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Optimal Errors and Phase Transitions
in High-Dimensional Generalized Linear Models

Jean Barbier†♦?⊗, Florent Krzakala?, Nicolas Macris†, Léo Miolane∗⊗ and Lenka Zdeborová∪

Abstract

Generalized linear models (GLMs) arise in high-dimensional machine learning, statistics, communica-
tions and signal processing. In this paper we analyze GLMs when the data matrix is random, as relevant
in problems such as compressed sensing, error-correcting codes or benchmark models in neural networks.
We evaluate the mutual information (or “free entropy”) from which we deduce the Bayes-optimal estima-
tion and generalization errors. Our analysis applies to the high-dimensional limit where both the number
of samples and the dimension are large and their ratio is �xed. Non-rigorous predictions for the optimal
errors existed for special cases of GLMs, e.g. for the perceptron, in the �eld of statistical physics based on
the so-called replica method. Our present paper rigorously establishes those decades old conjectures and
brings forward their algorithmic interpretation in terms of performance of the generalized approximate
message-passing algorithm. Furthermore, we tightly characterize, for many learning problems, regions of
parameters for which this algorithm achieves the optimal performance, and locate the associated sharp
phase transitions separating learnable and non-learnable regions. We believe that this random version of
GLMs can serve as a challenging benchmark for multi-purpose algorithms.

This paper is divided in two parts that can be read independently: The �rst part (main part) presents
the model and main results, discusses some applications and sketches the main ideas of the proof. The
second part (supplementary informations) is much more detailed and provides more examples as well as
all the proofs.
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Part I

Main part

1 Introduction
As datasets grow larger and more complex, modern data analysis requires solving high-dimensional estim-
ation problems with very many parameters. Developing algorithms up to the task and understanding their
limitations has become a major challenge in computer science, machine learning, statistics, signal processing,
communications and related �elds.

In the present contribution, we address this challenge in the case of generalized linear estimation models
(GLMs) [1,2] where data are generated as follows: Given a n-dimensional vector X∗, hidden to the statistician,
he/she observes instead a m-dimensional vector Y where each component reads

Yµ = ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
, 1 ≤ µ ≤ m, (1)

where Φ is a m × n “measurement” or “data” matrix, the random variables (Aµ) iid∼ PA account for noise
(or randomness) of the model. The model is “linear” because the output Yµ depends on a linear combination
of the data zµ = 1√

n
[ΦX∗]µ = 1√

n

∑n
i=1 ΦµiX

∗
i . The GLM generalizes the ordinary linear regression by

allowing the output function ϕ(z,A) to be non-linear and/or stochastic; in the case of a deterministic model
we simply write ϕ(z). Explicit examples will be given below.

GLMs belong to the realm of supervised learning and arise in a wide variety of scienti�c �elds. In signal
processing one usually observes Yµ given as a linear combination of the signal-elements X∗. In a range of
applications these observations are obtained via a non-linear function ϕ. In optics or X-ray crystallography
one often measures only the amplitude of [ΦX∗]µ, leading to the phase retrieval problem [3]. A real-valued
analog is the problem of sign-retrieval when we only observe |[ΦX∗]µ| [4, 5]. Observations are sometimes
quantized in order to reduce the storage, leading for instance to the problem of 1-bit compressed sensing [6].
In statistics and machine learning, classi�cation is often described via a GLM where the output function ϕ
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is discrete and corresponds to the labels that classify the data-points Φµ [1, 2, 7]. GLMs with non-linear
output functions are also the basic building blocks of each layer of neural networks [8]: ϕ corresponds to the
activation, the rows of the matrix Φ are di�erent data samples while X∗ are the set of synaptic weights to be
learned.

There are two main learning problems in GLMs: i) The estimation task requires, knowing the measured
vector Y and the matrix Φ, to infer the unknown vector X∗; ii) the prediction or generalization task instead
requires, again knowing Y and Φ, to predict accurately new values Ynew when new rows (i.e. data-points) are
added to the matrix Φ.

In the present paper we build a rigorous theory for both these tasks for random instances of the GLM.
In this setting each element Φµi of the matrix is sampled independently from a probability distribution of
zero mean and unit variance, and the unknown vector X∗ has been also created randomly from a probability
distribution P0, with each of its components X∗1 , . . . , X∗n iid∼ P0. Since our main aim is to study the intrinsic
information-theoretic and algorithmic limitations caused by the lack of samples and/or the amplitude of the
noise, we assume throughout this paper that P0 and ϕ are known to the statistician (if they are not the task
can only be harder). Our results are derived in the challenging and interesting high-dimensional limit where
m,n → ∞ while m/n → α a constant. Random instances of GLMs are both practically and theoretically
relevant in many di�erent contexts:

a) In signal processing, GLM estimation with a random matrix Φ has been studied with considerable atten-
tion in the context of compressed sensing [9–11] where an-dimensional sparse signal is recovered fromm < n

noisy measurements. While standard compressed sensing focused on the linear case –where ϕ(z,A) = z+A

with a Gaussian noise A– the generalized case was also widely studied [12, 13], especially for quantized out-
put [14] and 1-bit compressed sensing [6,15] where ϕ(z,A) = sign(z +A), as well as for compressive phase
retrieval when ϕ(z,A) = |z +A| [16].

b) In statistical learning, important activity is dedicated to understand the limitation of learning with data
generated by GLMs, both in the linear case, e.g. in the context of ridge regression or LASSO [17], or with
non-linear probabilistic output, e.g. logistic regression. Random instances were studied in particular in the
context of so-called M-estimators [18–21].

c) In studies of arti�cial neural networks there has been a large amount of works using random instances
of GLMs, with ϕ playing the role of a non-linear activation function. In this context the random GLM was
introduced as the teacher-student setting for the perceptron in the pioneering work of Gardner and Derrida
[22]. Large volume of work followed and is reviewed, e.g., in [23–25]. While initial works concentrated on
a simple activation functions ϕ(z) = sign(z −K) (K is the threshold constant), many other functions were
considered, e.g. in [26–28]. Recently, the study of random instances of neural networks have emerged as a
key ingredient in understanding the performance of deep learning algorithms [29, 30]. Computing mutual
informations in GLMs is also a critical issue in con�rming the information bottleneck scenario of [31, 32]

d) In communications, error-correcting codes that use random constructions are particularly e�cient, as
discussed by Shannon in his seminal paper [33]. Random instances of GLMs describe both the setting of code-
division multiple access –a multi-user access method used in communication technologies [34,35]– as well as
an error correction scheme called sparse superposition codes, that have been shown to achieve the Shannon
capacity for any type of noisy channel [36–40].

Interestingly there is an important gap in the above volume of work. On the one hand there are studies
that rely on the algorithmic performance of the so-called generalized approximate message-passing algorithm
(GAMP) [11, 12, 41]. GAMP is remarkable in that its asymptotic (n,m → ∞, m/n → α) performance can
be analyzed rigorously using the so-called state evolution [42–45]. However, GAMP is not expected to be
always information-theoretically optimal. On the other hand, other results are concerned with the linear case
of the GLM with additive Gaussian noise for which the information-theoretically optimal performance was
established in [46–48] (the methodology of these works unfortunately does not generalize straightforwardly
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to the important non-linear case or to other types of additive noise). All the other works, giving information-
theoretic results for the non-linear case, are based on powerful and sophisticated but non-rigorous techniques
originating in statistical physics of disordered systems, such as the cavity and replica methods [49]. Historic-
ally, the �rst of these non-rigorous, yet correct, results on information-theoretic limitations of learning was
for the perceptron with binary weights and was established using the replica method in [22,50,51], including
a discontinuous phase transition to perfect learning that appears as the ratio between number of samples and
the dimension exceeds α ≈ 1.249.

In the present paper we close the above gap between mathematically rigorous work and conjectures
(some of them several decades old) from statistical mechanics. In particular, we prove that the results for
GLMs stemming from the replica method are indeed correct and imply the optimal value of both the estima-
tion and generalization error. These results are summarized in section “Main results”. The proof is based on
the adaptive interpolation method recently developed in [52] and is of independent interest as it is applicable
to a range of other models, see section “Methods and proofs” and the supplemantary informations (SI). We
compare our information-theoretic results to the performance of the GAMP algorithm and its state evolution
(as reviewed brie�y in section “Main results”). We determine regions of parameters where this algorithm
is or is not information-theoretically optimal. Up to technical assumptions (as speci�ed below), our results
apply to all activation functions ϕ and priors P0, thus unifying a large volume of previous work where many
particular functions have been analyzed on a case by case basis. This generality allows us to provide a uni-
fying understanding of the types of phase transitions and phase diagrams that we can encounter in GLMs,
which is as well of independent interest and we devote section “Application to learning and inference” to its
presentation.

2 Main results
This section summarizes our main results. Their formal statement together with all technical assumptions
and full proofs are provided in section “Methods and proofs” and in the SI.

For the random GLM problem as de�ned in the introduction, the optimal way to estimate the ground-truth
signal/weights X∗ relies on its posterior probability distribution

P (x|Y,Φ) =
1

Z(Y,Φ)

n∏
i=1

P0(xi)

m∏
µ=1

Pout

(
Yµ

∣∣∣ [Φx]µ√
n

)
(2)

where we used the prior P0 of X∗, and introduced the likelihood Pout that an output Yµ is observed given
1√
n

[Φx]µ. Pout(· | z) is the probability density function of ϕ(z,A) (where again the r.v. A ∼ PA accounts for
noise). This paper is concerned with the so-called Bayes-optimal setting where the prior P0 and the likelihood
Pout that appear in the posterior (2) were also used to generate the ground-truth signal X∗ and the labels Y,
using a known random matrix Φ.

A �rst quantity of interest is the free entropy (which is the free energy up to a sign) de�ned as fn(Y,Φ) ≡
1
n lnZ(Y,Φ). The expectation of the free entropy is equal to minus the conditional entropy density of the
observation − 1

nH(Y|Φ), as well as (up to an additive constant) to the mutual information density between
the signal and the observations 1

nI(X∗;Y|Φ).

2.1 The free entropy

Our �rst result is the rigorous determination of the free entropy, in the high-dimensional asymptotic regime
n,m → ∞, m/n → α. For a random matrix Φ with independent entries of zero mean and unit variance,
for output Y that was generated using (1), and under appropriate technical assumptions stated precisely in
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section “Methods and proofs”, the free entropy converges in probability to:

fn(Y,Φ) ≡ 1

n
lnZ(Y,Φ)

P−−−→
n→∞

sup
q∈[0,ρ]

inf
r≥0

fRS(q, r; ρ) (3)

where ρ ≡ EP0 [(X∗)2] and where the potential fRS(q, r; ρ) is

fRS(q, r; ρ) ≡ ψP0(r) + αΨPout(q; ρ)− rq/2 , (4)

ψP0(r) ≡ E
Z0,X0

ln
∫
dP0(x) erxX0+

√
rxZ0−rx2/2 , (5)

ΨPout(q; ρ) ≡ E
V,W,Ỹ0

ln
∫
DwPout(Ỹ0|

√
q V +

√
ρ− q w) , (6)

where Dw = dw exp(−w2/2)/
√

2π is a standard Gaussian measure and the scalar r.v. are independently
sampled from X0 ∼ P0, then V,W,Z0

iid∼ N (0, 1) and Ỹ0 ∼ Pout(·|
√
q V +

√
ρ− qW ). Only the special

linear case with GaussianPout was known rigorously so far [46–48]. Convergence of the averaged free entropy
is precisely stated in Theorem 1; the one in probability follows from concentration results in the SI.

One can check by explicit comparison that for speci�c choices of P0 and Pout the expression (4) is the
replica-symmetric free entropy derived in numerous statistical physics papers (thus the RS in fRS), and in
particular in [22,41,50,51] for ϕ(z) = sign(z). The formula for general P0 and Pout was conjectured based on
the statistical physics derivation in [13]. Establishing (3) closes these old conjectures and yields an important
step towards vindication of the cavity and replica methods for inference, alongside with e.g. [43,53]. We now
discuss the main consequences of this formula.

2.2 Overlap and optimal estimation error

Our second result concerns the overlap between a sample x from the posterior (2) and the ground-truth. We
obtain that as n,m→∞, n/m→ α,

1

n

∣∣x · X∗∣∣ P−−−→
n→∞

q∗ (7)

whenever q∗ = q∗(α) the maximizer in formula (3) is unique. This is the case for almost every α (see the SI).
It is a simple fact of Bayesian inference that, given the measurements Y and the measurement matrix Φ,

the estimator X̂ that minimizes the mean-square error with the ground-truth X∗ is the mean of the posterior
distribution (2), i.e. X̂ = EP (x|Y,Φ)[x]. The minimum mean-square error (MMSE) that is achieved by such
“Bayes-optimal” estimator is deduced, again in the limit n→∞,m/n→ α, as follows:

MMSE =
1

n
E
[∥∥X∗ − X̂

∥∥2
]
→ ρ− q∗ . (8)

We refer to Theorem 2 in section “Main theorems” for rigorous statements. Again the value of the MMSE
was known rigorously so far only for the linear case with Gaussian noise [46–48] (and conjectured for the
non-linear case e.g. in [13]).

2.3 Optimal generalization error

Our third result concerns the prediction error, also called generalization error. Consider again the statistical
model (1). To de�ne the Bayes-optimal generalization error, one is given a new row of the matrix/data point, de-
noted Φnew ∈ Rn (in addition to the data Φ and associated outputs Y used for the learning), and is asked to es-
timate the corresponding output value Ynew. We seek for an estimator Ŷnew = Ŷnew(Y,Φ,Φnew) that achieves
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Egen ≡ minŶnew
E[(Ynew− Ŷnew)2], i.e. that minimizes the MSE with the true Ynew obtained using the ground-

truth weights X∗. Such estimator is again obtained from the posterior: Ŷnew = EPA(a)EP (x|Y,Φ)ϕ( 1√
n
Φnew ·

x, a). Note that this is di�erent than the plug-in estimator Ỹnew = ϕ( 1√
n
Φnew · X̂), which leads to a worse

MSE than Ŷnew. Yet it is often used in practice for deterministic models since most algorithms for generalized
linear regression do not provide the full posterior distribution.

Our result states that the optimal generalization error follows from the I-MMSE theorem [54] applied to
the free entropy (3) (see the SI for the details). The optimal generalization error reads as n → ∞, m/n → α

(q∗ is the maximizer in (3))

Egen→ E
V,a

[
ϕ(
√
ρ V,a)2

]
−E
V

[
E
w,a

[
ϕ(
√
q∗ V +

√
ρ−q∗w,a)

]2]
, (9)

where V,w iid∼ N (0, 1) and a ∼ PA. See again Theorem 2 in the section “Main theorems” for the precise
statement (and Theorems 3 and 4 in the SI).

Note that for labelsY belonging to a discrete set the MSE might not be a suitable loss and we are more often
interested in maximizing the so-called overlap, i.e. the probability of obtaining the correct label. In that case
the Bayes-optimal estimator is computed as the argmax of the posterior marginals, rather than as its mean,
i.e. for discrete labels Ȳnew = argmaxyP(y = ϕ( 1√

n
Φnew ·x, a)) where again x is distributed according to (2),

a ∼ PA. The replica method has been used to compute the optimal generalization error for the perceptron
where ϕ(x) = sign(z) in the pioneering works of [23, 50, 55]. We note that in this special case the plug-in
estimator Ỹnew is actually equal to the optimal one Ȳnew.

A �nal note concerns the issue of over�tting. In optimization-based approaches to learning over�tting
may lead to a generalization error which is too large as compared to the training error. In the Bayes-optimal
setting the estimators are constructed in order not to over�t. This is related to general properties of Bayes-
optimal inference and learning that are called “Nishimori conditions” in the physics literature [13] and that
turn out to be crucial in our proofs.

2.4 Optimality of approximate message-passing

While the three results stated above are of an information-theoretic nature, our fourth one concerns the
performance of an algorithm to solve random instances of GLMs called generalized approximate message-
passing (GAMP) [11–13], which is closely related to the TAP equations developed in statistical physics [41,
56, 57].

The GAMP algorithm can be summarized as follows [11–13]: Given initial estimates x̂0,v0 for the mar-
ginal posterior means and variances of the unknown signal vector X∗ entries, GAMP iterates the following
equations, with g0

µ = 0: 

V t = vt−1

ωt = Φx̂t−1/
√
n− V tgt−1

gtµ = gPout(Yµ, ω
t
µ, V

t) ∀ µ = 1, . . .m

λt = α g2
Pout

(Y,ωt, V t)

Rt = x̂t−1 + (λt)−1Φᵀgt/
√
n

x̂ti = gP0(Rti, λ
t) ∀ i = 1, . . . n

vti = (λt)−1 ∂RgP0(R, λt)|R=Rti
∀ i = 1, . . . n

(here we denote by u the average over all the components of a vector u). The so-called thresholding func-
tion gP0(R, λ) is de�ned as the mean of the normalized distribution ∝ P0(x) exp(−λ(R − x)2/2) and the
output function gPout(Y, ω, V ) is similarly the mean of the normalized distribution (of x) ∝ Pout(Y |ω +
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√
V x) exp(−x2/2).

The heuristic derivation of GAMP in statistical physics [13] suggests via the de�nition of the function
gPout that ω and V are the estimates of the means and average variance of the components of the variable
z = Φx. This, in turn, suggests a GAMP prediction of labels of new data points:

Ŷ GAMP,t
new =

∫
y Pout(y|ωtnew + z

√
V t) dyDz

where ωtnew ≡ 1√
n
Φnew · x̂t−1. Comparing it with the test-set labels, this serves to compute GAMP’s gener-

alization error.
One of the strongest assets of GAMP is that its performance can be tracked via a closed form procedure

known as state evolution (SE), again in the asymptotic limit when n,m → ∞, m/n → α. For proofs of SE
see [43,44] for the linear case, and [45] for the generalized one. In our notations, SE tracks the correlation (or
“overlap”) between the true weights X∗ and their estimate x̂t de�ned as qt ≡ lim

n→∞
1
nX∗ · x̂t via:

qt = 2ψ′P0
(rt) , rt = 2αΨ′Pout

(qt−1; ρ) . (10)

The derivatives are w.r.t. the �rst argument. Similarly for the evolution of GAMP’s generalization error
EGAMP,t

gen (see SI) we get that it is asymptotically, and with high probability, given by the r.h.s. of formula
(9) but with q∗ replaced by qt.

It is a simple algebraic fact that the �xed points of the SE equations (10) correspond to the critical points
of the potential (4). The question of GAMP achieving asymptotically optimal MMSE or generalization error
therefore reduces to the study of the extrema of the two-scalar-variables potential (4). If the SE (10) converges
to the same couple (q, r) as the extremizer (q∗, r∗) of (3) then GAMP is optimal, and if it does not then GAMP is
sub-optimal. In the next section we illustrate this result on several examples, delimiting regions where GAMP
reaches optimality. We note that optimality of AMP-based algorithms in terms of the MMSE on the ground-
truth vector X∗ was proven for several cases where the extremizer q∗ in (3) is unique, see e.g. [58], or in the
linear case of GLM in [47]. Our results allow to complete the characterization of regions of parameters where
the algorithm reaches optimal performance in terms of the estimation and generalization errors. While the
asymptotic value of the Bayes-optimal generalization error was predicted for some cases of Pout and P0 [55],
and TAP-based algorithms were argued to reach this performance in [59, 60], it was not known whether this
error can be achieved provably nor for what exact regions of parameters the algorithm is sub-optimal. Our
present work settles this question thanks to the state evolution of the GAMP algorithm. Interestingly, heuristic
arguments based on the glassy nature of the corresponding probability measure were used to argue that direct
sampling or optimization-based approaches will not be able to match this performance [51]. Whether this
statement is correct goes beyond the scope of the present paper.

3 Application to learning and inference
In this section, we report what our results imply for the information-theoretically optimal errors, and those
reached by the GAMP algorithm for several interesting cases of output functions ϕ and prior distributions
P0. We do not seek to be exhaustive in any way, we simply aim to illustrate the kind of insights about the
GLM that can be obtained from our results. We focus on determination of phase transitions in performance
as we vary parameters of the model, e.g. the number of samples or the sparsity of the signal. We use careful
numerical procedures to compute the expectations required in the formula (4), and check that the reported
results are stable towards the choice of various precision-parameters. In this section we, however, do not seek
rigor in bounding formally the corresponding numerical errors. Many of the codes used in this section are
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Figure 1: Phase diagrams showing boundaries of the region where almost exact recovery is possible (in absence
of noise). Left: The case of sign-less sparse recovery, ϕ(x) = |x| with a Gauss-Bernoulli signal, as a function
of the ratio between number of samples/measurements and the dimension α = m/n, and the fraction of non-
zero components ρ. Evaluating (4) for this case, we �nd that a recovery of the signal is information-theoretically
impossible forα < αIT = ρ. Recovery becomes possible starting fromα > ρ, just as in the canonical compressed
sensing. Algorithmically the sign-less case is much harder. Evaluating (11) we conclude that GAMP is not able
to perform better than a random guess as long as α < αc = 1/2, and the same is true for spectral algorithms,
see [61]. For larger values of α, the inference using GAMP leads to better results than a purely random guess.
GAMP can recover the signal and generalize perfectly only for values of α larger than αAMP (full red line).
The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed sensing.
Center: Analogous to the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible
to perform better than random guessing using GAMP. The dotted red line shows the algorithmic phase transition
when using information only about the non-zero observations. Right: Phase diagram for the symmetric door
output function ϕ(z) = sign(|z| −K) for a Rademacher signal, as a function of α and K . The stability line αc
is depicted in dashed blue, the information-theoretic phase transition to almost exact recovery αIT in black, and
the algorithmic one αAMP in red.

given online in a github repository [62].

3.1 General observations about �xed points and terminology

• Non-informative �xed point and its stability: It is instrumental to analyze under what conditions
q∗ = 0 is the optimizer in (3). Our result (8) about the MMSE implies that if q∗ = 0 then the MMSE is as
large as if we had no samples/measurements at our disposition. A necessary condition for q∗ = 0 is that it is
a �xed point of the state evolution. In turn, a su�cient condition for the state evolution (10) to have such a
�xed point is that i) the output density Pout(y|z) is even in the argument z, and ii) that the prior P0 has zero
mean. A proof of this is given in the SI. In order for q∗ = 0 to be a �xed point to which the state evolution (10)
converges, it needs to be stable. We detail in the SI that under properties i) and ii) this �xed point is stable
when

α

∫
dy

( ∫
Dz(z2 − 1)Pout(y|

√
ρz)
)2∫

DzPout(y|
√
ρz)

< 1 . (11)

In what follows we will denote αc the largest value of α for which the above condition holds. Consequently
the error reachable by the GAMP algorithm is as bad as random guessing for both the estimation and gener-
alization errors as long at α < αc. For α > αc, starting with in�nitesimal positive q the state evolution will
move towards larger q as in [63]. Note that the condition (11) also appears in a recent work [61] as a barrier
for performance of spectral algorithms.

Concerning the information-theoretically optimal error, we will call the phase where MMSE = ρ, i.e. q∗ =
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0 is the extremizer of (4), the non-informative phase. Existing literature sometimes refers to such behavior
as retarded learning phase [64], in the sense that in that case a critical number of samples is required for the
generalization error to be better than random guessing. Below we will evaluate condition (11) explicitly for
several examples.
•Almost exact recovery �xed point: Another �xed point of (10) that is worth our particular attention is

the one corresponding to almost exact recovery, meaning with average error per coordinate going to 0 as n→
∞, where q∗ = ρ. A su�cient and necessary condition for this to be a �xed point is that limq→ρ Ψ′Pout

(q; ρ) =

+∞. This means that the integral of the Fisher information of the output channel diverges:

∫
dydω

e
−ω

2

2ρ

√
2πρ

P ′out(y|ω)2

Pout(y|ω)
= +∞ ,

where P ′out(y|ω) denotes the partial derivative w.r.t. ω. This typically means that the output channel should
be noiseless. For example, for the Gaussian channel with noise variance ∆, the above expression equals 1/∆.
For the probit channel where Pout(y|z) = erfc(−yz/

√
2∆)/2 the above expression at small ∆ is proportional

to 1/
√

∆.
Stability of the almost exact recovery �xed point depends non-trivially on both the properties of the

output channel, and of the prior. Below we give several examples where almost exact recovery either is or
is not possible. In what follow we call the region of parameters for which MMSE = 0, i.e. q∗ = ρ is the
extremizer in (3), the almost exact recovery phase.
•Hard phase: As can be anticipated from the statement of our main algorithmic result, there are regions

of parameters for which the error reached by GAMP is asymptotically equal to the optimal error, and regions
where it is not. We will call hard phase the region of parameters where MMSE < MSEAMP with a strict
inequality. Focusing on the ratio α between the number of samples and the dimensionality, we will denote
αIT the ratio for which the hard phase appears, and αAMP > αIT the ratio for which it disappears. In other
words, the hard phase is an interval (αIT, αAMP), and is associated to a �rst order phase transition in the
Bayes-optimal posterior probability distribution.

It remains a formidable open question of average computational complexity whether in the setting of
this paper (and for problems that are NP-complete in the worst case) there exists an e�cient algorithm that
achieves better performance than GAMP in the hard phase. The authors are not aware of any, and tend to
conjecture that there is none.

3.2 Sensing compressively with non-linear outputs

Existing literature covers in detail the case of noiseless compressed sensing, i.e. when the output function
ϕ(z) = z. Representative sparse prior distribution is the Gauss-Bernoulli (GB) distribution P0 = ρN (0, 1) +

(1 − ρ)δ0, where ρ is the average fraction of non-zeros, which are in this case standard Gaussians. The
phase diagram of this case is well known see e.g. [67, 68]. In noiseless compressed sensing with random i.i.d.
matrices and GB prior, almost exact recovery of the signal is possible for α > αIT = ρ and GAMP recovers
the signal for α > αAMP,CS where αAMP,CS is plotted in Fig. 1 (left) with a dotted red line, thus delimiting
the hard phase of compressed sensing. We note that the Donoho-Tanner phase transition [9] known as the
performance limit of the LASSO `1 regularization is slightly higher than αAMP,CS.
• Sign-less output channel: The phase diagram of noiseless compressed sensing changes intriguingly

when only the absolute value of the output is measured, i.e. when ϕ(z) = |z| instead of ϕ(z) = z. Such an
output channel is reminiscent of the widely studied phase retrieval problem [3] where the signal is complex
valued and only the amplitude is observed. Generalization of our results to the complex case would require
extensions, as done for the algorithmic aspects in [69]. The real-valued case was studied under the name sparse
recovery from quadratic measurements in the literature, e.g. [70] and references therein, when the number of
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Figure 2: Optimal generalization error in three classi�cation problems versus the sample complexityα, the size of
the training set beingαn. The red line is the Bayes-optimal generalization error (9) while the green line shows the
(asymptotic) performances of GAMP as predicted by the state evolution (10). For comparison, we also show the
results of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver. Left: Perceptron,
withϕ(x) = sign(x) and a binary Rademacher signal. While a perfect generalization is information-theoretically
possible starting from αIT ≈ 1.249, the state evolution predicts that GAMP will achieve such perfect prediction
only above αAMP ≈ 1.493. The results of a logistic regression with �ne-tuned regularizations with the software
scikit-learn [65] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli distribution of the weights.
No phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic
regression are very close to optimal. Right: The symmetric door activation rule with parameter K chosen in
order to observe the same number of occurrence of the two classes. In this case there is a sharp phase transition
from as bad as random to perfect generalization at αIT = 1. GAMP identi�es the rule perfectly only starting
from αAMP ≈ 1.566. The non-informative �xed point is stable up to αc = 1.36 (dashed line). Interestingly, this
non linear rule seems very hard to learn for standardly used solvers. Using Keras [66], a neural network with 2
hidden layers was able to learn only approximately the rule, only for considerably larger training set sizes and
much larger number of iterations than GAMP.

non-zero variables grows slower than linearly with the dimension n. Our results give access to the phase
diagram of sparse recovery from quadratic (or equivalently sign-less) measurements, that is presented in
Fig. 1 (left) for the GB prior.

We observe that the information-theoretical phase transition αIT is the same in the sign-less sparse re-
covery as in the canonical linear case, i.e. almost exact recovery is possible whenever α > ρ. However, the
algorithmic phase transition αAMP above which GAMP is able to �nd the sparse signal1 is strikingly larger
for the sign-less case (red line in left panel of Fig. 1). We note that even for a dense signal ρ = 1 almost exact
recovery is algorithmically possible only for α > αAMP(ρ = 1) ≈ 1.128. For very sparse signals, small ρ, the
situation is even more striking because measurement rate of at least α > αc = 1/2 is needed for algorith-
mically tractable almost exact recovery for every ρ. This is in sharp contrast with the canonical compressed
sensing where αAMP,CS → 0 as ρ → 0. The nature of this algorithmic di�culty of GAMP is related to the
symmetry of the output channel thanks to which the non-informative �xed point is stable for α < αc = 1/2.
Summarizing this result in one sentence, tractable compressive sensing is impossible (for α < 1/2) if we have
lost the signs. We remind that this result holds in the setting of the present paper, i.e. in particular when the
sparsity ρ is of constant order. For signals where ρ = O(1) the situation is expected to be di�erent [70].
•ReLU output channel: Another case of output channel that attracted our interest is the recti�ed linear

unit (ReLU), ϕ(z) = max(0, z), as widely used in multi-layer feed-forward neural networks. In the present
single-layer case reconstruction with the ReLU output is interesting mathematically. With GB signals, roughly
half of the measurements are given without noise, but the only information we have about the other half is
its sign. A straightforward upper-bound for both information-theoretic and tractable almost exact recovery
is simply twice as many measurements than needed in the canonical noiseless compressed sensing. It is inter-
esting to ask whether this bound is tight. Results in the present paper imply that for the information-theoretic
performance this bound indeed is tight. However, the phase transition αAMP above which almost exact re-

1We note that in order to break the symmetry that prevents GAMP to �nd the signal in constant number of iteration steps, we
mismatch in�nitesimally the output function ϕ used in the algorithm from the symmetric one used to generate the data. Another
way to deal with this issue is related to a spectral initialization as discussed recently in [61].
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covery is possible with the GAMP algorithm is strictly lower than twice the phase transition of compressed
sensing; both are depicted in the central panel on Fig. 1. This implies that while the negative outputs are not
useful information-theoretically, they do help to achieve better performance algorithmically.

3.3 Perceptron and alike

• Binary and Gauss-Bernoulli perceptron: One of the most studied problems that �ts in the setting
of the present paper is the problem of perceptron [71], where ϕ(z) = sign(z), that has been analyzed for
random patterns Φ in the statistical physics literature, see [23–25] for reviews. We plot in Fig. 2 the optimal
generalization error (9) as follows from our results for the binary perceptron, i.e. weights taken from the
Rademacher distribution P0 = 1

2δ+1 + 1
2δ−1 (left panel), and for the GB perceptron where P0 = ρN (0, 1) +

(1−ρ)δ0 (central panel). The information-theoretically optimal value of the generalization error that we report
and prove agrees with existing predictions obtained by the non-rigorous replica method from [50, 51, 55].
Notably, we see that for the GB case the optimal generalization error decreases smoothly as α increases,
while for the binary case the generalization error has a �rst order (i.e. discontinuous) phase transition towards
perfect generalization at αIT ≈ 1.249 as predicted already in [50]. Our results provide rigorous validation for
these old conjectures.

Furthermore, our results together with recent literature on GAMP provide a refreshing clari�cation of
the algorithmic questions. It is natural to ask for what region of parameters the optimal generalization error
can be provably achieved with e�cient algorithms. This question remained unanswered until now. Indeed,
for the spherical perceptron the optimal generalization error was computed in [55], and argued empirically
on small instances to be achievable with a TAP-like algorithm [59]. The state evolution of GAMP together
with our formulas for the generalization error ((9) for the average optimal one and with qt replacing q∗ in this
formula for GAMP) imply that the optimal generalization error is indeed achievable asymptotically for all α
in the GB perceptron.

For the binary perceptron the optimal generalization error was computed in [50,51]. By comparison with
the state evolution of GAMP we obtain that it can also be asymptotically achieved by GAMP, but this time
only outside of the hard phase (αIT, αAMP) with αAMP ≈ 1.493. The past literature was unclear on the
algorithmic question, Ref. [50] identi�ed the spinodal of the replica-symmetric solution to be at α ≈ 1.493,
but did not attribute it any algorithmic nor physical meaning. Ref. [51] argues that metastable states exist
at least up to αRSB ≈ 1.628 and speculates that Gibbs sampling based algorithms will not be able to reach
perfect generalization before that point [23]. Taking our results into account, the main algorithmic question
that remains open is whether e�cient algorithms can reach perfect generalization for αIT < α < αAMP.
• Symmetric door: Out of interest we explored an example of binary output channel for which Pout(y|z)

is even in the argument z, so that the non-informative �xed point q∗ = 0 exists. Speci�cally we analyzed the
symmetric door channel with ϕ(z) = sign(|z| − K) and Rademacher prior P0. In existing literature such a
perceptron was studied with the replica method in the context of lossy data compression [28]. In Fig. 1 (right
panel) we report the phase diagram in terms of the stability line of the non-informative �xed point αc (below
which GAMP is not better than random guesses), the information-theoretic phase transition towards perfect
generalization αIT, and the phase transition of GAMP to perfect generalization αAMP.

A simple counting lower bound states that for binary outputs and weights X∗i perfect generalization is
not possible for α < 1. Thus it is interesting to notice that the symmetric door channel is able to saturate
this lower-bound for K ≈ 0.6745 for which the probability of yµ = 1 is 1/2. This saturation was already
remarked in [28]. Our results also, however, imply that in that case the perfect generalization will not be
achievable with GAMP (and we conjecture no other e�cient) algorithm unless α > αAMP ≈ 1.566. The
generalization error that GAMP provides for this case is depicted in Fig. 2 (right).
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3.4 Empirical comparison with general purpose algorithms

In this section we argue that many cases that �t into the setting of the present paper could serve as useful
benchmarks for existing machine learning algorithms. We believe that the situation is perhaps similar to
Shannon coding theorems that have driven algorithmic developments in error correcting codes, achieving the
Shannon bound being the primary goal in many works in communications. In machine learning, classi�cation
is a natural task and algorithms are usually benchmarked using open access databases. In current state-of-the-
art applications of machine learning we usually have very little insight about what is the sample complexity,
i.e. how many samples are truly needed so that a given generalization error can be achieved. In our setting
the situation is di�erent: We can present samples (yµ,Φµ) to generic out-of-the-box classi�cation algorithms
and see how their performances compare to the information-theoretic optimal performance and to the one of
the GAMP algorithm that is �ne-tuned to the problem.

In Fig. 2 we present examples of state-of-the-art classi�cation algorithms compared to our results. In
the left and center panels we compare the optimal and GAMP performances to a simple logistic regression,
�ne-tuned by manually optimizing the ridge penalty (for `2 regularization) and LASSO penalty (for a sparsity-
enhancing `1 regularization) with the software scikit-learn [65]. We observe that while for the GB case the
logistic regression is comparable to the performance of GAMP, for binary weights perfect generalization is
not achieved close to the GAMP phase transition.

In the right panel of Fig. 2 we study classi�cation for labels generated by the symmetric door channel.
A general purpose algorithm would not know about the form of the channel. A neural network with only
two hidden units is in principle able to represent the corresponding function (each of the hidden neurons can
learn one of the two planes that separate data in the symmetric door function). A more intriguing question is
whether a more generic multi-layer neural network is indeed able to learn this rule and how many samples
does it need? In the example used in Fig. 2, using the software Keras [66] with a tensor�ow backend, we
show the performance of a network with two hidden layers, ReLU activation and dropout (the details for
this particular run can be found on the github repository [62]). The symmetric door function thus provides a
challenging benchmark that could be used to study how to improve performance of the general purpose multi-
layer neural network classi�ers. In the SI we provide additional examples comparing the optimal performance
to general-purpose algorithms for regression.

4 Methods and proofs
In this section we give the main theorem for the free entropy and main ideas of the proof. An essential
tool is the adaptive interpolation method recently introduced in [52] which is a powerful evolution of the
Guerra and Toninelli interpolation method developed for spin glasses [72]. Reference [52] analyzed simpler
inference problems. In particular the proof for the upper bound in [52] does not apply to GLMs and requires
non-trivial new ingredients. One such new ingredient is to work with a potential fRS(q, r; ρ) depending
on two parameters (q, r) instead of a single one as in [52]. This allows us to use convexity arguments that
are crucial in order to �nish the proof, see the last section “Matching bounds and end of proof”. We stress
that the present analysis heavily relies on properties of Bayes-optimal inference that translate into remarkable
identities between correlation functions (called Nishimori identities by physicists; see SI for their formulation)
valid for all values of parameters. These identities are used in the derivation of (17) and (18) below, which are
two essential steps of our proof. The formula from Theorem 1 relies on the Nishimori identities and does not
hold out of the Bayes-optimal setting.
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4.1 Main theorems

For the proof it is necessary to work with a slightly di�erent model with an additive regularizing Gaussian
noise with variance ∆ ≥ 0:

Yµ = ϕ
( 1√

n
[ΦX∗]µ, Aµ

)
+
√

∆Zµ, 1 ≤ µ ≤ m, (12)

where (Zµ) iid∼ N (0, 1), and (Aµ) iid∼ PA are r.v. that represent the stochastic part of ϕ. It is also instrumental
to think of the measurements as the outputs of a “channel” Yµ ∼ Pout(·| 1√

n
[ΦX∗]µ) with transition density

Pout(y|z) = (2π∆)−1/2
∫
dPA(a) exp{− 1

2∆(y − ϕ(z, a))2} if ∆ > 0, or Pout(y|z) =
∫
dPA(a)1(y =

ϕ(z, a)) else, where 1(·) is the indicator function. Our main theorem holds under the following rather general
hypotheses:

(h1) The prior distribution P0 admits a �nite third moment and has at least two points in its support.
(h2) The sequence (E[|ϕ( 1√

n
[ΦX∗]1,A1)|2+γ ])n≥1 is bounded for some γ > 0.

(h3) The r.v. (Φµi) are independent with zero mean, unit variance and �nite third moment bounded with n.
(h4) For almost-all values of a (w.r.t. the distribution PA), the function x 7→ ϕ(x, a) is continuous almost

everywhere.
(h5) (∆ > 0) or (∆ = 0 and ϕ takes values in N).

In general, when ϕ is continuous the condition ∆ > 0 (but arbitrarily small) is necessary for the existence of
a �nite limit of the free entropy (for particular choices of (ϕ, PA) this might not be needed, e.g. ϕ(z,A) =

z + A with A ∼ N (0, σ2)). We also assume that the kernel Pout is informative, i.e. there exists y such that
Pout(y | ·) is not equal almost everywhere to a constant. If Pout is not informative, it is not di�cult to show
that estimation is then impossible.

We de�ne the set of the critical points of fRS, (4), also called “state evolution �xed points” (as it is clear
from (10)):

Γ≡
{

(q, r) ∈ [0, ρ]× (R+ ∪ {+∞})
∣∣∣ q = 2ψ′P0

(r)

r = 2αΨ′Pout
(q; ρ)

}
.

De�ne fn ≡ Efn(Y,Φ) = 1
nE lnZ(Y,Φ). Then the main theorem of this paper is stated as follows:

Theorem 1 (Replica-symmetric free entropy). Suppose that (h1)-(h2)-(h3)-(h4)-(h5.a) hold. Then, for the GLM
(12),

lim
n→∞

fn = sup
q∈[0,ρ]

inf
r≥0

fRS(q, r) = sup
(q,r)∈Γ

fRS(q, r) .

Moreover, as one can see in the SI, the “sup inf” and the supremum over Γ above are achieved over the
same couples. Under stronger assumptions on P0 and Pout, one can show (see Theorem 6 in the SI) that
fn(Y,Φ) concentrates around its mean fn and thus obtains convergence in probability (3).

An immediate corollary of Theorem 1 is the limiting expression of the mutual information I(X∗;Y|Φ) ≡
E lnP (Y,X∗|Φ)− E ln(P (Y|Φ)P (X∗)) between the observations and the unknown vector:

Corollary 1 (Mutual information). Under the same hypotheses as in Theorem 1, the mut. info. for the GLM (12)
veri�es

lim
n→∞

1
nI(X∗;Y |Φ) = inf

q∈[0,ρ]
sup
r≥0

iRS(q, r) = inf
(q,r)∈Γ

iRS(q, r) ,

iRS(q, r) ≡ αΨPout(ρ; ρ)− αΨPout(q; ρ)− ψP0(r) + rq/2 .

Finally, we gather our main results related to the optimal errors in a single theorem, see the SI for more
details, including results on the optimality of the GAMP algorithm:
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Theorem 2 (Optimal errors). Assume the same hypotheses as in Theorem 1. Then formula (9) for the general-
ization error is true as n,m→∞,m/n→ α whenever the maximizer q∗(α) of (3) is unique, which is the case
for almost every α. If moreover all the moments of P0 are �nite, then formula (7) for the overlap as well as the
following matrix-MMSE formula

1

n2
E
[∥∥X∗X∗ᵀ − EP (x|Y,Φ)[xxᵀ]

∥∥2

F

]
→ ρ2 − q∗(α)2 (13)

are true, where ‖ − ‖F is the Frobenius norm.

There are cases of GLMs (e.g. the sign-less output channel Y = |ΦX∗|/
√
n + Z) where the sign of X∗

simply cannot be estimated (thus the absolute value in (7)). This is why our general theorem is related to an
error metric (13) insensitive to this± symmetry. Nevertheless formula (8) for the signal MSE is formally valid
when there is no such sign symmetry.

4.2 Proof by the adaptive interpolation method

We now give the main ideas behind the proof of Theorem 1. We defer to the SI the details, as well as those of
Corollary 1 and Theorem 2.

A word about notation. The r.v. Y (and also Φ, X∗, A, Z) are called quenched because once the meas-
urements are acquired they are �xed. The expectation w.r.t. all quenched r.v. will be denoted by E without
subscript. In contrast, expectation of annealed variables w.r.t. a posterior distribution at �xed quenched vari-
ables is denoted by Gibbs brackets 〈−〉.

4.2.1 Two scalar inference channels

An important role in the proof is played by two simple scalar inference channels. The free entropy is expressed
in terms of the free entropies of these channels. This “decoupling property” stands at the root of the replica
approach in statistical physics.

The �rst scalar channel is an additive Gaussian channel. Suppose that we observe Y0 =
√
r X0 + Z0

where X0 ∼ P0 and Z0 ∼ N (0, 1) are independent. Consider the inference problem consisting of retrieving
X0 from the observation Y0. The free entropy associated with this channel is the expectation of the logarithm
of the normalization factor of the associated posterior dP (x|Y0), that is given by (5) (up to a constant).

The second scalar channel that appears naturally in the problem is linked to the channel Pout through the
following inference model. Suppose that V,W ∗ iid∼ N (0, 1) where V is known while the inference problem
is to recover the unknown W ∗ from the observation Ỹ0 ∼ Pout(· |

√
q V +

√
ρ− qW ∗) where ρ > 0 and

q ∈ [0, ρ]. The free entropy for this model, again related to the average logarithm of the normalization factor
of the posterior of w given Ỹ0 and V , is exactly (6).

4.2.2 Interpolating estimation problem

To carry on the proof, we introduce an “interpolating estimation problem” that interpolates between the
original problem Yµ ∼ Pout(·| 1√

n
[ΦX∗]µ) at t = 0, t ∈ [0, 1] being the interpolation parameter, and the two

scalar problems described above at t = 1. For t ∈ (0, 1) the interpolating estimation problem is a mixture
of the original and the scalar problems. This interpolation scheme is inspired by the interpolation paths
used by Talagrand to study the perceptron, see [73]. Thanks to a novel ingredient speci�c to the adaptive
interpolation method [52], it allows to obtain in a uni�ed manner a complete proof of the replica formula for
the free entropy and this in the whole phase diagram.

Let qε : [0, 1] → [0, ρ], rε : [0, 1] → [0, rmax], rmax ≡ 2αΨ′Pout
(ρ; ρ), be two continuous “interpol-

ating functions” parametrized by ε = (ε1, ε2) ∈ Bn ≡ [sn, 2sn]2, with (sn)n≥1 ∈ (0, 1/2]N a sequence
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that tends to zero slowly enough. Set R1(t, ε) ≡ ε1 +
∫ t

0 rε(v)dv, R2(t, ε) ≡ ε2 +
∫ t

0 qε(v)dv and de�ne
St,µ = St,µ(X∗,W ∗µ , Vµ,Φ) as

St,µ≡
√

1−t
n [ΦX∗]µ +

√
R2(t, ε)Vµ +

√
ρt−R2(t, ε)+2snW

∗
µ

where (Vµ), (W ∗µ) iid∼ N (0, 1). Consider the following observation channels, with two types of observations
obtained through

{ Yt,µ ∼ Pout( · |St,µ) , for 1 ≤ µ ≤ m,
Y ′t,i =

√
R1(t, ε)X∗i + Z ′i , for 1 ≤ i ≤ n,

(14)

where (Z ′i)
iid∼ N (0, 1). We assume that V = (Vµ)mµ=1 is known and that the inference problem is to recover

both W∗ = (W ∗µ)mµ=1 and X∗ = (X∗i )ni=1 from the “t-dependent” observations Yt = (Yt,µ)mµ=1 and Y′t =

(Y ′t,i)
n
i=1.

We now understand that (R1, R2) and 1− t appearing in the �rst and second set of measurements in (14)
play the role of signal-to-noise ratios (snr) in the interpolating problem, with t giving more and more “power”
to the scalar inference channels when increasing. Here is the �rst crucial ingredient of our interpolation
scheme. In classical interpolations, these snr would all take a trivial form, i.e. be linear in t, but here, the non-
trivial integral dependency in t of (R1, R2) allows for much more �exibility when choosing the interpolation
path. This allows us to actually choose the “optimal interpolation path”. This will become clear below as well
as the role of the “small perturbation” parameters (ε1, ε2).

De�ne uy(x) ≡ lnPout(y|x) and, with a slight abuse of notations, we also de�ne the quantity st,µ =

st,µ(x, wµ, Vµ,Φ) ≡ St,µ(x, wµ, Vµ,Φ), the expression above with X∗,W ∗µ replaced by x, wµ. We introduce
the interpolating HamiltonianHt = Ht(x,w;Yt,Y′t,Φ,V)

Ht≡−
m∑
µ=1

uYt,µ(st,µ) +
1

2

n∑
i=1

(
Y ′t,i −

√
R1(t, ε)xi

)2
and the corresponding (t-dependent) Gibbs bracket 〈−〉t which is the expectation w.r.t. the joint posterior
distribution of (x,w) given the observations Yt,Y′t (and Φ,V), de�ned as

〈L(x,w)〉t ≡
1

Zt(Yt,Y′t,Φ,V)

∫
dP0(x)DwL(x,w)e−Ht ,

for every continuous bounded test function L. Here Zt ≡
∫
dP0(x)Dw exp{−Ht(x,w;Yt,Y′t,Φ,V)} is the

appropriate normalization, Dw is the standard Gaussian measure. Finally we introduce

fn,ε(t) ≡
1

n
E lnZt(Yt,Y′t,Φ,V)

which is the interpolating free entropy. One veri�es that{
fn,ε(0) = fn − 1

2 +O(sn) ,

fn,ε(1) = ψP0(
∫ 1

0 rε(t)dt)−
1
2(1 + ρ

∫ 1
0 rε(t)dt) + m

n ΨPout(
∫ 1

0 qε(t)dt; ρ) +O(sn) ,
(15)

where |O(sn)| ≤ Csn for a constant C > 0. Now comes another crucial property of the interpolating model:
It is such that at t = 0 we recover the original problem and fn,ε(0) = fn − 1/2 + O(sn) (the constant 1/2

comes from the purely noisy measurements of the second channel in (14)), while at t = 1 we have two scalar
inference channels and thus the associated terms ψP0 and ΨPout appear in fn,ε(1). These are precisely the
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terms appearing in the free entropy potential (4).

4.2.3 Entropy variation along the interpolation

From the understanding of the previous section, it is natural to evaluate the variation of entropy along the
interpolation, which allows to “compare” the original and purely scalar models thanks to the identity

fn = fn,ε(1)−
∫ 1

0

dfn,ε(t)

dt
dt+

1

2
+O(sn) . (16)

Then by choosing the optimal interpolation path thanks to the non-trivial snr dependencies in t, we are able
to show the equality between the replica formula and the free entropy fn.

We thus compute the t-derivative of the free entropy (see the SI for the details of this calculation). It is
given by

dfn,ε(t)

dt
=
rε(t)

2
(qε(t)− ρ)− 1

2
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)(
Q− qε(t)

)〉
t
+ On(1) , (17)

where On(1) is a quantity that goes to 0 in the n,m → ∞ limit, uniformly in t, ε, and in the interpolating
functions qε, rε. The overlap is Q = Qn ≡

∑n
i=1X

∗
i xi/n.

We now state a crucial result in an informal way and refer to the SI for precise statements. Formally, the
overlap concentrates around its mean (for all t ∈ [0, 1]), a behaviour called “replica-symmetric” in statistical
physics. In order to make this statement rigorous, one has to include the ε-dependent small perturbation in
(14) which e�ectively adds “side-information” about X∗ (e.g. think of t = 0) without a�ecting the asymptotic
free entropy density. This perturbation forces the overlap to concentrate. We prove that: If for each t the map
Rt : (ε1, ε2) ∈ Bn 7→ (R1(t, ε), R2(t, ε)) ∈ Rt(Bn) is a C1 di�eomorphism whose Jacobian has determinant
greater or equal to 1, then we have for sn = 1

2n
−1/16 (see Proposition 4 of Sec. 4.3 in the SI for the precise

statement)

1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈(
Q− E〈Q〉t

)2〉
t

= O(n−1/8) . (18)

As will be seen below it is possible to choose interpolating functions that satisfy the required condition.

4.2.4 Canceling the remainder

Note from (15) and (4) that the �rst term appearing in (17) is precisely the missing one to obtain the expression
of the potential on the r.h.s. of (16). Thus we would like to “cancel” the Gibbs bracket in (17). This term is
called remainder. In order to prove the replica formula, we have to show that this remainder vanishes: Thanks
to the freedom of choice of interpolation paths (rε, qε), we are able to do so by “adapting” the interpolation.
Thus we would like to choose qε(t) = E 〈Q〉t ≈ Q because of (18). However, E 〈Q〉t is a function of

∫ t
0 qε(v)dv

(and of t, ε and
∫ t

0 rε(v)dv). The equation qε(t) = E 〈Q〉t is therefore a �rst order di�erential equation over
t 7→

∫ t
0 qε(v)dv. Assuming for the moment that this di�erential equation has a solution, the Cauchy-Schwarz

inequality applied to the remainder together with (18) allows to show that the absolute value of this remainder
integrated over (ε, t) ∈ Bn × [0, 1] is O(s2

nn
−1/16). Combining this result with (15) and (16) leads to the

following fundamental sum rule (Proposition 5 of Sec. 4.3 in SI):

fn =
1

s2
n

∫
Bn
dε
{
ψP0(

∫ 1
0 rε(t)dt) + αΨPout(

∫ 1
0 qε(t)dt; ρ)− 1

2

∫ 1
0 rε(t)qε(t)dt

}
+ On(1) . (19)
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4.2.5 Matching bounds and end of proof

We now possess all the necessary tools to �nish the proof of Theorem 1. We �rst prove that limn→∞ fn =

supr≥0 infq∈[0,ρ] fRS(q, r). Then in the SI, we show that i) this is also equal to supq∈[0,ρ] infr≥0 fRS(q, r)

which gives the �rst equality of the theorem; ii) that this sup inf is attained at the supremum of the state
evolution �xed points, which gives the second equality.
• Lower bound: We choose the constant function rε(t) = r for t ∈ [0, 1]. In the SI we show, using the

Cauchy-Lipschitz theorem and the Liouville formula, that the di�erential equation qε(t) = E〈Q〉t posseses
a unique solution and that the map Rt : (ε1, ε2) 7→ (ε1 + rt, ε2 +

∫ t
0 qε(v)dv) is a C1 di�eomorphism with

Jacobian greater than 1 (so (18) is valid). Identity (19) then implies lim infn→∞ fn ≥ infq∈[0,ρ] fRS(q, r) for
all r ∈ [0, rmax]. Thus lim infn→∞ fn ≥ supr∈[0,rmax] infq∈[0,ρ] fRS(q, r). In the SI an easy argument shows
the r.h.s. is in fact equal to supr≥0 infq∈[0,ρ] fRS(q, r).
• Upper bound: We choose the interpolating functions as solutions of the following system of 1st or-

der di�erential equations: rε(t) = 2αΨ′Pout
(E〈Q〉t), qε(t) = E〈Q〉t. Again, applying the Cauchy-Lipschitz

theorem and the Liouville formula we show in the SI that this system admits a unique solution and the map
Rt : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε)) is a C1 di�eomorphism with determinant greater or equal to 1. So with
this choice of interpolating functions (18) is valid and we have (19). We show in the SI (Proposition 18) that
ΨPout(q; ρ) is convex in q and thus g : q ∈ [0, ρ] 7→ 2αΨPout(q; ρ)− rε(t)q is convex too. Since by the di�er-
ential equations rε(t) = 2αΨ′Pout

(qε(t)), the function g must attain its minimum at q = qε(t). By Proposition
17 in the SI ψP0(r) is convex, thus from Jensen and the last remark, the integrand {· · · } in (19) is bounded as

ψP0(
∫ 1

0 rε(t)dt) + αΨPout(
∫ 1

0 qε(t)dt; ρ)− 1
2

∫ 1
0 rε(t)qε(t)dt

≤
∫ 1

0
dt
{
ψP0(rε(t)) + αΨPout(qε(t); ρ)− 1

2rε(t)qε(t)
}

=

∫ 1

0
dt
{
ψP0(rε(t)) + infq∈[0,ρ](αΨPout(q; ρ)− 1

2rε(t)q)
}

≤ sup
r≥0

inf
q∈[0,ρ]

{
ψP0(r) + αΨPout(q; ρ)− 1

2
rq
}

which implies lim supn→∞ fn ≤ supr≥0 infq∈[0,ρ] fRS(q, r).
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Part II

Supplementary informations

1 Setting

1.1 Generalized linear estimation: Problem statement

We give a formal description of the observation model to which our results apply. The generalized linear
model covers both the estimation (or inference) problem and the supervised learning problems (see Sec. 3).

Let n,m ∈ N∗. Let P0 be a probability distribution over R and let (X∗i )ni=1
iid∼ P0 be the components

of a signal vector X∗ (this is also denoted X∗ iid∼ P0). We �x a function ϕ : R × RkA → R and consider
(Aµ)mµ=1

iid∼ PA, where PA is a probability distribution over RkA , kA ∈ N. We acquire m measurements
through

Yµ = ϕ
( 1√

n
[ΦX∗]µ,Aµ

)
+
√

∆Zµ , 1 ≤ µ ≤ m, (20)

where (Zµ)mµ=1
iid∼ N (0, 1) is an additive Gaussian noise, ∆ ≥ 0, and Φ is a m× n measurement matrix with

independent entries that have zero mean and unit variance. The estimation problem is to recover X∗ from the
knowledge of Y = (Yµ)mµ=1, ϕ, Φ, ∆, P0 and PA (the realization of the random stream A itself, if present in
the model, is unknown). We use the notation [ΦX∗]µ =

∑n
i=1 ΦµiX

∗
i . When ϕ(x,A) = ϕ(x) = x we have

a random linear estimation problem, whereas if, say, ϕ(x) = sgn(x) we have a noisy single layer perceptron.
Sec. 3 discusses various examples related to non-linear estimation and supervised learning.

Denote the prior over the signal as dP0(x) =
∏n
i=1 dP0(xi), and similarly dPA(a) =

∏m
µ=1 dPA(aµ). It

is also fruitful to think of the measurements as the outputs of a “channel”,

Yµ ∼ Pout

(
·
∣∣∣ 1√
n

[ΦX∗]µ
)
. (21)

When ∆ > 0 the transition kernelPout admits a transition density with respect to (w.r.t.) Lebesgue’s measure,
given by

Pout(y|x) =
1√

2π∆

∫
dPA(a)e−

1
2∆

(y−ϕ(x,a))2
. (22)

When ∆ = 0, we will only consider discrete channels where ϕ takes values in N2. In that case Pout admits
a transition density with respect the counting measure on N given by (here 1(·) is the indicator function)

Pout(y|x) =

∫
dPA(a)1(y = ϕ(x, a)) . (23)

Note that for deterministic models, A in (20) is absent and thus the associated
∫
dPA(a) integral in (22)-(23)

simply disappears. In fact (20) is sometimes called a “random function representation” of a transition kernel
Pout. Our analysis uses both representations (20) and (21).

Throughout this paper we often adopt the language of statistical mechanics. In particular the random
variables Y (and also Φ, X∗, A, Z) are called quenched variables because once the measurements are acquired
they have a “�xed realization”. An expectation taken w.r.t. all quenched random variables appearing in an

2Notice that this allows to study any channel whose outputs belong to a countable set S by applying a injection u : S → N to
the outputs.
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expression will simply be denoted by E without subscript. Subscripts are only used when the expectation
carries over a subset of random variables appearing in an expression or when some confusion could arise.

A fundamental role is played by the posterior distribution of (the signal) x given the quenched measure-
ments Y (recall that X∗, A and Z are unknown). According to the Bayes formula this posterior is

dP (x|Y,Φ) =
1

Z(Y,Φ)
dP0(x)

m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

[Φx]µ

)
(24)

=
1

Z(Y,Φ)
dP0(x)e−H(x;Y,Φ) (25)

where the Hamiltonian is de�ned as

H(x;Y,Φ) := −
m∑
µ=1

lnPout

(
Yµ

∣∣∣ 1√
n

[Φx]µ

)
(26)

and the partition function (the normalization factor) is de�ned as

Z(Y,Φ) :=

∫
dP0(x)e−H(x;Y,Φ) . (27)

From the point of view of statistical mechanics (25) is a Gibbs distribution and the integration over dP0(x)

in the partition function is best thought as a “sum over annealed or �uctuating degrees of freedom”. Let us
introduce a standard statistical mechanics notation for the expectation w.r.t. the posterior (24), the so called
Gibbs bracket 〈−〉 de�ned as

〈g(x)〉 := E[g(X)|Y,Φ] =

∫
dP (x|Y,Φ)g(x) (28)

for any continuous bounded function g. The main quantity of interest here is the associated averaged free
entropy (or minus the averaged free energy)

fn :=
1

n
E lnZ(Y,Φ) . (29)

It is perhaps useful to stress that Z(Y,Φ) is nothing else than the density of Y conditioned on Φ so we have
the explicit representation (used later on)

fn =
1

n
EΦ

∫
dYZ(Y,Φ) lnZ(Y,Φ)

=
1

n
EΦ

∫
dYdP0(X∗)e−H(X∗;Y,Φ) ln

∫
dP0(x) e−H(x;Y,Φ) , (30)

where dY =
∏m
µ=1 dYµ. Thus fn is minus the conditional entropy −H(Y|Φ)/n of the measurements. One

of the main contributions of this paper is the derivation, thanks to the adaptive interpolation method, of the
thermodynamic limit limn→∞ fn in the “high-dimensional regime”, namely when n,m→∞ while m/n→
α > 0 (α is sometimes referred to as the “measurement rate” or “sampling rate”).

1.2 The teacher-student scenario

We now describe an important conceptual setting, the teacher-student scenario (also called planted model), that
allows to then de�ne the optimal generalization error. We voluntarily employ terms coming from machine
learning instead of the signal processing terminology used until here.
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First the teacher randomly generates a classi�er X∗ ∈ Rn (the signal in the estimation problem) with
X∗ iid∼ P0 and an ensemble of m patterns (row-vectors) Φµ ∈ Rn for µ = 1, . . . ,m such that Φµ

iid∼ N (0, In).
The teacher then chooses a model (ϕ, PA,∆) or equivalently Pout, which are linked through (22)-(23). The
teacher then output labels Yµ ∈ R through (20) or (21) for µ = 1, . . . ,m.

The student is given the distribution P0, the model (ϕ, PA,∆) or equivalently Pout and the training data
composed of the pattern-label pairs {(Yµ; Φµ)}mµ=1 generated by the teacher. His (supervised) learning task
is then to predict the labels associated with new, yet unseen, patterns from all this knowledge.

How does the teacher may evaluate the student’s prediction capabilities? The teacher starts by randomly
generating a new line of the matrix, or pattern, Φnew. Then, still using the same X∗, he generates the as-
sociated new label Ynew ∼ Pout(· |Φnew · X∗/

√
n). He is now ready to evaluate the student generalization

performance. For that purpose, an important quantity is the generalization error (or prediction error). If we
denote Ŷ (Φnew,Φ,Y) the estimator used by the student (which is thus a measurable function of the obser-
vations), the generalization error is de�ned as

Egen(Ŷ ) := E
[(
Ynew − Ŷ (Φnew,Φ,Y)

)2]
. (31)

The optimal generalization error is then de�ned as the minimum of Egen over all estimators Ŷ (Φnew,Φ,Y):

Eopt
gen := min

Ŷ
Egen(Ŷ ) = MMSE(Ynew|Φnew,Φ,Y) = E

[(
Ynew − E[Ynew|Φnew,Φ,Y]

)2]
. (32)

Here, and for the rest of the paper, we de�ne the minimum mean-square error (MMSE) function as follows:
Given two random variables A,B, the MMSE in estimating A given B is de�ned as

MMSE(A|B) := E
[
‖A− E[A|B]‖2

]
, (33)

where E[A|B] is the expectation of A with respect to its posterior given B.
A word about notations: Let us emphasize on the link between the di�erent notations that we use in the

present supplementary material and in the main text. E.g., the expectation w.r.t. to the posterior of Ynew

appearing in (32) can be written equivalently as:

E[Ynew|Φnew,Φ,Y] = EPA(a)EP (x|Φ,Y)ϕ
(Φnew · x√

n
, a
)

= EPA(a)

〈
ϕ
(Φnew · x√

n
, a
)〉

. (34)

To see that, just write:

E[Ynew|Φnew,Φ,Y] :=

∫
dYnew YnewP (Ynew|Φnew,Φ,Y)

=

∫
dYnew YnewPout

(
Ynew

∣∣∣ 1√
n

Φnew · x
)
dP (x|Y,Φ)

=
〈∫

dYnew YnewPout

(
Ynew

∣∣∣ 1√
n

Φnew · x
)〉

=
〈∫

dPA(a)dYnew Ynew
1√

2π∆
e
− 1

2∆

{
Ynew−ϕ

(
1√
n

Φnew·x,a
)}2〉

= EPA(a)

〈
ϕ
( 1√

n
Φnew · x, a

)〉
. (35)

Here we used de�nition (22) for the transition kernel, but using instead (23) would lead to the same identity.
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1.3 Two scalar inference channels

An important role in our proof of the asymptotic expression of the free entropy is played by simple scalar
inference channels. As we will see, the free entropy is expressed in terms of the free entropy of these channels.
This “decoupling property” results from the mean-�eld approach in statistical physics, used through in the
replica method to perform a formal calculation of the free entropy of the model [49,74]. Let us now introduce
these two scalar denoising models.

The �rst one is an additive Gaussian channel. Let r ≥ 0, which plays the role of a signal-to-noise ratio
(snr). Suppose that X0 ∼ P0 and that we observe

Y0 =
√
r X0 + Z0 , (36)

where Z0 ∼ N (0, 1) independently of X0. Consider the inference problem consisting of retrieving X0 from
the observations Y0. The associated posterior distribution is

dP (x|Y0) =
dP0(x)e

√
r Y0x−rx2/2∫

dP0(x)e
√
r Y0x−rx2/2

. (37)

In this expression all the x-independent terms have been simpli�ed between the numerator and the nor-
malization. The free entropy associated with this channel is just the expectation of the logarithm of the
normalization factor

ψP0(r) := E ln

∫
dP0(x)e

√
r Y0x−rx2/2 . (38)

The basic properties of ψP0 are presented in Appendix B.1 .
The second scalar channel that appears naturally in the problem is linked to the transition kernel Pout

through the following inference model. Suppose that V,W ∗ iid∼ N (0, 1) where V is known while the inference
problem is to recover the unknown W ∗ from the following observation

Ỹ0 ∼ Pout

(
· |√q V +

√
ρ− qW ∗

)
, (39)

where ρ > 0, q ∈ [0, ρ]. Notice that the channel (39) is equivalent to Ỹ0 = ϕ(
√
q V +

√
ρ− qW ∗,A) +

√
∆Z

with ∆ ≥ 0 and where (A, Z) ∼ PA ⊗ N (0, 1), independently of V,W ∗. The free entropy for this model,
again related to the normalization of the posterior dP (w|Ỹ0, V ), is

ΨPout(q; ρ) = ΨPout(q) := E ln

∫
DwPout

(
Ỹ0|
√
q V +

√
ρ− q w

)
, (40)

where Dw := dw(2π)−1/2e−w
2/2 is the standard Gaussian measure. In (40) above, Pout denotes either the

transition density with respect to Lebesgue’s measure (given by (22)) in the case ∆ > 0, or the density with
respect to the counting measure over N (given by (23)), in the case of a “discrete” channel (ϕ takes values in N
and ∆ = 0). We prove in Appendix B.2 that this function is convex, di�erentiable and non-decreasing w.r.t.
its �rst argument.
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2 Main results

2.1 Replica-symmetric formula and mutual information

Let us now introduce our �rst main result, a single-letter replica-symmetric formula for the asymptotic free
entropy of model (20), (21). The result holds under the following rather general hypotheses. We will consider
two cases, that is when there is some Gaussian noise (∆ > 0, see (h5.a) below) and the case without Gaussian
noise (∆ = 0, see (h5.b) below):

(h1) The prior distribution P0 admits a �nite third moment and has at least two points in its support.
(h2) There exists γ > 0 such that the sequence (E[|ϕ( 1√

n
[ΦX∗]1,A1)|2+γ ])n≥1 is bounded.

(h3) The random variables (Φµi) are independent with zero mean, unit variance and �nite third moment
that is bounded with n.

(h4) For almost-all values of a ∈ RkA (w.r.t. PA), the function x 7→ ϕ(x, a) is continuous almost everywhere.

We will also assume that one of the two following hypotheses hold:

(h5.a) ∆ > 0.
(h5.b) ∆ = 0 and ϕ takes values in N.

Remark 1. The above hypotheses are here stated using the “random function” representation of (20). In many
cases, it can be useful to state them using the “transition kernel” representation of (21). The hypotheses (h2)
and (h4) are respectively equivalent3 to:

(h2’) There exists γ > 0 such that E[|Y1|2+γ ] remains bounded with n.
(h4’) x ∈ R 7→ Pout(·|x) is continuous almost everywhere for the weak convergence.

Under the above hypothesis (h5.a) (respectively (h5.b)), the transition kernel Pout admits a density with
respect to Lebesgue’s measure on R (resp. the counting measure on N) that will be denoted by Pout(·|x).
We will call the kernel Pout informative if there exists y ∈ R (resp. y ∈ N) such that Pout(y | ·) is not equal
almost everywhere to a constant. If Pout is not informative, it is not di�cult to show that estimation is then
impossible.

Let us de�ne the replica-symmetric potential (or just potential). Call ρ := E[(X∗)2] whereX∗ ∼ P0. Then
the potential is

fRS(q, r; ρ) = fRS(q, r) := ψP0(r) + αΨPout(q; ρ)− rq

2
. (41)

We de�ne also fRS(ρ,+∞) = limr→∞ fRS(ρ, r). From now on denote ψ′P0
(r) and Ψ′Pout

(q) = Ψ′Pout
(q; ρ)

the derivatives of ψP0(r) and ΨPout(q; ρ) w.r.t. their �rst argument. We need also to de�ne the set of the
critical points of fRS:

Γ :=

{
(q, r) ∈ [0, ρ]× (R+ ∪ {+∞})

∣∣∣∣∣ q = 2ψ′P0
(r)

r = 2αΨ′Pout
(q; ρ)

}
, (42)

where, with a slight abuse of notation, we de�neψ′P0
(+∞) = limr→∞ ψ

′
P0

(r) and Ψ′Pout
(ρ) = limq→ρ Ψ′Pout

(q).
These limits are well de�ned by convexity of ψP0 and ΨPout . The elements of Γ are called “�xed points of the
state evolution”. Our �rst main result is

3The implications (h2)⇔ (h2’) and (h4)⇒ (h4’) are obvious. If (h4’) holds one can show, by inverting cumulative distribution
functions, that there exists a function ϕ : R× [0, 1]→ R such that (20) holds for Aµ iid∼ PA = Unif([0, 1]) and that (h4) is veri�ed.
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Theorem 1 (Replica-symmetric formula for the free entropy). Suppose that hypotheses (h1)-(h2)-(h3)-(h4)
hold. Suppose that either hypothesis (h5.a) or (h5.b) holds. Then, for the generalized linear estimationmodel (20), (21)
the thermodynamic limit of the free entropy (29) veri�es

f∞ := lim
n→∞

fn = sup
q∈[0,ρ]

inf
r≥0

fRS(q, r) = sup
(q,r)∈Γ

fRS(q, r) . (43)

Moreover, if Pout is informative, then the “sup inf” and the supremum over Γ in (43) are achieved over the same
couples (q, r).

An immediate corollary of Theorem 1 is the limiting expression of the mutual information between the
signal and the observations. To state the result, we need to introduce two mutual informations associated to
the two scalar channels presented in Sec. 1.3, namely

IP0(r) := I(X0;
√
r X0 + Z0) =

rρ

2
− ψP0(r) (44)

for the channel (36) and
IPout(q) := I(W ∗; Ỹ0|V ) = ΨPout(ρ)−ΨPout(q) (45)

for the channel (39).

Corollary 2 (Single-letter formula for the mutual information). The thermodynamic limit of the mutual in-
formation for model (20), (21) between the observations and the hidden variables veri�es

i∞ := lim
n→∞

1

n
I(X∗;Y |Φ) = inf

q∈[0,ρ]
sup
r≥0

iRS(q, r) = inf
(q,r)∈Γ

iRS(q, r) , (46)

where
iRS(q, r) := IP0(r) + αIPout(q)−

r

2
(ρ− q) . (47)

Proof. This follows from a simple calculation:

1

n
I(X∗;Y|Φ) =

1

n
H(Y|Φ)− 1

n
H(Y|X∗,Φ) = −fn +

1

n
E lnP (Y|X∗,Φ)

= −fn +
m

n
E lnPout(Y1 |Φ1 · X∗/

√
n) . (48)

By the central limit theorem (that we can apply under hypotheses (h1)-(h3)) we have

Sn :=
1√
n

Φ1 · X∗ =
1√
n

n∑
i=1

Φ1,iX
∗
i

(d)−−−→
n→∞

N (0, ρ) .

Now, under the hypotheses (h2)-(h4) and either (h5.a) or (h5.b) it is not di�cult to verify that

E lnPout(Y1 |Φ1 · X∗/
√
n) = E

∫
dY Pout(Y |Sn) lnPout(Y |Sn)

−−−→
n→∞

E
∫
dY Pout(Y |

√
ρ V ) lnPout(Y |

√
ρ V ) = ΨPout(ρ)

where V ∼ N (0, 1). We conclude, using (48):

1

n
I(X∗;Y|Φ) = −fn + αΨPout(ρ) + on(1) (49)

where limn→∞ on(1) = 0.
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The next proposition, proved in Appendix A.2, states that for almost every α > 0 there is one unique
optimizer q∗ in (43) (or equivalently in (46)):

Proposition 1. Assume that the assumptions of Theorem 1 hold and that Pout is informative. De�ne

D∗ :=
{
α > 0

∣∣ (43) (or equivalently (46)) admits a unique optimizer q∗(α)
}
. (50)

the set D∗ is equal to R∗+ minus some countable set. Moreover α 7→ q∗(α) is continuous on D∗.

As an application of Theorem 1 we can compute the free entropy of the “planted perceptron” on the
hypercube and the sphere. This perceptron model has already been studied in physics [22] and more recently
in statistics, where it is known as “one-bit compressed sensing” [6, 15]. The limit of the free entropy follows
from an application of Theorem 1 with ϕ(x) = sgn(x) and P0 = 1

2δ−1 + 1
2δ1 (for the hypercube) or P0 =

N (0, 1) (for the sphere). For µ ∈ {1, . . . ,m} we de�ne

Sµ :=
{
x ∈ Rn

∣∣∣ sgn(x ·Φµ) = sgn(X∗ ·Φµ)
}
. (51)

We will use the notation N (x) = P(Z ≤ x) for Z ∼ N (0, 1). Let Sn be the unit sphere in Rn and µn the
uniform probability measure on Sn.

Corollary 3 (Free entropy of the planted perceptron). Let Z, V iid∼ N (0, 1). We have

1

n
E ln

(
#

m⋂
µ=1

Sµ ∩ {−1, 1}n
)

−−−→
n→∞

ln(2) + sup
q∈[0,1)

inf
r≥0

{
E ln cosh(

√
rZ + r) + 2αE

[
N
( √q V
√

1− q

)
lnN

( √q V
√

1− q

)]
− r(q + 1)

2

}
, (52)

1

n
E lnµn

( m⋂
µ=1

Sµ ∩ Sn
)

−−−→
n→∞

sup
q∈[0,1)

{1

2
ln(1− q) + 2αE

[
N
( √q V
√

1− q

)
lnN

( √q V
√

1− q

)]
+
q

2

}
. (53)

2.2 Optimal reconstruction (or estimation) error

We �rst consider the problem of estimatingX∗ givenY and Φ. The following theorem states that the optimizer
q∗(α) of the replica-symmetric formula (43) gives the asymptotic correlation between the planted solution
X∗ and a typical sample from the posterior distribution P (· |Y,Φ):

Theorem 2 (Limit of the overlap). Assume that all the moments of P0 are �nite and that Pout is informative.
Assume that (h1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all α ∈ D∗,

1

n

∣∣x · X∗∣∣ =
1

n

∣∣∣ n∑
i=1

xiX
∗
i

∣∣∣ −−−→
n→∞

q∗(α) , in probability, (54)

where x = (x1, . . . , xn) is sampled from the posterior distribution of the signal P (· |Y,Φ) given by (24), inde-
pendently of everything else.

Theorem 2 is proved in Sec. 5.3. Notice that in all generality it is only possible to estimate X∗ up to its
sign (think for instance to Y = |ΦX∗|/

√
n +
√

∆Z), this is why the absolute values in (54) are needed. For
this reason, the usual MSE on X∗

mse(X̂) :=
1

n
E
[∥∥X∗ − X̂(Y,Φ)‖2

]
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is not (in all generality) an appropriate error metric. Indeed, in the case where Y = |ΦX∗|/
√
n +
√

∆Z,
where Φ,X∗,Z have all independent N (0, 1) entries, then E[X∗|Y,Φ] = 0 and minX̂ mse(X̂) = 1. This
means that the minimum mean-square error is always equal to the variance and thus, in this sense, it is never
possible to estimate the signal better than trivial estimators. For this reason, the appropriate error metric for
the reconstruction problem is the MSE on X∗X∗ᵀ. From Theorem 2 one deduces the limit of the MMSE in
estimating X∗X∗ᵀ:

Corollary 4 (Matrix minimum mean-square error). Under the same conditions as in Theorem 2, for all α ∈ D∗

we have

MMSEn :=
1

n2
E
[∥∥X∗X∗ᵀ − E[X∗X∗ᵀ|Y,Φ]

∥∥2

F

]
−−−→
n→∞

ρ2 − q∗(α)2 , (55)

where ‖ − ‖F denotes the Frobenius norm.

2.3 Optimal generalization (or prediction) error

In order to express the optimal generalization error we introduce the following function (recall that Ỹ0 is
drawn from the channel (39)):

E(q) := MMSE(Ỹ0|V ) = E
[(
Ỹ0 − E[Ỹ0|V ]

)2] (56)

= EV
∫
dY Y 2Pout(Y |

√
ρ V )− EV

[
EW
[ ∫

dY Y Pout(Y |
√
q V +

√
ρ− qW )

]2]
(57)

= E
[
ϕ(
√
ρ V,A)2

]
− EV

[
EW,A

[
ϕ(
√
q V +

√
ρ− qW,A)

]2]
+ ∆ (58)

where V,W iid∼ N (0, 1), A ∼ PA are independent random variables, EW,A denotes the expectation w.r.t. W
and A only and EW [−]2 = (EW [−])2. We recall ρ := E[(X∗)2] with X∗ ∼ P0. With a slight abuse of
notation

∫
dY denotes in (57) either the integration w.r.t. Lebesgue’s measure on R in the case ∆ > 0 or the

integration w.r.t. the counting measure on N (in the case ∆ = 0).
Recall the teacher-student setting of Sec. 1.2: The generalization error is related to the estimation of a new

output Ynew ∼ Pout(· |Φnew · X∗/
√
n) where Φnew is a new row of the matrix, and is de�ned by (32).

Theorem 3 (Optimal generalization error). Assume that Pout is informative, that (h1)-(h2)-(h3)-(h4) hold and
that either (h5.a) or (h5.b) hold. Then for all α ∈ D∗ we have

Eopt
gen(α) −−−→

n→∞
E(q∗(α)) (59)

where q∗(α) is the optimizer of the replica-symmetric formula (43), see Proposition 1.

Theorem 3 follows from a more general result, that we state now. Let f : R → R and consider the
generalized optimal generalization error

Ef,n(α) := MMSE(f(Ynew)|Φnew,Y,Φ) = E
[(
f(Ynew)− E[f(Ynew)|Φnew,Y,Φ]

)2] (60)

which is the minimum mean-square error on f(Ynew). In particular Eopt
gen(α) = Ef,n(α) for f : x 7→ x. We

de�ne also

Ef (q) := MMSE(f(Ỹ0)|V ) = E
[(
f(Ỹ0)− E[f(Ỹ0)|V ]

)2] (61)

= E
[
f
(
ϕ(
√
ρ V,A) +

√
∆Z

)2]− EV
[
EW,Z,A

[
f
(
ϕ(
√
q V +

√
ρ− qW,A) +

√
∆Z

)]2]
, (62)

where Ỹ0 is the output of the second scalar channel (39).
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Theorem 4 (Generalized optimal generalization error). Let f : R → R be a measurable function such that
E[|f(Y1)|2+γ ] remains bounded as n grows, for some γ > 0. Assume that Pout is informative and that (h1)-(h2)-
(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all α ∈ D∗ we have

Ef,n(α) −−−→
n→∞

Ef (q∗(α)) (63)

where q∗(α) is the optimizer of the replica-symmetric formula (43), see Proposition 1.

Theorem 4 is proved in Sec. 5.1.

2.4 Optimality of the generalized approximate message-passing algorithm

2.4.1 The generalized approximate message-passing algorithm

While the main results presented until now are information-theoretic, our next one concerns the performance
of a popular algorithm to solve random instances of generalized linear problems, called generalized approx-
imate message-passing (GAMP). We shall not re-derive its properties here, and instead refer to the original
papers for details. This approach has a long history, especially in statistical physics [41, 56, 57, 75], error
correcting codes [76], and graphical models [77]. For a modern derivation in the context of linear models,
see [11,68,78]. The case of generalized linear models was discussed by Rangan in [12], and has been used for
classi�cation purpose in [79].

We �rst need to de�ne two so-called threshold functions that are associated to the two scalar channels (36)
and (39). The �rst one is the posterior mean of the signal in channel (36) with signal-to-noise ratio r:

gP0(y, r) := E[X0|Y0 = y] . (64)

The second one is the posterior mean of W ∗ in channel (39) with “noise level” η = ρ− q:

gPout(ỹ, v, η) := E[W ∗|Ỹ0 = ỹ,
√
q V = v] . (65)

These functions act componentwise when applied to vectors.
Given initial estimates (x̂0,v0) for the means and variances of the elements of the signal vector X∗, GAMP

takes as input the observation vector Y and then iterates the following equations with initialization g0
µ = 0 for

all µ = 1, . . . ,m (we denote by u the average over all the components of the vector u and Φᵀ is the transpose
of the matrix Φ): From t = 1 until convergence,

V t = vt−1

ωt = Φx̂t−1/
√
n− V tgt−1

gtµ = gPout(Yµ, ω
t
µ, V

t) ∀ µ = 1, . . .m

λt = α g2
Pout

(Y,ωt, V t)

Rt = x̂t−1 + (λt)−1Φᵀgt/
√
n

x̂ti = gP0(Rti, λ
t) ∀ i = 1, . . . n

vti = (λt)−1 ∂RgP0(R, λt)|R=Rti
∀ i = 1, . . . n

(66)

One of the strongest asset of GAMP is that its performance can be tracked rigorously in the limit n,m→∞
while m/n → α via a procedure known as state evolution (SE), see [43, 44] for the linear case, and [12, 45]
for the generalized one. In our notations, state evolution tracks the asymptotic value of the overlap between
the true hidden value X∗ and its estimate by GAMP x̂t de�ned as qt := limn→∞X∗ · x̂t/n (that is related to
the asymptotic mean-square error (MSE) Et between X∗ and its estimate x̂t by Et = ρ− qt, where recall that
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ρ := E[(X∗)2] with X∗ ∼ P0) via: {
qt+1 = 2ψ′P0

(rt) ,

rt = 2αΨ′Pout
(qt; ρ) .

(67)

From Theorem 1 we realize that the �xed points of these equations correspond to the critical points of the
asymptotic free entropy in (43). In fact, in the replica heuristic, the optimizer q∗ of the potential is conjectured
to give the optimal value of the overlap, a fact that was proven for the linear channel [46–48]. We will see in
Sec. 3 that qt −−−→

t→∞
q∗ for a large set of parameters.

2.4.2 Estimation and generalization error of GAMP

Perhaps more surprisingly, one can use GAMP in the teacher-student scenario described in Sec. 1.2 in order
to provide an estimation of a new output Ynew ∼ Pout(· |Φnew · X∗/

√
n) where Φnew is a new row of the

matrix. As x̂t is the GAMP estimate of the posterior expectation of X∗, with estimated variance vt, the
natural heuristic is to consider for the posterior probability distribution of the random variable Φnew ·X∗/

√
n

a Gaussian with mean Φnew · x̂t−1/
√
n and variance V t = Et = ρ− qt (the fact that the variance and MSE

are equal follows from the Nishimori identity of Proposition 12 but applied to GAMP instead of the Gibbs
measure, see e.g. [13] where this is shown). This allows to estimate the posterior mean of the output, which
leads to the GAMP prediction (recall the Pout de�nition (22)-(23)):

Ŷ GAMP,t :=

∫
y Pout

(
y
∣∣∣ 1√

n
Φnew · x̂t−1 +

√
ρ− qtw

)
Dwdy , (68)

where Dw denotes the standard Gaussian measure. The following claim, from [12], gives the precise estima-
tion error of GAMP. It is stated there as a claim because some steps of the proof are missing. The paper [45]
a�rms in its abstract to prove the claim of [12], but without further details. For these reasons, we believe that
the claim holds, however we prefer to state it here as a claim (instead of a theorem).

Claim 1 (GAMP estimation error, [12]). We have almost surely for all t ∈ N,

lim
n→∞

1

n
x̂t · X∗ = lim

n→∞

1

n
‖x̂t‖2 = qt , (69)

as well as
lim
n→∞

1

n2
E
[∥∥X∗X∗ᵀ − x̂t(x̂t)ᵀ

∥∥2
]

= ρ2 − (qt)2 . (70)

Compairing (70) with the MMSE given by Corollary 5, we see that if limt→∞ q
t = q∗(α), then GAMP

achieves the MMSE. Provided that Claim 1 holds we can deduce the generalization error of GAMP:

Proposition 2 (GAMP generalization error). Suppose that hypotheses (h1)-(h2)-(h4) hold. Moreover suppose
that either (h5.a) or (h5.b) holds. Assume that (Φµi)

iid∼ N (0, 1), and that x 7→ Pout(·|x) is continuous almost
everywhere for the Wasserstein distance of order 2. Let t ∈ N. Assume that the limit (69) holds in probability and
that there exists η > 0 such that E[|Ŷ GAMP,t|2+η] remains bounded (as n grows). Then we have

lim
n→∞

EGAMP,t
gen := lim

n→∞
E
[(
Ynew − Ŷ GAMP,t)2] = E(qt) . (71)

Remark 2. If we modify slightly the GAMP estimator of (68) by changing the �rst y into f(y), it is not di�cult
to show (following the steps of Proposition 2) that this new estimator achieves an asymptotic error of Ef (qt), given
by (61), for estimating f(Ynew).
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Proposition 2 is proved in Sec. 5.2. We see that this formula matches the one for the Bayes-optimal gener-
alization error, see Theorem 3, up to the fact that instead of q∗(α) (the optimizer of the replica formula (43))
appearing in the optimal error formula, here it is qt which appears. Thus clearly, when qt converges to q∗(α)

(we shall see that this is the case in many situations in the examples of Sec. 3) this yields a very interesting
and non trivial result: GAMP achieves the Bayes-optimal generalization error in a plethora of models (a task
again often believed to be intractable) and this for large sets of parameters.

2.5 Optimal denoising error

Another interesting error measure to study is the following “denoising error”. Assume that the observations
are noisy, i.e. ∆ > 0 in (20). The goal here is to denoise the observations Yµ and estimate the signal which in
this case is ϕ

(
1√
n

[ΦX∗]µ,Aµ
)
.

The minimum denoising error (in L2 sense) is actually a simple corollary from the replica-symmetric
formula of Theorem 1 and follows from a so-called “I-MMSE relation”, see Proposition 13. We will need the
joint posterior distribution of (W ∗,A) given (V, Ỹ0) for the scalar channel (39). So we de�ne the Gibbs bracket
for the scalar channel by (here a ∈ RkA ):

〈g(w, a)〉sc := E[g(W ∗,A)|Ỹ0, V ] =

∫
DwdPA(a)g(w, a)e−

1
2∆

{
Ỹ0−ϕ(

√
q V+

√
ρ−q w,a)

}2

∫
DwdPA(a)e−

1
2∆

{
Ỹ0−ϕ(

√
q V+

√
ρ−q w,a)

}2 , (72)

for any continuous bounded function g. When the function depends only on w it may be re-written as

〈g(w)〉sc =

∫
Dwg(w)Pout

(
Ỹ0

∣∣√q V +
√
ρ− q w

)∫
DwPout

(
Ỹ0

∣∣√q V +
√
ρ− q w

) . (73)

Corollary 5 (Optimal denoising error). Suppose that hypotheses (h1)-(h2)-(h3)-(h4) hold. Suppose that either
hypothesis (h5.a) or (h5.b) holds. Then for almost every ∆ > 0, for any optimal couple (q∗, r∗) of (43),

lim
n→∞

1

m
MMSE

(
ϕ
( 1√

n
ΦX∗,A

)∣∣∣Φ,Y) = MMSE
(
ϕ(
√
q∗ V +

√
ρ− q∗W ∗,A)

∣∣Ỹ0, V
)

= E
[
ϕ(
√
ρ V,A)2

]
− E

[〈
ϕ(
√
q∗ V +

√
ρ− q∗w,a)〉2sc

]
, (74)

where 〈−〉sc acts jointly on (w,a) and is de�ned by (72), and V,W ∗ iid∼ N (0, 1).

Note that the joint posterior over both the signal X∗ and the random stream A is simply expressed as

dP (x, a|Y,Φ) ∝ dP0(x)dPA(a)
m∏
µ=1

e
− 1

2∆

{
Yµ−ϕ

(
1√
n

[Φx]µ,aµ
)}2

. (75)

The proof of Corollary 5 is presented in Sec. 5.4.

3 Application to concrete situations
In this section, we show how our main results can be applied to several models of interest in �elds ranging
from machine learning to signal processing, and unveil several interesting new phenomena in learning of
generalized linear models. For various speci�c cases of prior P0 and output Pout, we evaluate numerically the
free entropy potential (41), its stationary points Γ and identify which of them gives the information-theoretic
results, i.e. is the optimizer in (43). We also identify which of the stationary points corresponds to the result
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obtained asymptotically by the GAMP algorithm, i.e. the �xed point of the state evolution (67). Finally we
compute the corresponding generalization error (71). We stress that in this section the results are based on
numerical investigation of the resulting formulas: We do not aim at rigor that would involve precise bounds
and more detailed analytical control for the corresponding integrals.

3.1 Generic observations

Using the functions gPout and gP0 introduced in Sec. 2.4 we can rewrite the �xed point equations (42) as

q = 2ψ′P0
(r) = E[gP0(Y0, r)

2] , (76)

r = 2αΨ′Pout
(q) =

α

ρ− q
E[gPout(Ỹ0,

√
q V, ρ− q)2] , (77)

where the expectation in (76) corresponds to the scalar channel (36) and the expectation in (77) corresponds
to the second scalar channel (39).

Non-informative �xed point and its stability: It is interesting to analyze under what conditions q∗ = 0

is the optimizer of (43). Notice that q∗ = 0 corresponds to the error on the recovery of the signal as large as
it would be if we had no observations at our disposition. Theorem 1 gives that any optimal couple (q∗, r∗) of
(43) should be a �xed point of the state evolution equations (76)–(77). A su�cient condition for (q, r) = (0, 0)

to be a �xed point of (76)–(77) is that:

(a) The transition density Pout(y|z) is even in the argument z.

(b) The prior P0 has zero mean.

In order to see this, notice that if Pout(y|z) is even in z then from the de�nition (65) of the function gPout we
have gPout(y, 0, ρ) = 0 and consequently from (77) we have Ψ′Pout

(0) = 0. From the second point, notice that
we have ψ′P0

(0) = 1
2EP0 [X0]2 = 0.

We assume now that the transition density Pout(y|z) is even in the argument z and that the prior P0 has
zero mean. In order for q = 0 to be the global maximizer q∗ of (43) or to be a relevant �xed point of the
state evolution (67) (relevant in the sense that GAMP might indeed converge to it in a practical setting) we
need q = 0 to be a stable �xed point of the above equations (76)–(77). We therefore need to expand (76)–(77)
around q = 0, and doing so, we obtain that q = 0 is stable if

2αΨ′′Pout
(0)× 2ψ′′P0

(0) = αE
[(
〈w2〉sc − 〈w〉2sc − 1

)2]
< 1 , (78)

where the expectation corresponds to the scalar channel (39) with q = 0 and the Gibbs bracket 〈−〉sc is given
by (72). The expectation quanti�es how the observation of Ỹ0 in the scalar channel (39) modi�es the variance
of W ∗ (which is 1 without any observation). Rewriting this condition more explicitly into a form that is
convenient for numerical evaluation we get (recalling (73), q = 0 and condition (a))

α

∫
dy

( ∫
Dz(z2 − 1)Pout(y|

√
ρz)
)2∫

DzPout(y|
√
ρz)

< 1 , (79)

where recall thatDz is a standard Gaussian measure. We conjecture that the condition (79) delimits precisely
the region where polynomial-time algorithms do not perform better than “random guessing” (see the discus-
sion below, where we will make this stability condition explicit for several examples of symmetric output
channels). Note that the condition (79) also appears in a recent work [61] as a barrier for performance of
spectral algorithms.
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Exact recovery �xed point: Another particular �xed point of (76)–(77) that we observe is the one corres-
ponding to exact recovery q∗ = ρ. A su�cient and necessary condition for this to be a �xed point is that
limq→ρ Ψ′Pout

(q) = +∞. Heuristically, this means that the integral of the Fisher information of the output
channel should diverge: ∫

dydω
e
−ω

2

2ρ

√
2πρ

P ′out(y|ω)2

Pout(y|ω)
= +∞ , (80)

where P ′out(y|ω) denotes the partial derivative w.r.t. ω. This typically means that the channel should be
noiseless. For the Gaussian channel with noise variance ∆, the above expression equals 1/∆. For the probit
channel where Pout(y|z) = erfc(−yz/

√
2∆)/2 the above expression at small ∆ is proportional to 1/

√
∆.

Stability of the exact recovery �xed point was also investigated, but we did not obtain any uni�ed ex-
pression. The stability depends non-trivially on both the properties of the output channel, but also on the
properties of the prior. Below we give several examples where exact recovery either is or is not possible, or
where there is a phase transition between the two regimes.

3.2 Phase diagram of perfect learning

In this section we consider deterministic (noiseless) output channels and ask: How many measurements are
needed in order to perfectly recover the signal?

Our crucial point is to compare with the well explored phase diagram of Bayesian (noiseless) compressed
sensing in the case of the linear channel [68, 80]. As the number of samples (measurements) varies we en-
counter �ve di�erent regimes of parameters:

• The tractable recovery phase: This is the region in the parameter space where GAMP achieves perfect
reconstruction.

• The non-informative phase: Region where perfect reconstruction is information-theoretically impossible
and moreover even the Bayes-optimal estimator is as bad as a random guess based on the prior inform-
ation and on the knowledge of the output function.

• The no recovery phase: Region where perfect reconstruction is information-theoretically impossible,
but an estimator positively correlated with the ground truth exists.

• The hard phase: Region where the perfect reconstruction is information-theoretically possible, but
where GAMP is unable to achieve it. At the same time, in this region GAMP leads to a better general-
ization error than the one corresponding to the non-informative �xed point. It remains a challenging
open question whether polynomial-time algorithms can achieve perfect reconstruction in this regime.

• The hard non-informative phase: This phase corresponds to the region where perfect reconstruction is
information-theoretically possible but where GAMP only achieves an error as bad as randomly guess-
ing, given by the trivial �xed point. In this phase as well, the existence of polynomial-time exact recov-
ery algorithms is an open question. This phase does not exist for the linear channel.

Some of the codes used in this section can be consulted online on the github repository [62].

3.2.1 The linear channel

The case of exact recovery of a sparse signal after it passed trough a noiseless linear channel, i.e. ϕ(x) = x, is
studied in the literature in great details, especially in the context of compressed sensing [10, 11]. For a signal
with a fraction ρ of non-zero entries it is found that as soon as α > ρ, perfect reconstruction is theoretically
possible, although it may remain computationally di�cult. The whole �eld of compressed sensing builds on
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Figure 3: Phase diagrams showing boundaries of the region where exact recovery is possible (in absence of
noise). Left: The case of sign-less sparse recovery, ϕ(x) = |x| with a Gauss-Bernoulli signal, as a function of
the ratio between number of samples/measurements and the dimension α = m/n, and the fraction of non-zero
components ρ. Evaluating the free entropy for this case, we �nd that a recovery of the signal is information-
theoretically impossible for α < αIT = ρ. Recovery becomes possible starting from α > ρ, just as in the
canonical compressed sensing. Algorithmically the sign-less case is much harder. Evaluating (79) we conclude
that GAMP is not able to perform better than a random guess as long as α < αc = 1/2. For larger values of
α, the inference using GAMP leads to better results than a purely random guess. GAMP can exactly recover the
signal and generalize perfectly only for values of α larger than αAMP (full red line). The dotted red line shows
for comparison the algorithmic phase transition of the canonical compressed sensing. Center: Analogous to
the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better
than random guessing using GAMP. The dotted red line shows the algorithmic phase transition when using
information only about the non-zero observations. Right: Phase diagram for the symmetric door output function
ϕ(z) = sign(|z| − K) for a Rademacher signal, as a function of α and K . The stability line αc is depicted in
dashed blue, the information-theoretic phase transition to exact recovery αIT in black, and the algorithmic one
αAMP in red.

the realization that, using the `1 norm minimization technique, one can e�ciently recover the signal for larger
α values than the so-called Donoho-Tanner transition [11, 81].

In the context of the present paper, when the empirical distribution of the signal is known, one can fairly
easily beat the `1 transition and reconstruct the signal up to lower values of α using the Bayesian GAMP
algorithm [11, 12, 68, 80]. In this case, three di�erent phases are present [68, 80]: i) For α < ρ, perfect recon-
struction is impossible; ii) for ρ < α < αs reconstruction is possible, but not with any known polynomial-
complexity algorithm; iii) for α > αs, the so-called spinodal transition computed with state evolution, GAMP
provides a polynomial-complexity algorithm able to reach perfect reconstruction. The line αs(ρ) depends on
the distribution of the signal. For a Gauss-Bernoulli signal with a fraction ρ of non-zero (Gaussian) values we
compare the GAMP performance to the optimal one in Fig. 3 (left and right). This is the same �gure as in the
main text. We copy it here so that the SI is self-contained.

3.2.2 The recti�ed linear unit (ReLU) channel

Let us start by discussing the case of a generalized linear model with the ReLU output channel, i.e. ϕ(x) =

max(0, x), with a signal coming from a Gauss-Bernoulli distribution P0 = ρN (0, 1) + (1 − ρ)δ0 with a
fraction ρ of non-zero (Gaussian) values. We are motivated by the omnipresent use of the ReLU activation
function in deep learning, and explore its properties for GLMs that can be seen as a simple single layer neural
network.

Our analysis shows that a perfect generalization (and thus a perfect reconstruction of the signal as well)
is possible whenever the number of samples per dimension (measurement rate) α > 2ρ, and impossible when
α < 2ρ. This is very intuitive, since half of the measurements (those non-zero) are giving as much information
as in the linear case, thus the factor 2.
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How hard is it to actually solve the problem with an e�cient algorithm? The answer is given by applying
the state evolution analysis to GAMP, which tells us that only for even larger values of α, beyond the spinodal
transition, does GAMP reach a perfect recovery. Notice, however, that this spinodal transition occurs at a
signi�cantly lower measurement rate α than one would reach just keeping the non-zero measurements. This
shows that, actually, these zero measurements contain a useful information for the algorithm. The situation
is shown in the center panel of Fig. 3: The zero measurements do not help information-theoretically but they,
however, do help algorithmically.

3.2.3 The sign-less channel

We now discuss the sign-less channel where only the absolute value of the linear mixture is observed, i.e.
ϕ(x) = |x|. This case can be seen as the real-valued analog of the famous phase retrieval problem. We again
consider the signal to come from a Gauss-Bernoulli distribution with a fraction ρ of non-zero (Gaussian)
values.

Sparse phase retrieval has been well explored in the literature in the regime where the number s of non-
zeros is sub-leading in the dimension, s = O(n). This case is known to present a large algorithmic gap.
While analogously to compressed sensing exact recovery is information-theoretically possible for a number
of measurement Ω(s ln(n/s)), best known algorithms achieve it only with Ω(s2/ lnn) measurements [82],
see also [70] and references therein for a good discussion of other related literature. This is sometimes referred
to as the s2 barrier. We are not aware of a study where, as in our setting, the sparsity is s = ρn and the number
of measurements is αn with α = Ω(1). Our analysis in this regime hence sheds a new light on the hardness
of the problem of recovering a sparse signal from sign-less measurements.

Our analysis of the mutual information shows that a perfect reconstruction is information-theoretically
possible as soon as α > ρ: In other words, the problem is –information-theoretically– as easy, or as hard as
the compressed sensing one. This is maybe less surprising when one thinks of the following algorithm: Try
all 2m choices of the possible signs for the m outputs, and solve a compressed sensing problem for each of
them. Clearly, this should yields a perfect solution only in the case of the actual combination of signs.

Algorithmically, however, the problem is much harder than for the linear output channel. As shown in
the left side of Fig. 3, for small ρ one requires a much larger fraction α of measurements in order for GAMP
to recover the signal. For the linear channel the algorithmic transition αs(ρ) → 0 as ρ → 0, while for the
sign-less channel we get αs(ρ) → 1/2 as ρ → 0. In other words if one looses the signs one cannot perform
recovery in compressed sensing with less than n/2 measurements.

What we observe in this example for α < 1/2 is in the statistical physics literature on neural networks
known as retarded learning [64]. This appears in problems where the ϕ(x) function is symmetric, as seen at
the beginning of this section: There is always a critical point of the mutual information with an overlap value
q = 0. For this problem, this critical point is actually “stable” (meaning that it is actually a local minimum in q
in the mutual information (46)) for all α < 1/2 independently of ρ. To see that, we have to go back to (78). For
the absolute value channel, the posterior distribution ofW ∗ given Ỹ0 =

√
ρ |W ∗| in the second scalar channel

(39) is a mean of two Dirac masses on−W ∗ andW ∗. Thus, the posterior variance is 〈w2〉sc−〈w〉2sc = (W ∗)2.
Consequently, (78) leads to the stability condition α < 1/2.

This has the two following implications: i) In the non-informative phase, when α < 1/2 and ρ > α, the
minimum at q = 0 is actually the global one. In this case, the MMSE on X∗ and the generalization error are
the ones given by using 0 as a guess for each element of X∗; in other words, there is no useful information
that one can exploit and no algorithmic approach can be better than a random guess. ii) In the hard non-
informative phase when α < 1/2, GAMP initialized at random, i.e. close to the q = 0 �xed point, will remain
there. This suggests that in this region, even if a perfect reconstruction is information-theoretically possible,
it will still be very hard to beat a random guess with a tractable algorithm.
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Figure 4: Generalization error in three classi�cation problems as a function of the number of data-samples per
dimension α. The red line is the Bayes-optimal generalization error, while the green one shows the (asymptotic)
performances of GAMP as predicted by the state evolution (SE), when di�erent. For comparison, we also show
the result of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver, both tested on a
single randomly generated instance. Left: Perceptron, withϕ(x) = sgn(x) and a Rademacher (±1) signal. While
a perfect generalization is information-theoretically possible starting from α = 1.249(1), the state evolution
predicts that GAMP will allow such perfect prediction only fromα = 1.493(1). The results of a logistic regression
with �ne-tuned ridge penalty with the software scikit-learn [65] are shown for comparison. Middle: Perceptron
with Gauss-Bernoulli coe�cients for the signal. No phase transition is observed in this case, but a smooth
decrease of the error with α. The results of a logistic regression with �ne-tuned `1 sparsity-enhancing penalty
(again with [65]) are very close to optimal. Right: The symmetric door activation rule with parameter K =
0.67449 chosen in order to observe the same number of occurrence of the two classes. In this case there is a sharp
phase transition at α = 1 from a situation where it is impossible to learn the rule, so that the generalization is not
better than a random guess, to a situation where the optimal generalization error drops to zero. However, GAMP
identi�es the rule perfectly only starting from αs = 1.566(1) (GAMP error stays 1 up to αstab = 1.36, see the
black dashed curve). Interestingly, this non-linear rule seems very hard to learn for other existing algorithms.
Using Keras [66], a neural network with two hidden layers was able to learn approximately the rule, but only for
much larger training set sizes (shown in inset, the Keras/tensor�ow code for this particular run can be found on
the github repository [62]).

3.2.4 The symmetric door channel

The third output channel we study in detail is the symmetric door channel, where ϕ(x) = sgn(|x| −K). In
case of channels with discrete set of outputs exact recovery is only possible when the prior is also discrete. In
the present case we consider the signal to be Rademacher, where each element is chosen at random between 1

and −1, i.e. P0 = 1
2δ+1 + 1

2δ−1. This channel was studied previously using the replica method in the context
of optimal data compression [28].

This output channel is in the class of symmetric channels for which overlap q = 0 is a �xed point. This
�xed point is stable for α < αc(K). Exact recovery is information-theoretically possible above αIT(K) and
tractable with the GAMP algorithm above the spinodal transition αs(K). The values of these three transition
lines are depicted in the right panel of Fig. 3.

We note that αIT ≥ 1 is a generic bound on exact recovery for every K , required by a simple counting
argument. While a-priori it is not clear whether this bound is saturated for some K , we observe that it is for
K = 0.67449 such that half of the observed measurements are negative and the rest positive. This is, however,
not e�ciently achievable with GAMP. The saturation of the αIT ≥ 1 bound was remarked previously in the
context of the work [28] on optimal data compression. Our work predicts that this information-theoretic
result will not be achievable with known e�cient algorithms.

3.3 Examples of optimal generalization error

Besides the formula for the mutual information, the main result of this paper is the Theorem 3 for the optimal
generalization error, and formula (71) for the generalization error achieved by the GAMP algorithm. In this
section we evaluate both these generalization errors for several cases of priors and output functions. We study
both regression problems, where the output is real-valued, and classi�cation problems, where the output is
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discrete.
While in realistic regression and classi�cation problems the matrix Φ corresponds to the data, and is thus

not i.i.d. random, we view the practical interest of our theory as a benchmark for state-of-the art algorithms.
Our work provides an exact asymptotic analysis of optimal generalization error and sample complexity for a
range of simple rules where a teacher uses random data to generate labels. The challenge for state-of-the-art
multi-purpose algorithms is to try to match as closely as possible the performance that can be obtained with
GAMP that is �ne-tuned to the speci�c form of the output and prior.

3.3.1 Threshold output: The perceptron

The example of non-linear output that is the most widely explored in the literature is the threshold output,
where the deterministic output (or “activation”) function isϕ(x) = sgn(x). This output in the teacher-student
setting of the present paper is known as the perceptron problem [22], or equivalently, the one-bit compressed
sensing in signal processing [6]. Its solution has been discussed in details within the replica formalism (see
for instance [15, 55, 57, 83]) and we con�rm all of these heuristic computations within our approach. Let
V ∼ N (0, 1). The formula (57), (63) for the generalization error then reduces to (recall q∗ = q∗(α) is an
optimizer of (43))

lim
n→∞

Eopt
gen = 1−

∫
DV

( 2√
π

∫ V
√

q∗
2(ρ−q∗)

0
dt e−t

2/2
)2

= 1− E
[
erf
(
V

√
q∗

2(ρ− q∗)

)2]
. (81)

In Fig. 4 (left) we plot the optimal generalization error of the perceptron with a Rademacher signal, the
state evolution prediction of the generalization error of the GAMP algorithm, together with the error actu-
ally achieved by GAMP on one randomly generated instance of the problem. We also compare these to the
performance of a standard logistic regression. As expected from existing literature [22,23] we con�rm that in
this case the information-theoretic transition appears at a number of samples per dimension αIT = 1.249(1),
while the algorithmic transition is at αs = 1.493(1). Logistic regression does not seem to be able to match
the performance on GAMP in this case.

In Fig. 4 (center) we plot the generalization error for a Gauss-Bernoulli signal with density ρ = 0.2. Cases
as this one were studied in detail in the context of one-bit compressed sensing [15] and GAMP was found to
match the optimal generalization performance with no phase transitions observed, which is con�rmed by our
analysis. In this case the logistic regression is rather close to the performance of GAMP.

3.3.2 Symmetric Door

The next classi�cation problem, i.e. discrete output rule, we study is the symmetric door function ϕ(x) =

sgn(|x| −K). In this case the generalization error (57) becomes (here again V ∼ N (0, 1))

lim
n→∞

Eopt
gen = 1− EV

[{
erf
(K −√q∗ V√

2(ρ− q∗)

)
− erf

(
− K +

√
q∗ V√

2(ρ− q∗)

)
− 1
}2]

. (82)

In Fig. 4 (right) we plot the generalization error for K = 0, 67449 such that 1/2 of the outputs are 1 and
1/2 are −1. The symmetric door output is an example of function for which the optimal generalization error
for α < αIT = 1 (for that speci�c value of K , see phase diagram in the right panel of Fig. 3) is as bad as if we
were guessing randomly. The GAMP algorithm still achieves such a bad generalization until αstab = 1.36,
and achieves perfect generalization only for α > αs = 1.566(1).

Interestingly, labels created from this very simple symmetric door rule seem to be very challenging to
learn for general purpose algorithms. We tried to optimize parameters of a two-layers neural network and
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Figure 5: The generalization error for three regression problems is plotted as a function of the number of samples
per dimension α. The red line is again the Bayes-optimal generalization error, while the green one shows the
(asymptotic) performances of GAMP as predicted by the state evolution (SE), when di�erent. Again, we also
show the result of GAMP on a particular instance (black dots) and, in blue, the performance of an out-of-the-box
solver. Left: White Gaussian noise output and a Gauss-Bernoulli signal. For this choice of noise, there is no sharp
transition (as opposed to what happens at smaller noises). The results of a LASSO with �ne-tuned `1 sparsity-
enhancing penalty (with [65]) are very close to optimal. Middle: Here we analyze a ReLU output function
ϕ(x) = max(0, x), still with a Gauss-Bernoulli signal. Now there is an information-theoretic phase transition
at α = 2ρ = 0.4, but GAMP requires αs = 0.589(1) to reach perfect recovery. We show for comparison the
results of maximum likelihood estimation performed with CVXPY —a powerful python-embedded language for
convex optimization [84]— using two methods that are both amenable to convex optimization: In CVX-1 we
use only the non-zero values of Y, and perform a minimization of the `1 norm of x subject to Yµ = Φµ · x for
µ ∈ {1, . . . ,m} such that Yµ 6= 0, while in CVX-2, we use all the dataset, with the constraint that Yµ = Φµ · x
for µ ∈ {1, . . . ,m} such that Yµ 6= 0 (as before) and the additional restriction Φµ · x ≤ 0 for µ ∈ {1, . . . ,m}
such that Yµ = 0. In both case, a perfect generalization is obtained only for α ' 1. Right: The sign-less output
function ϕ(x) = |x|. The information-theoretic perfect recovery starts at α = ρ = 0.5, but the problem is again
harder algorithmically for GAMP that succeeds only above αs = 0.90(1). Again, the problem appears to be hard
for other solvers. In inset, we show the performance for the estimation problem using PhaseMax [85], which is
able to learn the rule only using about four times as many measurements than needed information-theoretically.

only managed to get the performances shown in the inset of Fig. 4 (right). It is an interesting theoretical
challenge whether a deeper neural network can learn this simple rule from fewer samples.

3.3.3 Linear regression

The additive white Gaussian noise (AWGN) channel, or linear regression, is de�ned byϕ(x,A) = x+σAwith
A ∼ N (0, 1). This models the (noisy) linear regression problem, as well as noisy random linear estimation
and compressed sensing. In this case (57) leads to

lim
n→∞

Eopt
gen = ρ− q∗ + σ2 . (83)

This result agrees with the generalization error analyzed heuristically in [23] in the limit σ → 0. Fig. 5 (left)
depicts the generalization error for this example. The performance of GAMP in this case is very close to the
one of LASSO.

3.3.4 Recti�ed linear unit (ReLU)

In Fig. 5 (center) we analyze the generalization error for the ReLU output function, ϕ(x) = max(0, x). This
channel models the behavior of a single neuron with the recti�ed linear unit activation [8] widely used in
multilayer neural networks. In this case (57) becomes after simple algebra and Gaussian integration by parts
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(again V ∼ N (0, 1)),

lim
n→∞

Eopt
gen =

ρ

2
− q∗

4

(
1 + EV

[
V 2erf

(
V

√
q∗

2(ρ− q∗)

)2])
− (ρ− q∗)3/2

√
ρ+ q∗

( 1

2π
+
q∗

ρπ

√
ρ+ q∗

ρ− q∗
)
. (84)

For sparse Gauss-Bernoulli signals in Fig. 5 (center) we observe again the information-theoretic transition
to perfect generalization to be distinct from the algorithmic one. At the same time our test with existing
algorithms were not able to closely match the performance of GAMP. This hence also remains an interesting
benchmark.

3.3.5 Sign-less channel

In Fig. 5 (right) we analyze the generalization error for the sign-less output function where ϕ(x) = |x|. This
models a situation similar to compressed sensing, except that the sign of the output has been lost. This is
a real-valued analog of the phase retrieval problem as discussed in Sec. 3.2.3. In this case the generalization
error (57) becomes (again V ∼ N (0, 1))

lim
n→∞

Eopt
gen = ρ− EV

[
b(V

√
q∗, ρ− q∗)2

]
, (85)

where

b(x, y) =

√
2y

π
e
−x

2

2y +
x

2
erfc

(
− x√

2y

)
− x

2

{
1 + erf

(
− x√

2y

)}
. (86)

Our comparison with the performance of a state-of-the-art algorithm PhaseMax [85] suggests that also
for this simple benchmark there is room for improvement in term of matching the performance of GAMP.

3.3.6 Sigmoid, or logistic regression

Let us also consider an output function with auxiliary randomization. After having generated the classi�er
X∗, the teacher randomly associates the label +1 to the pattern Φµ with probability fλ(n−1/2Φµ ·X∗), where
fλ(x) = (1 + exp(−λx))−1 ∈ [0, 1] is the sigmoid of parameter λ > 0, and the label −1 with probability
1 − fλ(n−1/2Φµ · X∗). One of the (many) possible ways for the teacher to do so is by selecting ϕ(x,A) =

1(A ≤ fλ(x)) − 1(A > fλ(x)), where 1(E) is the indicator function of the event E. He then generates
a stream of uniform random numbers A iid∼ U[0,1] and obtains the labels through (20) (with ∆ = 0). Let
V,w iid∼ N (0, 1). In this setting the error (57) becomes

lim
n→∞

Eopt
gen = 2− 4EV

[{
Ewfλ(

√
q∗ V +

√
ρ− q∗w)

}2]
. (87)

This formula reduces to (81) when λ→∞ as it should.

4 Proof of the replica formula by the adaptive interpolation
method

We now prove Theorem 1. Our main tool will be an interpolation method recently introduced in [52] and
called “adaptive interpolation method”. Here we formulate the method as a direct evolution of the Guerra and
Toninelli interpolation method developed in the context of spin glasses [72]. In contrast with the discrete and
more pedestrian version of the adaptive interpolation method presented in [52], here we employ a continuous
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approach which is more straightforward (see [52] for the links between the discrete and continuous versions
of the method) and that has also been recently used in [86] for studying non-symmetric tensor estimation.

We will prove Theorem 1 under the following hypotheses:

(H1) The support of the prior distribution P0 is included in [−S, S], for some S > 0.
(H2) ϕ is a bounded C2 function with bounded �rst and second derivatives w.r.t. its �rst argument.
(H3) (Φµi)

iid∼ N (0, 1).

These stronger assumptions will then be relaxed in Appendix C to the weaker assumptions (h1)-(h2)-(h3)-(h4)
and (h5.a) or (h5.b). Since the observations (20) are equivalent to the rescaled observations

Ỹµ := ∆−1/2 Yµ = ∆−1/2 ϕ
( 1√

n
[ΦX∗]µ,Aµ

)
+ Zµ , 1 ≤ µ ≤ m, (88)

the variance ∆ of the Gaussian noise can be “incorporated” inside the function ϕ. Thus, it su�ces to prove
Theorem 1 for ∆ = 1 and we suppose, for the rest of the proof, that we are in this equivalent case.

4.1 Interpolating estimation problem

We introduce an “interpolating estimation problem” that interpolates between the original problem (21) at
t = 0, t ∈ [0, 1] being the interpolation parameter, and the two scalar problems described in Sec. 1.3 at t = 1

which are analytically tractable. For t ∈ (0, 1) the interpolating estimation problem is a mixture of the original
and scalar problems. This interpolation scheme is inspired from the interpolation paths used by Talagrand to
study the perceptron, see [73]. There are two major di�erences between the “non-planted perceptron” studied
by Talagrand, and the “planted perceptron” that we are investigating:

• In the planted case, the presence of a planted solution forces (under small perturbations) the correl-
ations to vanish for all values of the parameters, see [87, 88]. In the non-planted case, proving such
decorrelation is much more involved, and is proved only in a limited region of the parameter space,
see [73].

• However, in the planted case, there can be arbitrarily many solutions to the state evolution equations
(42) (see Remark 21 in [89]), whereas in the region studied by [73], there is only one solution. For this
reason, our interpolation method needs to be more sophisticated in order to interpolate with the “right
�xed point”.

We �x a sequence (sn)n≥1 ∈ (0, 1/2]N that converges to 0 as n goes to in�nity (sn will be chosen in
Sec. 4.3 below to be equal to 1

2n
−1/16). We de�ne Bn := [sn, 2sn]2. For all ε = (ε1, ε2) ∈ Bn, we con-

sider two continuous “interpolation functions” qε : [0, 1] → [0, ρ] and rε : [0, 1] → [0, rmax], where
rmax := 2α supq∈[0,ρ] Ψ′Pout

(q; ρ) = 2αΨ′Pout
(ρ; ρ) (recall that by Proposition 18, Ψ′Pout

is non-decreasing).
We de�ne also for all t ∈ [0, 1] and all ε ∈ Bn

R1(t, ε) := ε1 +

∫ t

0
rε(v)dv , R2(t, ε) := ε2 +

∫ t

0
qε(v)dv . (89)

We will be mainly interested in functions rε, qε that satisfy some regularity properties. We will use the
following de�nition:

De�nition 1 (Regularity). We say that the families of functions (qε)ε∈Bn and (rε)ε∈Bn , taking values respect-
ively in [0, ρ] and [0, rmax], are regular if for all t ∈ [0, 1] the mapping

Rt :

∣∣∣∣∣ (sn, 2sn)2 → Rt
(
(sn, 2sn)2

)
ε 7→

(
R1(t, ε), R2(t, ε)

) (90)
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is a C1 di�eomorphism, whose Jacobian is greater or equal to 1.

De�ne

St,µ :=

√
1− t
n

[ΦX∗]µ +
√
R2(t, ε)Vµ +

√
ρt−R2(t, ε) + 2snW

∗
µ (91)

where Vµ,W ∗µ iid∼ N (0, 1). Consider the following observation channels, with two types of observations
obtained through {

Yt,µ ∼ Pout( · |St,µ) , 1 ≤ µ ≤ m,
Y ′t,i =

√
R1(t, ε)X∗i + Z ′i , 1 ≤ i ≤ n,

(92)

where (Z ′i)
n
i=1

iid∼ N (0, 1). We assume that V = (Vµ)mµ=1 is known. Then the inference problem is to recover
both unknowns W∗ = (W ∗µ)mµ=1 and X∗ = (X∗i )ni=1 from the knowledge of V, Φ and the “time-dependent”
observations Yt = (Yt,µ)mµ=1 and Y′t = (Y ′t,i)

n
i=1.

We now understand that R1(t, ε) appearing in the second set of measurements in (92), and the terms
1 − t, R2(t, ε) and ρt − R2(t, ε) + 2sn appearing in the �rst set all play the role of signal-to-noise ratios in
the interpolating model, with t giving more and more “power” (or weight) to the scalar inference channels
when increasing. Here is the �rst crucial and novel ingredient of our interpolation scheme. In the classical
interpolation method, these signal intensities would all take a trivial form (i.e. would be linear in t) but here,
the non-trivial (integral) dependency in t of the intensities through the use of the interpolation functions q
and r allows for much more �exibility when choosing the interpolation path. This will allow us to actually
choose the “optimal interpolation path” (this will become clear soon).

De�ne uy(x) := lnPout(y|x) and, with a slight abuse of notations,

st,µ = st,µ(x, wµ) :=

√
1− t
n

[Φx]µ +
√
R2(t, ε)Vµ +

√
ρt−R2(t, ε) + 2snwµ . (93)

We introduce the interpolating Hamiltonian

Ht,ε(x,w;Yt,Y′t,Φ,V) := −
m∑
µ=1

lnPout(Yt,µ|st,µ) +
1

2

n∑
i=1

(
Y ′t,i −

√
R1(t, ε)xi

)2
. (94)

The dependence in Φ and V of the Hamiltonian is through the (st,µ)mµ=1. It becomes, when the observations
are replaced by their expression (92),

Ht,ε(x,w;Yt,Y′t,Φ,V) = −
m∑
µ=1

uYt,µ(st,µ) +
1

2

n∑
i=1

(√
R1(t, ε) (X∗i − xi) + Z ′i

)2
. (95)

We also introduce the corresponding Gibbs bracket 〈−〉n,t,ε which is the expectation operator w.r.t. the (t, ε)-
dependent posterior distribution of (X∗,W∗) given (Yt,Y′t,Φ,V). It is de�ned as

〈g(x,w)〉n,t,ε :=
1

Zt,ε(Yt,Y′t,Φ,V)

∫
dP0(x)Dw g(x,w) e−Ht,ε(x,w;Yt,Y′t,Φ,V) , (96)

for every continuous bounded function g on Rn × Rm. In (96) Dw = (2π)−m/2
∏m
µ=1 dwµe

−w2
µ/2 is the

m-dimensional standard Gaussian distribution and Zt,ε(Yt,Y′t,Φ,V) is the appropriate normalization (or
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partition function):

Zt,ε(Yt,Y′t,Φ,V) :=

∫
dP0(x)Dw e−Ht,ε(x,w;Yt,Y′t,Φ,V) . (97)

Finally the interpolating free entropy is

fn,ε(t) :=
1

n
E lnZt,ε(Yt,Y′t,Φ,V) . (98)

Note that the presence of the perturbation ε = (ε1, ε2) induces only a small change in the free entropy, namely
of the order of sn:

Lemma 1 (Small free entropy variation under perturbation). For all ε1, ε2 ∈ [sn, 2sn],

|fn,ε(0)− fn,ε=(0,0)(0)| ≤ Csn (99)

for some constant C that only depends on S, α and ϕ.

Proof. Let us compute ∣∣∣dfn,ε(0)

dε1

∣∣∣ =
1

2
|E〈Q〉n,0,ε| ≤

S2

2
, (100)

by hypothesis (H1). Next we compute

∣∣∣dfn,ε(0)

dε2

∣∣∣ =
1

2n

m∑
µ=1

∣∣E[u′Y0,µ
(S0,µ)〈u′Y0,µ

(s0,µ)〉n,0,ε
]∣∣ . (101)

This identity is obtained using very similar steps as in Sec. A.5 to which we refer. Under hypothesis (H2) this
quantity is bounded by a constant that only depends on α and ϕ. Then by the mean value theorem we obtain
|fn,ε(0)− fn,(0,0)(0)| ≤ C‖ε‖ ≤ 2

√
2snC for some constant C that only depends on S, α and ϕ.

One veri�es easily, using the Lemma 1, that for all ε ∈ Bn
fn,ε(0) = fn,(0,0)(0) +O(sn)

= fn − 1
2 +O(sn) ,

fn,ε(1) = ψP0(R1(1, ε))− 1
2(1 + ρR1(1, ε)) + m

n ΨPout(R2(1, ε); ρ+ 2sn)

= ψP0(
∫ 1

0 rε(t)dt)−
1
2(1 + ρ

∫ 1
0 rε(t)dt) + m

n ΨPout(
∫ 1

0 qε(t)dt; ρ) +O(sn) .

(102)

where fn is given by (30) and whereO(sn) denotes a quantity that is bounded byCsn for some constantC > 0

that only depends on S, ϕ and α. For the last equality we used Proposition 17 in Appendix B.1 which says that
ψP0 is ρ

2 -Lipschitz and, similarly to Proposition 18, it is not di�cult to verify that (q1, q2) 7→ ΨPout(q1; q2) is
C1 on the compact set {(q1, q2) | 0 ≤ q1 ≤ q2 ≤ ρ+1} and is thus Lipschitz. We emphasize a crucial property
of the interpolating model: It is such that at t = 0 we recover the original model and thus fn,ε(0) ≈ fn− 1/2

(the trivial constant comes from the purely noisy measurements of the second channel in (92)), while at t = 1

we have the two scalar inference channels and thus the associated terms ψP0 and ΨPout discussed in Sec. 1.3
appear in fn,ε(1). These are precisely the terms appearing in the potential (41).

4.2 Free entropy variation along the interpolation path

From the understanding of the previous section, it is at this stage very natural to evaluate the variation of
free entropy along the interpolation path, which allows to “compare” the original and purely scalar models
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thanks to the identity

fn = fn,ε(0) +
1

2
+O(sn) = fn,ε(1)−

∫ 1

0

dfn,ε(t)

dt
dt+

1

2
+O(sn) , (103)

where the �rst equality follows from (102). As discussed above, part of the potential (41) appears in fn,ε(1).
If the interpolation is properly done, the missing terms required to obtain the potential on the r.h.s. of (103)
should naturally appear. Then by choosing the optimal interpolation path thanks to the non-trivial snr de-
pendencies in t (i.e. by selecting the proper interpolating functions q and r), we will be able to show the
equality between the replica formula and the free entropy limn→∞ fn.

We thus now compute the t-derivative of the free entropy along the interpolation path (see Appendix A.5
for the proof). Let u′y(x) be the derivative (w.r.t. x) of uy(x). Then we have the following.

Proposition 3 (Free entropy variation). The derivative of the free entropy (98) veri�es, for all ε ∈ Bn and all
t ∈ (0, 1)

dfn,ε(t)

dt
=−1

2
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)(
Q− qε(t)

)〉
n,t,ε

+
rε(t)

2
(qε(t)− ρ)+On(1) , (104)

where On(1) is a quantity that goes to 0 in the n,m→∞ limit, uniformly in t ∈ (0, 1), ε ∈ Bn and uniformly
in the choice of the functions qε and rε. The overlap is

Qn = Q :=
1

n
X∗ · x =

1

n

n∑
i=1

X∗i xi (105)

where x is a sample from the posterior of model (92) associated with the Gibbs bracket 〈−〉n,t,ε, see (96).

4.3 Overlap concentration and fundamental sum rule

The next lemma plays a key role in our proof. Essentially it states that the overlap concentrates around its
mean, a behavior called “replica symmetric” in statistical physics. Similar results have been obtained in the
context of the analysis of spin glasses [53, 73]. Here we use a formulation taylored to Bayesian inference
problems as developed in the context of LDPC codes, random linear estimation [47] and Nishimori symmetric
spin glasses [88, 90, 91].

Proposition 4 (Overlap concentration). Assume that the interpolation functions (qε), (rε) are regular, see De�n-
ition 1. Let sn = 1

2n
−1/16 for all n ≥ 1. Under assumptions (H1), (H2) and (H3) there exists a constantC(ϕ, S, α)

that depends only on S, ϕ and α such that

1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈(
Q− E〈Q〉n,t,ε

)2〉
n,t,ε
≤ C(ϕ, S, α)

n1/8
. (106)

Proposition 4 follows from Proposition 29 proved in Appendix E.2, combined with (240) and Fubini’s the-
orem. Note from (102) and (41) that the second term appearing in (104) is precisely the missing one that is
required in order to obtain the expression of the potential on the r.h.s. of (103). Thus in order to prove The-
orem 1 we would like to “cancel” the Gibbs bracket in (104), which is the so called remainder (once integrated
over t). This is made possible thanks to the adaptive interpolating functions.

One possible way to cancel the remainder is to choose qε(t) = E 〈Q〉n,t,ε, which is approximately equal to
Q because it concentrates by Proposition 4. However, E 〈Q〉n,t,ε depends on

∫ t
0 qε(v)dv (and on t,

∫ t
0 rε(v)dv

and ε too). The equation qε(t) = E 〈Q〉n,t,ε is therefore a �rst order di�erential equation over t 7→
∫ t

0 qε(v)dv.
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We will see in details in Sec. 4.4 that it possesses a solution, but for the moment we just assume it exists in
order to derive the following fundamental sum rule, which is a core identity in the proof scheme:

Proposition 5 (Fundamental sum rule). Assume that the interpolation functions (qε) and (rε) are regular (see
De�nition 1). Assume that for all t ∈ [0, 1] and ε ∈ Bn we have qε(t) = E〈Q〉n,t,ε. Then

fn =
1

s2
n

∫
Bn

{
ψP0

( ∫ 1
0 rε(t)dt

)
+ αΨPout

( ∫ 1
0 qε(t)dt; ρ

)
− 1

2

∫ 1
0 qε(t)rε(t)dt

}
dε+ On(1) , (107)

where On(1) denotes a quantity that goes to 0 as n→∞ uniformly w.r.t. the choice of the interpolation functions.

Proof. By the Cauchy-Schwarz inequality

( 1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)(
Q− qε(t)

)〉
n,t,ε

)2

≤ 1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)2〉

n,t,ε
× 1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈(
Q− qε(t)

)2〉
n,t,ε

.

The �rst term of this product is bounded by some constant C(ϕ, α) that only depend on ϕ and α, see Ap-
pendix A.6. The second term is bounded by C(ϕ, S, α)n−1/8 by Proposition 4, since we assumed that for all
ε ∈ Bn and all t ∈ [0, 1] we have qε(t) = E〈Q〉n,t,ε. We have therefore

∣∣∣ 1

s2
n

∫
Bn
dε

∫ 1

0
dtE

〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)(
Q− qε(t)

)〉
n,t,ε

∣∣∣ ≤ C(ϕ, S, α)

n1/16
.

Therefore from (104)

1

s2
n

∫
Bn
dε

∫ 1

0
dt
dfn,ε(t)

dt
=

1

2s2
n

∫
Bn
dε

∫ 1

0
dt
{
qε(t)rε(t)− rε(t)ρ

}
+ On(1) +O(n−1/16) . (108)

Here the small terms are going to 0 both uniformly w.r.t. to the choice of qε and rε. When replacing (108) in
(103) and combining it with (102) we reach the claimed identity (107), but up to the fact that ΨPout(

∫ 1
0 qε(t)dt; ρ)

is multiplied by m/n instead of α. Recalling that m/n→ α as m,n→∞ allows to �nish the argument (no-
tice that ΨPout is continuous and hence bounded on [0, ρ], see Proposition 18).

We are now ready to prove matching bounds.

4.4 Lower and upper matching bounds

We now possess all the necessary tools to prove Theorem 1 in three steps.

(i) We prove that, under assumptions (H1), (H2) and (H3), limn→∞ fn = supr≥0 infq∈[0,ρ] fRS(q, r).

(ii) Under hypothesis (H2), the function ΨPout is convex, Lipschitz and non-decreasing (Proposition 19). We
thus apply Corollary 8 of Appendix D to get supr≥0 infq∈[0,ρ] fRS(q, r) = supq∈[0,ρ] infr≥0 fRS(q, r).
We then deduce from (i) that limn→∞ fn = supq∈[0,ρ] infr≥0 fRS(q, r) under (H1)-(H2)-(H3).

(iii) Finally, the approximation arguments given in Appendix C permit to relax (H1)-(H2) to the weaker
hypotheses (h1)-(h2) and allow to replace the Gaussian assumption (H3) on Φ by (h1)-(h3)-(h4). The
fact that for discrete channels the Gaussian noise can then be removed, allowing to replace (h5.a) (i.e.
∆ > 0 treated until here) to (h5.b) (i.e. ∆ = 0 and ϕ takes values in N), is proven in Sec. C.3. This
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proves the �rst equality of Theorem 1. The last equality in (43) and the remaining part of Theorem 1
follow then from Lemma 23.

It thus remains to tackle (i), but before that we need a de�nition. For t ∈ [0, 1] and ε ∈ Bn, we write
Rt(ε) = (R1(t, ε), R2(t, ε)). The quantity E〈Q〉n,t,ε is a function of n, t, Rt(ε) that we write E〈Q〉n,t,ε =

Fn
(
t, Rt(ε)

)
, where Fn is a function de�ned on

Dn :=
{

(t, r1, r2) ∈ [0, 1]× R+ × R+

∣∣∣ r2 ≤ ρt+ 2sn

}
. (109)

The following proposition, proven in Appendix A.7, will be useful.

Proposition 6. Fn is a continuous function fromDn to [0, ρ]. LetD◦n denotes the interior ofDn. Fn admits par-
tial derivatives with respect to its second and third argument onD◦n. These partial derivatives are both continuous
and non-negative on D◦n.

Let us now start with the lower bound.

4.4.1 Lower bound

Proposition 7 (Lower bound). The free entropy (29) veri�es

lim inf
n→∞

fn ≥ sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . (110)

Proof. We consider, for (ε1, ε2) ∈ Bn and a �xed value r ∈ [0, rmax], the following 1st order di�erential
equation:

y(0) = (ε1, ε2) and ∀ t ∈ [0, 1], y′(t) =
(
r, Fn(t, y(t))

)
. (111)

By the Cauchy-Lipschitz Theorem (see for instance Theorem 3.1 in Chapter V from [92]) this equation admits a
(unique) solution that we write y(·, ε) =

(
y1(·, ε), y2(·, ε)

)
. The hypotheses of the Cauchy-Lipschitz Theorem

are veri�ed, because of Proposition 6. We de�ne then, for all t ∈ [0, 1],

rε(t) = y′1(t, ε) = r and qε(t) = y′2(t, ε) = Fn(t, y(t, ε)) ∈ [0, ρ] .

We have therefore R1(t, ε) = ε1 +
∫ t

0 y
′
1(s, ε)ds = y1(t, ε) and similarly R2(t, ε) = y2(t, ε). We obtain that

for all t ∈ [0, 1],
qε(t) = Fn(t, y(t, ε)) = Fn

(
t, (R1(t, ε), R2(t, ε))

)
= E〈Q〉n,t,ε .

Let us show now that the functions (qε) and (rε) are regular (see De�nition 1). Let t ∈ [0, 1]. The function
Rt : ε 7→ (R1(t, ε), R2(t, ε)) = y(t, ε) is the �ow of (111) and is thus injective (by unicity of the solution)
and C1 because of the regularity properties (see Proposition 6) of Fn. The Jacobian of the �ow is given by the
Liouville formula (see Corollary 3.1 in Chapter V from [92]):

det
(∂Rt
∂ε

(ε)
)

= exp
(∫ t

0
dv
∂Fn
∂y2

(v, y(v, ε))
)
≥ 1,

because by Proposition 6 we have ∂y2Fn ≥ 0. We obtain (by the local inversion Theorem) that Rt is a C1

di�eomorphism, and since its Jacobian is greater or equal to 1 the functions (qε) and (rε) are regular.
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We have seen that for all ε ∈ Bn and all t ∈ [0, 1], qε(t) = E〈Q〉t,n,ε, so we can apply Proposition 5 to get

fn =
1

s2
n

∫
Bn

{
ψP0(r) + αΨPout

( ∫ 1
0 qε(t)dt; ρ

)
− r

2

∫ 1
0 qε(t)dt

}
dε+ On(1)

=
1

s2
n

∫
Bn
fRS

(∫ 1
0 qε(t)dt, r

)
dε+ On(1)

≥ inf
q∈[0,ρ]

fRS(q, r) + On(1)

and thus lim infn→∞ fn ≥ infq∈[0,ρ] fRS(q, r). This is true for all r ∈ [0, rmax] so we get

lim inf
n→∞

fn ≥ sup
r∈[0,rmax]

inf
q∈[0,ρ]

fRS(q, r) . (112)

Let r ≥ rmax. We have for all q ∈ [0, ρ], ∂qfRS(q, r) = αΨ′Pout
(q)− r

2 ≤ 0, because r ≥ rmax ≥ 2αΨ′Pout
(q).

Therefore for all r ≥ rmax, infq∈[0,ρ] fRS(q, r) = fRS(ρ, r) and

∂

∂r
inf

q∈[0,ρ]
fRS(q, r) =

∂

∂r
fRS(ρ, r) = ψ′P0

(r)− ρ

2
≤ 0,

because by Proposition 17,ψP0 is ρ2 -Lipschitz. The function r 7→ infq∈[0,ρ] fRS(q, r) is therefore non-increasing
on [rmax,+∞). Going back to (112), we conclude

lim inf
n→∞

fn ≥ sup
r∈[0,rmax]

inf
q∈[0,ρ]

fRS(q, r) = sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . (113)

4.4.2 Upper bound

Proposition 8 (Upper bound). The free entropy (29) veri�es

lim sup
n→∞

fn ≤ sup
r≥0

inf
q∈[0,ρ]

fRS(q, r) . (114)

Proof. We consider, for (ε1, ε2) ∈ Bn, the following order-1 system of di�erential equations:

y(0) = (ε1, ε2) and ∀ t ∈ [0, 1], y′(t) =
( 2αΨ′Pout

(
Fn(t, y(t))

)
Fn(t, y(t))

)
. (115)

By Proposition 18 the function Ψ′Pout
is C1 and takes values in [0, rmax]. By Proposition 6, the function Fn is

continuous, bounded and admits partial derivatives w.r.t. its second and third arguments, that are continuous.
We can therefore apply the Cauchy-Lipschitz Theorem as in the proof of Proposition 7: The equation (115)
admits a (unique) solution that we write y(·, ε) =

(
y1(·, ε), y2(·, ε)

)
. We de�ne then, for all t ∈ [0, 1],

rε(t) = y′1(t, ε) = 2αΨ′Pout

(
Fn(t, y(t, ε))

)
∈ [0, rmax] and qε(t) = y′2(t, ε) = Fn(t, y(t, ε)) ∈ [0, ρ] .

We have therefore R1(t, ε) = ε1 +
∫ t

0 y
′
1(s, ε)ds = y1(t, ε) and similarly R2(t, ε) = y2(t, ε). We obtain that

for all t ∈ [0, 1],
qε(t) = Fn(t, y(t, ε)) = Fn

(
t, (R1(t, ε), R2(t, ε))

)
= E〈Q〉n,t,ε .

Let us show now that the functions (qε) and (rε) are regular (see De�nition 1). Let t ∈ [0, 1]. The function
Rt : ε 7→ (R1(t, ε), R2(t, ε)) = y(t, ε) is the �ow of (115) and is thus injective and C1 because of the regularity
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properties (see Proposition 6) of Fn. The Jacobian of the �ow is again given by the Liouville formula:

det
(∂Rt
∂ε

(ε)
)

= exp
(∫ t

0
dv2α

∂Fn
∂y1

(v, y(v, ε))Ψ′′Pout

(
Fn(v, y(v, ε))

)
+

∫ t

0
dv
∂Fn
∂y2

(v, y(v, ε))
)
≥ 1,

because by Proposition 6, ∂Fn∂y1
and ∂Fn

∂y2
are both non negative and since ΨPout is convex (see Proposition 18),

we have also Ψ′′Pout
≥ 0. We obtain (by the local inversion Theorem) that Rt is a C1 di�eomorphism. Its

Jacobian is greater or equal to 1, and the functions (qε) and (rε) are therefore regular.
We have seen that for all ε ∈ Bn and all t ∈ [0, 1], qε(t) = E〈Q〉t,n,ε, so we can apply Proposition 5 to get

fn =
1

s2
n

∫
Bn

{
ψP0

( ∫ 1
0 rε(t)dt

)
+ αΨPout

( ∫ 1
0 qε(t)dt; ρ

)
− 1

2

∫ 1
0 qε(t)rε(t)dt

}
dε+ On(1)

≤ 1

s2
n

∫
Bn

∫ 1

0

{
ψP0(rε(t)) + αΨPout(qε(t); ρ)− 1

2
qε(t)rε(t)

}
dtdε+ On(1) (116)

by Jensen’s inequality, because by Propositions 17 and 18 the functions ψP0 and ΨPout are convex.
Let us �x ε ∈ Bn and t ∈ [0, 1]. By de�nition of rε and qε, we have

rε(t) = 2αΨ′Pout

(
Fn(t, y(t, ε))

)
= 2αΨ′Pout

(
qε(t)

)
. (117)

The function g : q ∈ [0, ρ] 7→ 2αΨPout(q; ρ) − rε(t)q is convex by Proposition 18. By equation (117) above,
we see that g′(qε(t)) = 0 and therefore:

αΨPout(qε(t); ρ)− 1

2
qε(t)rε(t) = inf

q∈[0,ρ]

{
αΨPout(q; ρ)− 1

2
q rε(t)

}
.

This holds for all ε ∈ Bn and all t ∈ [0, 1]. Plugging this back in (116), we get:

fn ≤
1

s2
n

∫
Bn

∫ 1

0
inf

q∈[0,ρ]

{
ψP0(rε(t)) + αΨPout(q; ρ)− 1

2
q rε(t)

}
dtdε+ On(1)

≤ sup
r≥0

inf
q∈[0,ρ]

{
ψP0(r) + αΨPout(q; ρ)− 1

2
q r
}

+ On(1) .

This proves Proposition 8.

From the arguments given at the beginning of the section, this ends the proof of Theorem 1.

5 Proofs of the limits of optimal errors

5.1 Optimal generalization error: Proof of Theorem 4

5.1.1 Formal derivation and proof idea: A teacher-student scenario with side information

Before proving Theorem 4 rigorously, we �nd useful to provide a conceptual framework allowing to formally
derive the generalization error (a framework that will actually serve as a basis for the rigorous derivation
presented in the next section). In order to obtain the (generalized) optimal generalization error, we need
�rst to assume that the new “test labels” are also observed by the student in the teacher-student scenario of
Sec. 1.2 but with a very low signal-to-noise ratio. The presence of this side information will allow us to use
the I-MMSE relation (Proposition 13) to obtain the generalization error when small, but non-zero, information
about the test labels is known by the student. Then, by formally taking the limit of vanishing side information
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on the resulting expression (and assuming that the large n and vanishing side information limits commute),
we will recover the generalization error. We thus now introduce the following “train-test” observation model.

The set of patterns and labels are divided into two sets by the teacher: The training set Str of size m that
will be used as the main source of information by the student in order to then generalize, and the test set Ste

of size m′ = εn that will be used by the teacher in order to evaluate the performance of the student, but also
by the student as small additional side information. Let us be more precise: The teacher gives to the student
both the patterns and associated labels of the training set, namely Str := {(Yµ; Φµ)}mµ=1 (recall the labels are
given by (20), (21)). For the test set, the test patterns to classify are given to the student but the associated
labels are (almost) not: Let ε, λ ≥ 0. Instead of the test labels {Ỹµ}m

′
µ=1 (that should be totally unknown to the

student in the ideal setting), what is given to the student is

Uµ =
√
λY ′µ + Z ′µ , for 1 ≤ µ ≤ m′ = εn , (118)

where Z ′µ iid∼ N (0, 1), and Y ′µ is given by

Y ′µ = f(Ỹµ) , Ỹµ ∼ Pout

(
·
∣∣∣ Φ′µ · X∗√

n

)
, (119)

where f : R → R is a continuous bounded function and Φ′µ
iid∼ N (0, In) independently of everything

else. We will �rst prove Theorem 4 for continuous bounded functions f , and then relax this at the end of
the proof. The test set given to the student, in addition of the training set, is Ste = Ste(λ, ε) := {(Uµ =√
λY ′µ + Z ′µ; Φ′µ)}εnµ=1 where λ is typically very small. Indeed, we are particularly interested in the case

λ, ε → 0 when the student has no information about the test labels, which is the ideal setting we want to
study. But in order to employ the I-MMSE relation we consider instead very small λ > 0.

The learning of the classi�er X∗ given Str and Ste is a slight extension of model (20). De�ne Y′ = (Y ′µ)m
′

µ=1

as the vector of test labels (before they are corrupted by additional noise through (118)). Then the (generalized)
optimal generalization error with side information (i.e. at λ, ε > 0) in this “train-test” observation model is

Eside
f,n (λ, ε) := min

Ŷ′
1

εn
E
[∥∥Y′ − Ŷ

′
(Ste,Str)

∥∥2]
=

1

εn
E
[∥∥Y′ − E

[
Y′
∣∣Ste,Str

]∥∥2]
. (120)

The “true” generalization error (60) is recovered by de�ning instead Ste = Φ′ or equivalently letting λ, ε→ 0,
i.e. when only Str and the test patterns are given to the student: limλ,ε→0 Eside

f,n (λ, ε) = Ef,n. Note that the f
function only plays a role in the test set, while the labels of the training data are generated through the “pure
model” (20), (21).

From there one can use the I-MMSE relation of Proposition 13 in order to formally compute the limiting
n→∞ expression of (120). Indeed,

∂

∂λ

1

n
I(Y′;

√
λY′ + Z′|Y,Φ,Φ′) =

ε

2
Eside
f,n (λ, ε) . (121)

Fortunately, by a straightforward extension of the interpolation method presented in Sec. 4 one can generalize
Theorem 1 to take into account this additional side information and access this mutual information (see the
end of the section for the proof):

Lemma 2. For all ε, λ ≥ 0 we have

1

n
I(Y′;

√
λY′ + Z′|Y,Φ,Φ′) −−−→

n→∞
inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ)− i∞ , (122)
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where i∞ is given by Corollary 2 and

ĩRS(q, r, λ) := iRS(q, r) + εI(f(Y (q));
√
λ f(Y (q)) + Z ′|V ) (123)

= IP0(r) + αIPout(q; ρ) + εI(f(Y (q));
√
λ f(Y (q)) + Z ′|V )− r

2
(ρ− q) . (124)

Recall that Y (q) is sampled from the “second scalar channel” (39): Y (q) ∼ Pout(· |
√
q V +

√
ρ− qW ∗), where

V,W ∗ iid∼ N (0, 1).

De�ne the following MMSE function:

Mf : (λ, q) 7→ MMSE
(
f(Y (q))

∣∣√λ f(Y (q)) + Z ′, V
)
. (125)

By concavity arguments detailed in the next section, we have almost everywhere

lim
n→∞

∂

∂λ

1

n
I(Y′;

√
λY′ + Z′|Y,Φ,Φ′) =

∂

∂λ
lim
n→∞

1

n
I(Y′;

√
λY′ + Z′|Y,Φ,Φ′) =

∂

∂λ
inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ)

using Lemma 2 for the last equality. Assuming ∂λ infq∈[0,ρ] supr≥0 ĩRS(q, r, λ) = ∂λĩRS(q, r, λ)|(q∗λ,r∗λ), where
(q∗λ, r

∗
λ) is an optimal couple, (121) and the last identity combined lead to

ε

2
lim
n→∞

Eside
f,n (λ, ε) = ε

∂

∂λ
I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V )∣∣∣
q∗λ

=
ε

2
Mf (λ, q∗λ) , (126)

using again the I-MMSE relation for the last equality. Thus limn→∞ Eside
f,n (λ, ε) = Mf (λ, q∗λ).

A formal calculation of the vanishing side information limit of Mf (λ, q∗λ) gives back Ef (q∗(α)) (recall
(61) and q∗(α) is the optimizer of the replica-symmetric formula (43)), so that limλ,ε→0 limn→∞ Eside

f,n (λ, ε) =

Ef (q∗(α)). It is very natural to believe that the vanishing side information limit of limn→∞ Eside
f,n (λ, ε) should

give back the true asymptotic generalization error. So if one could justify the commutation of limits

lim
λ,ε→0

lim
n→∞

Eside
f,n (λ, ε) = lim

n→∞
lim
λ,ε→0

Eside
f,n (λ, ε) = lim

n→∞
Ef,n

this would end the proof. We prove this point in the next section.

Proof of Lemma 2: Extending the interpolation method presented in Sec. 4, one can generalize Theorem 1 to
take into account this additional side information. This gives directly

1

n
I(X∗;Y,

√
λY′ + Z′|Φ,Φ′) −−−→

n→∞
Ĩ∞(α, ε, λ) := inf

q∈[0,ρ]
sup
r≥0

ĨRS(q, r, λ) (127)

where ĨRS(q, r, λ) is given by

ĨRS(q, r, λ) := IP0(r) + αIPout(q; ρ) + εI(W ∗;
√
λf(Y (q)) + Z ′|V )− r

2
(ρ− q) . (128)

Conditionally on (V, f(Y (q))), the random variables W ∗ and
√
λf(Y (q)) + Z ′ are independent, therefore

I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) = I
(
W ∗, f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) .
Now, by the chain rule of the mutual information we have

I
(
W ∗, f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) = I
(
W ∗;
√
λf(Y (q)) + Z ′

∣∣V )+ I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V,W ∗) .
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We obtain that

I
(
W ∗;
√
λf(Y (q))+Z ′

∣∣V ) = I
(
f(Y (q));

√
λf(Y (q))+Z ′

∣∣V )−I(f(Y (q));
√
λf(Y (q))+Z ′

∣∣V,W ∗) . (129)

Notice that the last mutual information in the above equation does not depend on q nor r. Therefore we have:

inf
q∈[0,ρ]

sup
r≥0

ĨRS(q, r, λ) = −εI
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V,W ∗)+ inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ) . (130)

Now, by the chain rule, we have

1

n
I(X∗;Y,

√
λY′ + Z′|Φ,Φ′) =

1

n
I(X∗;Y|Φ) +

1

n
I(X∗;

√
λY′ + Z′|Y,Φ,Φ′) . (131)

The limit of the left-hand side is given by (127). By Corollary 2, we have limn→∞ I(X∗;Y|Φ)/n = i∞. It
remains to investigate the last term of the equation above. By the arguments used to prove (129), we have

I(X∗;
√
λY′ + Z′|Y,Φ,Φ′) = I(Y′;

√
λY′ + Z′|Y,Φ,Φ′)− I(Y′;

√
λY′ + Z′|Y,Φ,X∗,Φ′)

= I(Y′;
√
λY′ + Z′|Y,Φ,Φ′)− I(Y′;

√
λY′ + Z′|X∗,Φ′) . (132)

We have I(Y′;
√
λY′+Z′|X∗,Φ′)/n = εI(Y ′1 ;

√
λY ′1 +Z ′1|X∗,Φ′1) and it is not di�cult to show, using similar

computations as in the proof of Corollary 2, that

I(Y ′1 ;
√
λY ′1 + Z ′1|X∗,Φ′1) −−−→

n→∞
I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V,W ∗) ,
(recall that the right-hand side does not depend on q). Combining this with (132), (131), (127), Corollary 2 and
(130), we obtain the desired result.

5.1.2 Proof of Theorem 4

In order to compute the limit of the (generalized) generalization error, we work in the teacher-student scenario
with side-information discussed in the previous section.

Lemma 3. For all α, λ > 0 the set

Dα,λ :=
{
ε ≥ 0

∣∣ the in�mum in (122) is achieved at a unique q∗α,ε,λ
}

(133)

is equal to [0,+∞) minus some countable set. Moreover, ε 7→ q∗α,λ,ε is continuous on Dα,ε.

Proof. This follows from the same arguments than the proof of Proposition 1.

Lemma 4. For all α, λ > 0, we have for all ε ∈ Dα,λ \ {0}

lim
n→∞

MMSE(Y ′1 |Y,U,Φ,Φ′) = Mf (λ, q∗α,ε,λ) ,

where q∗α,ε,λ is the unique minimizer of (122).

Proof. Let us �x α, ε > 0. Consider the function

hα,ε : λ 7→ inf
q∈[0,ρ]

sup
r≥0

ĩRS(q, r, λ) . (134)
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Corollary 4 from [93] gives that hα,ε is di�erentiable at λ if and only if{
ε
∂

∂λ
I
(
f(Y (q));

√
λf(Y (q)) + Z ′

∣∣V ) =
ε

2
Mf (λ, q)

∣∣∣ q minimizer of (122) (or equivalently of (134))
}

is a singleton (the equality comes from the I-MMSE relation from Proposition 13). In such case, Corollary 4
from [93] also gives that

h′α,ε(λ) =
ε

2
Mf (λ, q) , (135)

for all q minimizer of (134). So if now ε ∈ Dα,λ \ {0}, then the minimizer is unique and thus hα,ε is di�eren-
tiable at λ, with derivative h′α,λ(λ) = εMf (λ, q∗α,ε,λ)/2. However, by (122) in Lemma 2, hα,ε is the pointwise
limit on R+ of the sequence of concave functions

(hn)n≥1 =
(
λ 7→ 1

n
I
(
Y′;
√
λY′ + Z′

∣∣Y,Φ,Φ′)+ i∞

)
n≥1

.

Consequently, a standard convex analysis result gives that h′n(λ) −−−→
n→∞

h′α,ε(λ). By the I-MMSE relation
(Proposition 13) we have h′n(λ) = εMMSE(Y ′1 |Y,U,Φ,Φ′)/2 and we conclude using the fact that ε 6= 0.

Lemma 5. For all α ∈ D∗ given by (50),

lim
λ→0

lim
ε→0

Mf (λ, q∗α,ε,λ) = Ef (q∗(α)) .

Proof. Let α ∈ D∗ and λ > 0. We have by de�nition of Dα,λ, of D∗ and using the link between ĩRS and iRS

given by (123), that 0 ∈ Dα,λ. By Lemma 3 above, we have

q∗α,ε,λ −−−−−−−−→
ε→0, ε∈Dα,λ

q∗α,0,λ = q∗(α) .

Analogously to Proposition 22, Mf (λ, ·) is continuous on [0, ρ], thus limε→0Mf (λ, q∗α,ε,λ) = Mf (λ, q∗(α)).
And we obtain the result by taking limλ→0Mf (λ, q∗(α)) = Ef (q∗(α)), using that Mf (·, q) is continuous for
q ∈ [0, ρ] �xed (by Proposition 13) and by comparing (125) and (61).

In order to simplify the proof, we assume that m = αn. By de�nition of the generalization error (60) and
of the labels Y′ given by (119),

Ef,n(α) := MMSE(Y ′1 |Y,Φ,Φ′) .

Lemma 6 (Lower bound on the generalization error). For all α ∈ D∗,

lim inf
n→∞

Ef,n(α) ≥ Ef (q∗(α)) .

Proof. Let α ∈ D∗, λ > 0 and ε ∈ Dα,λ \ {0}. Obviously,

Ef,n(α) ≥ MMSE(Y ′1 |Y,U,Φ,Φ′) −−−→n→∞
Mf (λ, q∗α,ε,λ) ,

where we used Lemma 4. Consequently lim inf
n→∞

Ef,n(α) ≥ Mf (λ, q∗α,ε,λ) and we obtain the lower bound by
letting ε, λ→ 0 and using Lemma 5.

Let us now prove the converse upper bound.

Lemma 7. There exists a constantC > 0 (that only depend on f ) such that for allα, λ > 0 and all ε ∈ Dα,λ\{0}

lim sup
n→∞

Ef,n(α+ ε) ≤Mf (λ, q∗α,ε,λ) + Cλ .

55



Proof. We will let the signal-to-noise ratio (snr) of the observation of Y ′1 go to zero. Let us denote by λ1 this
snr: U1 =

√
λ1 Y

′
1 + Z ′1. We will let λ1 go from λ to 0 while the other snr for the observations of Uµ for

µ = 2, . . . , εn will remain equal to λ. Recall that we denote U = (Uµ)εnµ=1. Using Proposition 9 from [94],∣∣∣ ∂
∂λ1

MMSE(Y ′1 |Y,U,Φ,Φ′)
∣∣∣ = E

[
Var(Y ′1 |Y,U,Φ,Φ′)2

]
≤ E

[
(Y ′1)4

]
≤ ‖f‖4∞ .

We de�ne C := ‖f‖4∞. Consequently, by the mean value theorem,∣∣MMSE(Y ′1 |Y,U,Φ,Φ′)−MMSE(Y ′1 |Y, (Uµ)εnµ=2,Φ,Φ
′)
∣∣ ≤ Cλ . (136)

Since (Uµ)εnµ=2 contains less information than (Ỹµ)εnµ=2 because of the additional Gaussian noise and the ap-
plication of the function f , we have

MMSE(Y ′1 |Y, (Uµ)εnµ=2,Φ,Φ
′) ≥ MMSE(Y ′1 |Y, (Ỹµ)εnµ=2,Φ,Φ

′) = Ef,n(α+ ε−1/n) ≥ Ef,n(α+ ε) . (137)

The last identity combined with (136) leads to

MMSE(Y ′1 |Y,U,Φ,Φ′) + Cλ ≥ Ef,n(α+ ε) . (138)

By Lemma 4 we know that limn→∞MMSE(Y ′1 |Y,U,Φ,Φ′) = Mf (λ, q∗α,ε,λ). Thus we conclude by taking
the limsup in the inequality above.

Corollary 6 (Upper bound on the generalization error). For all α ∈ D∗,

lim sup
n→∞

Ef,n(α) ≤ Ef (q∗(α)) .

Proof. Let α ∈ D∗, λ > 0 and ε1 > 0 such that α − ε1 ∈ D∗. Since by Lemma 3 the set Dα−ε1,λ is dense in
R+, we can �nd ε2 ∈ Dα−ε1,λ such that 0 < ε2 ≤ ε1. Using Lemma 7 above, we have

lim sup
n→∞

Ef,n(α− ε1 + ε2) ≤Mf (λ, q∗α−ε1,ε2,λ) + Cλ .

Now, using the fact that ε2 ≤ ε1 we have

lim sup
n→∞

Ef,n(α) ≤ lim sup
n→∞

Ef,n(α− ε1 + ε2) ≤Mf (λ, q∗α−ε1,ε2,λ) + Cλ .

Now, by Lemma 5 we have

lim
λ→0

lim
ε2→0

Mf (λ, q∗α−ε1,ε2,λ) + Cλ = Ef (q∗(α− ε1))

which leads to lim supn→∞ Ef,n(α) ≤ Ef (q∗(α− ε1)). We conclude by letting ε1 → 0 (recall that by Propos-
ition 1 D∗ is dense in R+ so it is possible to �nd ε1 > 0 arbitrary small such that α − ε1 ∈ D∗), using the
continuity of Ef (by Proposition 22) and the continuity of q∗ (by Proposition 1).

Proof of Theorem 4: For the moment we have proven Theorem 4 when f is continuous and bounded. We are
going to relax this assumption by approximation. Let f : R→ R such that E[|f(Ynew)|2+γ ] remains bounded
as n goes to in�nity, for some γ > 0. Let ε > 0. By density of the continuous and bounded functions in the
space L2(R) equipped with the law of Y (q) ∼ Pout(· |

√
q V +

√
ρ− qW ) (V,W iid∼ N (0, 1)), we can �nd a

continuous bounded function f̃ : R→ R such that E[(f(Y (q))− f̃(Y (q)))2] ≤ ε.
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Lemma 8. For all q ∈ [0, ρ] (because the law of Y (q) does not depend on q), we have

f(Ynew)− f̃(Ynew)
(d)−−−→

n→∞
f(Y (q))− f̃(Y (q)) . (139)

Proof. Let (Anew, Znew) ∼ PA ⊗ N (0, 1) such that Ynew = ϕ(Φnew · X∗/
√
n,Anew) +

√
∆Znew. By the

central limit theorem (that we apply under (h1)-(h3) and using (h4))

ϕ
(Φnew · X∗√

n
,Anew

)
(d)−−−→

n→∞
ϕ(
√
ρZ,Anew) , (140)

where Z ∼ N (0, 1) is independent from Anew. Under (h5.b) this proves Lemma 8, because in that case
Ynew = ϕ(Φnew · X∗/

√
n,Anew) takes values in N. Under (h5.a) we let g : R→ R be a continuous bounded

function and we write h := f − f̃ . Then

E
[
g ◦ h(Ynew)

]
= E

[
g ◦ h

(
ϕ
(Φnew · X∗√

n
,Anew

)
+
√

∆Znew

)]
= E

[ 1√
2π∆

∫
g ◦ h(z) exp

{
− 1

2∆

(
z − ϕ

(Φnew · X∗√
n

,Anew

))2}
dz
]
.

The function x 7→
∫
g ◦ h(z) e

− 1
2∆

(z−x)2

√
2π∆

dz is continuous and bounded: (140) then gives that

E
[
g ◦ h(Ynew)

]
−−−→
n→∞

E
[ 1√

2π∆

∫
g ◦ h(z) exp

{
− 1

2∆

(
z − ϕ

(√
ρZ,Anew

))2}
dz
]

= E
[
g ◦ h(Y (q))

]
,

which concludes the proof by the Portemanteau Theorem.

The sequence
(
(f(Ynew)− f̃(Ynew))2

)
n≥0

is uniformly integrable because bounded in L1+γ with γ > 0.
Consequently, Lemma 8 above implies

E
[
(f(Ynew)− f̃(Ynew))2

]
−−−→
n→∞

∥∥f(Y (q))− f̃(Y (q))
∥∥2

L2 = E
[
(f(Y (q))− f̃(Y (q)))2

]
≤ ε .

Therefore, we can �nd n0 ∈ N such that for all n ≥ n0, ‖f(Ynew)−f̃(Ynew)‖2L2 = E[(f(Ynew)−f̃(Ynew))2] ≤
2ε. If we now apply Theorem 4 for f̃ , we can �ndn1 ≥ n0 such that for alln ≥ n1, |E1/2

f̃ ,n
−E

f̃
(q∗(α))1/2| ≤

√
ε.

Let n ≥ 1, and compute∣∣∣E1/2
f,n − E

1/2

f̃ ,n

∣∣∣ =
∣∣∣∥∥f(Ynew)− E[f(Ynew)|Y,Φ,Φnew]

∥∥
L2 −

∥∥f̃(Ynew)− E[f̃(Ynew)|Y,Φ,Φnew]
∥∥
L2

∣∣∣
≤
∥∥f(Ynew)− f̃(Ynew)

∥∥
L2 +

∥∥E[f(Ynew)− f̃(Ynew)|Y,Φ,Φnew]
∥∥
L2

≤ 2
∥∥f(Ynew)− f̃(Ynew)

∥∥
L2 ≤ 2

√
2ε ,

where we successively used the triangular inequality twice for the �rst inequality (||a − b| − |x − y|| ≤
|a− x+ y − b| ≤ |a− x|+ |y − b|) and Jensen’s inequality for the second. By the same arguments we have
also |Ef (q)1/2 − E

f̃
(q)1/2| ≤ 2

√
ε for all q ∈ [0, ρ]. We conclude that for all n ≥ n1,

∣∣E1/2
f,n − Ef (q∗(α))1/2

∣∣ ≤ ∣∣E1/2
f,n − E

1/2

f̃ ,n

∣∣+
∣∣E
f̃
(q∗(α))1/2 − Ef (q∗(α))1/2

∣∣+
∣∣E1/2

f̃ ,n
− E

f̃
(q∗(α))1/2

∣∣
≤ (2
√

2 + 3)
√
ε , (141)

which proves Theorem 4.
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5.2 Generalization error of GAMP: Proof of Proposition 2

Let us decompose:

EGAMP,t
gen := E

[(
Ynew − Ŷ GAMP,t

)2]
= E

[
Y 2

new

]
+ E

[(
Ŷ GAMP,t

)2]− 2E
[
YnewŶ

GAMP,t
]
. (142)

Lemma 9. We have

E
[
YnewŶ

GAMP,t
]
−−−→
n→∞

EV
[
EW
[ ∫

dY Y Pout(Y |
√
qt V +

√
ρ− qtW )

]2]
. (143)

Proof. Start by writing

E
[
YnewŶ

GAMP,t
]

= E
∫
y y′ Pout

(
y
∣∣∣Φnew · X∗√

n

)
Pout

(
y′
∣∣∣Φnew · x̂t√

n
+
√
ρ− qtW

)
dydy′

where W ∼ N (0, 1) is independent of everything else. Φnew ∼ N (0, In) is independent of X∗ and x̂t, so,
conditionally on X∗, x̂t we have

(Φnew · X∗√
n

,
Φnew · x̂t√

n

)
∼ N

(
0,

1

n

(
‖X∗‖2 x̂t·X∗
x̂t·X∗ ‖x̂t‖2

))
.

We assumed that (69) holds, i.e. X∗ · x̂t/n→ qt and ‖x̂t‖2/n→ qt, in probability. By the law of large numbers
‖X∗‖2/n→ ρ in probability. Consequently,

(Φnew · X∗√
n

,
Φnew · x̂t√

n

)
(d)−−−→

n→∞
N
(

0,
(
ρ qt

qt qt

))
.

Since x 7→ Pout(·|x) is continuous almost everywhere for the Wasserstein distance of order 2, the function
h : (a, b) 7→ EW

∫
yy′Pout(y|a)Pout(y

′|b +
√
ρ− qtW )dydy′ with W ∼ N (0, 1) is continuous almost

everywhere. Therefore

Hn := h
(Φnew · X∗√

n
,
Φnew · x̂t√

n

)
(d)−−−→

n→∞
h(
√
qt Z0 +

√
ρ− qt Z1,

√
qt Z0) , (144)

where Z0, Z1
iid∼ N (0, 1). We have by Jensen’s inequality

E
[∣∣Hn

∣∣1+η] ≤ E
[∣∣YnewŶ

GAMP,t
∣∣1+η] ≤ E

[(1

2
Y 2

new +
1

2
(Ŷ GAMP,t)2

)1+η]
≤ 1

2
E|Y1|2+2η +

1

2
E
∣∣Ŷ GAMP,t

∣∣2+2η
.

By assumption, there exists η > 0 such that the two last terms above remain bounded with n: Hn is therefore
bounded in L1+η and is therefore uniformly integrable. From (144) we thus get

E
[
YnewŶ

GAMP,t
]

= E[Hn] −−−→
n→∞

E
[
h(
√
qt Z0 +

√
ρ− qt Z1,

√
qt Z0)

]
=EV

[
EW
[ ∫

dY Y Pout(Y |
√
qt V +

√
ρ− qtW )

]2]
.

58



Following the arguments of Lemma 9 one can also show that

E
[(
Ŷ GAMP,t

)2] −−−→
n→∞

EV
[
EW
[ ∫

dY Y Pout(Y |
√
qt V +

√
ρ− qtW )

]2]
,

E
[
Y 2

new

]
−−−→
n→∞

EV
∫
dY Y 2Pout(Y |

√
ρ V ) .

This proves (together with (142) and Lemma 9) Proposition 2.

5.3 Limit of the overlap: Proof of Theorem 2

Recall the de�nition of the overlap (105): Qn := X∗ · x/n, where x = (x1, . . . , xn) is a sample from the
posterior distribution P (X∗|Y,Φ), independently of everything else. In this section we will show that |Qn|
converges in probability to q∗(α), when α ∈ D∗ given by (50). We will �rst show an upper-bound in Sec. 5.3.1
below, before proving the converse lower-bound in Sec. 5.3.2.

5.3.1 Upper bound on the overlap

Proposition 9 (Upper bound on the overlap). For all α ∈ D∗ and for all ε > 0,

P
(
|Qn| ≥ q∗(α) + ε

)
−−−→
n→∞

0 .

Let us �x α ∈ D∗ and let p ≥ 1. In order to obtain an upper bound on the overlap, we consider an
observation model with some (small) extra information (that takes the form of a tensor of order 2p) in addition
of the original model (21), i.e. we observe Y ∼ Pout(· |ΦX∗/

√
n) ,

Y′ =
√

λ
n2p−1 (X∗)⊗2p + Z′ ,

(145)

where λ ≥ 0, Z′ = (Z ′i1...i2p)1≤i1,...,i2p≤n
iid∼ N (0, 1) and (X∗)⊗2p = (Xi1 . . . Xi2p)1≤i1,...,i2p≤n. In order to

prove Proposition 9 we need the two results below, which are proven after the proof of Proposition 9.

Proposition 10 (Mutual information of the perturbed model). For all λ ≥ 0, the mutual information for model
(145) veri�es

lim
n→∞

1

n
I
(
X∗;Y,Y′

∣∣Φ) = I(λ) , (146)

where the right-hand-side is

I(λ) := inf
q∈[0,ρ]

sup
r≥0

{
IP0(r+2pλq2p−1) + αIPout(q)−

r

2
(ρ− q) +

2p− 1

2
λq2p − ρpλq2p−1 +

λ

2
ρ2p
}
. (147)

Lemma 10. The function I de�ned above by (147) is concave on R+. Its left- and right-derivatives are given by

I ′(λ+) = min
{1

2

(
ρ2p − q∗(λ)2p

) ∣∣∣ q∗(λ) achieves the in�mum in (147)
}
,

I ′(λ−) = max
{1

2

(
ρ2p − q∗(λ)2p

) ∣∣∣ q∗(λ) achieves the in�mum in (147)
}
.

We are now in position to prove Proposition 9.
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Proof of Proposition 9: By the I-MMSE relation of Proposition 13,

1

n

∂

∂λ
I
(
X∗;Y,Y′

∣∣Φ) =
1

n

∂

∂λ
I
(
(X∗)⊗2p;Y,Y′

∣∣Φ) =
1

2n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Y′,Φ) .
Using Proposition 10 and Lemma 10 above we obtain by concavity that

1

2n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Y′,Φ) =
1

n

∂

∂λ
I
(
X∗;Y,Y′

∣∣Φ) −−−→
n→∞

I ′(λ) =
1

2

(
ρ2p − q∗(λ)2p

)
,

for all λ > 0 for which the in�mum of (147) is achieved at a unique q∗(λ). Consequently,

lim inf
n→∞

1

n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Φ) ≥ lim inf
n→∞

1

n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Y′,Φ) = ρ2p − q∗(λ)2p . (148)

Let us now suppose that α ∈ D∗. In that case, there exists a unique q∗(λ = 0) = q∗(α) that achieves the
in�mum in (147). Consequently, I ′(0+) = 1

2(ρ2p − q∗(α)2p). By concavity, I ′(λ)→ I ′(0+) as λ→ 0, which
gives q∗(λ)→ q∗(α). By taking the λ→ 0 limit in (148) above we get

lim inf
n→∞

1

n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Φ) ≥ ρ2p − q∗(α)2p .

One veri�es easily that

1

n2p
MMSE

(
(X∗)⊗2p

∣∣Y,Φ) = ρ2p − E
[
Q2p
n

]
+ on(1) , (149)

so we deduce that
lim sup
n→∞

E
[
Q2p
n

]
≤ q∗(α)2p .

Let ε > 0. By Markov’s inequality we have

P
(
|Qn| ≥ q∗(α) + ε

)
≤

E
[
Q2p
n

]
(q∗(α) + ε)2p

.

By taking the lim sup in n on both sides we obtain

lim sup
n→∞

P
(
|Qn| ≥ q∗(α) + ε

)
≤ q∗(α)2p

(q∗(α) + ε)2p
,

and Proposition 9 follows by taking the p→∞ limit in the inequality above.

We now prove the two preliminary results used in the proof of Proposition 9.

Proof of Proposition 10: The proof is very similar to the one of Theorem 1 (and Corollary 2), by the adapt-
ive interpolation method (see Sec. 4), so we provide only the main arguments and omit to write the small
perturbation (i.e. the ε1, ε2 present in Sec. 4) for simplicity.

In order to tackle model (145) we need �rst to study a simpler one, namely when we have access to the
simultaneous observations Y ∼ Pout(· |ΦX∗/

√
n) and Y′′ = √γ X∗+Z′′. De�ne, for γ ≥ 0, the free entropy

(expected log-partition function) of this model:

Fn(γ) :=
1

n
E ln

∫
dP0(x) exp

( n∑
i=1

√
γZ ′′i xi + γxiX

∗
i −

γ

2
x2
i

) m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

Φµ · x
)
, (150)
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where Z ′′i iid∼ N (0, 1) are independent of everything else. Let us de�ne

FRS(γ) := sup
q∈[0,ρ]

inf
r≥0

{
ψP0(r + γ) + αΨPout(q)−

rq

2

}
. (151)

A slight and easy modi�cation of the Theorem 1 gives that for all γ ≥ 0

Fn(γ) −−−→
n→∞

FRS(γ) . (152)

Fn is a convex function of γ (this can be checked by relating it to the mutual information like in Corollary 2 and
then using the I-MMSE relation of Proposition 13), thus FRS is too. The function FRS is therefore continuous
on R+. Fn is also a non-decreasing function of γ (this is again checked using the I-MMSE relation). By Dini’s
second theorem we obtain that the convergence of (152) is uniform over all compact subsets of R+.

Now that we have studied this simpler model, we come back to the analysis of (145). We proceed by
interpolation as in Sec. 4.1. Let q : [0, 1] → [0, ρ] be a continuous interpolating function. For t ∈ [0, 1],
consider the following “interpolating estimation model”:

Yµ ∼ Pout( · |ΦX∗/
√
n) , 1 ≤ µ ≤ m,

Y′t =
√

λ(1−t)
n2p−1 (X∗)⊗2p + Z′ ,

Y ′′t,i =
√

2pλ
∫ t

0 q(v)2p−1dv X∗i + Z ′′i , 1 ≤ i ≤ n .

(153)

De�ne the corresponding interpolating free entropy:

fn(t) :=
1

n
E ln

∫
dP0(x)eHn,t(x)

m∏
µ=1

Pout

(
Yµ

∣∣∣ 1√
n

Φµ · x
)
,

where the Hamiltonian of the model is

Hn,t(x) =
n∑
i=1

{√
2pλ

∫ t

0
q(v)2p−1dv Z ′′i xi + 2pλ

∫ t

0
q(v)2p−1dv xiX

∗
i − pλ

∫ t

0
q(v)2p−1dv x2

i

}
+

∑
i1,...,i2p

{√λ(1− t)
n2p−1

Z ′i1...i2pxi1 . . . xi2p +
λ(1− t)
n2p−1

xi1 . . . xi2pX
∗
i1 . . . X

∗
i2p −

λ(1− t)
2n2p−1

x2
i1 . . . x

2
i2p

}
.

We aim at computing fn := fn(0). We have fn(1) = Fn(2pλ
∫ 1

0 q(t)
2p−1dt). Similarly to Proposition 3 one

can compute (see [52] where this computation is done):

f ′n(t) = −λ
2
E
〈
Q2p
t − 2pq(t)2p−1Qt

〉
t

(154)

where Qt =
∑n

i=1X
∗
i xi/n is the overlap between the planted solution X∗ and x = (x1, . . . , xn), a sample

from the posterior distribution P (X∗|Y,Y′t,Y′′t ). Similarly as in Sec. 4.1 the Gibbs bracket 〈−〉t denotes the
expectation w.r.t. this t-dependent posterior acting on x, E is w.r.t. the quenched variables Y,Y′t,Y′′t . By
convexity of the function x 7→ x2p, we have for all a, b ∈ R, a2p − 2pab2p−1 ≥ (1− 2p)b2p. Consequently, if
we choose q to be a constant function, i.e. q(t) = q for all t ∈ [0, 1], we have

f ′n(t) ≤ λ

2
(2p− 1)q2p .
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This gives

fn = fn(0) = fn(1)−
∫ 1

0
f ′n(t)dt ≥ Fn(2pλq2p−1)− λ

2
(2p− 1)q2p .

By taking the lim inf in n on both sides, we obtain lim infn→∞ fn ≥ FRS(2pλq2p−1) − λ
2 (2p − 1)q2p using

(152) and since this holds for all q ∈ [0, ρ] we get

lim inf
n→∞

fn ≥ sup
q∈[0,ρ]

{
FRS(2pλq2p−1)− λ

2
(2p− 1)q2p

}
.

Let us now prove the converse upper-bound. One can show as in Sec. 4.3 that the overlapQt concentrates
around its expectation: Proposition 4 applies. This perturbation does not change the free entropy in the limit
n→∞ nor the following derivation, so we do not track it explicitely for the sake of simplicity. Let us go back
to (154). Therefore, using this concentration and then choosing q(t) = q̃(t) = E〈Qt〉t as done in Sec. 4.4, we
obtain that

f ′n(t) =
λ

2
(2p− 1)q̃(t)2p + on(1) .

Consequently,
fn = fn(1)−

∫ 1

0
f ′n(t)dt = Fn

(
2pλ

∫ 1

0
q̃(t)2p−1dt

)
− λ

2
(2p− 1)

∫ 1

0
q̃(t)2pdt+ on(1)

≤ Fn
(

2pλ

∫ 1

0
q̃(t)2p−1dt

)
− λ

2
(2p− 1)

(∫ 1

0
q̃(t)2p−1dt

) 2p
2p−1

+ on(1)

≤ sup
q∈[0,ρ]

{
Fn(2pλq2p−1)− λ

2
(2p− 1)q2p

}
+ on(1) .

We use now the fact that the convergence in (152) is uniform over all compact sets to get the upper-bound:
lim supn→∞ fn ≤ supq∈[0,ρ]

{
FRS(2pλq2p−1)− λ

2 (2p− 1)q2p
}

. We conclude that

lim
n→∞

fn = sup
q∈[0,ρ]

{
FRS

(
2pλq2p−1

)
− λ

2
(2p− 1)q2p

}
. (155)

We are now going to simplify the right-hand side of the above equation.

Lemma 11. FRS is a convex function on R+, whose left- and right-derivatives at γ ≥ 0 are:

F ′RS(γ+) = max
{1

2
q∗(γ)

∣∣∣ q∗(γ) achieves the supremum in (151)
}
,

F ′RS(γ−) = min
{1

2
q∗(γ)

∣∣∣ q∗(γ) achieves the supremum in (151)
}
.

In particular, FRS is di�erentiable at γ ≥ 0 if and only if the supremum in (151) is achieved at a unique q∗(γ).

Proof. We already know that FRS is convex (as a limit of convex functions, see (152)). We have

FRS(γ) = sup
q∈[0,ρ]

inf
r≥0

{
ψP0(r + γ) + αΨPout(q)−

rq

2

}
= sup

q∈[0,ρ]

{
αΨPout(q)− g(γ, q/2)

}
(156)

where g(γ, x) = supr≥0

{
xr − ψP0(γ + r)

}
is the Legendre transform of r 7→ ψP0(γ + r). Let us now

compute ∂g
∂γ (γ, x). If x ≤ ψ′P0

(γ), then the supremum in r is achieved at r = 0, g(x, γ) = −ψP0(γ). If now
x > ψ′P0

(γ) then

g(γ, x) = sup
r≥−γ

{
xr − ψP0(γ + r)

}
= −γx+ sup

r≥0

{
xr − ψP0(r)

}
.

62



The �rst equality comes from the fact that the supremum can not be achieved on [−γ, 0] because for all
r ∈ [−γ, 0], x > ψ′P0

(γ) ≥ ψ′P0
(γ + r). We obtain

g(γ, x) =

{
−ψP0(γ) if x ≤ ψ′P0

(γ) ,

−xγ + g(0, x) if x > ψ′P0
(γ) .

From there, we conclude that ∂g∂γ (γ, x) = −max
(
ψ′P0

(γ), x
)
. By Lemma 23, every optimal couple (q∗(γ), r∗(γ))

satisfy q∗(γ) = 2ψ′P0
(γ+r∗(γ)). This implies (by convexity ofψP0 ) that q∗(γ)/2 ≥ ψ′P0

(γ). Using Corollary 4
from [93] FRS we get that

F ′RS(γ+) = max
{
− ∂g

∂γ
(γ, q∗(γ))

∣∣∣ q∗(γ) maximizer of (151)
}

= max
{1

2
q∗(γ)

∣∣∣ q∗(γ) maximizer of (151)
}

and analogously for F ′RS(γ−).

Lemma 12. We have

sup
q̃∈[0,ρ]

{
FRS(2pλq̃2p−1)−(2p−1)

λ

2
q̃2p
}

= sup
q∈[0,ρ]

inf
r≥0

{
ψP0(r+2pλq2p−1)+αΨPout(q)−

rq

2
−(2p−1)

λ

2
q2p
}
.

Proof. Consider the equality above. The inequality l.h.s ≥ r.h.s. is obvious because it su�ces to restrict the
supremum over (q, q̃) ∈ [0, ρ]2 to the supremum over the couples (q, q) for q ∈ [0, ρ].

Let us prove now the converse inequality. Let us do the change of variable x = q̃2p−1 and de�neH(x) :=

FRS(2pλx)− (2p− 1)λ2x
2p/(2p−1). FRS is left- and right-di�erentiable everywhere, so is H . We have

H ′(x) = 2pλF ′RS(2pλx)− λ

2
2px1/(2p−1) = pλ

(
2F ′RS(2pλx)− x1/(2p−1)

)
(157)

at the points at which H is di�erentiable, and analogously for the left- and right-derivatives of H . Let x ∈
[0, ρ2p−1] be a point at which H achieves its supremum over [0, ρ2p−1]. Let us distinguish 3 cases:

• Case 1: x = 0. In that case, we have H ′(0+) ≤ 0 and thus F ′RS(0+) ≤ 0. Using Lemma 11, we obtain
that the only q ∈ [0, ρ] that achieves the supremum in (151) is q = 0 = x1/(2p−1).

• Case 2: 0 < x < ρ2p−1. We have then H ′(x−) ≥ 0 and H ′(x+) ≤ 0. Using (157), we deduce that

2F ′RS

(
(2pλx)+

)
≤ x1/(2p−1) ≤ 2F ′RS

(
(2pλx)−

)
.

FRS is convex, so the above inequalities collapses into equalities and we get that FRS is di�erentiable
at 2pλx with derivative given by F ′RS(2pλx) = x1/(2p−1)/2. Lemma 11 above gives then that the
supremum in (151) is achieved uniquely at q = x1/(2p−1).

• Case 3: x = ρ2p−1. Using the same arguments than in Case 1, we obtain also q = x1/(2p−1).

Conclusion: In all 3 cases above, q = x1/(2p−1) achieves the supremum in (151). Recall that we used the
change of variable x = q̃2p−1. Consequently, if q̃ ∈ [0, ρ] achieves the supremum of q̃ 7→ FRS(2pλq̃2p−1) −
(2p− 1)λq̃2p, then q̃ achieves also the supremum in (151). This proves the converse bound.

By Lemma 12 and (155) above, we get that

fn −−−→
n→∞

sup
q∈[0,ρ]

inf
r≥0

{
ψP0(r + 2pλq2p−1) + αΨPout(q)−

rq

2
− (2p− 1)

λ

2
q2p
}
.
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Proposition 10 follows then by rewriting the above limit in terms of mutual information, as we did to deduce
Corollary 2 from Theorem 1.

Proof of Lemma 10: The proof follows exactly the same steps than the one of Lemma 11, so we omit it for the
sake brevity.

5.3.2 Lower bound using the generalization error

Let us �x α ∈ D∗. The sequence of the overlaps
(
Qn
)
n≥1

is tight (because bounded in L1). By Prokhorov’s
Theorem we know that the sequence of the laws of

(
Qn
)
n≥1

is relatively compact. We can thus consider a
subsequence along which it converges in law, to some random variable Q. In order to simplify the notations
(and because working with an extraction does not change the proof) we will assume in the sequel that

Qn
(d)−−−→

n→∞
Q ,

for some random variable Q. We aim now at showing that |Q| = q∗(α) almost-surely.

Lemma 13 (Upper bound on the overlap). |Q| ≤ q∗(α) almost-surely.

Proof. Let ε > 0. The set [0, q∗(α) + ε] is closed, so by Portemanteau’s Theorem

P
(
|Q| ≤ q∗(α) + ε

)
≥ lim sup

n→∞
P
(
|Qn| ≤ q∗(α) + ε

)
= 1 ,

by Proposition 9. So P
(
|Q| ≤ q∗(α) + ε

)
= 1 for all ε > 0 which gives P

(
|Q| ≤ q∗(α)

)
= 1.

We are going to prove the converse lower bound using Theorem 4. Let f : R → R be a continuous
bounded function. Theorem 4 gives Ef,n(α) −−−→

n→∞
Ef (q∗(α)). The function Ef can be written as

Ef (q) =
1

2
E
[
hf
(√
qZ0 +

√
ρ− qZ1,

√
qZ0 +

√
ρ− qZ ′1

)]
where Z0, Z1, Z

′
1

iid∼ N (0, 1) and hf : (a, b) ∈ R2 7→
∫

(f(y1) − f(y2))2Pout(y1|a)Pout(y2|b)dy1dy2. By a
central limit argument, we have:

Lemma 14. (x ·Φnew√
n

,
X∗ ·Φnew√

n

)
(d)−−−→

n→∞
(Z1, Z2) ,

where (Z1, Z2) is sampled, conditionally on Q, from N
(

0,
(
ρ Q
Q ρ

))
.

Proof. Notice that x and X are independent of Φnew. If (Φnew,1, . . . ,Φnew,n) iid∼ N (0, 1), then Lemma 14 is
obvious because in that case(x ·Φnew√

n
,
X∗ ·Φnew√

n

)
∼ N

(
0,

1

n

(
‖x‖2 x·X∗
x·X∗ ‖X∗‖2

))
and 1

n

(
‖x‖2 x·X∗
x·X∗ ‖X∗‖2

)
(d)−−−→

n→∞

(
ρ Q
Q ρ

)
.

Let us now suppose that the entries of Φnew are not i.i.d. standard Gaussian (but still verify hypothesis (h3)).
Let g1, . . . , gn

iid∼ N (0, 1). Let L : R2 → R be a bounded C3 function, with bounded partial derivatives. We
have to show that

E
[
L
(x ·Φnew√

n
,
X∗ ·Φnew√

n

)]
−−−→
n→∞

E
[
L(Z1, Z2)

]
. (158)
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We have seen above that E
[
L
( x·g√

n
, X
∗·g√
n

)]
−−−→
n→∞

E[L(Z1, Z2)]. We now apply Theorem 5 (Theorem 2 from
[95]) conditionally on x,X∗ to obtain

E
[
L
(x ·Φnew√

n
,
X∗ ·Φnew√

n

)]
= E

[
L
(x · g√

n
,
X∗ · g√

n

)]
+On(n−1/2) ,

which proves (158) and therefore Lemma 14.

Proposition 11. We have

Ef,n(α) −−−→
n→∞

1

2
E
[
hf (Z1, Z2)

]
,

where (Z1, Z2) is de�ned in Lemma 14 above.

Proof. We have
Ef,n = E

[(
f(Ynew)− E

[
f(Ynew)

∣∣Φnew,Φ,Y
])2]

=
1

2
E
[∫

(f(ynew)− f(y))2Pout

(
ynew

∣∣Φnew · X∗/
√
n
)
Pout

(
y
∣∣Φnew · x/

√
n
)
dynewdy

]
=

1

2
E
[
hf

(x ·Φnew√
n

,
X∗ ·Φnew√

n

)]
.

By Lemma 14 above, we have
(x·Φnew√

n
, X
∗·Φnew√

n

) (d)−−−→
n→∞

(Z1, Z2). Using (h4) (and the fact that either (h5.a) or
(h5.b) hold), we can �nd a Borel set S ⊂ R of full Lebesgue’s measure such that x 7→ Pout(y|x) is continuous
on S, for all y ∈ R. By dominated convergence (recall that f is assumed to be bounded), we obtain that hf
is continuous on S × S. The set of discontinuity points of hf has thus zero measure for the law of (Z1, Z2).
Indeed if we condition on Q:

• if |Q| < ρ, then (Z1, Z2) has a density over R2.

• if Q = ρ, then Z1 = Z2 almost surely, but hf is continuous on
{

(s, s)
∣∣ s ∈ S} that has full Lebesgue’s

measure on the diagonal
{

(x, x)
∣∣x ∈ R

}
.

• if Q = −ρ, then Z1 = −Z2 almost surely and we use then similar arguments as for the previous point.

We have therefore:
hf

(x ·Φnew√
n

,
X∗ ·Φnew√

n

)
(d)−−−→

n→∞
hf (Z1, Z2) ,

and Lemma 11 follows from the fact that hf is bounded.

Let us now de�ne:

Hf :

∣∣∣∣∣ [−ρ, ρ] → R
q 7→ 1

2E
[
hf (G(q))

] (159)

where G(q) ∼ N
(
0, ( ρ qq ρ )

)
. Notice that Hf is equal to the function Ef on [0, ρ]. By Proposition 11 above and

Theorem 4, we have:
Hf (q∗(α)) = lim

n→∞
Ef,n(α) = E

[
Hf (Q)

]
. (160)

Lemma 15. For all q ∈ [−ρ, ρ], Hf (q) ≥ Hf (|q|).

Proof. Let q ∈ [0, ρ] and Z0, Z1, Z
′
1

iid∼ N (0, 1).

Hf (−q) =
1

2
E
[
hf
(√
qZ0 +

√
ρ− qZ1,−

√
qZ0 +

√
ρ− qZ ′1

)]
.
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Let us denote by EZ1 and EZ′1 the expectations with respect to Z1 and Z ′1. By replacing hf by its expression,
we have

Hf (−q) =
1

2
E
∫

(f(y)− f(y′))2Pout(y|
√
qZ0 +

√
ρ− qZ1)Pout(y

′| − √qZ0 +
√
ρ− qZ ′1)dydy′

=
1

2
E
∫

(f(y)− f(y′))2EZ1Pout(y|
√
qZ0 +

√
ρ− qZ1)EZ′1Pout(y

′| − √qZ0 +
√
ρ− qZ ′1)dydy′

=
1

2
E
∫

(f(y)− f(y′))2P̃out(y|Z0)P̃out(y
′| − Z0)dydy′ ,

where P̃out(y|z) = EZ1Pout(y|
√
qz +

√
ρ− qZ1). Let now Y and Y ′ be two random variables that are

independent conditionally on Z0 and distributed as

Y ∼ P̃out(·|Z0) and Y ′ ∼ P̃out(·| − Z0) .

Then we have

Hf (−q) =
1

2
E
[(
f(Y )− f(Y ′)

)2]
=

1

2
E
[(
f(Y )− E[f(Y )|Z0] + E[f(Y )|Z0]− f(Y ′)

)2]
=

1

2
E
[(
f(Y )− E[f(Y )|Z0]

)2]
+

1

2
E
[(
E[f(Y )|Z0]− f(Y ′)

)2]
,

because Y and Y ′ are independent conditionally on Z0. The conditional expectation E[f(Y )|Z0] is Z0-
measurable, thereforeE

[
(E[f(Y )|Z0]−f(Y ′))2

]
≥ E

[
(E[f(Y ′)|Z0]−f(Y ′))2

]
= E

[
(E[f(Y )|Z0]−f(Y ))2

]
.

We conclude
Hf (−q) ≥ E

[
(E[f(Y )|Z0]− f(Y ))2

]
= Hf (q) .

We have now all the tools needed to prove Theorem 2. Using Lemma 15 and (160) above, we get that
EHf (|Q|) ≤ EHf (Q) = Hf (q∗(α)). Since Hf is equal to Ef on [0, ρ] this gives

E
[
Ef (|Q|)

]
≤ Ef (q∗(α)) . (161)

If q∗(α) = 0, then Theorem 2 follows simply from Proposition 9. We suppose now that q∗(α) > 0 and
consider ε ∈ (0, q∗(α)). We de�ne p(ε) = P

(
|Q| ≤ q∗(α) − ε

)
. We are going to show that p(ε) = 0. We

assumed that Pout is informative, so by Proposition 23 and Proposition 24 in Appendix B.2, there exists a
continuous bounded function f : R 7→ R such that Ef is strictly decreasing on [0, ρ]. In the following, f is
assumed to be such a function. We have

E
[
Ef (|Q|)

]
= E

[
1
(
|Q| ≤ q∗(α)− ε

)
Ef (|Q|) + 1

(
|Q| > q∗(α)− ε

)
Ef (|Q|)

]
≥ p(ε)Ef (q∗(α)− ε) + (1− p(ε))Ef (q∗(α)) .

because Ef is non-increasing and because |Q| ≤ q∗(α) almost-surely (Lemma 13). Combining this with (161)
leads to

p(ε)Ef (q∗(α)) ≥ p(ε)Ef (q∗(α)− ε) .

Since Ef is strictly decreasing: Ef (q∗(α)) < Ef (q∗(α)− ε), which implies p(ε) = 0. This is true for all ε > 0,
consequently |Q| ≥ q∗(α) almost-surely. We get (using Lemma 13) that

|Q| = q∗(α) , almost-surely.
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We conclude that the only possible limit in law of the tight sequence
(
|Qn|

)
n≥1

is q∗(α). Therefore |Qn| →
q∗(α) in law and in probability because q∗(α) is a constant.

5.4 Denoising error: Proof of Corollary 5

Start by noticing that the denoising error, i.e. the right hand side of (74), is obtained through the I-MMSE
theorem, see Proposition 13, applied to ĩn := I(X∗,A;Y |Φ)/n:

∂ĩn
∂∆−1

=
1

2n
MMSE

(
ϕ
( 1√

n
ΦX∗,A

)∣∣∣Φ,Y) . (162)

This mutual information is simply computed using our main theorem. Indeed,

ĩ∞ := lim
n→∞

ĩn = lim
n→∞

1

n
H(Y|Φ)− lim

n→∞

1

n
H(Y|Φ,X∗,A) = −f∞ − lim

n→∞

1

n
H(Y|Φ,X∗,A) .

One can simply check that limn→∞H(Y|Φ,X∗,A)/n = α ln(2π∆e)/2 by similar computations as in the
proof of Corollary 2. Therefore, de�ning

ĩRS(q,∆) := −α
2

ln(2π∆e)− αΨPout(q)− inf
r≥0

{
ψP0(r)− qr

2

}
,

we have ĩ∞ = supq∈[0,ρ] ĩRS(q,∆) from Theorem 1.
One can verify easily that ĩn is a concave di�erentiable function of ∆−1 (this is again related to the I-MMSE

theorem). Thus its limit ĩ∞ is also a concave function of ∆−1. Therefore, a standard analysis lemma gives that
the derivative of ĩn w.r.t. ∆−1 converges to the derivative of ĩ∞ at every point at which ĩ∞ is di�erentiable
(i.e. almost every points, by concavity): limn→∞ ∂∆−1 ĩn = ∂∆−1 ĩ∞ = ∂∆−1 supq∈[0,ρ] ĩRS(q,∆). The �rst
limit is given by the limit of the right hand side of (162). It thus remains to compute ∂∆−1 supq∈[0,ρ] ĩRS(q,∆).

Assume for a moment that the ∂∆−1 and supq∈[0,ρ] operations commute. Then we need to compute
∂∆−1ΨPout(q); this follows from the I-MMSE theorem. Indeed, if we denote S = ϕ(

√
q V +

√
ρ− qW ∗,A),

notice that ΨPout(q) = −I(S;S +
√

∆Z |V ) − ln(2πe∆)/2, because ΨPout(q) = −H(S +
√

∆Z |V ) and
I(S +

√
∆Z;S |V ) = H(S +

√
∆Z |V )−H(S +

√
∆Z |V, S) = −ΨPout(q)− ln(2πe∆)/2. Therefore

∂ΨPout(q)

∂∆−1
=

∆

2
− ∂

∂∆−1
I(S +

√
∆Z;S |V ) =

∆

2
− 1

2
MMSE(S |V, S +

√
∆Z)

=
∆

2
− 1

2

(
E
[
ϕ(
√
ρ V,A)2

]
− E

[〈
ϕ(
√
q V +

√
ρ− q w, a)〉2sc

])
.

Consequently,

∂ĩRS(q,∆)

∂∆−1
=
α

2

(
E
[
ϕ(
√
ρ V,A)2

]
− E

[〈
ϕ(
√
q V +

√
ρ− q w, a)〉2sc

])
.

Now, Theorem 1 from [93] gives that at every ∆−1 at which i∞ is di�erentiable

∂ĩ∞
∂∆−1

=
∂

∂∆−1
sup
q∈[0,ρ]

ĩRS(q,∆) =
α

2

(
E
[
ϕ(
√
ρ V,A)2

]
− E

[〈
ϕ(
√
q∗ V +

√
ρ− q∗w, a)〉2sc

])
where q∗ ∈ [0, ρ] is a point where the supremum above is achieved, and thus corresponds to an optimal couple
in (43). As explained above, limn→∞ ∂∆−1 ĩn = ∂∆−1 ĩ∞ at every ∆−1 at which ĩ∞ is di�erentiable, which
concludes the proof.
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Appendix A: Some technicalities

A.1 The Nishimori identity

Proposition 12 (Nishimori identity). Let (X,Y) ∈ Rn1 ×Rn2 be a couple of random variables. Let k ≥ 1 and
let X(1), . . . ,X(k) be k i.i.d. samples (given Y) from the conditional distribution P (X = · |Y), independently of
every other random variables. Let us denote 〈−〉 the expectation operator w.r.t. P (X = · |Y) andE the expectation
w.r.t. (X,Y). Then, for all continuous bounded function g we have

E〈g(Y,X(1), . . . ,X(k))〉 = E〈g(Y,X(1), . . . ,X(k−1),X)〉 . (163)

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X,Y) according
to its joint distribution or to sample �rst Y according to its marginal distribution and then to sample X condi-
tionally to Y from its conditional distribution P (X = · |Y). Thus the (k+ 1)-tuple (Y,X(1), . . . ,X(k)) is equal
in law to (Y,X(1), . . . ,X(k−1),X).

A.2 Unicity of the optimizer q∗ of the replica formula: Proof of Proposition 1

The function
h : α 7→ inf

q∈[0,ρ]

{
αIPout(q) + sup

r≥0

{
IP0(r)− r

2
(ρ− q)

}}
(164)

is concave (as an in�mum of linear functions). An “envelope” theorem (Corollary 4 from [93]) gives that h is
di�erentiable at α if and only if {

IPout(q)
∣∣∣ q minimizer of (164)

}
is a singleton. We assumed that Pout is informative, so Proposition 21 gives that IPout is strictly decreasing.
We obtain thus that the set of points at which h is di�erentiable is exactlyD∗. Since h is concave, D∗ is equal
to R∗+ minus a countable set. Corollary 4 from [93] gives also that h′(α) = IPout(q

∗(α)), for all α ∈ D∗. The
function h is concave, so its derivative h′ is non-increasing. Since IPout is strictly decreasing, we obtain that
α ∈ D∗ 7→ q∗(α) is non-decreasing.

Let now α0 ∈ D∗. By concavity of h, h′(α)→ h′(α0) when α ∈ D∗ → α0. Therefore:

IPout(q
∗(α)) −−−−−−→

α∈D→α0

IPout(q
∗(α0))

which implies q∗(α)→ q∗(α0) by strict monotonicity of IPout .

A.3 Continuity properties of the mutual information

We establish in this section two continuity properties of the mutual information, namely Proposition 14 and
Corollary 7. Recall de�nition (33) of the MMSE function. The following proposition comes from [54] and will
be repeatedly used in the sequel.

Proposition 13 (I-MMSE theorem, [54, 94]). Let PX be a probability distribution over Rn that admits a �nite
second moment. Let X ∼ PX and Z ∼ N (0, In) be independent random variables. Then the function

IPX :

∣∣∣∣∣ R+ → R
λ 7→ I(X;

√
λX + Z)
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is concave, continuously di�erentiable over R+, with derivative given by

I ′PX (λ) =
1

2
MMSE(X |

√
λX + Z) =

1

2
E
[∥∥X− E[X|

√
λX + Z]

∣∣2] .
Remark: We will often apply Proposition 13 in a “conditional fashion”. Let U be some random variable
independent from Z, then

∂

∂λ
I(X;

√
λX + Z|U) =

1

2
MMSE(X |

√
λX + Z,U) =

1

2
E
[∥∥X− E[X|

√
λX + Z,U]

∣∣2] .
Proposition 14. Let P1 and P2 be two probability distributions on Rn, that admits a �nite second moment. We
denote byW2(P1, P2) the Wasserstein distance of order 2 between P1 and P2.∣∣I(X1;X1 + Z)− I(X2;X2 + Z)

∣∣ ≤ (√E‖X1‖2 +
√

E‖X2‖2
)
W2(P1, P2) .

A similar result was proved in [96] but with a weaker bound for the W2 distance.

Proof. Let ε > 0. Let us �x a coupling of X1 ∼ P1 and X2 ∼ P2 such that(
E‖X1 − X2‖2

)1/2 ≤W2(P1, P2) + ε .

Let us consider for t1, t2 ∈ [0, 1] the observation model{
Y(t1)

1 =
√
t1X1 + Z1 ,

Y(t2)
2 =

√
1− t2X2 + Z2 ,

where Z1,Z2
iid∼ N (0, In) are independent from (X1,X2). De�ne J(t1, t2) = I(X1,X2;Y(t1)

1 ,Y(t2)
2 ) and

I(t) = J(t, t). Let us now di�erentiate J with respect to t1. Using the chain rule for the mutual information,

J(t1, t2) = I(X1,X2;Y(t2)
2 ) + I(X1,X2;Y(t1)

1 |Y(t2)
2 ) = I(X1,X2;Y(t2)

2 ) + I(X1;Y(t1)
1 |Y(t2)

2 ) + I(X2;Y(t1)
1 |X1,Y

(t2)
2 )

= I(X1,X2;Y(t2)
2 ) + I(X1;Y(t1)

1 |Y(t2)
2 )

because, conditionally on X1, X2 and Y(t1)
1 are independent. The quantity I(X1,X2;Y(t2)

2 ) does not depend
on t1, therefore by the “I-MMSE relation” from Proposition 13:

∂J

∂t1
(t1, t2) =

1

2
MMSE(X1|Y(t1)

1 ,Y(t2)
2 )

and similarly
∂J

∂t2
(t1, t2) = −1

2
MMSE(X2|Y(t1)

1 ,Y(t2)
2 ) .

Let us write Ei = E[Xi|Y(t)
1 ,Y(t)

2 ] for i = 1, 2, then

I ′(t) =
1

2
MMSE(X1|Y(t)

1 ,Y(t)
2 )− 1

2
MMSE(X2|Y(t)

1 ,Y(t)
2 ) =

1

2
E
[∥∥X1 −E1

∥∥2 −
∥∥X2 −E2

∥∥2
]
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so that

|I ′(t)| = 1

2
E
[(∥∥X1 −E1

∥∥+
∥∥X2 −E2

∥∥)(∥∥X1 −E1

∥∥− ∥∥X2 −E2

∥∥)]
≤ 1

2
E
[∥∥X1

∥∥2
+
∥∥X2

∥∥2
]1/2

E
[(∥∥X1 −E1

∥∥− ∥∥X2 −E2

∥∥)2]1/2

≤ 1

2
E
[∥∥X1

∥∥2
+
∥∥X2

∥∥2
]1/2

E
[∥∥X1 − X2 + E2 −E1

∥∥2
]1/2

≤ 1

2

(√
E‖X1‖2 +

√
E‖X2‖2

)
E
[
2‖X1 − X2‖2 + 2‖E2 −E1‖2

]1/2
≤
(√

E‖X1‖2 +
√

E‖X2‖2
)(
W2(P1, P2) + ε

)
.

We obtain the result by letting ε→ 0.

Proposition 15. Let PU be a probability distribution over Nm that admits a �nite second moment. Let U ∼ PU
and Z ∼ N (0, Im) be two independent random variables. Then H(U) = −

∑
n∈Nm PU (n) lnPU (n) is �nite

and for all ∆ ∈ (0, 1], ∣∣I(U;U +
√

∆Z)−H(U)
∣∣ ≤ 48me−1/(16∆) .

Proof. Let us de�ne for ∆ > 0, h(∆) = I(U;U +
√

∆Z) = IPU (∆−1). By Proposition 13 we have for all
∆ > 0,

h′(∆) = − 1

2∆2
MMSE(U |U +

√
∆Z) . (165)

We are now going to upper bound MMSE(U |U +
√

∆Z) by considering the following estimator:

θ̂i = arg min
u∈N

|u− Ui +
√

∆Zi|,

for all i ∈ {1, . . . ,m}. Note that θ̂i is well-de�ned almost-surely since there is a.s. a unique minimizer above.
We have

P(θ̂i 6= Ui) ≤ P
(√

∆|Zi| ≥ 1/2
)

= 2P
(
N (0, 1) ≥ 1

2
√

∆

)
≤ 2

1√
2π

2
√

∆e−1/(8∆) ≤ 2
√

∆e−1/(8∆) ,

by usual bounds on the Gaussian cumulative distribution function. We have then

MMSE(U |U +
√

∆Z) ≤ E‖U− θ̂‖2 =
m∑
i=1

E(Ui − θ̂i)2 =
m∑
i=1

E
[
1(θ̂i 6= Ui)(Ui − θ̂i)2

]
≤

m∑
i=1

2E
[
1(θ̂i 6= Ui)(Ui − (Ui +

√
∆Zi))

2
]

+ 2E
[
1(θ̂i 6= Ui)(Ui +

√
∆Zi − θ̂i)2

]
≤

m∑
i=1

2E
[
1(θ̂i 6= Ui)∆Z

2
i

]
+

1

2
E
[
1(θ̂i 6= Ui)

]
≤

m∑
i=1

2∆P(θ̂i 6= Ui)
1/2E[Z4

i ]1/2 +
1

2
P(θ̂i 6= Ui)

≤ me−1/(16∆)
(

2
√

6∆5/4 +
√

∆
)
≤ 6me−1/(16∆)

for ∆ ≤ 1. Plugging this inequality in (165), we obtain for all ∆ ∈ (0, 1],

|h′(∆)| ≤ 3m

∆2
e−1/(16∆) . (166)
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Since h(1) is �nite and
∫ 1

0
e−1/(16∆)

∆2 d∆ < +∞ we obtain that

sup
∆∈(0,1]

|h(∆)| < +∞ . (167)

By de�nition of h:

h(∆) = I(U;U +
√

∆Z) = −m
2
− E ln

∑
U∈Nm

PU (U) exp
(
− 1

2∆
‖U +

√
∆Z− U‖2

)
. (168)

By the previous equality and (167), the family of (non-negative) random variables(
− ln

∑
U∈Nm

PU (U) exp
(
− 1

2∆
‖U +

√
∆Z− U‖2

))
∆∈(0,1]

is bounded in L1. Notice that (by dominated convergence)

− ln
∑

U∈Nm
PU (U) exp

(
− 1

2∆
‖U +

√
∆Z− U‖2

)
−−−→
∆→0

− ln
(
PU (U)e−

1
2
‖Z‖2

)
=

1

2
‖Z‖2 − lnPU (U)

almost-surely. This gives (by Fatou’s Lemma) that this almost-sure limit is integrable and thus that H(U) =

−E lnPU (U) is �nite. Let us now show that h(∆) −−−→
∆→0

H(U). We have almost-surely

ln
(
PU (U)e−

1
2
‖Z‖2

)
≤ ln

∑
U∈Nm

PU (U) exp
(
− 1

2∆
‖U +

√
∆Z− U‖2

)
≤ 0 .

Since we now know that the left-hand side is integrable (becauseH(U) is �nite), we can apply the dominated
convergence theorem to obtain that

E ln
∑

U∈Nm
PU (U) exp

(
− 1

2∆
‖U +

√
∆Z− U‖2

)
−−−→
∆→0

E ln
(
PU (U)e−

1
2
‖Z‖2

)
= H(U)− m

2
,

which combined with (168) gives h(∆) −−−→
∆→0

H(U). Now, using the bound on the derivative of h (166) we
conclude that for all ∆ ∈ (0, 1],

|h(∆)−H(U)| ≤ 3m

∫ ∆

0

e−1/(16t)

t2
dt = 3m

[
16e−1/(16t)

]∆

0
= 48me−1/(16∆) .

Corollary 7. Let U be a random variable over Nm with �nite second moment, let X be a random variable over
Rn and let Z ∼ N (0, Im). We assume (U,X) to be independent from Z. Then, for all ∆ ∈ (0, 1],∣∣I(X;U +

√
∆Z)− I(X;U)

∣∣ ≤ 100me−1/(16∆) .

Proof. We have by the chain rule of the mutual information:

I(U;U +
√

∆Z) = I(U,X;U +
√

∆Z) = I(X;U +
√

∆Z) + I(U;U +
√

∆Z|X) .

By applying Proposition 15 twice, we get

|I(U;U +
√

∆Z)−H(U)|, |I(U;U +
√

∆Z|X)−H(U|X)| ≤ 48me−1/(16∆) .
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Since I(X;U) = H(U)−H(U|X) we obtain the desired inequality.

A.4 A simple consequence of hypotheses (h1)-(h2)-(h3)-(h4)

Proposition 16. Assume that hypotheses (h1)-(h2)-(h3)-(h4) hold. Then there exists η > 0 such that

E
[
ϕ(
√
ρZ,A)2+η

]
<∞ ,

where the expectation above is with respect to (Z,A) ∼ N (0, 1)⊗ PA.

Proof. By the Central Limit Theorem (using the fact that the third moments of (X∗i Φ1,i) are bounded with n,
because of hypotheses (h1) and (h3)) we have

(
[ΦX∗]1/

√
n,A1

) (d)−−−→
n→∞

(
√
ρG,A1). This implies that

ϕ

(
[ΦX∗]1√

n
,A1

)
(d)−−−→

n→∞
ϕ(
√
ρG,A1) , (169)

because ϕ(·,A1) is almost-surely continuous almost-everywhere, by assumption (h4). The sequence of ran-
dom variables

(
ϕ([ΦX∗]1/

√
n,A1)

)
n

is by assumption (h2) bounded in L2+η for some η > 0. By (169) we
conclude that E[ϕ(

√
ρG,A1)2+η] <∞.

A.5 Derivative of the interpolating free entropy: Proof of Proposition 3

Recall u′y(x) is the x-derivative of uy(x) = lnPout(y|x). Moreover denote P ′out(y|x) and P ′′out(y|x) the �rst
and second x-derivatives, respectively, of Pout(y|x). We will �rst prove that for all t ∈ (0, 1)

dfn,ε(t)

dt
=− 1

2
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r(t)
)(
Q− q(t)

)〉
n,t,ε

+
r(t)

2
(q(t)− ρ)− An

2
, (170)

where recall Q :=
∑n

i=1X
∗
i xi/n and

An,ε := E
[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

)) 1

n
lnZt,ε

]
. (171)

Once this is done, we will prove that An,ε goes to 0 as n → ∞ uniformly in t ∈ [0, 1], in order to obtain
Proposition 3.

A.5.1 Proof of (170)

Recall de�nition (98) which becomes, when written as a function of the interpolating Hamiltonian (95),

fn,ε(t) =
1

n
EΦ,V

∫
dYtdY′tdP0(X∗)DW∗e−Ht,ε(X∗,W∗;Yt,Y′t,Φ,V) ln

∫
dP0(x)Dw e−Ht,ε(x,w;Yt,Y′t,Φ,V) .

(172)

We will need the Hamiltonian t-derivativeH′t,ε given by

H′t,ε(X∗,W∗;Yt,Y′t,Φ,V) = −
m∑
µ=1

dSt,µ
dt

u′Yt,µ(St,µ)− r(t)

2
√
R1(t)

n∑
i=1

X∗i (Y ′t,i −
√
R1(t)X∗i ) . (173)
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The derivative of the interpolating free entropy thus reads, for 0 < t < 1,

dfn,ε(t)

dt
= − 1

n
E
[
H′t,ε(X∗,W∗;Yt,Y′t,Φ,V) lnZt,ε

]
︸ ︷︷ ︸

T1

− 1

n
E
〈
H′t,ε(x,w;Yt,Y′t,Φ,V)

〉
n,t,ε︸ ︷︷ ︸

T2

(174)

where recall the de�nition of Zt,ε = Zt,ε(Yt,Y′t,Φ,V) given by (97).
Let us compute T1. Let 1 ≤ µ ≤ m. Let us start with the following term

E
[dSt,µ
dt

u′Yt,µ(St,µ) lnZt,ε
]

=
1

2
E
[(
− [ΦX∗]µ√

n(1− t)
+

q(t)√
R2(t)

Vµ +
ρ− q(t)√

ρt−R2(t) + 2sn
W ∗µ

)
u′Yt,µ(St,µ) lnZt,ε

]
. (175)

Let us compute the �rst term of the right-hand side of the last identity. By Gaussian integration by parts w.r.t
Φµi we obtain

1√
n(1− t)

E
[
[ΦX∗]µu′Yt,µ(St,µ) lnZt,ε

]
=

1√
n(1− t)

n∑
i=1

E
[ ∫

dYtdY′te
−Ht,ε(X∗,W∗;Yt,Y′t,Φ,V)ΦµiX

∗
i u
′
Yt,µ(St,µ) lnZt,ε

]
=

1

n

n∑
i=1

(
E
[
(X∗i )2

(
u′′Yt,µ(St,µ) + u′Yt,µ(St,µ)2

)
lnZt,ε

]
+ E

〈
X∗i xiu

′
Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t,ε

)
=E

[ 1

n

n∑
i=1

(X∗i )2P
′′
out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZt,ε

]
+ E

〈 1

n

n∑
i=1

X∗i xiu
′
Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t,ε

, (176)

where we used the identity

u′′Yt,µ(x) + u′Yt,µ(x)2 =
P ′′out(Yt,µ|x)

Pout(Yt,µ|x)
. (177)

We now compute the second term of the right hand side of (175). Using again Gaussian integrations by parts
but this time w.r.t Vµ,W ∗µ iid∼ N (0, 1) as well as the previous formula, we obtain similarly

E
[( q(t)√

R2(t)
Vµ +

ρ− q(t)√
ρt−R2(t) + 2sn

W ∗µ

)
u′Yt,µ(St,µ) lnZt,ε

]
=E

[ ∫
dYtdY′te

−Ht,ε(X∗,W∗;Yt,Y′t,Φ,V)
( q(t)√

R2(t)
Vµ +

ρ− q(t)√
ρt−R2(t) + 2sn

W ∗µ

)
u′Yt,µ(St,µ) lnZt,ε

]
=E

[
ρ
P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)
lnZt,ε

]
+ E

〈
q(t)u′Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t,ε

. (178)

Combining equations (175), (176) and (178) together, we have

− E
[dSt,µ
dt

u′Yt,µ(St,µ) lnZt,ε
]

=
1

2
E
[P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1

n

n∑
i=1

(X∗i )2 − ρ
)

lnZt,ε
]

+
1

2
E
〈( 1

n

n∑
i=1

X∗i xi − q(t)
)
u′Yt,µ(St,µ)u′Yt,µ(st,µ)

〉
n,t,ε

.

As seen from (173), (174) it remains to computeE[X∗j (Y ′t,j−
√
R1(t)X∗j ) lnZt,ε]. Recalling that for 1 ≤ j ≤ n,
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Y ′t,j −
√
R1(t)X∗j = Z ′j and then using again a Gaussian integration by parts w.r.t Z ′j ∼ N (0, 1) we obtain

E
[
X∗j (Y ′t,j−

√
R1(t)X∗j ) lnZt,ε

]
= E

[
X∗jZ

′
j lnZt,ε

]
= E

[
X∗jZ

′
j ln

∫
dP0(x)Dw e−Ht,ε(x,w;Yt,Y′t,Φ,V)

]
= E

[
X∗jZ

′
j ln

∫
dP0(x)Dw exp

{ m∑
µ=1

uYt,µ(st,µ)− 1

2

n∑
i=1

(√
R1(t)X∗i + Z ′i −

√
R1(t)xi

)2}]
= −E

[
X∗j
〈√

R1(t)(X∗j − xj) + Z ′j
〉
n,t,ε

]
= −

√
R1(t)

(
ρ− E〈X∗j xj〉n,t,ε

)
. (179)

Thus, by taking the sum,

− r(t)

2
√
R1(t)

E
[ 1

n

n∑
i=1

X∗i (Y ′t,i −
√
R1(t)X∗i ) lnZt,ε

]
=
r(t)ρ

2
− r(t)

2
E
〈 1

n

n∑
i=1

X∗i xi

〉
n,t,ε

. (180)

Therefore, for all t ∈ (0, 1),

T1 =
1

2
E
[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

((X∗i )2 − ρ)
) 1

n
lnZt,ε

]
+
r(t)ρ

2
− r(t)q(t)

2

+
1

2
E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− r(t)
)( 1

n

n∑
i=1

X∗i xi − q(t)
)〉

n,t,ε
. (181)

To obtain (170), it remains to show that T2 = 0. This is a direct consequence of the Nishimori identity (see
Appendix A.1):

T2 =
1

n
E
〈
H′t,ε(x,w;Yt,Y′t,Φ)

〉
n,t,ε

=
1

n
EH′t,ε(X∗,W∗;Yt,Y′t,Φ) = 0 . (182)

For obtaining the Lemma, it remains to show that An,ε goes to 0 uniformly in t ∈ [0, 1].

A.5.2 Proof that An,ε vanishes as n→∞

We now consider the �nal step, that is showing thatAn,ε given by (171) vanishes in then→∞ limit uniformly
in t ∈ [0, 1] under conditions (H1)-(H2)-(H3). First we show that

E
[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

))]
= 0 . (183)

Once this is done, we use the fact that 1
n lnZt,ε concentrates around fn,ε(t) to prove that An,ε converges to

0 as n → ∞. We start by noticing the simple fact that for all s ∈ R,
∫
P ′′out(y|s)dy = 0. Consequently, for

µ ∈ {1, . . . ,m},

E
[P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

∣∣∣X∗, St] =

∫
dYt,µP

′′
out(Yt,µ|St,µ) = 0 . (184)

Thus, using the “tower property” of the conditionnal expectation:

E
[( n∑

i=1

((X∗i )2 − ρ)
) m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

]
= E

[( n∑
i=1

(
(X∗i )2 − ρ

))
E
[ m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

∣∣∣X∗, St]] = 0
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which gives (183). We now show that An,ε goes to 0 uniformly in t ∈ [0, 1] as n → ∞. Using successively
(183) and the Cauchy-Schwarz inequality, we have

|An,ε| =
∣∣∣E[ 1√

n

m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

))( 1

n
lnZt,ε − fn,ε(t)

)]∣∣∣
≤ E

[( 1√
n

m∑
µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2( 1√
n

n∑
i=1

(
(X∗i )2 − ρ

))2]1/2
E
[( 1

n
lnZt,ε − fn,ε(t)

)2]1/2
. (185)

Using again the “tower property” of conditional expectations

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2( n∑
i=1

((X∗i )2 − ρ)
)2]

=E
[( n∑

i=1

(
(X∗i )2 − ρ

))2
E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2 ∣∣∣X∗, St]] . (186)

Now, using the fact that conditionally on St, the random variables
(P ′′out(Yt,µ|St,µ)
Pout(Yt,µ|St,µ)

)
1≤µ≤m are i.i.d. and centered,

we have

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2 ∣∣∣X∗, St]=E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2 ∣∣∣ St]=mE
[(P ′′out(Y1|St,1)

Pout(Y1|St,1)

)2 ∣∣∣ St] . (187)

Under condition (H2), it is not di�cult to show that there exists a constant C > 0 such that

E
[(P ′′out(Yt,1|St,1)

Pout(Yt,1|St,1)

)2 ∣∣∣ St] ≤ C . (188)

Combining now (188), (187) and (186) we obtain that

E
[( m∑

µ=1

P ′′out(Yt,µ|St,µ)

Pout(Yt,µ|St,µ)

)2( n∑
i=1

(
(X∗i )2 − ρ

))2]
≤ mC E

[( n∑
i=1

(
(X∗i )2 − ρ

))2]
= mnC Var

(
(X∗1 )2

)
.

Going back to (185), therefore there exists a constant C ′ > 0 such that

|An,ε| ≤ C ′ E
[( 1

n
lnZt,ε − fn,ε(t)

)2]1/2
. (189)

By Theorem 6 we have E[(n−1 lnZt,ε − fn,ε(t))2]→ 0 as n→∞ uniformly in t ∈ [0, 1]. Thus An,ε goes to
0 as n→∞ uniformly in t ∈ [0, 1], ε and w.r.t. the choice of the interpolation functions. This ends the proof
of Proposition 3.

A.6 Boundedness of an overlap �uctuation

In this appendix we show that the “overlap �uctuation”

E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)− rε(t)
)2〉

n,t,ε
≤2r2

max + 2E
〈( 1

n

m∑
µ=1

u′Yt,µ(St,µ)u′Yt,µ(st,µ)
)2〉

n,t,ε
(190)
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is bounded uniformly in t under hypothesis (H2) on ϕ. From the representation (22) (recall we consider ∆ = 1

in Sec. 4)

uYt,µ(s) = lnPout(Yt,µ|s) = ln

∫
dPA(aµ)

1√
2π
e−

1
2

(Yt,µ−ϕ(s,aµ))2 (191)

and thus

u′Yt,µ(s) =

∫
dPA(aµ)(Yt,µ − ϕ(s, aµ))ϕ′(s, aµ)e−

1
2

(Yt,µ−ϕ(s,aµ))2∫
dPA(aµ)e−

1
2

(Yt,µ−ϕ(s,aµ))2
(192)

where ϕ′ is the derivative w.r.t. the �rst argument. From (20) at ∆ = 1 we get |Yt,µ| ≤ sup |ϕ|+ |Zµ|, where
the supremum is taken over both arguments of ϕ, and thus immediately obtain for all s ∈ R

|u′Yt,µ(s)| ≤ (2 sup |ϕ|+ |Zµ|) sup |ϕ′| . (193)

From (193) and (190) we see that it su�ces to check that

m2

n2
E
[(

(2 sup |ϕ|+ |Zµ|)2(sup |ϕ′|)2
)2] ≤ C(ϕ, α)

where C(ϕ, α) is a constant depending only on ϕ and α. This is easily seen by expanding all squares and
using that m/n is bounded.

A.7 Proof of Proposition 6

The continuity and di�erentiability properties of Fn follow from the standard theorems of continuity and
derivation under the integral sign. The domination hypotheses are easily veri�ed because we are working
under hypotheses (H1)-(H2).

The overlap E〈Q〉n,t,ε is related to the minimum mean-square error by

1

n
MMSE(X∗|Yt,Y′t,V,Φ) =

1

n
E
[∥∥X∗ − E[X∗|Yt,Y′t,V,Φ]

∥∥2
]

=
1

n
E
[∥∥X∗ − 〈x〉n,t,ε∥∥2

]
= ρ− E〈Q〉n,t,ε.

Since the left hand side belongs to [0, ρ], we obtain that E〈Q〉n,t,ε ∈ [0, ρ].
It remains therefore to prove that MMSE(X∗|Yt,Y′t,V,Φ) is separately non-increasing inR1 andR2. R1

only appears in the de�nition of Y′t. Recall that Y′t =
√
R1 X∗ + Z′, where Z′ is a standard Gaussian vector,

so MMSE(X∗|Yt,Y′t,V,Φ) is obviously a non-increasing function of R1.
R2 only plays a role in Yt ∼ Pout(· |

√
(1− t)/nΦX∗ +

√
R2 V +

√
ρt−R2 + 2snW∗). Let 0 < r2 ≤

r′2 < ρt. Let V′ ∼ N (0, Im), independently of everything else. De�ne

Ỹt ∼ Pout

(
·
∣∣∣√1− t

n
ΦX∗ +

√
r2 V +

√
r′2 − r2 V′ +

√
ρt− r′2 + 2snW∗

)
,

independently of everything else. Now notice that

MMSE(X∗|Yt,Y′t,V,Φ)|R2=r2 = MMSE(X∗|Ỹt,Y′t,V,Φ),

MMSE(X∗|Yt, Y′t,V,Φ)|R2=r′2
= MMSE(X∗|Ỹt,Y′t,V,V′,Φ),

which implies of course that MMSE(X∗|Yt,Y′t,V,Φ)|R2=r2 ≥ MMSE(X∗|Yt,Y′t,V,Φ)|R2=r′2
. We have

proved that MMSE(X∗|Yt,Y′t,V,Φ) is a non-increasing function of R2.
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Appendix B: Some properties of the scalar channels

B.1 The additive Gaussian scalar channel

We recall some properties (see [54] and [97] for proofs) of the free entropy of the �rst scalar channel (36).

Proposition 17. Let X0 ∼ P0 be a real random variable with �nite second moment. Let r ≥ 0 and Y0 =√
rX0 + Z0, where Z0 ∼ N (0, 1) is independent from X0. Then the function

ψP0 : r 7→ E ln

∫
dP0(x)e

√
r Y0x−rx2/2

is convex, di�erentiable, non-decreasing and 1
2E[X2

0 ]-Lipschitz on R+. Moreover, ψP0 is strictly convex, if P0 is
not a Dirac measure.

B.2 The non-linear scalar channel

We prove here some properties of the free entropy of the second scalar channel (39), where V,W ∗ iid∼ N (0, 1)

and
Y (q) ∼ Pout

(
·
∣∣√q V +

√
ρ− qW ∗

)
. (194)

In this channel, the statistician observes V and Y (q) and wants to recover W ∗. Recall that by de�nition
IPout(q) = I(W ∗;Y (q)|V ) = ΨPout(ρ) − ΨPout(q) so the properties we will prove on ΨPout can be directly
translated for IPout , and vice-versa.

Proposition 18. Suppose that for all x ∈ R, Pout(· |x) is the law of ϕ(x,A) +
√

∆Z where ∆ > 0, ϕ :

R×RkA → R is a measurable function and (Z,A) ∼ N (0, 1)⊗ PA, for some probability distribution PA over
RkA . In that case Pout admits a density given by

Pout(y|x) =
1√

2π∆

∫
dPA(a)e−

1
2∆

(y−ϕ(x,a))2
.

Assume that ϕ is bounded and C2 with respect to its �rst coordinate, with bounded �rst and second derivatives.
Then q 7→ ΨPout(q) is convex, C2 and non-decreasing on [0, ρ].

Proof. Let V,W ∗ iid∼ N (0, 1) and Y (q) be the output of the scalar channel given by (194). Then for all q ∈ [0, ρ],

ΨPout(q) = E ln

∫
dw

e−
w2

2

√
2π

Pout

(
Y (q)|√q V +

√
ρ− q w

)
Under the hypotheses we made on ϕ, we will be able to use continuity and di�erentiation under the expect-
ation, because all the domination hypotheses will be easily veri�ed. It is thus easy to check that ΨPout is
continuous on [0, ρ].

We compute now the �rst derivative. Recall that 〈−〉sc, de�ned in (72), denotes the posterior distribution
of W ∗ given Y (q). We will use the notation uy(x) = lnPout(y|x). For q ∈ (0, ρ) we have

Ψ′Pout
(q) =

1

2
E
〈
u′
Y (q)(
√
q V +

√
ρ− q w)u′

Y (q)(
√
q V +

√
ρ− qW ∗)

〉
sc

=
1

2
E
〈
u′
Y (q)(
√
q V +

√
ρ− q w)

〉2

sc
≥ 0 ,

where w ∼ 〈−〉sc, independently of everything else. ΨPout is therefore non-decreasing. Using the bounded-
ness assumption on ϕ and its derivatives, it is not di�cult to check that Ψ′Pout

is indeed bounded.
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We will now compute Ψ′′Pout
. To lighten the notations, we write u′(w) for u′

Y (q)(
√
q V +

√
ρ− q w). We

compute

∂qE
〈
u′(w)u′(W ∗)

〉
sc

= E
[( 1

2
√
q
V − 1

2
√
ρ− q

W ∗
)
u′(W ∗)

〈
u′(w)u′(W ∗)

〉
sc

]
(A)

+2E
〈( 1

2
√
q
V − 1

2
√
ρ− q

W ∗
)
u′′(W ∗)u′(w)

〉
sc

(B)

+E
〈( 1

2
√
q
V − 1

2
√
ρ− q

W ∗
)
u′(W ∗)2u′(w)

〉
sc

(C)

−E
〈
u′(W ∗)u′(w)

〉
sc

〈( 1

2
√
q
V − 1

2
√
ρ− q

w
)
u′(w)

〉
sc

(D) (195)

Notice that (A) = (C). We compute, using Gaussian integration by parts and the Nishimori identity (Pro-
position 12)

(A) =
1

2
E
[
u′(W ∗)

〈
u′(W ∗)u′′(w)

〉
sc

]
+

1

2
E
[
u′(W ∗)

〈
u′(W ∗)u′(w)2

〉
sc

]
− 1

2
E
[
u′(W ∗)

〈
u′(W ∗)u′(w)

〉
sc

〈
u′(w)

〉
sc

]
(196)

(B) = E
〈
u′′(W ∗)u′′(w)

〉
sc

+ E
〈
u′′(W ∗)u′(w)2

〉
sc
− E

〈
u′′(W ∗)u′(w)

〉
sc

〈
u′(w)

〉
sc

(197)

(D) = −E
〈( 1

2
√
q
V − 1

2
√
ρ− q

W ∗
)
u′(W ∗)u′(w(1))u′(w(2))

〉
sc

= −E〈u′(W ∗)u′′(w(1))u′(w(2))〉sc − E〈u′(W ∗)u′(w(1))2u′(w(2))〉sc
+ E〈u′(W ∗)u′(w(1))u′(w(2))〉sc〈u′(w)〉sc (198)

We now replace (196), (197) and (198) in (195):

2Ψ′′Pout
(q) = E

〈
u′(W ∗)2u′′(w)

〉
sc

+ E
〈
u′(W ∗)2u′(w)2

〉
sc
− E

〈
u′(W ∗)2u′(w(1))u′(w(2))

〉
sc

+ E
〈
u′′(W ∗)u′′(w)

〉
sc

+ E
〈
u′′(W ∗)u′(w)2

〉
sc
− E

〈
u′′(W ∗)u′(w(1))u′(w(2))

〉
sc

− E〈u′(W ∗)u′′(w(1))u′(w(2))〉sc − E〈u′(W ∗)u′(w(1))2u′(w(2))〉sc + E〈u′(w)〉4sc .

Using the identity u′′Y (x) + u′Y (x)2 =
P ′′out(Y |x)
Pout(Y |x) , this factorizes and gives

Ψ′′Pout
(q) =

1

2
E
[(〈P ′′out(Y |

√
q V +

√
ρ− q w)

Pout(Y |
√
q V +

√
ρ− qw)

〉
sc
−
〈
u′
Y (q)(
√
q V +

√
ρ− q w)

〉2

sc

)2]
≥ 0 . (199)

ΨPout is thus convex on [0, ρ]. It is not di�cult to verify (by standard arguments of continuity under the
integral) that Ψ′′Pout

is continuous on [0, ρ], which gives that ΨPout is C2 on its domain.

Proposition 19. Suppose that for all x ∈ R, Pout(· |x) is the law of ϕ(x,A) +
√

∆Z where ϕ : R×RkA → R
is a measurable function and (Z,A) ∼ N (0, 1) ⊗ PA, for some probability distribution PA over RkA . Assume
also that

E[ϕ(
√
ρZ,A)2] <∞ , (200)

and that we are in one of the following cases:

(i) ∆ > 0.
(ii) ∆ = 0 and ϕ takes values in N.

Then q 7→ ΨPout(q) is continuous, convex and non-decreasing over [0, ρ].

78



Notice that (200) is for instance veri�ed under hypotheses (h1)-(h2)-(h3)-(h4), see Proposition 16.

Proof. We deduce Proposition 19 from Proposition 18 above by an approximation procedure. Since ΨPout =

ΨPout(ρ)−IPout , we will work with the mutual information IPout . Let us de�neU (q) = ϕ
(√
q V+

√
ρ− qW ∗, A

)
and Y (q) = U (q) +

√
∆Z .

We start by proving Proposition 19 under the assumption (i). Let ε > 0. By density of the C∞ functions
with compact support in L2 (see for instance Corollary 4.2.2 from [98]), one can �nd a C∞ function ϕ̂ with
compact support, such that

E
[(
ϕ(
√
ρZ,A)− ϕ̂(

√
ρZ,A)

)2] ≤ ε2 .
Let us write Û (q) = ϕ̂(

√
q V +

√
ρ− qW ∗, A) and Ŷ (q) = Û +

√
∆Z . We have by the chain rule for the

mutual information

I(U (q);Y (q)|V ) = I(W ∗, U (q);Y (q)|V )

= I(U (q);Y (q)|V,W ∗) + I(W ∗;Y (q)|V ) = I(U (q);Y (q)|V,W ∗) + IPout(q) (201)

and similarly, I
P̂out

(q) = I(Û (q); Ŷ (q)|V ) − I(Û (q); Ŷ (q)|V,W ∗). By Proposition 14, there exists a constant
C > 0 such that

|I(Û (q); Ŷ (q)|V )− I(U (q);Y (q)|V )| ≤ Cε and |I(Û (q); Ŷ (q)|V,W ∗)− I(U (q);Y (q)|V,W ∗)| ≤ Cε .

We get that for all q ∈ [0, ρ], |IPout(q) − IP̂out
(q)| ≤ Cε. The function IPout can therefore be uniformly ap-

proximated by continuous, concave, non-increasing functions on [0, ρ]: IPout is therefore continuous, concave
and non-increasing.

Let us now prove Proposition 19 under the assumption (ii). Under this assumption we have IPout(q) =

I(W ∗;U (q)|V ) and by the case (i) we know that the function i∆(q) = I(W ∗;U (q) +
√

∆Z|V ) is concave and
non-increasing for all ∆ > 0. By Corollary 7 we obtain that for all q ∈ [0, ρ] and all ∆ ∈ (0, 1] we have∣∣IPout(q)− i∆(q)

∣∣ ≤ 100e−1/(16∆) ,

which proves (by uniform approximation) that IPout is continuous, concave and non-increasing.

Proposition 20. Under the same hypotheses than Proposition 19 above, Ψout is di�erentiable over [0, ρ) and for
all q ∈ [0, ρ)

Ψ′Pout
(q) =

1

2(ρ− q)
E〈w〉2sc ,

where we recall that 〈−〉sc is de�ned by (72).

Proof. The fact that ΨPout is di�erentiable on [0, ρ) follows from di�erentiation under the expectation sign.
In order to see it, we de�ne X =

√
q V +

√
ρ− qW ∗. Then, for all q ∈ [0, ρ):

ΨPout(q) = E
∫
dX

1√
2π(ρ− q)

e
− (X−√q V )2

2(ρ−q)

∫
dY Pout(Y |X) ln

∫
dx

1√
2π(ρ− q)

e
− (x−√q V )2

2(ρ−q) Pout(Y |x) .

(202)

We are now in a good setting to di�erentiate under the expectation sign. We have for all q ∈ (0, ρ),

∂

∂q

[
1√
ρ− q

e
− (X−√q V )2

2(ρ−q)

]
=

1

2
√
ρ− q

( 1

ρ− q
−

(X −√qV )2

(ρ− q)2
+
V (X −√qV )
√
q(ρ− q)

)
e
− (X−√q V )2

2(ρ−q) . (203)
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Thus

Ψ′Pout
(q) =

1

2
E

[( 1

ρ− q
−

(X −√q V )2

(ρ− q)2
+
V (X −√q V )
√
q (ρ− q)

)
ln

∫
dx

1√
2π(ρ− q)

e
− (x−√q V )2

2(ρ−q) Pout(Y |x)

]

+
1

2
E
〈

1

ρ− q
−

(x−√q V )2

(ρ− q)2
+
V (x−√q V )
√
q (ρ− q)

〉
sc

where the Gibbs brackets 〈−〉sc denotes the expectation with respect to x ∼ P (X|Y (q), V ). The second term
of the sum above is equal to zero. Indeed by the Nishimori identity (Proposition 12):

E
〈

1

ρ− q
−

(x−√q V )2

(ρ− q)2
+
V (x−√q V )
√
q (ρ− q)

〉
sc

= E
[

1

ρ− q
−

(X −√q V )2

(ρ− q)2
+
V (X −√q V )
√
q (ρ− q)

]
=

1

ρ− q
E
[
1− (W ∗)2

]
= 0 .

We now compute, by Gaussian integration by parts with respect to V ∼ N (0, 1):

E

[
V (X −√q V )
√
q (ρ− q)

ln

∫
dx

1√
2π(ρ− q)

e
− (x−√q V )2

2(ρ−q) Pout(Y
(q)|x)

]

= E

 −1

ρ− q
ln

∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(Y
(q)|x)

+ E

(X −√q V )2

(ρ− q)2
ln

∫
dx

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(Y
(q)|x)


+ E

〈
(X −√q V )(x−√q V )

(ρ− q)2

〉
sc

.

Bringing all together, we conclude:

Ψ′Pout
(q) =

1

2
E
〈

(X −√q V )(x−√q V )

(ρ− q)2

〉
sc

=
1

2(ρ− q)
E〈w〉2sc .

This derivative is continuous at q = 0 thus ΨPout is di�erentiable at q = 0 with derivative given by the same
expression.

Proposition 21. Assume that the hypotheses of Proposition 19 hold and suppose also that the kernel Pout is
informative. Then ΨPout is strictly increasing on [0, ρ].

Proof. Let us suppose that ΨPout is not strictly increasing on [0, ρ]. There exists thus q ∈ (0, ρ) such that
Ψ′Pout

(q) = 0. This means that 〈w〉sc = 0 almost surely and therefore that∫
R
Pout(Y

(q) | √q V +
√
ρ− q w)we−w

2/2dw = 0

almost-surely. Let us write σ =
√
ρ− q. Consequently,∫

R
Pout(y | v + σw)we−w

2/2dw = 0 (204)

for almost all y in R (if we are under assumption (i)) or all y ∈ N (under assumption (ii)) and almost all v ∈ R.
We will now use the following lemma:
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Lemma 16. Let Z ∼ N (0, 1) and let f : R→ R be a bounded function. Suppose that for almost all v ∈ R,

E[Zf(v + Z)] = 0 .

Then, there exists a constant C ∈ R such that f(v) = C for almost every v.

Proof. Let us de�ne the function

h : t 7→ E[f(Z − t)] =
1√
2π

∫
f(x)e−(x+t)2/2dx .

We have h′(t) = −1√
2π

∫
f(x)(x + t)e−(x+t)2/2dx = −E[Zf(Z − t)] = 0 and therefore h is equal to some

constant C ∈ R. We are going to show that f = C almost everywhere. Without loss of generality we can
assume that C = 0, otherwise it su�ces to consider the function f̃ = f − C . Now we have for all n ≥ 0,
t ∈ R

0 = h(n)(t) =
1√
2π

∫
f(x)

∂

∂t
e−(x+t)2/2dx =

1√
2π

∫
f(x)(−1)nHn(x+ t)e−(x+t)2/2dx ,

where Hn is nth Hermite polynomial, de�ned as Hn(x) = (−1)nex
2/2 dn

dxn e
−x2/2. Therefore, for all n ≥ 0,∫

f(x)Hn(x)e−x
2/2dx = 0 ,

which implies that f = 0 almost everywhere since the Hermite functions form an orthonormal basis of
L2(R).

We apply now Lemma 16 to (204) where the function f is given by f(x) = Pout(y |σx). We thus obtain
that for almost every y, Pout(y | ·) is almost everywhere equal to a constant. Under assumption (ii), we get
that for all y ∈ N, Pout(y | ·) is almost everywhere equal to a constant: this contradicts the hypothesis that
Pout is informative.

If now assumption (i) holds, then by (22) the density function Pout(· |x) is continuous on R for all x ∈ R.
Let us �x y ∈ R. We are going to show that Pout(y | ·) is almost everywhere equal to a constant Cy . Given
what we just showed, we can construct a sequence (yn)n ∈ RN that converges to y such that for all n ≥ 0,
there exists En ⊂ R with full Lebesgue’s measure and Cn ∈ R such that for all x ∈ En,

Pout(yn|x) = Cn .

Let us de�ne E = ∩n≥0En. E has therefore full Lebesgue’s measure. Let now x1, x2 ∈ E. By continuity of
Pout(·|xi), we get

Pout(yn|xi) −−−→
n→∞

Pout(y|xi), for i = 1, 2.

Since we know that for all n ≥ 0 that Pout(yn|x1) = Cn = Pout(yn|x2), we deduce that Pout(y|x1) =

Pout(y|x2). This proves that Pout(y | ·) is almost everywhere equal to a constant Cy and contradicts the fact
that Pout is informative.

We turn now our attention to the study of the function:

Ef :

∣∣∣∣∣ [0, ρ] → R+

q 7→ E
[
(f(Y (q))− E[f(Y (q))|V ])2

] (205)
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where f : R → R is a continuous bounded function. We will prove that Ef is continuous (Proposition 22)
and strictly decreasing (Proposition 23) under the following hypotheses.

(a) For all x ∈ R, Pout(· |x) is the law of ϕ(x,A) +
√

∆Z where ϕ : R × RkA → R is a measurable
function and (Z,A) ∼ N (0, 1)⊗ PA, for some probability distribution PA over RkA .

(b) For almost all a ∈ RkA (w.r.t. PA), ϕ(·, a) is continuous almost everywhere.

We suppose also that we are in one of the following cases:

(i) ∆ > 0.
(ii) ∆ = 0 and ϕ takes values in N.

Proposition 22. Under the hypotheses presented above, Ef is continuous on [0, ρ].

Proof. Consider expression (62): The �rst term does not depend on q and the second one is continuous by
Lebesgue’s convergence theorem.

Proposition 23. Assume that the hypotheses of Proposition 22 hold. Suppose that x 7→
∫
f(y)Pout(y |x)dy is

not almost-everywhere equal to a constant. Then Ef is strictly decreasing on [0, ρ].

Proof. Ef (q) = E[f(Y (q))2]−E
[
E[f(Y (q))|V ]2

]
. Since the �rst term does not depend on q, it su�ces to show

that H : q 7→ E
[
E[f(Y (q))|V ]2

]
is strictly increasing on [0, ρ]. We have for q ∈ (0, ρ):

E[f(Y (q))|V ] =

∫ ∫
f(y)

e−w
2/2

√
2π

Pout(y|
√
q V +

√
ρ− q w)dydw =

∫ ∫
f(y)

e
− (x−√qV )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydx .

So we have, using (203):

∂

∂q
E[f(Y (q))|V ] =

∫ ∫
f(y)

2

( 1

ρ− q
−

(x−√q V )2

(ρ− q)2
+
V (x−√q V )
√
q(ρ− q)

) e− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydw

=
1

2(ρ− q)
E
[
f(Y (q))

(
1−W ∗2 +

√
ρ− q V W ∗
√
q

)∣∣∣∣V ] .
We obtain

H ′(q) =
1

ρ− q
E
[
E[f(Y (q))|V ]E

[
f(Y (q))

(
1−W ∗2 +

√
ρ− q V W ∗
√
q

)∣∣∣∣V ]] . (206)

We compute by Gaussian integration by parts:

E
[
E[f(Y (q))|V ]E

[
f(Y (q))VW ∗

∣∣∣V ]] = E
[
V E[f(Y (q))|V ]E

[
f(Y (q))W ∗

∣∣∣V ]]
= E

[
∂

∂V
E[f(Y (q))|V ]E

[
f(Y (q))W ∗

∣∣∣V ]]+ E
[
E[f(Y (q))|V ]

∂

∂V
E
[
f(Y (q))W ∗

∣∣∣V ]] . (207)
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We compute successively

∂

∂V
E[f(Y (q))|V ] =

∂

∂V

∫ ∫
f(y)

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydx

=

∫ ∫
f(y)

√
q (x−√q V )

ρ− q
e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydx =

√
q

√
ρ− q

E
[
f(Y (q))W ∗

∣∣∣V ] .
(208)

∂

∂V
E[f(Y (q))W ∗|V ] =

∂

∂V

∫ ∫
f(y)

x−√q V
√
ρ− q

e
− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydx

=

∫ ∫
f(y)

( −√q
√
ρ− q

+

√
q(x−√q V )2

(ρ− q)3/2

) e− (x−√q V )2

2(ρ−q)√
2π(ρ− q)

Pout(y|x)dydx

=

√
q

√
ρ− q

E
[
f(Y (q))

(
− 1 +W ∗2

)∣∣∣V ] . (209)

By plugging (207)-(208)-(209) back in (206) we get:

H ′(q) =
1

ρ− q
E
[
E
[
f(Y (q))W ∗

∣∣V ]2] ≥ 0 .

Let us suppose now that H is not strictly increasing on [0, ρ]. This means that we can �nd q ∈ (0, ρ) such
that H ′(q) = 0 and therefore E[f(Y (q))W ∗|V ] = 0 almost-surely. This gives that for almost all v ∈ R,

E
[
W

∫
f(y)Pout(y|

√
q v +

√
ρ− qW )dy

]
= 0 ,

where E is the expectation with respect to W ∼ N (0, 1). Lemma 16 gives then that the function x 7→∫
f(y)Pout(y|x)dy is almost everywhere equal to a constant: we obtain a contradiction. We conclude that H

is strictly increasing on [0, ρ] and thus Ef is strictly decreasing on [0, ρ].

Proposition 24. Assume that the hypotheses of Proposition 22 hold. If the channelPout is informative, then there
exists a continuous bounded function f : R → R such that x 7→

∫
f(y)Pout(y|x)dy is not almost everywhere

equal to a constant.

Proof. Let us suppose that for all continuous bounded function f : R→ R we have∫
f(y)Pout(y|x)dy = Cf

for almost all x ∈ R, for some constant Cf ∈ R. Let X ∼ N(0, 1) and Y ∼ Pout(·|X). We have then
E[f(Y )|X] = Cf = E[f(Y )] almost surely. Let g : R → R be another continuous bounded function and
compute:

E[g(X)f(Y )] = E
[
g(X)E[f(Y )|X]

]
= E[g(X)]E[f(Y )] .

It follows that X and Y are independent: The measures Pout(y|x) e
−x2/2
√

2π
dydx and E[Pout(y|X)] e

−x2/2
√

2π
dydx

are therefore equal. Consequently, for almost every x, y we have

Pout(y|x) = E[Pout(y|X)] .

This gives that for almost every y, Pout(y|·) is almost everywhere equal to a constant. We conclude by
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the arguments presented at the end of the proof of Proposition 21 that Pout is not informative, which is a
contradiction.

Appendix C: Approximation
Let us recall the various hypotheses considered in this paper, starting with the stronger set:

(H1) The prior distribution P0 has a bounded support.
(H2) ϕ is a bounded C2 function with bounded �rst and second derivatives w.r.t. its �rst argument.
(H3) (Φµi)

iid∼ N (0, 1).

The aim of this section is to relax them to the weaker ones:

(h1) The prior distribution P0 admits a �nite third moment and has at least two points in its support.
(h2) There exists γ > 0 such that the sequence (E[|ϕ( 1√

n
[ΦX∗]1,A1)|2+γ ])n≥1 is bounded.

(h3) The random variables (Φµi) are independent with zero mean, unit variance and �nite third moment
that is bounded with n.

(h4) For almost-all values of a ∈ RkA (w.r.t. PA), the function x 7→ ϕ(x, a) is continuous almost everywhere.

The hypotheses on the precence or not of the Gaussian noise in (20) are:

(h5.a) ∆ > 0.
(h5.b) ∆ = 0 and ϕ takes values in N.

In this section, we suppose that Theorem 1 holds for channels of the form (20) (with ∆ > 0) under the
hypotheses (H1), (H2) and (H3), as proven in Section 4.

We show in this section that this imply that Theorem 1 holds under the weaker hypotheses (h1)-(h2)-(h3)-
(h4), and either (h5.a) or (h5.b). This section is organized as follows: We �rst prove Theorem 1 under (h1)-
(h2)-(h3)-(h4) and (h5.a) (i.e. ∆ > 0). This is done by �rst relaxing the hypotheses on P0 and Φ (Sec. C.1)
and then the hypotheses on ϕ (Sec. C.2). Finally, in Sec. C.3, we let ∆ → 0 in order to prove Theorem 1
under (h1)-(h2)-(h3)-(h4) and (h5.b).

Note that the statement of Theorem 1 is equivalent to the statement of Corollary 2, which simply express
the result in terms of mutual information. This formulation will be slightly more convenient to relax the
hypotheses. We will therefore prove in this section that (46) holds under the hypotheses (h1)-(h2)-(h3)-(h4),
and either (h5.a) or (h5.b). The statement of Theorem 1 can then be directly obtained by using the expressions
of IP0 , IPout in terms of ψP0 , ΨPout , the relation (49) and Lemma 23.

C.1 Relaxing the hypotheses on P0 and Φ

As explained at the beginning of Sec. 4, it su�ces to consider the case ∆ = 1. We start by relaxing the
hypothesis (H1).

Lemma 17 (Relaxing P0). Suppose that (h1)-(H2)-(H3) and (h5.a) hold. Then Theorem 1 holds.

Proof. The ideas are basically the same that in [99] (Sec. 6.2.2). We omit the details here for the sake of
brevity.

We now relax the Gaussian assumption on the “measurement matrix” Φ.

Lemma 18 (Relaxing Φ). Suppose that ϕ : R×RkA → R is C∞ with compact support and that (h1)-(h3)-(h5.a)
hold. Then Theorem 1 holds.
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Proof. The proof is based on the Lindeberg generalization theorem (Theorem 2 from [95]) which is a variant
of the generalized “Lindeberg principle” from [100]:

Theorem 5 (Lindeberg generalization theorem). Let (Ui)1≤i≤n and (Vi)1≤i≤n be two collections of random
variables with independent components and f : Rn → R a C3 function. Denote ai = |EUi − EVi| and bi =

|E[U2
i ]− E[V 2

i ]|. Then

|Ef(U)− Ef(V)| ≤
n∑
i=1

{
aiE|∂if(U1:i−1, 0, Vi+1:n)|+ bi

2
E|∂2

i f(U1:i−1, 0, Vi+1:n)|

+
1

2
E
∫ Ui

0
|∂3
i f(U1:i−1, 0, Vi+1:n)|(Ui − s)2ds+

1

2
E
∫ Vi

0
|∂3
i f(U1:i−1, 0, Vi+1:n)|(Vi − s)2ds

}
.

Let (Φ′µ,i)
iid∼ N (0, 1) and let (Φµ,i) be a family of independent random variables, with zero mean and unit

variance. Let f ′n be the free entropy (29) with design matrix Φ′ and fn be the free entropy (29) with design
matrix Φ.

We will apply Theorem 5 to the function

F : U ∈ Rm×n 7→ 1

n
E ln

∫
x,a
dPA(a)dP0(x) e

− 1
2

m∑
µ=1

(
ϕ

(
1√
n

[UX∗]µ,Aµ

)
−ϕ
(

1√
n

[Ux]µ,aµ

)
+Zµ

)2

where the expectation E is taken w.r.t. X∗,A and Z. We have

fn = EF (Φ) and f ′n = EF (Φ′) .

It is not di�cult to verify that F is a C3 function and that for all 1 ≤ µ ≤ m and 1 ≤ i ≤ n:∥∥∥∥∥ ∂3F

∂U3
µ,i

∥∥∥∥∥
∞

≤ C

n5/2
,

for some constant C that only depends on ϕ and the �rst three moments of P0. Thus, an application of
Theorem 5 gives |fn − f ′n| ≤ C√

n
. By Proposition 17, we know that Theorem 1 holds for f ′n, thus it holds for

fn.

C.2 Relaxing the hypotheses on ϕ

It remains to relax the hypotheses on ϕ. This section is dedicated to the proof of the following proposition,
which is of course exactly the statement of Theorem 1.

Proposition 25 (Relaxing ϕ). Suppose that (h1)-(h2)-(h3)-(h4) and (h5.a) hold. Then, Theorem 1 holds for the
output channel (20).

To prove Proposition 25 we will approximate the function ϕwith a function ϕ̂which is C∞ with compact
support. In the following, G is a standard Gaussian random variable, independent of everything else.

Proposition 26. Suppose that (h1)-(h2)-(h3)-(h4) hold. Then, for all ε > 0, there exist ϕ̂ ∈ C∞(R×RkA) with
compact support, such that

E
[
(ϕ(
√
ρG,A)− ϕ̂(

√
ρG,A))2

]
≤ ε ,

and for n large enough, we have

E

[(
ϕ

(
1√
n

[ΦX∗]1,A1

)
− ϕ̂

(
1√
n

[ΦX∗]1,A1

))2
]
≤ ε .
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Proof. By the Central Limit Theorem (using the fact that the third moments of (X∗i Φ1,i) are bounded with n,
because of hypotheses (h1) and (h3))(

[ΦX∗]1√
n

,A1

)
(d)−−−→

n→∞
(
√
ρG,A1) . (210)

This implies that

ϕ

(
[ΦX∗]1√

n
,A1

)
(d)−−−→

n→∞
ϕ(
√
ρG,A1) , (211)

because ϕ(·,A1) is almost-surely continuous almost-everywhere, by assumption (h4). The following se-
quence (ϕ( [ΦX∗]1√

n
,A1))n is by assumption (h2) bounded in L2, thus by (211) we have that E[ϕ(

√
ρG,A1)2] <

∞. Let ε > 0. We have just proved that ϕ ∈ L2(R × RkA) with the measure induced by (
√
ρG,A1).

There exists (see for instance Corollary 4.2.2 in [98]) a C∞ function with compact support ϕ̂ such that
E
[
(ϕ(
√
ρG,A)− ϕ̂(

√
ρG,A))2

]
≤ ε.

One deduce from (210) and (211) that(
ϕ

(
1√
n

[ΦX∗]1,A1

)
− ϕ̂

(
1√
n

[ΦX∗]1,A1

))2
(d)−−−→

n→∞
(ϕ(
√
ρG,A)− ϕ̂(

√
ρG,A))2 .

Now, hypothesis (h2) gives that the sequence above is uniformly integrable. This gives that

E
(
ϕ

(
1√
n

[ΦX∗]1,A1

)
− ϕ̂

(
1√
n

[ΦX∗]1,A1

))2

−−−→
n→∞

E(ϕ(
√
ρG,A)− ϕ̂(

√
ρG,A))2 ≤ ε .

Consequently, the left-hand side is smaller that 2ε for n large enough. This concludes the proof.

In the remaining of this section, we prove Proposition 25. Let ε > 0. Let ϕ and ϕ̂ as in Proposition 26. Let
us de�ne Y = ϕ(n−1/2ΦX∗,A) +

√
∆Z and Ŷ = ϕ̂(n−1/2ΦX∗,A) +

√
∆Z .

Lemma 19. Suppose that (h1)-(h2)-(h3)-(h4) and (h5.a) hold. There exists a constant C > 0 such that for n
large enough ∣∣∣ 1

n
I(X∗; Y|Φ)− 1

n
I(X∗; Ŷ|Φ)

∣∣∣ ≤ C√ε .
Proof. We have, for n large enough

E‖Y − Ŷ‖2 = mE

[(
ϕ

(
1√
n

[ΦX∗]1,A1

)
− ϕ̂

(
1√
n

[ΦX∗]1,A1

))2
]
≤ mε .

By Proposition 14, we obtain that there exists a constant C > 0 (that depends only on ∆ and ϕ) such that∣∣I(X∗; Y|Φ)− I(X∗; Ŷ|Φ)
∣∣ ≤ Cm√ε ,

which gives the result.

Let Pout denote the transition kernel associated to ϕ and P̂out the one associated to ϕ̂. Analogously to the
previous Lemma, one can show:

Lemma 20. There exists a constant C ′ > 0 such that for all q ∈ [0, ρ], |IPout(q)− IP̂out
(q)| ≤ C ′

√
ε.

From there we obtain that∣∣∣ inf
q∈[0,ρ]

sup
r≥0

iRS(q, r)− inf
q∈[0,ρ]

sup
r≥0

îRS(q, r)
∣∣∣ ≤ C ′√ε . (212)
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Applying Theorem 1 for P̂out, we obtain that forn large enough | 1nI(X∗; Ŷ|Φ)−infq∈[0,ρ] supr≥0 îRS(q, r)| ≤√
ε. We now combine this with (212) and Lemma 19 we obtain that for n large enough∣∣∣ 1
n
I(X∗; Y|Φ)− inf

q∈[0,ρ]
sup
r≥0

iRS(q, r)
∣∣∣ ≤ ∣∣∣ 1

n
I(X∗; Ŷ|Φ)− inf

q∈[0,ρ]
sup
r≥0

îRS(q, r)
∣∣∣+(C+C ′)

√
ε ≤ (C+C ′+1)

√
ε ,

which concludes the proof of Proposition 25, because of (49) and the de�nition of the functions IP0 and IPout

in Corollary 2.

C.3 The case of discrete channels: Removing the Gaussian noise

Now that we proved (Proposition 25) that Theorem 1 holds under hypotheses (h1)-(h2)-(h3)-(h4) and (h5.a),
we are going to show that it holds under (h1)-(h2)-(h3)-(h4) and (h5.b) by letting ∆→ 0. We suppose in this
section that ϕ takes values in N and write Y = ϕ

(
ΦX∗/

√
n,A

)
. By Proposition 25 we know that for all

∆ > 0,

1

n
I(X∗; Y+

√
∆Z|Φ) −−−→

n→∞
inf
q∈[0,ρ]

sup
r≥0

{
IP0(r)+αI(W ∗;ϕ(

√
qV +

√
ρ− qW ∗, A)+

√
∆Z|V )− r

2
(ρ−q)

}
,

where Z ∼ N (0, Im) and (V,W ∗, Z,A) ∼ N (0, 1)⊗3 ⊗ PA. Since Y takes values in Nm and ϕ takes values
in N, we can apply Corollary 7 twice to obtain that for all ∆ ∈ (0, 1],∣∣∣I(X∗; Y +

√
∆Z|Φ)− I(X∗; Y|Φ)

∣∣∣ ≤ 100me−1/(16∆)

and (recall that by de�nition IPout(q) = I
(
W ∗;ϕ(

√
qV +

√
ρ− qW ∗, A)

∣∣V )):
|I
(
W ∗;ϕ(

√
qV +

√
ρ− qW ∗, A) +

√
∆Z

∣∣V )− IPout(q)| ≤ 100e−1/(16∆) .

Since our control over ∆ is uniform in n, we can permute the n→∞ limit with the ∆→ 0 limit to get:

1

n
I(X∗; Y|Φ) −−−→

n→∞
inf
q∈[0,ρ]

sup
r≥0

{
IP0(r) + αIPout(q)−

r

2
(ρ− q)

}
.

Appendix D: Some sup-inf formulas
This appendix gathers some useful lemmas for the manipulations of “sup-inf” formulas like (43).

Lemma 21. Let f, g : R+ → R be two non-decreasing convex functions. We have

sup
x≥0

inf
y≥0

{
f(x) + g(y)− xy

}
= sup

y≥0
inf
x≥0

{
f(x) + g(y)− xy

}
.

Proof. Let us de�ne the monotone conjugate (see the end of §12 of [101]) of f and g:

f∗(y) = sup
x≥0

{
xy − f(x)

}
and g∗(y) = sup

x≥0

{
xy − g(x)

}
.

These conjugates satisfy an analog of the Fenchel-Moreau Theorem: f(x) = supy≥0{xy−f∗(y)} and g(y) =
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supx≥0{xy − g∗(x)}, see Theorem 12.4 from [101]. We have then

sup
x≥0

inf
y≥0

{
f(x) + g(y)− xy

}
= sup

x≥0

{
f(x)− g∗(x)

}
= sup

x≥0
sup
y≥0

{
xy − f∗(y)− g∗(x)

}
= sup

y≥0

{
− f∗(y) + sup

x≥0

{
xy − g∗(x)

}}
= sup

y≥0

{
− f∗(y) + g(y)

}
= sup

y≥0
inf
x≥0

{
f(x) + g(y)− xy

}
.

The next Lemma on the Legendre transform will be useful.

Lemma 22. Let V ⊂ R be a non-empty, closed interval and let g : V → R be a continuous convex function.
De�ne

g∗ : x ∈ R 7→ sup
y∈V

{
xy − g(y)

}
∈ R ∪ {+∞} . (213)

Let dom g∗ = {x ∈ R | g∗(x) < ∞}. Then g∗ is a closed convex function and dom g∗ is a non-empty interval.
Moreover, for all x ∈ dom g∗,

∂g∗(x) = arg maxy∈V
{
xy − g(y)

}
. (214)

In particular, if g is strictly convex then g∗ is di�erentiable around every point in the interior of dom g∗.

Proof. We �rst extend the function g on R by setting g(x) = +∞ for all x /∈ V . Notice that this does not
change the de�nition of the function g∗. g is then a proper, closed convex function (see for instance [101] for
the de�nitions of these properties). By Theorem 12.2 in [101], g∗ is also a proper closed convex function on
R, which gives that dom g∗ is a non-empty interval. We now apply Corollary 23.5.1 from [101] to obtain

y ∈ ∂g∗(x) ⇐⇒ x ∈ ∂g(y) ⇐⇒ y maximizes
{
xy − g(y)

}
,

for all x ∈ dom g∗, which concludes the proof.

Corollary 8. Let f : R+ → R be a convex, Lipschitz, non-decreasing function. De�ne ρ = supx≥0 f
′(x+).

Let g : [0, ρ] → R be a convex, Lipschitz, non-decreasing function. For q1 ∈ R+ and q2 ∈ [0, ρ] we de�ne
ψ(q1, q2) = f(q1) + g(q2)− q1q2. Then

sup
q1≥0

inf
q2∈[0,ρ]

ψ(q1, q2) = sup
q2∈[0,ρ]

inf
q1≥0

ψ(q1, q2) .

Proof. In order to apply Lemma 21 we need to extend g on R+. We thus de�ne for x ≥ 0

g(x) =

{
g(x) if x ≤ ρ ,
g(ρ) + (x− ρ)g′(ρ−) if x ≥ ρ .

Obviously g is a convex, Lipschitz, non-decreasing function on R+. One can thus apply Lemma 21:

sup
q1≥0

inf
q2≥0

{
f(q1) + g(q2)− q1q2

}
= sup

q2≥0
inf
q1≥0

{
f(q1) + g(q2)− q1q2

}
. (215)

We will show now that supq1≥0 infq2≥0 ψ(q1, q2) = supq1≥0 infq2∈[0,ρ] ψ(q1, q2). Let us de�ne for q1 ≥ 0

g∗(q1) = sup
q2∈[0,ρ]

{q1q2 − g(q2)} and h(q1) = inf
q2∈[0,ρ]

{
f(q1) + g(q2)− q1q2

}
= f(q1)− g∗(q1) .
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For q1 ≥ g′(ρ−) we have g∗(q1) = q1ρ− g(ρ). The function h is therefore non-increasing on [g′(ρ−),+∞),
because f is ρ-Lipschitz. We get that h = f − g∗ achieves its supremum on [0, g′(ρ−)]. Let q∗1 be the smallest
point at which this supremum is achieved. Let us show that infq2∈[0,ρ]{g(q2)−q∗1q2} = infq2≥0{g(q2)−q∗1q2}.

• If q∗1 = 0, then the minimum over [0, ρ] is achieved at q2 = 0, because g is non-decreasing. By convexity,
q2 is also the minimizer over R+: both in�mum are equal.

• If q∗1 > 0, the optimality condition of q∗1 gives f ′(q∗−1 )− (g∗)′(q∗−1 ) ≥ 0. By (214) we obtain that there
exists q∗2 ∈ arg minq2∈[0,ρ]{g(q2)− q∗1q2} such that f ′(q∗−1 ) ≥ q∗2 . If q∗2 < ρ we conclude, as above, that
both in�mum are equal. Suppose now that q∗2 = ρ and de�ne q′1 = g′(ρ−). By the optimality condition
of q∗2 = ρ we have q′1 = g′(ρ−) ≤ q∗1 . Compute

h(q∗1)− h(q′1) = f(q∗1)− f(q′1)− ρ(q∗1 − q′1) ≤ 0

because f is ρ-Lipschitz. Since q′1 ≤ q∗1 and q∗1 is de�ned as the smallest maximizer of h, we get that
q∗1 = q′1. The left-hand derivative of q2 7→ g(q2) − q∗1q2 at q = ρ is therefore equal to 0: ρ minimizes
q2 7→ g(q2)− q∗1q2 over R+: both in�mum are equal.

We have proved that infq2∈[0,ρ]{g(q2)− q∗1q2} = infq2≥0{g(q2)− q∗1q2}. Therefore

sup
q1≥0

inf
q2∈[0,ρ]

ψ(q1, q2) = inf
q2∈[0,ρ]

ψ(q∗1, q2) = inf
q2≥0

ψ(q∗1, q2) ≤ sup
q1≥0

inf
q2≥0

ψ(q1, q2) .

We conclude that supq1≥0 infq2≥0 ψ(q1, q2) = supq1≥0 infq2∈[0,ρ] ψ(q1, q2) because the converse inequality
is trivial. It remains to show now that supq2≥0 infq1≥0 ψ(q1, q2) = supq2∈[0,ρ] infq1≥0 ψ(q1, q2) to prove the
Lemma, because of (215). The inequality “≥” is obvious and the inequality “≤” follows from the fact that
infq1≥0 ψ(q1, q2) = −∞ if q2 > ρ.

Lemma 23. Let g be a strictly convex, di�erentiable, Lipschitz non-decreasing function on R+. De�ne ρ =

supx≥0 g
′(x). Let f be a convex, continuous, strictly increasing function on [0, ρ], di�erentiable on [0, ρ). For

(q1, q2) ∈ [0, ρ]× R+ we de�ne ψ(q1, q2) = f(q1) + g(q2)− q1q2. Then

sup
q1∈[0,ρ]

inf
q2≥0

ψ(q1, q2) = sup
(q1,q2)∈Γ

ψ(q1, q2) , (216)

where

Γ =

{
(q1, q2) ∈ [0, ρ]× (R+ ∪ {+∞})

∣∣∣∣∣ q1 = g′(q2)

q2 = f ′(q1)

}
,

where all the function are extended by there limits at the points at which they may not be de�ned (for instance
g′(+∞) = lim

q→∞
g′(q), f ′(ρ) = lim

q→ρ
f ′(q)). Moreover, the above extremas are achieved precisely on the same

couples.

Proof. Let q∗1 be a maximizer of f − g∗ over [0, ρ]. q∗1 is well de�ned because f is continuous and g∗ is
continuous over [0, ρ) and is either continuous at ρ or goes to +∞ at ρ (this comes from the fact that g∗ is a
closed convex function, see Lemma 22).

Case 1: 0 < q∗1 < ρ. By strict convexity of g, ψ(q1, ·) admits a unique minimizer q∗2 and (g∗)′(q∗1) = q∗2
by Lemma 22. Thus, the optimality condition at q∗1 gives

0 = f ′(q∗1)− (g∗)′(q∗1) = f ′(q∗1)− q∗2 .

The optimality of q∗2 gives then q∗1 ≤ g′(q∗2). Suppose that q∗1 < g′(q∗2). This is only possible when q∗2 = 0.
De�ne q′1 = g′(q∗2) = g′(0). Remark that g∗(q′1) = −g(0) = g∗(q∗1). We supposed that q′1 > q∗1 thus, by
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strict monotonicity of f , f(q′1) − g∗(q′1) > f(q∗1) − g∗(q∗1) which contradict the optimality of q∗1 . We obtain
therefore that q∗1 = g′(q∗2).

Case 2: q∗1 = 0. The optimality condition gives now

0 ≤ f ′(q∗1 = 0) ≤ q∗2 , (217)

where q∗2 is again the unique minimizer of ψ(q∗1 = 0, ·) = f(0) + g. g is strictly increasing, so q∗2 = 0.
Therefore q∗2 = 0 = f ′(q∗1 = 0), by (217). As before we have necessarily, by optimality of q∗2 that q∗1 = g′(q∗2).

Case 3: q∗1 = ρ. In that case arg minq2≥0{g(q2)− q∗1q2} = ∅ because g is strictly convex and ρ-Lipschitz.
Lemma 22 gives then that ∂g∗(ρ) = ∅ which implies (see Theorem 23.3 from [101]) that (g∗)′(ρ−) = +∞.
Since q∗1 = ρ maximizes f − g∗, we necessarily have then f ′(ρ−) = +∞.

Using the slight abuse of notation explained in the Lemma, we have f ′(q∗1) = +∞ = q∗2 , where q∗2 = +∞
is the unique “minimizer” of ψ(q∗1, ·), by strict convexity of g. By de�nition of ρ we have also g′(q∗2) =

g′(+∞) = ρ = q∗1 .

We conclude from the tree cases above that the “sup-inf” in (216) is achieved, and that all the couples
(q∗1, q

∗
2) that achieve this “sup-inf” belong to Γ. Thus

sup
q1∈[0,ρ]

inf
q2≥0

ψ(q1, q2) ≤ sup
(q1,q2)∈Γ

ψ(q1, q2) .

Let now be (q1, q2) ∈ Γ. By convexity of gwe see easily thatψ(q1, q2) = infq′2 ψ(q1, q
′
2). Thus,ψ(q1, q2) ≤

supq′1 infq′2 ψ(q′1, q
′
2). Therefore

sup
(q1,q2)∈Γ

ψ(q1, q2) ≤ sup
q1∈[0,ρ]

inf
q2≥0

ψ(q1, q2) .

This concludes the proof of (216). It remains to see that a couple (q∗1, q
∗
2) ∈ Γ that achieves the supremum

in (216) also achieves the “sup-inf”. This simply follows from the fact that ψ(q∗1, q
∗
2) = infq2 ψ(q∗1, q2) and

(216).

Appendix E: Concentration of free entropy and overlaps

E.1 Concentration of the free entropy

The goal of this appendix is to prove that the free entropy of the interpolating model studied in Sec. 4.1
concentrates around its expectation. To simplify the notations we use C(ϕ, S, α) for a generic non-negative
constant depending only on ϕ, S and α (S is the supremum over the signal values). We will also use the
notation K = 1 + max(ρ, rmax) for a constant (depending only on ρ ≤ S2 and ϕ) that upper bounds both
R1 and R2 given by (89). It is also understood that n and m are large enough and m/n→ α.

Theorem 6 (Free entropy concentration). Under assumptions (H1), (H2) and (H3) there exists a non-negative
constant C(ϕ, S, α) such that the partition function (97) concentrates as

Var
( 1

n
lnZt,ε

)
= E

[( 1

n
lnZt,ε −

1

n
E lnZt,ε

)2]
≤ C(ϕ, S, α)

n
. (218)

The remaining of this appendix is dedicated to the proof of Theorem 6. We �rst recall some set-up and
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notation for the convenience of the reader. Recall that the interpolating Hamiltonian (95)–(93) is

Ht,ε(x,w;Yt,Y′t,Φ,V) = −
m∑
µ=1

lnPout(Yt,µ|st,µ(x, wµ)) +
1

2

n∑
i=1

(Y ′t,i −
√
R1(t)xi)

2 (219)

where

st,µ(x, wµ) :=

√
1− t
n

[Φx]µ + k1(t)Vµ + k2(t)wµ , k1(t) :=
√
R2(t) , k2(t) :=

√
ρt−R2(t) + 2sn .

We �nd it convenient to use the random function representation (20) for the interpolating model, namelyYt,µ = ϕ
(√

1−t
n [ΦX∗]µ + k1(t)Vµ + k2(t)W ∗µ ,Aµ

)
+ Zµ ,

Y ′t,i =
√
R1(t)X∗i + Z ′i .

In this representation the random variables (Aµ)1≤µ≤m
iid∼ PA are arbitrary, and (Zµ)1≤µ≤m

iid∼ N (0, 1),
(Z ′i)1≤i≤n

iid∼ N (0, 1). We have

Pout(Yt,µ|st,µ(x, wµ)) =

∫
dPA(aµ)

1√
2π

exp
{
− 1

2

(
Yt,µ − ϕ(st,µ(x, wµ), aµ)

)2}
=

∫
dPA(aµ)

1√
2π

exp
{
− 1

2

(
Γt,µ(x, wµ, aµ) + Zµ

)2}
(220)

where, using the random function representation,

Γt,µ(x,wµ, aµ) (221)

= ϕ
(√1− t

n
[ΦX∗]µ + k1(t)Vµ + k2(t)W ∗µ ,Aµ

)
− ϕ

(√1− t
n

[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ
)
.

From (219), (220), (221) we can express the free entropy of the interpolating model as

1

n
lnZt,ε =

1

n
ln

∫
dP0(x)dPA(a)Dw e−Ht,ε(x,w,a) − m

2n
ln(2π) (222)

where Dw denote the standard m-dimensional Gaussian measure and where the Hamiltonian Ht,ε is re-
expressed as

Ht,ε(x,w, a) =
1

2

m∑
µ=1

(
Γt,µ(x, wµ, aµ) + Zµ

)2
+

1

2

n∑
i=1

(√
R1(t) (X∗i − xi) + Z ′i

)2
. (223)

The interpretation here is that x,w, a are annealed variables and Φ,V,A,Yt,Y′t,X∗,W∗, or equivalently
Φ,V,A,Z,Z′,X∗,W∗ are quenched. The inference problem is to recover X∗,W∗ given Φ,V,Yt,Y′t. The free
entropy can be further re-expressed as

1

n
lnZt,ε =

1

n
ln Ẑt,ε −

1

2n

m∑
µ=1

Z2
µ −

1

2n

n∑
i=1

Z ′2i −
m

2n
ln(2π) (224)
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where

1

n
ln Ẑt,ε =

1

n
ln

∫
dP0(x)dPA(a)Dw e−Ĥt,ε(x,w,a) , (225)

Ĥt,ε(x,w, a) =
1

2

m∑
µ=1

{
Γt,µ(x, wµ, aµ)2 + 2ZµΓt,µ(x, wµ, aµ)

}
+

1

2

n∑
i=1

{
R1(t)(X∗i − xi)2 + 2Z ′i

√
R1(t)(X∗i − xi)

}
. (226)

In order to prove Theorem 6 it remains to show that there exists a constant C(ϕ, S, α) > 0 such that
Var(ln Ẑt,ε/n) ≤ C(ϕ, S, α)/n. This concentration property together with (224) implies (218).

We will �rst show concentration w.r.t. all Gaussian variables Φ,V,Z,Z′,W∗ thanks to the classical Gaus-
sian Poincaré inequality, then the concentration w.r.t. A and �nally the one w.r.t. X∗ using classical bounded
di�erences arguments. The order in which we prove the concentrations matters. We recall here these two
variances bounds. The reader can refer to [102] (Chapter 3) for detailed proofs of these statements.

Proposition 27 (Gaussian Poincaré inequality). Let U = (U1, . . . , UN ) be a vector ofN independent standard
normal random variables. Let g : RN → R be a continuously di�erentiable function. Then

Var(g(U)) ≤ E
[
‖∇g(U)‖2

]
. (227)

Proposition 28 (Bounded di�erence). Let U ⊂ R. Let g : UN → R a function that satis�es the bounded
di�erence property, i.e., there exists some constants c1, . . . , cN ≥ 0 such that

sup
u1,...,uN∈UN

u′i∈U

|g(u1, . . . , ui, . . . , uN )− g(u1, . . . , u
′
i, . . . , uN )| ≤ ci for all 1 ≤ i ≤ N .

Let U = (U1, . . . , UN ) be a vector of N independent random variables that take values in U . Then

Var(g(U)) ≤ 1

4

N∑
i=1

c2
i . (228)

E.1.1 Concentration with respect to the Gaussian random variables Z, Z′, V, W∗, Φ

Lemma 24. LetEG denotes the joint expectation w.r.t. Z,Z′,V,W∗,Φ only. There exists a constantC(ϕ, S, α) >

0 such that

E
[( 1

n
ln Ẑt,ε −

1

n
EG ln Ẑt,ε

)2]
≤ C(ϕ, S, α)

n
. (229)

Lemma 24 follows directly from Lemmas 25 and 26 below.

Lemma 25. Let EZ,Z′ denotes the expectation w.r.t. Z,Z′ only. There exists a constant C(ϕ, S, α) > 0 such that

E
[( 1

n
ln Ẑt,ε −

1

n
EZ,Z′ ln Ẑt,ε

)2]
≤ C(ϕ, S, α)

n
. (230)

Proof. We consider here g = ln Ẑt,ε/n only as a function of Z and Z′ and work conditionally on all other
random variables. We have

‖∇g‖2 =

m∑
µ=1

∣∣∣ ∂g
∂Zµ

∣∣∣2 +

n∑
i=1

∣∣∣ ∂g
∂Z ′i

∣∣∣2. (231)
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Each of these partial derivatives are of the form |∂ug| = |n−1〈∂uĤt,ε〉Ĥt,ε | where the Gibbs bracket 〈−〉Ĥt,ε
pertains to the e�ective Hamiltonian (226). We �nd∣∣∣ ∂g

∂Zµ

∣∣∣ = n−1
∣∣〈Γt,µ〉Ĥt,ε∣∣ ≤ 2n−1 sup |ϕ| ,∣∣∣ ∂g

∂Z ′i

∣∣∣ = n−1
√
R1(t)

∣∣X∗i − 〈xi〉Ĥt,ε∣∣ ≤ 2n−1
√
KS ,

and replacing in (231) we get ‖∇g‖2 ≤ 4n−1(mn (sup |ϕ|)2 +KS2). Applying Proposition 27 we have

EZ,Z′
[( 1

n
ln Ẑt,ε −

1

n
EZ,Z′ ln Ẑt,ε

)2]
≤ C(ϕ, S, α)

n
. (232)

Taking the expectation in (232) gives the lemma.

Lemma 26. There exists a constant C(ϕ, S, α) > 0 such that

E
[( 1

n
EZ,Z′ ln Ẑt,ε −

1

n
EG ln Ẑt,ε

)2]
≤ C(ϕ, S, α)

n
. (233)

Proof. We consider here g = EZ,Z′ ln Ẑt,ε/n as a function of V, W∗, Φ and we work conditionally on the
other random variables. Let ∂xϕ be the derivative of ϕ w.r.t. its �rst argument. We compute∣∣∣ ∂g

∂Vµ

∣∣∣ = n−1
∣∣∣EZ,Z′

〈
(Γt,µ + Zµ)

∂Γt,µ
∂Vµ

〉
Ĥt,ε

∣∣∣
≤ n−1EZ,Z′

[
(2 sup |ϕ|+ |Zµ|) 2

√
K sup |∂xϕ|

]
= n−1

(
2 sup |ϕ|+

√
2

π

)
2
√
K sup |∂xϕ| .

The same inequality holds for | ∂g∂W ∗µ
|. To compute the derivative w.r.t. Φµi we �rst remark

∂Γt,µ
∂Φµi

=

√
1− t
n

{
X∗i ∂xϕ

(√1− t
n

[ΦX∗]µ + k1(t)Vµ + k2(t)W ∗µ ,Aµ
)

− xi ∂xϕ
(√1− t

n
[Φx]µ + k1(t)Vµ + k2(t)wµ, aµ

)}
.

Therefore, as t ∈ [0, 1],∣∣∣ ∂g
∂Φµi

∣∣∣ = n−1
∣∣∣EZ,Z′

〈
(Γt,µ + Zµ)

∂Γt,µ
∂Φµi

〉
Ĥt,ε

∣∣∣
≤ n−3/2EZ,Z′

[
(2 sup |ϕ|+ |Zµ|) 2S sup |∂xϕ|

]
= n−3/2

(
2 sup |ϕ|+

√
2

π

)
2S sup |∂xϕ| .

Putting these inequalities together we �nd

‖∇g‖2 =

m∑
µ=1

∣∣∣ ∂g
∂Vµ

∣∣∣2 +

m∑
µ=1

∣∣∣ ∂g
∂W ∗µ

∣∣∣2 +
m∑
µ=1

n∑
i=1

∣∣∣ ∂g
∂Φµi

∣∣∣2
≤ 2

m

n2

(
2 sup |ϕ|+

√
2

π

)2
4K(sup |∂xϕ|)2 +

mn

n3

(
2 sup |ϕ|+

√
2

π

)2
4S2(sup |∂xϕ|)2 .

The lemma follows again from Proposition 27.
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E.1.2 Bounded di�erence with respect to Aµ

The next step is an application of the variance bound of Lemma 28 to show that EG ln Ẑt,ε/n concentrates
w.r.t. A (we still keep X∗ �xed for the moment).

Lemma 27. Let EA denotes the expectation w.r.t. A only. There exists a constant C(ϕ, α) > 0 such that

E
[( 1

n
EG ln Ẑt,ε −

1

n
EG,A ln Ẑt,ε

)2]
≤ C(ϕ, α)

n
. (234)

Proof. Let us consider g = EG ln Ẑt,ε/n as a function of A only. Let ν ∈ {1, . . . ,m}. We must estimate
variations g(A) − g(A(ν)) corresponding to two con�gurations A and A(ν) with A(ν)

µ = Aµ for µ 6= ν and
A

(ν)
ν = Ãν . We will use the notations Ĥ(ν)

t,ε and Γ
(ν)
t,µ to denote respectively the quantities Ĥt,ε and Γt,µ where

A is replaced by A(ν). By an application of Jensen’s inequality one �nds

1

n
EG〈Ĥ(ν)

t,ε − Ĥt,ε〉Ĥ(ν)
t,ε
≤ g(A)− g(A(ν)) ≤ 1

n
EG〈Ĥ(ν)

t,ε − Ĥt,ε〉Ĥt,ε (235)

where the Gibbs brackets pertain to the e�ective Hamiltonians (226). From (226) we obtain

Ĥ(ν)
t,ε − Ĥt,ε =

1

2

m∑
µ=1

(
Γ

(ν)2
t,µ − Γ2

t,µ + 2Zµ(Γ
(ν)
t,µ − Γt,µ)

)
=

1

2

(
Γ

(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

)
.

Consequently

1

2n
EG
〈

Γ
(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

〉
Ĥ(ν)
t,ε

≤ g(A)− g(A(ν))

≤ 1

2n
EG
〈

Γ
(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

〉
Ĥt,ε

. (236)

Notice that
∣∣Γ(ν)2
t,ν − Γ2

t,ν + 2Zν(Γ
(ν)
t,ν − Γt,ν)

∣∣ ≤ 8(sup |ϕ|)2 + 8|Zν | sup |ϕ|. Thus we conclude by (236) that
g satis�es a bounded di�erence property:

|g(A)− g(A(ν))| ≤ 4

n
sup |ϕ|

(
sup |ϕ|+

√
2

π

)
. (237)

Lemma 27 follows then by an application of Proposition 28.

E.1.3 Bounded di�erence with respect to X∗i

Let EΘ = EA,G denote the expectation w.r.t. all quenched variables except X∗. It remains to bound the
variance of EΘ ln Ẑt,ε/n (which only depends on X∗).

Lemma 28. There exists a constant C(ϕ, S, α) > 0 such that

E
[( 1

n
EΘ ln Ẑt,ε −

1

n
E ln Ẑt,ε

)2]
≤ C(ϕ, S, α)

n
. (238)

Proof. The lemma is proved using again a bounded di�erence argument. Let g = EΘ ln Ẑt,ε/n a function of
X∗. Let j ∈ {1, . . . , n}. Let X∗,X∗(j) ∈ [−S, S]n be two input signals such that X∗(j)i = X∗i for i 6= j.

We are going to interpolate between g(X∗) and g(X∗(j)). For s ∈ [0, 1] we de�ne

ψ(s) = g(sX∗ + (1− s)X∗(j)) .
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Obviously ψ(1) = g(X∗) and ψ(0) = g(X∗(j)). Using Gaussian integration by parts, it is not di�cult to verify
that for s ∈ [0, 1]

|ψ′(s)| ≤ C(ϕ, S, α)

n
.

This implies the bounded di�erence property |g(X∗) − g(X∗(j))| ≤ C(ϕ, S, α)/n and using Proposition 28
we obtain the lemma.

E.1.4 Proof of Theorem 6

From Lemmas 24, 27 and 28 above, we obtain directly that Var(ln Ẑt,ε/n) ≤ C(ϕ, S, α)/n for some constant
C(ϕ, S, α) > 0. As mentioned before this implies, thanks to (224), the Theorem 6.

E.2 Concentration of the overlap

In this appendix we provide the proof of Proposition 4. Recall the notation 〈−〉n,t,ε for the Gibbs bracket
associated to the Hamiltonian (95). It is crucial that it preserves the Nishimori identity of Appendix A.1, i.e.
it must come from an inference problem with known parameters. Consider the corresponding average free
entropy fn,ε(t). In this section we think of it as a function of R1 = R1(t, ε) and R2 = R2(t, ε) given by (89),
i.e. (R1, R2) 7→ fn,ε(t). Similarly the free entropy for a realization of the quenched variables is also viewed
here as a function (R1, R2) 7→ Fn,ε(t) := lnZt,ε(Yt,Y′t,Φ,V)/n. For this section, we drop the indices in the
Gibbs bracket 〈−〉n,t,ε and simply write 〈−〉.

Let

L :=
1

n

n∑
i=1

(x2
i

2
− xiX∗i −

xiZ
′
i

2
√
R1

)
.

The �uctuations of the overlap Q := n−1
∑n

i=1X
∗
i xi and those of L are related through the remarkable

identity

E
〈
(L − E〈L〉)2

〉
=

1

4
E
〈
(Q− E〈Q〉)2

〉
+

1

2
E[〈Q2〉 − 〈Q〉2] +

1

4nR1
E[(X∗1 )2] . (239)

In particular

E
〈
(L − E〈L〉)2

〉
≥ 1

4
E
〈
(Q− E〈Q〉)2

〉
. (240)

A detailed derivation of (239) involves only lengthy but straightforward algebra, using the Nishimori identity
and integrations by parts w.r.t. the Gaussian noise Z ′i, and can be found in Sec. 6 of [52]. Proposition 4 is then
a direct consequence of the following:

Proposition 29 (Concentration of L on E〈L〉). Let Bn := [sn, 2sn]2, where the sequence (sn) ∈ (0, 1/2]N. As-
sume that the interpolation functions (rε) and (qε) are regular (recall De�nition 1). Under assumptions (H1), (H2)
and (H3) there exists a constant C(ϕ, S, α) such that∫

Bn
dεE

〈
(L − E〈L〉n,t,ε)2

〉
n,t,ε
≤ C(ϕ, S, α)

n1/4
. (241)

The proof of this proposition is broken in two parts. Notice that

E
〈
(L − E〈L〉)2

〉
= E

〈
(L − 〈L〉)2

〉
+ E

[
(〈L〉 − E〈L〉)2

]
. (242)
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Thus it su�ces to prove the two following lemmas (see the proofs below). The �rst lemma expresses con-
centration w.r.t. the posterior distribution (or “thermal �uctuations”) and is an elementary consequence of
concavity properties of the free entropy and the Nishimori identity.

Lemma 29 (Concentration of L on 〈L〉). Under the same hypotheses as in Proposition 29 we have∫
Bn
dεE

〈
(L − 〈L〉n,t,ε)2

〉
n,t,ε
≤ ρ(1 + ρ)

n
. (243)

The second lemma expresses the concentration of the average overlap w.r.t. the realizations of quenched
disorder variables and is a consequence of the concentration of the free entropy (more precisely Theorem 6
in Appendix E.1).

Lemma 30 (Concentration of 〈L〉 on E〈L〉). Under the same hypotheses as in Proposition 29 there exists a
constant C(ϕ, S, α) such that ∫

Bn
dεE

[
(〈L〉n,t,ε − E〈L〉n,t,ε)2

]
≤ C(ϕ, S, α)

n1/4
. (244)

We now turn to the proof of Lemmas 29 and 30. The main ingredient is a set of formulas for the �rst two
derivatives of the free entropy w.r.t. R1 = R1(t, ε). For any given realisation of the quenched disorder,

dFn,ε(t)

dR1
= −〈L〉 − 1

2n

n∑
i=1

(
(X∗i )2 +

1√
R1
X∗i Z

′
i

)
, (245)

1

n

d2Fn,ε(t)

dR2
1

= 〈L2〉 − 〈L〉2 − 1

4n2R
3/2
1

n∑
i=1

〈xi〉Z ′i . (246)

Averaging (245) and (246), using a Gaussian integration by parts w.r.t. Z ′i and the (Nishimori) identityE〈xiX∗i 〉 =

E[〈xi〉2] we �nd

dfn,ε(t)

dR1
= −E〈L〉 − ρ

2
=

1

2n

n∑
i=1

E[〈xi〉2]− ρ

2
, (247)

1

n

d2fn,ε(t)

dR2
1

= E[〈L2〉 − 〈L〉2]− 1

4n2R1

n∑
i=1

E[〈x2
i 〉 − 〈xi〉2] . (248)

Proof of Lemma 29

From (248) we have

E
〈
(L − 〈L〉)2

〉
=

1

n

d2fn,ε(t)

dR2
1

+
1

4n2R1

n∑
i=1

E[〈x2
i 〉 − 〈xi〉2]

≤ 1

n

d2fn,ε(t)

dR2
1

+
ρ

4nε1
, (249)

where we used E〈x2
i 〉 = EP0 [(X∗)2] = ρ by the Nishimori identity, and R1 ≥ ε1. Recall Bn := [sn, 2sn]2.

By assumption q and r are regular. Therefore Rt : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε)) is a di�eomorphism whose
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Jacobian J(Rt) veri�es J(Rt)(ε) ≥ 1 for all ε ∈ Bn. Integrating over ε ∈ Bn we obtain∫
Bn
dεE

〈
(L − 〈L〉)2

〉
≤ 1

n

∫
Rt(Bn)

dR1dR2

J(Rt)

d2fn,ε(t)

dR2
1

+
ρsn
4n

∫ 2sn

sn

dε1
ε1

≤ 1

n

∫
Rt(Bn)

dR1dR2
d2fn,ε(t)

dR2
1

+
ρsn
4n

ln 2 , (250)

where in the integral above J(Rt) is a function of (Rt)−1(R1, R2). Note that from (89) we have Rt(Bn) ⊂
[sn, 2sn + rmax]× [sn, 2sn + ρ] and therefore∫

Bn
dεE

〈
(L − 〈L〉)2

〉
≤ 1

n

∫ 2sn+ρ

sn

dR2

{dfn,ε(t)
dR1

∣∣∣
R1=sn

− dfn,ε(t)

dR1

∣∣∣
R1=2sn+rmax

}
+
ρsn
4n

ln 2

≤ ρ(sn + ρ)

n
+
ρsn
4n

ln 2 (251)

using (247) combined with E〈x2
i 〉 = ρ to assert that the derivative of the free entropy is bounded in absolute

value by ρ/2. This concludes the proof of Lemma 29 using sn ≤ 1/2 and (ln 2)/4 < 1. �

Proof of Lemma 30

Consider the two functions

F̃ (R1) := Fn,ε(t)−
√
R1

n
S

n∑
i=1

|Z ′i| , f̃(R1) := EF̃ (R1) = fn,ε(t)−
√
R1

n
S

n∑
i=1

E|Z ′i| . (252)

Because of (246) we see that the second derivative of F̃ (R1) is positive so that it is convex (without this extra
term Fn,ε(t) is not necessarily convex inR1, although fn,ε(t) is, which can be shown easily). Note that f̃(R1)

is convex too. Convexity allows us to use the following lemma (proved at the end of this section):

Lemma 31 (A bound on di�erences of derivatives due to convexity). Let G(x) and g(x) be convex functions.
Let δ > 0 and de�ne C+

δ (x) := g′(x+ δ)− g′(x) ≥ 0 and C−δ (x) := g′(x)− g′(x− δ) ≥ 0. Then

|G′(x)− g′(x)| ≤ δ−1
∑

u∈{x−δ,x,x+δ}

|G(u)− g(u)|+ C+
δ (x) + C−δ (x) .

From (252)

F̃ (R1)− f̃(R1) = Fn,ε(t)− fn,ε(t)−
√
R1SA , with A =

1

n

n∑
i=1

(
|Z ′i| − E|Z ′i|

)
. (253)

and from (245), (247) we obtain for the di�erence of derivatives (w.r.t. R1)

F̃ ′(R1)− f̃ ′(R1) = E〈L〉 − 〈L〉+
ρ

2
− 1

2n

n∑
i=1

(
(X∗i )2 +

1√
R1
X∗i Z

′
i

)
− SA

2
√
R1

. (254)
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From (253), (254) it is easy to show that Lemma 31 implies

|〈L〉 − E〈L〉| ≤ δ−1
∑

u∈{R1−δ,R1,R1+δ}

(
|Fn,ε(t, R1 = u)− fn,ε(t, R1 = u)|+ S|A|

√
u
)

+ C+
δ (R1) + C−δ (R1) +

S|A|
2
√
ε1

+
∣∣∣ρ
2
− 1

2n

n∑
i=1

(
(X∗i )2 +

1√
R1
X∗i Z

′
i

)∣∣∣ (255)

where C+
δ (R1) := f̃ ′(R1 + δ) − f̃ ′(R1) ≥ 0 and C−δ (R1) := f̃ ′(R1) − f̃ ′(R1 − δ) ≥ 0. We used R1 ≥ ε1

for the term S|A|/(2
√
ε1). Note that δ will be chosen later on strictly smaller than sn (namely δ = snn

−1/4)
so that R1 − δ ≥ ε1 − δ ≥ sn − δ remains positive. Remark that by independence of the noise variables
E[A2] ≤ an−1 for some constant a > 0; and that by independence between signal and noise, the last term in
the absolute value in (255), call it B, is satis�es E[B2] ≤ bn−1 for some constant b > 0. We now square the
identity (255) and take its expectation. Then using (

∑p
i=1 vi)

2 ≤ p
∑p

i=1 v
2
i (by convexity), and that R1 ≤ K

(K = 1+max(ρ, rmax) upper bounds bothR1 andR2 given by (89)), as well as the free entropy concentration
Theorem 6,

1

10
E
[(
〈L〉 − E〈L〉

)2] ≤ 3δ−2
(
C + aS2(K + δ)

) 1

n
+ C+

δ (R1)2 + C−δ (R1)2 +
S2a

4ε1n
+
b

n
. (256)

where C = C(ϕ, S, α) is a positive constant depending only on ϕ, S and α that comes from the use of
Theorem 6. Recall |C±δ (R1)| = |f̃ ′(R1 ± δ)− f̃ ′(R1)|. We have

|f̃ ′(R1)| ≤ 1

2

(
ρ+

S√
R1

)
≤ 1

2

(
ρ+

S√
ε1

)
(257)

from (247), (252) and R1 ≥ ε1. This implies |C±δ (R1)| ≤ ρ + S/
√
ε1 ≤ ρ + S/

√
sn as ε1 ≥ sn. Recall also

that Bn := [sn, 2sn]2. Then∫
Bn
dε
{
C+
δ (R1(t, ε))2 + C−δ (R1(t, ε))2

}
≤
(
ρ+

S√
sn

)∫
Bn
dε
{
C+
δ (R1(t, ε)) + C−δ (R1(t, ε))

}
=
(
ρ+

S√
sn

)∫
Rt(Bn)

dR1dR2

J(Rt)

{
C+
δ (R1) + C−δ (R1)

}
≤
(
ρ+

S√
sn

)∫
Rt(Bn)

dR1dR2

{
C+
δ (R1) + C−δ (R1)

}
≤
(
ρ+

S√
sn

)∫ 2sn+ρ

sn

dR2

[(
f̃(2sn + rmax + δ)− f̃(2sn + rmax − δ)

)
+
(
f̃(sn − δ)− f̃(sn + δ)

)]
. (258)

where we used that the Jacobian J(Rt) of the C1 di�eomorphismRt : (ε1, ε2) 7→ (R1(t, ε), R2(t, ε)) is greater
or equal to 1 (by regularity of the interpolation functions q and r) andRt(Bn) ⊂ [sn, 2sn+rmax]×[sn, 2sn+ρ].
The mean value theorem and (257) imply |f̃(R1−δ)−f̃(R1+δ)| ≤ δ(ρ+S/

√
sn) uniformly inR2. Therefore∫

Bn
dε
{
C+
δ (R1(t, ε))2 + C−δ (R1(t, ε))2

}
≤ 2δ(sn + ρ)

(
ρ+

S√
sn

)2
. (259)
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Thus, integrating (256) over ε ∈ Bn yields (using Vol(Bn) = s2
n and sn ≤ 1/2)∫

Bn
dεE

[(
〈L〉 − E[〈L〉

)2]
≤ 30

(
C + aS2

√
K + δ

)
δ−2s2

nn
−1 + 20δ(1/2 + ρ)

(
ρ+

S√
sn

)2
+ 5S2a

ln 2

2

sn
n

+
bs2
n

n
.

Finally we choose δ = snn
−1/4 and obtain the desired result. �

Proof of Lemma 31: Convexity implies that for any δ > 0 we have

G′(x)− g′(x) ≤ G(x+ δ)−G(x)

δ
− g′(x)

≤ G(x+ δ)−G(x)

δ
− g′(x) + g′(x+ δ)− g(x+ δ)− g(x)

δ

=
G(x+ δ)− g(x+ δ)

δ
− G(x)− g(x)

δ
+ C+

δ (x) ,

G′(x)− g′(x) ≥ G(x)−G(x− δ)
δ

− g′(x) + g′(x− δ)− g(x)− g(x− δ)
δ

=
G(x)− g(x)

δ
− G(x− δ)− g(x− δ)

δ
− C−δ (x) .

Combining these two inequalities ends the proof.

Appendix F: Details on numerics
Most of our experiments and codes are provided on the associated GitHub repository [62], with codes in the
Julia programming language [103] (with a Jupyter notebook interface) and in matlab. In this appendix, we
shall give additional details on how the plots have been obtained.

F.1 General purpose algorithms

We have been using free available softwares in our experiments: Standard machine learning tasks such as
LASSO or logistic regression were done using scikit-learn [65]. Keras [66], with a tensor�ow backend [104],
was used for neural networks. We also used CVXPY, a python-embedded language for performing convex
optimization [84], as well as PhaseMax for phase retrieval [85] experiments.

Figure 4 (in both the main text and SI) constrasts results of these general purpose algorithms with the
optimal generalization error in three classi�cation problems. In the left pannel of Fig. 4 (for the binary
perceptron), we used logistic regression with hand-tuned `2 regularization (basically, we have hand-selected
the regularization parameter in order to obtain the best results) with the function Logistic Regression in the
software scikit-learn [65]. In the center pannel of Fig. 4 (this time for a sparse signal), we used the same
software but this time with a sparsity enhancing `1 regularization, again �ne-tuned by hand. In the right
pannel of Fig. 4, we show, in the inset, how a neural network with 2 hidden layers was able to learn only
approximately the “symmetric door” rule. In this experiment, we used Keras with a tensor�ow backend.

The data are created with a signal-vector of dimension n = 2500 and are sent into a network made with a
�rst layer of dimension 2500×64 followed by a recti�ed linear unit (ReLu), and a dropout layer with fraction
0.2 for regularization. This is followed by a second layer of dimension 64 × 64, this time with a sigmoid
activation and again a dropout layer. Finally, we classify with a �nal output layer with a softmax, using the
categorical cross-entropy as the loss function. The minimization is done using the RMSprop optimizer for
1000 epochs. The code is shown in the GitHub repository [62].
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We have tried many variations around this network. Interestingly, the dropout layers have a strong e�ect
on the regularization, and help signi�cantly in improving the generalization error. Also interestingly, the
number of epochs used for �tting was an important parameter. Indeed, the quality of the �t improves drastic-
ally as the number of epochs is increased: It seems that it actually takes a lot of time to escape the initial
point, where prediction is just as bad as random. Finally, we also tried to increase the depth of the neural
nets. Interestingly this did not a�ect the performance and the network was �tting the data and generalizing
just as well with deeper and deeper networks. We believe that it should be very instructive to further study
empirically this problem.

In Fig. 5 in this SI, simular plots are shown for three regression problems. In the left pannel, we used
the LASSO function in the software scikit-learn [65] with its sparsity enhancing `1 regularization, again �ne-
tuned by hand.

For the middle pannel, we had to turn to a di�erent software. In this case, the idea was to solve Y =

Relu(Φx) = max(0,Φx) (componentwise) subject to a sparse penalty on x. Luckily, this can be turned into
a linear programming framework: Minimize the `1 norm of x subject to the constraint that Y = Relu(Φx)

which can be implemented by enforcing Yµ = Φµ · x for µ’s such that Yµ > 0, and Φµ · x < 0 for µ’s such
that Yµ = 0. This linear program is solved with CVXPY [84] (CVX-2). We also show the results when only
the indices µ associated with positive Yµ > 0 are used for comparaison (CVX-1). Finally, for the right �gure,
we used PhaseMax [85] out-of-the-box to solve the problem.

F.2 Evaluating the replica formula

In order to evaluate numerically the replica formula (41) we proceed as it is common in the statistical physics
literature since the early papers on spin glasses. First, we found the critical points (42) by iterating the state
evolution equations (67) —also called the replica self-consistent equations— starting from two di�erent initial
conditions (qt=0 = 0 and qt=0 = ρ). Next we computed the associated value of the free entropy and then
selected, if two di�erent �xed points were found, the correct one following the prescription given by Theorem
1. We also took special care in checking that we could not identify other �xed points. An example of such a
procedure is shown in the GitHub repository [62], with codes in the Julia programming language [103], for
the perceptron problem.

F.3 Breaking the symmetry in GAMP

A last notable point concerns the symmetry issue in GAMP. Indeed, when q = 0 is a �xed point of the state
evolution (which is the case if the prior has zero mean and the channel is symmetric), then GAMP should stay
in this �xed point forever. This is the case, for instance, for two problems considered in the present paper:
The symmetric door output function ϕ(z) = sgn(|z| −K) with a Rademacher prior±1, and for the sign-less
channel ϕ(z) = |z|. In both cases, both z and −z are giving the same output, and therefore so does both X∗

and −X∗. Notice, however, that this is not a problem in the computation of the free entropy. Here, one has
to compute all the �xed points anyway. It is also not a problem if the prior is breaking the symmetry (for
instance if one is working with a binary signal where X∗i = 1 with probability p+ = 1/2 + ε and X∗i = −1

with probability p− = 1/2 − ε with, say, ε = 10−7. In this case the symmetry is broken, GAMP works, and
the state evolution predicts its behavior correctly. Even though this problem is thus restricted to a very small
class of channels and priors, and even though perturbations solve it, it is still an interesting mathematical
challenge, especially from the rigorous point of view. Indeed, this problem has attracted attention recently
where initializations based on spectral algorithms were analyzed [61].

In the present paper, we adopted a pragmatic point of view. We did not break the symmetry in the data
generative model (as that would make the problem slightly easier), instead we broke the symmetry in the
GAMP solver, thus making it slightly but un-noticeably suboptimal. An example of our code is given in the
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associated GitHub repository [62]. We created the data in the symmetric manner, but when we ran GAMP
to solve the problem, we broke the channel symmetry slightly. For instance, instead of solving with a door
function that returns 1 only for −0.674489 < z < 0.674489, we use a function that instead returned 1

for −0.674489 < z < 0.6745. The same strategy was used for the absolute value function, which can
be replaced by ϕ(z) = z for x > −ε and −z otherwise. Again, when ε is small, this makes only an un-
noticeable di�erence in the �gures. This trick allowed GAMP to solve symmetric problems without trouble in
practice, and to reach perfect recovery even in the symmetric problems as close to the theoretical threshold
as numerically desired.
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