = 3, and the existence of the LO branch
bifurcating continuously from the trivial fixed point at
the Kesten-Stigum transition is completely irrelevant.

Let us briefly mention that the coexistence of solu-
tions has much more important consequences in so-called
planted ensembles of inference problems, which will be
discussed in [52]. In this perspective determining the
conditions for the existence of a continuously bifurcating
solution above the Kesten-Stigum transition is an im-
portant question; it is shown in [52] that a large class of
K-wise interacting Ising spin models (including the bi-
coloring of hypergraphs) always exhibit this continuous
transition, as confirmed by the plots of Fig. 4. Moreover
the analysis of dense inference problems that mimick the
large degree limit of the q-coloring of K-uniform hyper-
graphs [53] show that the criterion for the existence (resp.
absence) of the continuous solution is qK − 2K − q < 0
(resp. qK−2K−q > 0). This is agreement with the pre-
vious statement for q = 2, and implies that when K ≥ 3
and q ≥ 3 there should not be a stable solution bifurcat-
ing continuously above Kesten-Stigum (except possibly
in the marginal case q = K = 3 which cannot be decided
from the above criterion). Our numerical simulations
seem to confirm this statement (and to indicate the ab-
sence of continuous solution when q = K = 3 for Poisson
hypergraphs), however we cannot formally exclude from
them the existence of a very short branch with a spinodal
closely above the Kesten-Stigum transition.



17

50 55 60 65 70

`

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

Σ
(m

=
0)

`col

50 60 70 80 90 100 110

`

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ
I,
λ

II

`col `SP
I`SP

II

λI

λII

56 58 60 62 64

`

0.0

0.2

0.4

0.6

0.8

1.0
C

`clust

56 58 60 62 64

`

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

Σ
(m

=
1
)

`cond`clust

FIG. 3: Numerical results for the q = 4-coloring ofK = 3-uniform ER random hypergraphs. Left: Overlap (top) and complexity
(bottom) for the solution of the 1RSB equation at m = 1 as a function of the average degree `. Right: Complexity (top) and
stability criteria (bottom) for the solution at m = 0 (Survey Propagation) as a function of the average degree `. The stability
of the SP solution is assessed by the quantities λI and λII defined in Appendix C, unstable regimes corresponding to λ > 1.

B. A finite m study of the bicoloring of regular
hypergraphs (q = 2, K = 4)

In order to confirm our interpretation of the coexist-
ing solutions we found in the Erdős-Rényi ensemble with
q = 2, K = 4 and average degree between 18.5 and 19
(roughly) we should solve the 1RSB equations for arbi-
trary values of m in [0, 1] to find explicitly the behavior
sketched in Fig. 5. Unfortunately this is a rather dif-
ficult numerical task: apart from the two special cases
m = 0 and m = 1 the solution of the 1RSB equations
for arbitrary m and non-trivial degree distributions have
to be represented by populations of populations, a pre-
cise computation of Φ(m) is thus extremely challenging.
To circumvent this difficulty we turned instead to reg-
ular ensembles, with deterministic degree distributions
pd = δd,` and rd = δd,`−1. In such a case the cavity
equations presented in Sec. III B admit a “translationally

invariant” (sometimes called factorized) solution with

P1RSB(P ) = δ[P − Preg] , (65)

traducing the equivalence of all local neighborhoods in
a regular random graph. The 1RSB equation with arbi-
trary m can thus be handled with a single population of
messages ψ representing the distribution Preg fixed-point
solution of (34). Solving this equation is slightly more
difficult than, for instance, (61), because of the reweight-
ing factor Zm0 . This point can be tackled by representing
Preg as a weighted sample of representants, or by using
resampling techniques, we refer the reader to appendix
E3 of [48] for more details on the implementation issues.

We performed this study for the bicoloring (q = 2) of
K = 4-uniform ` = 19-regular random hypergraphs. It is
indeed for this connectivity that we found the coexistence
of two solutions of the 1RSB equations at m = 1 (and
zero temperature), one with a high value of the over-
lap and a positive complexity, one with a low value of
the overlap and a negative complexity, exactly as in the
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FIG. 5: A sketch of the behavior of Φ(m)/m when two so-
lutions of the 1RSB equations coexist at m = 1, the one
denoted LO (resp. HO) has a negative (resp. positive) com-
plexity, which fixes the sign of the slope in m = 1. The dotted
part of the curves are educated guesses, to be confirmed in
Sec. IVB

.

coexistence region of the ER ensemble. The results pre-
sented in Fig. 6 show the evolution of these two solutions
as m is varied (we used here a small positive temperature
T = 0.1, but the T = 0 case is qualitatively equivalent).
We see that the coexistence phenomenon persists in an
interval of m, roughly for m ∈ [0.35, 1], and that the HO
branch disappears for smaller values of m. More impor-
tantly one sees that the complexity of the HO branch
remains positive for m ≤ 1 (and even increases when
m decreases), while the complexity of the LO branch
changes sign at the static value of the Parisi parame-
ter ms ≈ 0.26. This confirms the sketch of Fig. 5, and
in particular the fact that the solution that minimizes
Φ(m)/m is the continuation of the LO branch (or more
generically of the one with the most negative complexity
at m = 1).

We also studied the same regular ensemble as a func-
tion of temperature, see the results in Fig. 7. Upon low-
ering the temperature a non-trivial solution of the 1RSB
equation at m = 1 appears continuously at the Kesten-
Stigum threshold (B5) with a negative complexity; this
solution persists down to zero temperature and corre-
sponds to the LO branch. The other branch appears dis-
continuously, with a positive complexity, around T = 0.1,
and is always thermodynamically irrelevant according to
our analysis. Lowering the temperature in the regular
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ensemble is thus qualitatively similar to increasing the
average degree at zero temperature in the ER ensemble.

C. Asymptotic expansions

We shall discuss now the asymptotic scalings of the var-
ious thresholds described in this paper when K and/or q
gets large, the details of the computations being deferred
to Appendix D.

The easiest one to begin with is the upperbound on the
colorability threshold provided by the RS cavity method,
or equivalently with the first moment method. As it is
given explicitly (see (29)) it can be expanded as

`RS = KqK−1 ln q − 1

2
K ln q +O

(
K ln q

qK−1

)
. (66)

Here the large parameter in which one expands is qK−1,

hence the expansion is valid when K and/or q gets large,
as in all of these cases qK−1 →∞.

We also considered the rigidity tresholds `r(m), defined
as the smallest degree above which the clusters described
by the 1RSB equations with Parisi parameter m contain
an extensive number of frozen variables, and found them
to behave as

`r(m) = qK−1[ ln(K − 1) + ln(q − 1) (67)
+ ln ln(Kq) + C(m) + o(1)] ,

an expansion valid when q and/or K diverges (see Ap-
pendix D for details). The constant term in the paren-
thesis depends on the Parisi parameter m, we computed
its value in the two special cases m = 1 and m = 0, find-
ing C(m = 1) = 1 and C(m = 0) = 1−ln 2 (in agreement
with previous results for K = 2 [17, 18] and q = 2 [27]).
We also expect the clustering transition `clust to have
the same asymptotic expansion as in (67), with a differ-
ent constant term C; this has been rigorously proven for
coloring of graphs (K = 2) in [19, 23].

The colorability and condensation thresholds have
been found in previous studies [7, 17, 18, 27, 38] to oc-
cur asymptotically very close to the upperbound of the
first moment method. This is also the case here, we have
indeed obtained:

`col = KqK−1 ln q − 1

2
K

(
ln q + 1− 1

q

)
(68)

+ Õ

(
1

qK−1

)
,

`cond = KqK−1 ln q − 1

2
K

(
ln q +

(
1− 1

q

)
2 ln 2

)
(69)

+ Õ

(
1

qK−1

)
.

To be more precise, we have performed these expansions
by taking the limit K → ∞ for a fixed value of q, the
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notation Õ hiding terms which are polynomial in K, the
expansion being naturally organized in inverse powers of
the exponential scale qK−1. However, setting K = 2 in
(68) and (69) we reproduce the results presented for the
large q limit of the K = 2 graph case in [17, 18], provided
one removes the 1/q terms which are indeed comparable
to the neglected terms of order 1/qK−1 = 1/q. We can
thus conjecture these expansions to be valid when K ≥ 3

and/or q gets large, with Õ hiding terms at most poly-
nomial in K and ln q. These results are compatible with
the asymptotic lowerbound on `col presented in [35] where
the large q limit is studied for arbitrary K ≥ 3.

V. DISCUSSION

We summarize some of the main original features of the
hypergraph coloring problem and discuss their potential
consequences:

• Survey Propagation, and therefore the 1RSB solu-
tion at m = 0, is unstable around the colorability
threshold for q = 2, K = 3 and K = 4. While
the instability of the 1RSB solution was observed
in many models (the Sherrington-Kirkpatrick (SK)
model and the satisfiability problem in the unsat-
isfiable phase at low temperature [54, 55] being
two notable examples), it is important to note that
among previously studied random constraint satis-
faction problems we are aware of only one case, the
circular 5-coloring of 3-regular graphs [56], where
1RSB has been found unstable at equilibrium in
the satisfiable phase. The present case of K = 3 or
4 hypergraph bicoloring is another example. In the
other random CSPs where the stability of SP has
been tested, for instance random 3- and 4-SAT [36],
instabilities were found in a part of the satisfiable
phase that did not include the SP prediction of the
satisfiability threshold.
Establishing this example is important for the
following reason: while at least on the physics
level the 1RSB picture is well understood in
sparse constraint satisfaction problems, there is no
known solvable form of full-step-replica-symmetry-
breaking (FRSB) equations for sparse systems
(see [57] for a recent attempt in this direction). The
nature of the structure of solutions in a CSP where
1RSB is not stable is a widely open problem (even
on the physics non-rigorous level). One can con-
jecture this structure to be similar to the FRSB
phase that has been well described and understood
in dense models, such as the SK model [4, 58, 59],
yet this remains to be put on a more solid ground;
having concrete examples on which to study this
phenomenon is thus an important starting point.
An important difference between FRSB in the sat-
isfiable regime of CSPs and in the SK model is the

fact that in the former case the groundstate energy
is known to be exactly zero, while in the latter it is
a non-trivial quantity. This fact might simplify the
analysis, and is reminiscent of the situation in the
mean-field treatment of the hard-sphere model [60]
where a so-called Gardner transition towards FRSB
occurs in the un-jammed (satisfiable) phase.

• We found a coexistence of two 1RSB solutions in
the bicoloring (q = 2) of K ≥ 4-uniform hyper-
graphs. We concluded that this coexistence has
no significant bearings for the thermodynamics of
random ensembles as studied in this paper. How-
ever, we note that this phenomenon is much more
interesting in the perspective of planted inference
problems, as discussed in detail in [52].

• We have obtained the asymptotic expansions of the
rigidity, condensation and coloring thresholds when
the parameters q and/or K diverge. These expan-
sions connect smoothly (at least at the order of the
expansion we have reached) the one previously ob-
tained for q = 2 and K = 2.

Concerning other open directions for future work we
want to note that the version of hypergraph coloring
where each constraint requires no more than γ variables
to have the same color for γ < K − 1 [33] is also inter-
esting and might also bring examples of interesting new
phenomena.

Establishing rigorously the results presented here is an-
other natural direction for future work. In particular
any result for the case of bicoloring with K = 3 and
K = 4 beyond the clustering threshold (equal to the
Kesten-Stigum bound in those cases) would be remark-
able because it might shed some light about the myste-
rious FRSB in sparse constraint satisfaction problems.

We also note that the freezing transition where all solu-
tions acquire frozen variables has been so far determined
analytically only for the bicoloring of random hypergraph
problem [27]. Generalizing the results of [27] to q > 2
should in principle be possible, as a first step towards
the computation of the freezing transition in arbitrary
random CSPs.
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Appendix A: Threshold definitions

We summarize the definitions and notations for the vari-
ous transitions undergone by random ensembles of CSPs in
Table II.

Appendix B: Stability of the RS solution

We shall prove here the Kesten-Stigum bound (43) on the
clustering transition. To do so we shall study the stability
of the trivial RS solution of the 1RSB equations, and show
that for ` > `RS

stab it is locally unstable. The iterations of the
1RSB equations must then flow to another fixed-point, which
completes the reasoning as `clust is defined in terms of the
existence of a non-trivial solution of the 1RSB equations.

To put this reasoning on a quantitative basis let us consider
a distribution P (ψ) in the support of P1RSB(P ), that is close
to the RS distribution δ[ψ − ψ]. To quantify the distance
between P and this Dirac delta it is natural to consider its
first moments,

M(x) =

∫
dψP (ψ)

(
ψ(x)− 1

q

)
, (B1)

V (x, x′) =

∫
dψP (ψ)

(
ψ(x)− 1

q

)(
ψ(x′)− 1

q

)
. (B2)

We note however that the condition (35) that enforces the
symmetry between colors in the 1RSB formalism implies that
M = 0. Hence at the lowest order the closeness of P from the
Dirac measure in ψ can be tracked by the covariance matrix
V (x, x′). The latter has itself to respect the invariance under
color permutations (hence can only depend on whether x = x′

or not), the symmetry V (x, x′) = V (x′, x), and the normal-
ization condition

∑
x V (x, x′) = 0, as the ψ in the support of

P are probability distributions over Q. Consequently V must
be of the form V (x, x′) = v(qδx,x′ − 1), with v a scalar quan-
tity quantifying the width of P . What remains now to assess
is the growth or shrinking of these v’s under the iterations of
the 1RSB equation (39).

To do so suppose that the distributions {Pi→µ} are charac-
terized by variances {vi→µ}, and let us compute the vari-
ance v of P = F1RSB({Pj→ν}). As a first step we con-
sider the RS iteration ψ = FRS({ψj→ν}), with arguments
ψj→ν(x) = 1

q
+ εj→ν(x) close to the uniform distribution ψ.

Expanding (16) linearly in the ε’s yields

ψ(x) =
1

q
+

e−β − 1

qK−1 + (e−β − 1)

d∑
ν=1

K−1∑
j=1

εj→ν(x) , (B3)

where we exploited the normalization condition∑
x εj→ν(x) = 0. Injecting this expansion in (33), and

noticing that the normalization Z1 and the reweighting
factor Zm0 compensates at lowest order in the variance
expansion, we obtain a projection of P = F1RSB({Pj→ν}) in
terms of the variances as

v =

(
e−β − 1

qK−1 + (e−β − 1)

)2 d∑
ν=1

K−1∑
j=1

vj→ν . (B4)

This relation being linear in the v’s one can take its average
with respect to P1RSB and deduce that the instability of the

trivial RS solution under the iterations of (39) will occur if
and only if(

∞∑
d=1

rdd

)
(K − 1)

(
e−β − 1

qK−1 + (e−β − 1)

)2

> 1 . (B5)

For a Poisson distribution of mean `, and at zero temperature,
this gives the criterion stated in (43).

Appendix C: Survey propagation instabilities

In this appendix we give some details on the computation
of the instability parameters λI and λII introduced in Sec-
tion III B 5. As explained there these parameters allow to test
the existence of proper 2RSB solutions of the cavity equations
that are close to the SP solution. As the 2RSB formalism
describes the configuration space with two hierarchical lev-
els in the organization of the pure states there are two ways
to embed the SP description as a degenerate 2RSB solution:
either there is only one group of pure states, or each pure
state contains only one configuration. We shall hence study
the perturbations of the SP equations in the neighborhood of
these two reductions and assess their stability.

1. Type I instability

The stability analysis of SP under noise propagation (type
I instability) is somewhat similar to the linear stability of the
RS solution detailed in Appendix B. We shall indeed replace,
on a given link i→ µ of the factor graph, the SP message ηi→µ
by a narrow distribution Pi→µ of such messages, and check
whether this distribution shrinks or expands upon iteration.
More quantitatively we shall follow the average of Pi→µ and
its covariance, to be denoted Vi→µ. We assume that Pi→µ is
symmetric under the permutation of colors, hence its average
is a vector with q equal elements, while its covariance is a q×q
matrix with only two distinct elements (on the diagonal and
outside).

To obtain the evolution equation of the covariance matrices
we shall first write a generalization of the Survey Propagation
equation (60), without assuming the symmetry under permu-
tation of the q colors. Projecting (33) on the intensity of the
hard fields one finds

ηxi→µ =

∑
S⊂Q\x

(−1)|S|
∏

ν∈∂i\µ

(
1− ξxν→i −

∑
x′∈S

ξx
′
ν→i

)
∑

S⊂Q,|S|≥1

(−1)|S|+1
∏

ν∈∂i\µ

(
1−

∑
x′∈S

ξx
′
ν→i

) (C1)

where

ξxν→i =
∏

j∈∂ν\i

ηxj→ν , (C2)

and we recall that Q = {1, . . . , q} denotes the set of available
colors.

A small perturbation of one incoming message ηyj→ν in (C1)
will induce a small perturbation of the outcoming message
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Transition /
Instability

Notation Definition / Cavity method evidence strategy / Other therminology

Clustering `clust The set of typical solutions splits into exponentially many clusters, at the threshold the
MCMC equilibration time diverges. The 1RSB cavity equations at m = 1 acquire a
non-trivial solution.
Other therminology: dynamical transition (in the context of mean field structural glasses), solv-
ability of the tree reconstruction problem.

RS - linear
stability

`RS
stab The trivial (RS) solution of the 1RSB equations becomes linearly unstable under small

perturbations. This provides an upperbound on `clust.
Other therminology: Kesten-Stigum transition for tree reconstruction, stability of the uninfor-
mative fixed point (for planted problems).

Condensation `cond A finite number of clusters come to dominate the set of solutions. The total entropy
is not equal to the RS entropy anymore and becomes strictly smaller. The complexity
(computed at m = 1) becomes negative.
Other therminology: Kauzmann or ideal glass transition (mean field structural glasses),
information-theoretic limit (for inference of planted models).

Rigidity `r Typical solutions start to have a fraction (bounded away from zero) of frozen variables.
The 1RSB population dynamics (at the static value of the Parisi parameter m = ms)
features some hard fields. The notation `r(m) indicates the transition for a prescribed
value of m. It is much easier to compute it for m = 1 or m = 0 than for arbitrary values
of m. If `r(m = 1) < `cond then `r = `r(m = 1); this happens in the generic scenario for
q,K sufficiently large. `r(m = 1) is an upperbound for `clust.
Other therminology: sometimes unhappily refered to as freezing; `r(m = 1) is the threshold for
naive reconstruction.

SP `SP The SP equation starts to have a non trivial solution. Corresponds to `r(m = 0).

Freezing `f All solutions start to have a fraction bounded away from zero of frozen variables.

Colorability `col There exists no more valid colorings. The frozen variables start to break constraints. The
complexity at m = 0 becomes negative as all clusters disappear.
Other therminology: satisfiability (generic CSPs)

RS `RS The RS entropy reaches zero. This threshold is an upper bound of the true colorability
threshold.
Other therminology: In problems with uniform BP fixed point this is the first moment bound

SP - type I
stability

`SPI Noise propagation: the SP non trivial fixed point is linearly unstable under small pertur-
bations breaking the color symmetry.

SP - type II
stability

`SPII Bug proliferation: changing the color of one frozen variable implies changes at long range

TABLE II: Definitions, notation and principal characteristics of the main transitions undergone by the set of solutions of
random CSPs.

ηxi→µ. To quantify this effect at linear order we define the
q × q matrix T j→νi→µ by[

T j→νi→µ

]
x,y

=
∂ηxi→µ
∂ηyj→ν

∣∣∣∣
sym

, (C3)

where the subscript “sym” means that we evaluate the deriva-

tive at the color-symmetric point with all the incoming and
outcoming η’s independent of their color index. After a short
computation one finds that the matrix elements of T take
only two distinct values, depending on whether x = y or not.
More precisely, the diagonal and off-diagonal elements of T
are, respectively:
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[
T j→νi→µ

]
x,x

=

 ∏
k∈∂ν\i,j

ηk→ν

 (1− ηi→µ)

q−1∑
p=0

(−1)p+1

(
q − 1

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 1)
∏

j∈∂ρ\i

ηj→ρ


q∑
p=1

(−1)p+1

(
q

p

) ∏
ρ∈∂i\µ

1− p
∏

j∈∂ρ\i

ηj→ρ

 , (C4)

[
T j→νi→µ

]
x,y

=

 ∏
k∈∂ν\i,j

ηk→ν




q−2∑
p=0

(−1)p
(
q − 2

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 2)
∏

j∈∂ρ\i

ηj→ρ


q∑
p=1

(−1)p+1

(
q

p

) ∏
ρ∈∂i\µ

1− p
∏

j∈∂ρ\i

ηj→ρ

 (C5)

− ηi→µ

q−1∑
p=0

(−1)p+1

(
q − 1

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 1)
∏

j∈∂ρ\i

ηj→ρ


q∑
p=1

(−1)p+1

(
q

p

) ∏
ρ∈∂i\µ

1− p
∏

j∈∂ρ\i

ηj→ρ



 , (C6)

for all x 6= y. Such a matrix has two distinct eigenvalues,
Tx,x + (q− 1)Tx,y with constant eigenvector, and Tx,x − Tx,y,
q − 1-times degenerate, with eigenspace perpendicular to the
constant vector. In the following we shall only need the lat-

ter eigenvalue, that will be denoted θj→νi→µ . One finds after a
short computation that the above expressions of the matrix
elements imply

θj→νi→µ = −

 ∏
k∈∂ν\i,j

ηk→ν


q−2∑
p=0

(−1)p
(
q − 2

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 1)
∏

j∈∂ρ\i

ηj→ρ


q∑
p=1

(−1)p+1

(
q

p

) ∏
ρ∈∂i\µ

1− p
∏

j∈∂ν\i

ηj→ρ

 . (C7)

We can indeed concentrate on the fluctuations of η that are
perpendicular to the constant vector: the longitudinal one
does not bring out of the SP solution studied in (61), an in-
stability in this direction would be associated to a bifurcation
of (61). Hence V can be parametrized by a single scalar v, as

in Appendix B. Exploiting the computation made above on
the derivative of FSP one sees that the joint distribution of
the average and variance of the Pi→µ evolve under iteration
as

P(n+1)(η, v) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dηj→νdvj→νP(n)(ηj→ν , vj→ν) δ
[
η −FSP({ηj→ν})

]
δ

[
v −

d∑
ν=1

K−1∑
j=1

(θj→ν)2vj→ν

]
. (C8)

The SP solution is type I stable if under these iterations the
v’s shrink to zero, unstable if they grow indefinitely. In prac-
tice one solves this distributional equation via a population
dynamics algorithm, representing P(n)(η, v) by a sample of
pairs {(η(n)i , v

(n)
i )}. After each iteration one divides the v(n+1)

i

by a common constant λ(n)
I in order to keep

∑
i v

(n)
i indepen-

dent of n (note that the evolution of the v’s in (C8) is linear,
which allows such a rescaling). To increase the accuracy we
define λI as the geometric mean of λ(n)

I for many consecutive
iterations, the solution is thus stable if and only if λI < 1.
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2. Type II instability

Let us now turn to the analysis of the second type of in-
stability, and first explain its principle for a generic CSP.
The zero-temperature BP equations for generic CSPs can be
phrased in terms of “warnings” sent by variables to neighbor-
ing constraints, and vice versa. We denote χ the set of possi-
ble warnings (that depends on the specific form of the CSP),
with the special value 0 encoding the absence of warning, and
consider the situation where one variable node has n variable
nodes at distance 1 in the cavity graph. The projection of
the BP equations on the warnings gives rise to two functions:
V(x1, . . . , xn) which is the indicator function of the event “the
n warnings are not contradictory”, i.e. they allow at least one
configuration for the variable considered, and h(x1, . . . , xn),
which is the value of the warning sent by this variable node
(which is well-defined if and only if V(x1, . . . , xn) = 1). The

SP equation relates probability distributions on χ: suppose
that the warning xi is emitted with probability ηxii , indepen-
dently for each of the neighbors. Then the probability law ηx

of the output warning, conditional on the absence of contra-
diction between in-coming warnings, is:

ηx =
1

ZSP

∑
x1,...,xn

ηx11 . . . ηxnn δx,h(x1,...,xn)V(x1, . . . , xn) ,

ZSP =
∑

x1,...,xn

ηx11 . . . ηxnn V(x1, . . . , xn) . (C9)

As a first step towards the type II instability analysis we con-
sider a random process in which a pair (xi, x

′
i) is emitted by

each neighbor, with a joint law denoted ηxi,x
′
i

i ; the joint law
of the pair of outcoming messages, again conditioning on the
absence of contradictions in both copies of the process, reads

ηx,x
′

=

∑
x1,...,xn
x′1,...,x

′
n

η
x1,x

′
1

1 . . . η
xn,x

′
n

n δx,h(x1,...,xn)V(x1, . . . , xn)δx′,h(x′1,...,x′n)V(x′1, . . . , x
′
n)

∑
x1,...,xn
x′1,...,x

′
n

η
x1,x

′
1

1 . . . η
xn,x′n
n V(x1, . . . , xn)V(x′1, . . . , x

′
n)

. (C10)

It is obvious that if the two copies of the incoming messages
are strictly identical, i.e. if ηxi,xii = ηxii δxi,x′i for all i, then
this is also the case for the outcoming pair of warnings, with
a probability ηx given by (C9). The type II instability cor-
responds to a deviation from this strict coupling: we assume
that ηxi,x

′
i

i is very small for xi 6= x′i, and denote this quantity

ε
xi→x′i
i , while for xi = x′i we keep the notation ηxii . Expand-
ing at first order in the εi the equation (C10) one finds that
the output joint law is also close to diagonal, with the small
probabilities εx→x

′
given for x 6= x′ by

εx→x
′

=
1

ZSP

n∑
i=1

∑
x1,...,xn
x′i 6=xi

∏
j 6=i

η
xj
j

 ε
xi→x′i
i δx,h(x1,...,xn)V(x1, . . . , xn)δx′,h(x1,...,x′i,...,xn)V(x1, . . . , x

′
i, . . . , xn) . (C11)

The name “bug proliferation” of this instability comes from
the following algorithmic interpretation: the first copy of the
process x = h(x1, . . . , xn) is considered to be the “correct”
one, while the primed warnings are corrupted by bugs which
occurs with a small probability; the SP solution is unstable if
the probabilities of the bugs grows during the propagation of
the SP equations along the factor graph.

We shall now come back to the hypergraph coloring
problem, and recalls that here the warning alphabet is
{1, . . . , q, 0}, the first q values corresponding to a variable
being forced to a given colour, while 0 is sent if at least two

colours are allowed for this variable. The warnings are propa-
gated first from the variables to the hyperedges, a color being
forbidden by an hyperedge if its K − 1 neighbors are forced
to the same color, then from hyperedges to variables, a vari-
able being forced to a given value if the q − 1 other colors
are forbidden (a contradiction arises if the q colors are forbid-
den). A change in a single warning can be propagated in the
first step if the K − 2 other warnings are forcing to the same
color, and in the second step if q − 2 colors are forbidden by
the hyperedges not affected by the bug. One thus finds the
following rules for the propagation of the bug probabilities,
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εx→0
i→µ =

1

Zi→µSP

∑
ν∈∂i\µ
j∈∂ν\i

∑
y 6=x

q−2∑
p=0

(−1)p
(
q − 2

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 2)
∏

j∈∂ρ\i

ηj→ρ

εy→0
j→ν +

∑
y′ 6=y

εy→y
′

j→ν

 ∏
k∈∂ν\i,j

ηk→ν ,

ε0→xi→µ =
1

Zi→µSP

∑
ν∈∂i\µ
j∈∂ν\i

∑
y 6=x

q−2∑
p=0

(−1)p
(
q − 2

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 2)
∏

j∈∂ρ\i

ηj→ρ

ε0→yj→ν +
∑
y′ 6=y

εy
′→y
j→ν

 ∏
k∈∂ν\i,j

ηk→ν ,

εx→x
′

i→µ = 0 ,

where x, x′, y and y′ denote non-trivial warnings (different
from 0). Note that in the last line we assumed K ≥ 3 (but
the final result given below turns out to be valid also for
K = 2), and that in the first two lines the factor containing
the summation over p is the probability that the constraints
not affected by the bug forbids the q − 2 colors distinct from
x and y. After one iteration one has εx→x

′
= 0, and the

εx→0, ε0→x become independent of colors. One can thus sim-
plify these equations and keep a single ε on each edge, that

evolves according to

εi→µ = (q − 1)
∑

ν∈∂i\µ
j∈∂ν\i

Aj→νi→µεj→ν (C12)

where the (q − 1) comes from the summation over y 6= x in
the above equations, and where we defined

Aj→νi→µ =

 ∏
k∈∂ν\i,j

ηk→ν


q−2∑
p=0

(−1)p
(
q − 2

p

) ∏
ρ∈∂i\µ,ν

1− (p+ 2)
∏

j∈∂ρ\i

ηj→ρ


q∑
p=1

(−1)p+1

(
q

p

) ∏
ρ∈∂i\µ

1− p
∏

j∈∂ν\i

ηj→ρ

 . (C13)

This quantity is very similar to the eigenvalue θj→νi→µ defined
in (C7) during the study of the type I inequality, except for
a global sign and a shift from p+ 1 to p+ 2 in the bracket of
the numerator.

Finally the instability of typical random hypergraphs with
excess degree distribution rd is studied through a population
of couples (η, ε), evolving according to

P(n+1)(η, ε) =

∞∑
d=0

rd

∫ d∏
ν=1

K−1∏
j=1

dηj→νdεj→νP(n)(ηj→ν , εj→ν) δ
[
η −FSP({ηj→ν})

]
δ

[
ε−

d∑
ν=1

K−1∑
j=1

(q − 1)Aj→νεj→ν

]
, (C14)

an equation similar to (C8) used for the study of the type
I instability. As explained in that case we define λII as the
quantity by which the ε should be divided to keep their norm
constant under these iterations.

Appendix D: Details on the asymptotic expansions

In this section we present some more details on the compu-
tations that yield the asymptotic expansion of the thresholds
presented in IVC. In these limits of large K and/or q the
relevant average degree diverges, the Poisson random graph
ensemble with average degree `� 1 and the regular ensemble

with degree ` � 1 can be considered as equivalent at lead-
ing order as the Poisson distribution concentrates around its
average value. Depending on the threshold to be determined
we shall thus use the most convenient ensemble between these
two.

1. Rigidity threshold at m = 1

Consider the equation (58) that gives the probability of a
frozen variable in the 1RSB cavity formalism at m = 1, for a
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Poissonian degree distribution with mean `. We rewrite it as

x = f(x, `) =

(
1− e−`

xK−1

qK−1−1

)q−1

, (D1)

where we defined for simplicity x = qη. The rigidity threshold
`r is defined as the smallest value of ` such that there exists
a strictly positive solution xr of this fixed point equation. As
f behaves as x(K−1)(q−1) around x = 0, the bifurcation at `r
has to occur discontinuously whenever (K − 1)(q − 1) > 1, a
condition that we assume in the following, in which we shall
denote L = (K − 1)(q − 1). Determining `r thus amounts to
solve for `r and xr > 0 solution of{

xr = f(xr, `r)

1 = ∂f
∂x

∣∣
(xr,`r)

. (D2)

These two equations are easily shown to be equivalent to`r = (qK−1 − 1) 1

xK−1
r

ln
(

1

1−x1/(q−1)
r

)
1 = L(1− x−1/(q−1)

r ) ln(1− x1/(q−1)
r )

. (D3)

It now remains to solve for xr in the second equation and
replace in the first one to obtain the asymptotic expansion of
`r. Denoting y = 1/(1 − x1/(q−1)

r ), the second equation fixes
the value of y(L) according to

1 = L
1

y(L)

1

1− 1
y(L)

ln y(L) . (D4)

To obtain the asymptotic expansion of y(L) when L→∞ we
rewrite this as

y(L) = L ln y(L)
1

1− 1
y(L)

(D5)

= L

(
lnL+ ln ln y(L)− ln

(
1− 1

y(L)

))
1

1− 1
y(L)

From this equation one easily sees that y(L) ∼ L lnL, and
then more precisely that

y(L) = L

(
lnL+ ln lnL+O

(
ln lnL

lnL

))
, (D6)

ln y(L) = lnL+ ln lnL+O

(
ln lnL

lnL

)
. (D7)

Coming back to the determination of the asymptotic behavior
of `r we note that

1

xK−1
r

ln

(
1

1− x1/(q−1)
r

)
= ln(y(L))

(
1− 1

y(L)

)−L
(D8)

= lnL+ ln lnL+ 1 +O

(
ln lnL

lnL

)
Inserting this expansion in the expression of `r given in (D3)
yields the formula we stated in (67), noting finally that
ln lnL = ln ln(Kq) + o(1) as soon as L diverges, whenever
K and/or q go to infinity.

2. Rigidity threshold at m = 0

We turn now to the determination of the rigidity treshold
at m = 0, in other words the smallest degree for which the SP
equation (61) admits a non-trivial solution. This computation
turns out to be easier in the regular ensemble, for which PSP

is a Dirac distribution on η solution of

η =

q−1∑
p=0

(−1)p
(
q−1
p

)
(1− (p+ 1)ηK−1)`−1

q∑
p=1

(−1)p+1
(
q
p

)
(1− pηK−1)`−1

, (D9)

as follows from (60). Inspired by the study of the m = 1
rigidity we consider the following scale of degrees,

` = qK−1(lnL+ ln lnL+ `′ + o(1)) , (D10)

with `′ a constant, and assume that the solution η of (D9)
behaves in this case as

η =
1

q

(
1− η′

(K − 1) lnL
+ o

(
1

(K − 1) lnL

))
, (D11)

where η′ is a constant to be determined as a function of `′.
To do so we first note that as L→∞ one has

ηK−1 =
1

qK−1

(
1− η′

lnL
+ o

(
1

lnL

))
. (D12)

Then we compute

(1− pηK−1)`−1 = exp
[
−p(lnL+ ln lnL+ `′ + o(1))(

1− η′

lnL
+ o

(
1

lnL

))]
∼
(

1

L lnL
eη
′−`′

)p
. (D13)

Finally we note that

q−1∑
p=0

(−1)p
(
q−1
p

)
up+1

q∑
p=1

(−1)p+1
(
q
p

)
up

=
u(1− u)q−1

1− (1− u)q
(D14)

=
1

q

(
1− q − 1

2
u+O((qu)2)

)
,

and apply this identity with u the quantity defined in (D13).
This gives us, from (D9) and the ansatz made on η,

1− η′

(K − 1) lnL
∼ 1− q − 1

2

1

L lnL
eη
′−`′ . (D15)

Recalling that L = (K − 1)(q− 1) we see that the ansatz was
indeed self-consistent, and that η′ is determined as a function
of `′ through

η′e−η
′

=
1

2
e−`
′
. (D16)

This equation admits solutions only if `′ > 1− ln 2, hence the
statement on C(m = 0) made in the main text.
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3. Colorability threshold

To compute the asymptotics of the colorability transition
we shall also work in the regular ensemble, we thus have to
find η solution of (D9), compute the complexity

Σ(m = 0) = ln

(
q∑
p=1

(−1)p+1

(
q

p

)
(1− pηK−1)`

)

− `(K − 1)

K
ln
(

1− qηK
)
, (D17)

and determine the ` where it vanishes.
We shall fix some q ≥ 2 and take the limit K → ∞; this

allows to organize the asymptotic expansions with exponential
dependency on K dominating the polynomial ones. We shall
in particular consider degrees on the scale

`(K) = KqK−1 ln q − `1(K)− 1

qK−1
`2(K) (D18)

+ Õ

(
1

(qK−1)2

)
with the `i polynomial in K, as we know that the colorability
threshold coincides, at its leading order, with the upperbound
given by the first moment method. We recall that the nota-
tion Õ hides polynomial terms in K. Here we shall content
ourselves with the first correction `1, but it is not too difficult
to generalize the computation to higher orders. For this scale
of degrees we make the following ansatz on the solution η of
(D9),

η =
1

q

(
1− 1

qK−1
η1 − Õ

(
1

(qK−1)2

))
(D19)

with η1 = Õ(1). One finds after a short computation that

(1−pηK−1)`−1 =

(
1

qK

)p
(D20)(

1 +
1

qK−1

[
p(`1 + 1 +K(K − 1)η1 ln q)− 1

2
p2K ln q

]
+Õ

(
1

(qK−1)2

))
Plugging this result in (D9) we can keep only the terms p =
0, 1 in the numerator, and p = 1, 2 in the denominator. This
shows that the assumption (D19) is indeed self-consistent and
fixes the coefficient η1 = (q − 1)/(2q). Performing the same
kind of expansion on the expression (D17) of the complexity
one finds

Σ(m = 0) =
1

qK−1

[
`1
K
− 1

2

(
1− 1

q
+ ln q

)]
+ Õ

(
1

(qK−1)2

)
.

(D21)

It is then trivial to deduce the value of `1 for which the com-
plexity vanishes at this order, this yields our asymptotic ex-
pansion for `col stated in (68).

4. Condensation threshold

We finally explain our computation of the asymptotic ex-
pansion for the condensation threshold given in (69). We

shall work in the Poissonian ensemble, with average degrees
on the scale (D18), and determine the value of `1 such that
the complexity Σ(m = 1) = Φ(m = 1)− Φ′(m = 1) vanishes.

We can first easily expand Φ(m = 1) = φRS on this scale
to obtain from (28):

Φ(m = 1) =
1

qK−1

[
`1
K
− 1

2
ln q

]
+ Õ

(
1

(qK−1)2

)
. (D22)

The non-trivial part of the computation is the expansion of
Φ′(m = 1). We shall use its expression in terms of the distri-
bution P defined in (45),

Φ′(m = 1) =

∞∑
d=0

pd

∫ d∏
µ=1

K−1∏
i=1

dψi→µP (ψi→µ)
Zi+∂i0

Zi+∂i0

lnZi+∂i0

− `(K − 1)

K

∫ K∏
i=1

dψiP (ψi)
Zµ0
Zµ0

lnZµ0 , (D23)

where pd is the Poissonian distribution of average `, and

Zi+∂i0 =

q∑
x=1

d∏
µ=1

(
1−

K−1∏
i=1

ψi→µ(x)

)
, (D24)

Zi+∂i0 = q

(
1− 1

qK−1

)d
, (D25)

Zµ0 = 1−
q∑
x=1

K∏
i=1

ψi(x) , (D26)

Zµ0 = 1− 1

qK−1
. (D27)

The distribution P is the solution of (46) for the excess law
rd = pd. We decompose as usual the contribution of the hard
fields with

P (ψ) = η

q∑
x=1

δ[ψ − ψx] + (1− qη)P̃ (ψ) . (D28)

The weight η of the hard fields is solution of (58); on this scale
of degrees we let the reader check that it has the asymptotic
expansion (D19), with η1 = (q − 1)/q (notice the factor 2
difference with the expansion at m = 0). The fraction of soft
fields is thus exponentially small in this regime; moreover one
can safely assume that the soft fields are perfectly unbiased,
i.e. that P̃ (ψ) = δ[ψ−ψ]. This is an approximation that does
not change the estimate of the condensation threshold at this
order.

Let us first consider the second line in (D23). We denote
K0, K1, . . . , Kq the number of the random ψi which are
equal, respectively, to ψ, ψ1, . . . , ψq. The distribution of
(K0,K1, . . . ,Kq) is thus multinomial with parameters (K; 1−
qη, η, . . . , η). One can easily compute the value of Zµ0 as a
function of (K0,K1, . . . ,Kq); one finds that it is equal to 1 in
many cases, except when K0 = K (hence K1 = · · · = Kq = 0)
where one has Zµ0 = 1 − 1

qK−1 , or when there is exactly one
color x with Kx > 0, then Zµ0 = 1 − 1

qK−Kx
. We can thus

write
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∫ K∏
i=1

dψiP (ψi)Zµ0 lnZµ0 = (1− qη)K
(

1− 1

qK−1

)
ln

(
1− 1

qK−1

)

+ q

K−1∑
Kx=1

(
K

Kx

)
ηKx(1− qη)K−Kx

(
1− 1

qK−Kx

)
ln

(
1− 1

qK−Kx

)
, (D29)

the only approximation made up to now being the replace-
ment of P̃ by δ[ψ − ψ]. We can then use the scaling (D19)
of η: it implies that the leading behavior of this expression
comes from the term Kx = K − 1 in the sum, which gives

− `(K − 1)

K

∫ K∏
i=1

dψiP (ψi)
Zµ0
Zµ0

lnZµ0 = (D30)

− 1

qK−1
K(K − 1)

(q − 1)2

q
(ln q) ln

(
1− 1

q

)
+ Õ

(
1

(qK−1)2

)
.

The first line of (D23) can be handled in a similar way. We
classify the d constraints in different types according to the
type of messages they receive from their K−1 variables, writ-
ing

d = dm + ds +

q∑
x=1

K−2∑
K0=0

dx,K0 . (D31)

In this expression ds is the number of clauses that receive
K − 1 soft messages, dx,K0 counts those that receive K −
1 − K0 messages of color x and K0 soft messages, and dm
counts all the other situations (i.e. those clauses that receive
hard fields of at least two different colors). As d is a random
Poisson variable and as the type of each constraint is drawn
independently of the others under the integrals in the first line
of (D23), we see that these random degrees {d0, ds, {dx,K0}}
are independent Poisson variables, with averages

E[dm] = `pm , E[ds] = `ps , E[dx,K0 ] = `pK0 . (D32)

The p’s are here the probabilities of the state of one constraint,
from their definition one sees that

ps = (1− qη)K−1 , (D33)

pK0 =

(
K − 1

K0

)
ηK−1−K0(1− qη)K0 , (D34)

pm = 1− ps − q
K−2∑
K0=0

pK0 . (D35)

For a given state of this decomposition one can express Zi+∂i0

as

Zi+∂i0 =

(
1− 1

qK−1

)ds q∑
x=1

I(dx,0 = 0)

K−2∏
K0=1

(
1− 1

qK0

)dx,K0

.

Indeed the edges counted in dx,0 have K − 1 vertices forced
in the color x, hence if dx,0 > 0 the central vertex cannot
take this color. On the other hand if at least two vertices
are forced in at least two distinct colors the central vertex
can take any color indifferently, hence dm does not appear
in this expression. The intermediate situations arise when
exactly one color is forced in some of the K − 1 neighbors in
one constraint: the most numerous these are, the more the
central vertex is biased to avoid this color.

It remains to compute the average of (Z0 lnZ0)/Z0 with
the Poisson distribution of the various d. We first notice
that on this asymptotic scale of degrees Z0 = (1/qK−1)(1 +

Õ(1/qK−1)) and that the fluctuations in the Poisson degree d
can be neglected at the leading order, we can thus take 1/Z0

out of the average. Then we isolate the number n of allowed
colors for the central spin and write

E[Zi+∂i0 lnZi+∂i0 ] =

q∑
n=0

(
q

n

)(
e−`p0

)n (
1− e−`p0

)q−n
E[Z(n) lnZ(n)] (D36)

Z(n) =

(
1− 1

qK−1

)ds n∑
x=1

K−2∏
K0=1

(
1− 1

qK0

)dx,K0

At this point we use the asymptotic behavior of η and realize
that

e−`p0 =
1

q

1

qK−1
+ Õ

(
1

(qK−1)2

)
(D37)

`p1 = K(K − 1)(q − 1) ln q
1

qK−1
+ Õ

(
1

(qK−1)2

)
(D38)

`pr = Õ

(
1

(qK−1)r

)
for r ≥ 2 , (D39)

while `ps is neglectible at all perturbative orders. The leading
orders of (D36) thus comes from the smallest possible values
of n. However Z(n = 0) = 0 does not contribute to the
sum, we have thus to consider n = 1 and n = 2. In the first
case the most probable configuration with ds = d1,1 = · · · =
d1,K−2 = 0 will not contribute: this would yield Z = 1, hence
cancelling the logarithm. The next-to-most probable config-
uration of the random variables is d1,1 = 1, which happens
with probability `p1e−`p1 . From these observations we thus
obtain
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E

[
Zi+∂i0

Zi+∂i0

lnZi+∂i0

]
= qK−1

[
q e−`p0`p1

(
1− 1

q

)
ln

(
1− 1

q

)
+
q(q − 1)

2

(
e−`p0

)2
2 ln 2

]
Õ

(
1

(qK−1)2

)
(D40)

=
1

qK−1

[
K(K − 1)

(q − 1)2

q
(ln q) ln

(
1− 1

q

)
+

(
1− 1

q

)
ln 2

]
+ Õ

(
1

(qK−1)2

)
(D41)

Adding up the contribution from (D30) this yields

Φ′(m = 1) =
1

qK−1

(
1− 1

q

)
ln 2 + Õ

(
1

(qK−1)2

)
, (D42)

hence the leading order of the complexity is

Σ(m = 1) =
1

qK−1

[
`1
K
− 1

2
ln q −

(
1− 1

q

)
ln 2

]
+ Õ

(
1

(qK−1)2

)
,

which completes our justification of (69).
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