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II Supplementary informations

As datasets grow larger and more complex, modern data analysis requires solving high-dimensional estimation problems with very many parameters. Developing algorithms up to the task and understanding their limitations has become a major challenge in computer science, machine learning, statistics, signal processing, communications and related elds.

In the present contribution, we address this challenge in the case of generalized linear estimation models (GLMs) [START_REF] Nelder | Generalized linear models[END_REF][START_REF] Mccullagh | Generalized linear models[END_REF] where data are generated as follows: Given a n-dimensional vector X * , hidden to the statistician, he/she observes instead a m-dimensional vector Y where each component reads

Y µ = ϕ 1 √ n [ΦX * ] µ , A µ , 1 ≤ µ ≤ m , (1) 
where Φ is a m × n "measurement" or "data" matrix, the random variables (A µ ) iid ∼ P A account for noise (or randomness) of the model. The model is "linear" because the output Y µ depends on a linear combination of the data

z µ = 1 √ n [ΦX * ] µ = 1 √ n n i=1 Φ µi X * i .
The GLM generalizes the ordinary linear regression by allowing the output function ϕ(z, A) to be non-linear and/or stochastic; in the case of a deterministic model we simply write ϕ(z). Explicit examples will be given below.

GLMs belong to the realm of supervised learning and arise in a wide variety of scienti c elds. In signal processing one usually observes Y µ given as a linear combination of the signal-elements X * . In a range of applications these observations are obtained via a non-linear function ϕ. In optics or X-ray crystallography one often measures only the amplitude of [ΦX * ] µ , leading to the phase retrieval problem [START_REF] Fienup | Phase retrieval algorithms: a comparison[END_REF]. A real-valued analog is the problem of sign-retrieval when we only observe |[ΦX * ] µ | [START_REF] Demanet | Stable optimizationless recovery from phaseless linear measurements[END_REF][START_REF] Candes | Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming[END_REF]. Observations are sometimes quantized in order to reduce the storage, leading for instance to the problem of 1-bit compressed sensing [START_REF] Boufounos | 1-bit compressive sensing[END_REF]. In statistics and machine learning, classi cation is often described via a GLM where the output function ϕ is discrete and corresponds to the labels that classify the data-points Φ µ [START_REF] Nelder | Generalized linear models[END_REF][START_REF] Mccullagh | Generalized linear models[END_REF][START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF]. GLMs with non-linear output functions are also the basic building blocks of each layer of neural networks [START_REF] Lecun | Deep learning[END_REF]: ϕ corresponds to the activation, the rows of the matrix Φ are di erent data samples while X * are the set of synaptic weights to be learned.

There are two main learning problems in GLMs: i) The estimation task requires, knowing the measured vector Y and the matrix Φ, to infer the unknown vector X * ; ii) the prediction or generalization task instead requires, again knowing Y and Φ, to predict accurately new values Y new when new rows (i.e. data-points) are added to the matrix Φ.

In the present paper we build a rigorous theory for both these tasks for random instances of the GLM. In this setting each element Φ µi of the matrix is sampled independently from a probability distribution of zero mean and unit variance, and the unknown vector X * has been also created randomly from a probability distribution P 0 , with each of its components X * 1 , . . . , X * n iid ∼ P 0 . Since our main aim is to study the intrinsic information-theoretic and algorithmic limitations caused by the lack of samples and/or the amplitude of the noise, we assume throughout this paper that P 0 and ϕ are known to the statistician (if they are not the task can only be harder). Our results are derived in the challenging and interesting high-dimensional limit where m, n → ∞ while m/n → α a constant. Random instances of GLMs are both practically and theoretically relevant in many di erent contexts: a) In signal processing, GLM estimation with a random matrix Φ has been studied with considerable attention in the context of compressed sensing [START_REF] Donoho | Sparse nonnegative solution of underdetermined linear equations by linear programming[END_REF][START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF][START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF] where a n-dimensional sparse signal is recovered from m < n noisy measurements. While standard compressed sensing focused on the linear case -where ϕ(z, A) = z + A with a Gaussian noise A-the generalized case was also widely studied [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF], especially for quantized output [START_REF] Kamilov | Optimal quantization for compressive sensing under message passing reconstruction[END_REF] and 1-bit compressed sensing [START_REF] Boufounos | 1-bit compressive sensing[END_REF][START_REF] Xu | Bayesian signal reconstruction for 1-bit compressed sensing[END_REF] where ϕ(z, A) = sign(z + A), as well as for compressive phase retrieval when ϕ(z, A) = |z + A| [START_REF] Schniter | Compressive phase retrieval via generalized approximate message passing[END_REF].

b) In statistical learning, important activity is dedicated to understand the limitation of learning with data generated by GLMs, both in the linear case, e.g. in the context of ridge regression or LASSO [START_REF] Bayati | The lasso risk for gaussian matrices[END_REF], or with non-linear probabilistic output, e.g. logistic regression. Random instances were studied in particular in the context of so-called M-estimators [START_REF] Karoui | On robust regression with high-dimensional predictors[END_REF][START_REF] Donoho | High dimensional robust m-estimation: asymptotic variance via approximate message passing[END_REF][START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF][START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF].

c) In studies of arti cial neural networks there has been a large amount of works using random instances of GLMs, with ϕ playing the role of a non-linear activation function. In this context the random GLM was introduced as the teacher-student setting for the perceptron in the pioneering work of Gardner and Derrida [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF]. Large volume of work followed and is reviewed, e.g., in [START_REF] Seung | Statistical mechanics of learning from examples[END_REF][START_REF] Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF]. While initial works concentrated on a simple activation functions ϕ(z) = sign(z -K) (K is the threshold constant), many other functions were considered, e.g. in [START_REF] Engel | Reliability of replica symmetry for the generalization problem in a toy multilayer neural network[END_REF][START_REF] Bex | Storage capacity and generalization error for the reversedwedge ising perceptron[END_REF][START_REF] Hosaka | Statistical mechanics of lossy data compression using a nonmonotonic perceptron[END_REF]. Recently, the study of random instances of neural networks have emerged as a key ingredient in understanding the performance of deep learning algorithms [START_REF] Baldassi | Unreasonable e ectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes[END_REF][START_REF] Martin | Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior[END_REF]. Computing mutual informations in GLMs is also a critical issue in con rming the information bottleneck scenario of [START_REF] Tishby | The information bottleneck method[END_REF][START_REF] Shwartz-Ziv | Opening the black box of deep neural networks via information[END_REF] d) In communications, error-correcting codes that use random constructions are particularly e cient, as discussed by Shannon in his seminal paper [START_REF] Shannon | A mathematical theory of communication, part i, part ii[END_REF]. Random instances of GLMs describe both the setting of codedivision multiple access -a multi-user access method used in communication technologies [START_REF] Tanaka | A statistical-mechanics approach to large-system analysis of cdma multiuser detectors[END_REF][START_REF] Guo | Randomly spread cdma: Asymptotics via statistical physics[END_REF]-as well as an error correction scheme called sparse superposition codes, that have been shown to achieve the Shannon capacity for any type of noisy channel [START_REF] Barron | Toward fast reliable communication at rates near capacity with gaussian noise[END_REF][START_REF] Barbier | Approximate message-passing decoder and capacity-achieving sparse superposition codes[END_REF][START_REF] Rush | Capacity-achieving sparse superposition codes via approximate message passing decoding[END_REF][START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF][START_REF] Barbier | Universal sparse superposition codes with spatial coupling and GAMP decoding[END_REF].

Interestingly there is an important gap in the above volume of work. On the one hand there are studies that rely on the algorithmic performance of the so-called generalized approximate message-passing algorithm (GAMP) [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF]. GAMP is remarkable in that its asymptotic (n, m → ∞, m/n → α) performance can be analyzed rigorously using the so-called state evolution [START_REF] Bolthausen | An iterative construction of solutions of the tap equations for the sherringtonkirkpatrick model[END_REF][START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF][START_REF] Bayati | Universality in polytope phase transitions and message passing algorithms[END_REF][START_REF] Javanmard | State evolution for general approximate message passing algorithms, with applications to spatial coupling[END_REF]. However, GAMP is not expected to be always information-theoretically optimal. On the other hand, other results are concerned with the linear case of the GLM with additive Gaussian noise for which the information-theoretically optimal performance was established in [START_REF] Barbier | The mutual information in random linear estimation[END_REF][START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF][START_REF] Reeves | The replica-symmetric prediction for compressed sensing with gaussian matrices is exact[END_REF] (the methodology of these works unfortunately does not generalize straightforwardly to the important non-linear case or to other types of additive noise). All the other works, giving informationtheoretic results for the non-linear case, are based on powerful and sophisticated but non-rigorous techniques originating in statistical physics of disordered systems, such as the cavity and replica methods [START_REF] Mézard | Spin glass theory and beyond[END_REF]. Historically, the rst of these non-rigorous, yet correct, results on information-theoretic limitations of learning was for the perceptron with binary weights and was established using the replica method in [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF][START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF][START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF], including a discontinuous phase transition to perfect learning that appears as the ratio between number of samples and the dimension exceeds α ≈ 1.249.

In the present paper we close the above gap between mathematically rigorous work and conjectures (some of them several decades old) from statistical mechanics. In particular, we prove that the results for GLMs stemming from the replica method are indeed correct and imply the optimal value of both the estimation and generalization error. These results are summarized in section "Main results". The proof is based on the adaptive interpolation method recently developed in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] and is of independent interest as it is applicable to a range of other models, see section "Methods and proofs" and the supplemantary informations (SI). We compare our information-theoretic results to the performance of the GAMP algorithm and its state evolution (as reviewed brie y in section "Main results"). We determine regions of parameters where this algorithm is or is not information-theoretically optimal. Up to technical assumptions (as speci ed below), our results apply to all activation functions ϕ and priors P 0 , thus unifying a large volume of previous work where many particular functions have been analyzed on a case by case basis. This generality allows us to provide a unifying understanding of the types of phase transitions and phase diagrams that we can encounter in GLMs, which is as well of independent interest and we devote section "Application to learning and inference" to its presentation.

Main results

This section summarizes our main results. Their formal statement together with all technical assumptions and full proofs are provided in section "Methods and proofs" and in the SI.

For the random GLM problem as de ned in the introduction, the optimal way to estimate the ground-truth signal/weights X * relies on its posterior probability distribution

P (x|Y, Φ) = 1 Z(Y, Φ) n i=1 P 0 (x i ) m µ=1 P out Y µ [Φx] µ √ n (2) 
where we used the prior P 0 of X * , and introduced the likelihood P out that an output Y µ is observed given

1 √ n [Φx] µ . P out (• | z)
is the probability density function of ϕ(z, A) (where again the r.v. A ∼ P A accounts for noise). This paper is concerned with the so-called Bayes-optimal setting where the prior P 0 and the likelihood P out that appear in the posterior [START_REF] Mccullagh | Generalized linear models[END_REF] were also used to generate the ground-truth signal X * and the labels Y, using a known random matrix Φ.

A rst quantity of interest is the free entropy (which is the free energy up to a sign) de ned as f n (Y, Φ) ≡ 1 n ln Z(Y, Φ). The expectation of the free entropy is equal to minus the conditional entropy density of the observation -1 n H(Y|Φ), as well as (up to an additive constant) to the mutual information density between the signal and the observations 1 n I(X * ; Y|Φ).

The free entropy

Our rst result is the rigorous determination of the free entropy, in the high-dimensional asymptotic regime n, m → ∞, m/n → α. For a random matrix Φ with independent entries of zero mean and unit variance, for output Y that was generated using [START_REF] Nelder | Generalized linear models[END_REF], and under appropriate technical assumptions stated precisely in section "Methods and proofs", the free entropy converges in probability to:

f n (Y, Φ) ≡ 1 n ln Z(Y, Φ) P ---→ n→∞ sup q∈[0,ρ] inf r≥0 f RS (q, r; ρ) (3) 
where ρ ≡ E P 0 [(X * ) 2 ] and where the potential f RS (q, r; ρ) is f RS (q, r; ρ) ≡ ψ P 0 (r) + αΨ Pout (q; ρ) -rq/2 , (4)

ψ P 0 (r) ≡ E Z 0 ,X 0 ln dP 0 (x) e rxX 0 + √ rxZ 0 -rx 2 /2 , (5) 
Ψ Pout (q; ρ) ≡ E V,W, Ỹ0 ln DwP out ( Ỹ0 | √ q V + √ ρ -q w) , (6) 
where Dw = dw exp(-w 2 /2)/ √ 2π is a standard Gaussian measure and the scalar r.v. are independently sampled from X 0 ∼ P 0 , then V, W, Z 0 iid ∼ N (0, 1) and Ỹ0 ∼ P out (•| √ q V + √ ρ -q W ). Only the special linear case with Gaussian P out was known rigorously so far [START_REF] Barbier | The mutual information in random linear estimation[END_REF][START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF][START_REF] Reeves | The replica-symmetric prediction for compressed sensing with gaussian matrices is exact[END_REF]. Convergence of the averaged free entropy is precisely stated in Theorem 1; the one in probability follows from concentration results in the SI.

One can check by explicit comparison that for speci c choices of P 0 and P out the expression ( 4) is the replica-symmetric free entropy derived in numerous statistical physics papers (thus the RS in f RS ), and in particular in [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF][START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF][START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF][START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF] for ϕ(z) = sign(z). The formula for general P 0 and P out was conjectured based on the statistical physics derivation in [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF]. Establishing (3) closes these old conjectures and yields an important step towards vindication of the cavity and replica methods for inference, alongside with e.g. [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF][START_REF] Coja-Oghlan | Information-theoretic thresholds from the cavity method[END_REF]. We now discuss the main consequences of this formula.

Overlap and optimal estimation error

Our second result concerns the overlap between a sample x from the posterior (2) and the ground-truth. We obtain that as n, m → ∞, n/m → α,

1 n x • X * P ---→ n→∞ q * (7) 
whenever q * = q * (α) the maximizer in formula [START_REF] Fienup | Phase retrieval algorithms: a comparison[END_REF] is unique. This is the case for almost every α (see the SI).

It is a simple fact of Bayesian inference that, given the measurements Y and the measurement matrix Φ, the estimator X that minimizes the mean-square error with the ground-truth X * is the mean of the posterior distribution (2), i.e. X = E P (x|Y,Φ) [x]. The minimum mean-square error (MMSE) that is achieved by such "Bayes-optimal" estimator is deduced, again in the limit n → ∞, m/n → α, as follows:

MMSE = 1 n E X * -X 2 → ρ -q * . (8) 
We refer to Theorem 2 in section "Main theorems" for rigorous statements. Again the value of the MMSE was known rigorously so far only for the linear case with Gaussian noise [START_REF] Barbier | The mutual information in random linear estimation[END_REF][START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF][START_REF] Reeves | The replica-symmetric prediction for compressed sensing with gaussian matrices is exact[END_REF] (and conjectured for the non-linear case e.g. in [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF]).

Optimal generalization error

Our third result concerns the prediction error, also called generalization error. Consider again the statistical model [START_REF] Nelder | Generalized linear models[END_REF]. To de ne the Bayes-optimal generalization error, one is given a new row of the matrix/data point, denoted Φ new ∈ R n (in addition to the data Φ and associated outputs Y used for the learning), and is asked to estimate the corresponding output value Y new . We seek for an estimator Ŷnew = Ŷnew (Y, Φ, Φ new ) that achieves

E gen ≡ min Ŷnew E[(Y new -Ŷnew ) 2 ],
i.e. that minimizes the MSE with the true Y new obtained using the groundtruth weights X * . Such estimator is again obtained from the posterior: Ŷnew = E P A (a) E P (x|Y,Φ) ϕ( 1√ n Φ new • x, a). Note that this is di erent than the plug-in estimator Ỹnew = ϕ( 1 √ n Φ new • X), which leads to a worse MSE than Ŷnew . Yet it is often used in practice for deterministic models since most algorithms for generalized linear regression do not provide the full posterior distribution.

Our result states that the optimal generalization error follows from the I-MMSE theorem [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF] applied to the free entropy (3) (see the SI for the details). The optimal generalization error reads as n → ∞, m/n → α (q * is the maximizer in ( 3))

E gen → E V,a ϕ( √ ρ V,a) 2 -E V E w,a ϕ( q * V + ρ-q * w,a) 2 , (9) 
where V, w iid ∼ N (0, 1) and a ∼ P A . See again Theorem 2 in the section "Main theorems" for the precise statement (and Theorems 3 and 4 in the SI).

Note that for labels Y belonging to a discrete set the MSE might not be a suitable loss and we are more often interested in maximizing the so-called overlap, i.e. the probability of obtaining the correct label. In that case the Bayes-optimal estimator is computed as the argmax of the posterior marginals, rather than as its mean, i.e. for discrete labels Ȳnew = argmax y P(y = ϕ( 1 √ n Φ new • x, a)) where again x is distributed according to (2), a ∼ P A . The replica method has been used to compute the optimal generalization error for the perceptron where ϕ(x) = sign(z) in the pioneering works of [START_REF] Seung | Statistical mechanics of learning from examples[END_REF][START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF][START_REF] Opper | Generalization performance of bayes optimal classi cation algorithm for learning a perceptron[END_REF]. We note that in this special case the plug-in estimator Ỹnew is actually equal to the optimal one Ȳnew .

A nal note concerns the issue of over tting. In optimization-based approaches to learning over tting may lead to a generalization error which is too large as compared to the training error. In the Bayes-optimal setting the estimators are constructed in order not to over t. This is related to general properties of Bayesoptimal inference and learning that are called "Nishimori conditions" in the physics literature [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF] and that turn out to be crucial in our proofs.

Optimality of approximate message-passing

While the three results stated above are of an information-theoretic nature, our fourth one concerns the performance of an algorithm to solve random instances of GLMs called generalized approximate messagepassing (GAMP) [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF], which is closely related to the TAP equations developed in statistical physics [START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF][START_REF] Thouless | Solution of'solvable model of a spin glass[END_REF][START_REF] Kabashima | Inference from correlated patterns: a uni ed theory for perceptron learning and linear vector channels[END_REF].

The GAMP algorithm can be summarized as follows [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF]: Given initial estimates x 0 , v 0 for the marginal posterior means and variances of the unknown signal vector X * entries, GAMP iterates the following equations, with g 0 µ = 0:

                       V t = v t-1 ω t = Φ x t-1 / √ n -V t g t-1 g t µ = g Pout (Y µ , ω t µ , V t ) ∀ µ = 1, . . . m λ t = α g 2 Pout (Y, ω t , V t ) R t = x t-1 + (λ t ) -1 Φ g t / √ n x t i = g P 0 (R t i , λ t ) ∀ i = 1, . . . n v t i = (λ t ) -1 ∂ R g P 0 (R, λ t )| R=R t i ∀ i = 1, . . . n
(here we denote by u the average over all the components of a vector u). The so-called thresholding function g P 0 (R, λ) is de ned as the mean of the normalized distribution ∝ P 0 (x) exp(-λ(R -x) 2 /2) and the output function g Pout (Y, ω, V ) is similarly the mean of the normalized distribution (of x) ∝ P out (Y |ω + √ V x) exp(-x 2 /2).

The heuristic derivation of GAMP in statistical physics [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF] suggests via the de nition of the function g Pout that ω and V are the estimates of the means and average variance of the components of the variable z = Φx. This, in turn, suggests a GAMP prediction of labels of new data points:

Ŷ GAMP,t new = y P out (y|ω t new + z √ V t ) dyDz
where

ω t new ≡ 1 √ n Φ new • x t-1 .
Comparing it with the test-set labels, this serves to compute GAMP's generalization error.

One of the strongest assets of GAMP is that its performance can be tracked via a closed form procedure known as state evolution (SE), again in the asymptotic limit when n, m → ∞, m/n → α. For proofs of SE see [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF][START_REF] Bayati | Universality in polytope phase transitions and message passing algorithms[END_REF] for the linear case, and [START_REF] Javanmard | State evolution for general approximate message passing algorithms, with applications to spatial coupling[END_REF] for the generalized one. In our notations, SE tracks the correlation (or "overlap") between the true weights X * and their estimate x t de ned as q t ≡ lim n→∞ 1 n X * • x t via: q t = 2ψ P 0 (r t ) , r t = 2αΨ Pout (q t-1 ; ρ) .

The derivatives are w.r.t. the rst argument. Similarly for the evolution of GAMP's generalization error E GAMP,t gen (see SI) we get that it is asymptotically, and with high probability, given by the r.h.s. of formula [START_REF] Donoho | Sparse nonnegative solution of underdetermined linear equations by linear programming[END_REF] but with q * replaced by q t . It is a simple algebraic fact that the xed points of the SE equations [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF] correspond to the critical points of the potential [START_REF] Demanet | Stable optimizationless recovery from phaseless linear measurements[END_REF]. The question of GAMP achieving asymptotically optimal MMSE or generalization error therefore reduces to the study of the extrema of the two-scalar-variables potential [START_REF] Demanet | Stable optimizationless recovery from phaseless linear measurements[END_REF]. If the SE [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF] converges to the same couple (q, r) as the extremizer (q * , r * ) of (3) then GAMP is optimal, and if it does not then GAMP is sub-optimal. In the next section we illustrate this result on several examples, delimiting regions where GAMP reaches optimality. We note that optimality of AMP-based algorithms in terms of the MMSE on the groundtruth vector X * was proven for several cases where the extremizer q * in (3) is unique, see e.g. [START_REF] Donoho | Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing[END_REF], or in the linear case of GLM in [START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF]. Our results allow to complete the characterization of regions of parameters where the algorithm reaches optimal performance in terms of the estimation and generalization errors. While the asymptotic value of the Bayes-optimal generalization error was predicted for some cases of P out and P 0 [START_REF] Opper | Generalization performance of bayes optimal classi cation algorithm for learning a perceptron[END_REF], and TAP-based algorithms were argued to reach this performance in [START_REF] Opper | Mean eld approach to bayes learning in feed-forward neural networks[END_REF][START_REF] Opper | Tractable approximations for probabilistic models: The adaptive thoulessanderson-palmer mean eld approach[END_REF], it was not known whether this error can be achieved provably nor for what exact regions of parameters the algorithm is sub-optimal. Our present work settles this question thanks to the state evolution of the GAMP algorithm. Interestingly, heuristic arguments based on the glassy nature of the corresponding probability measure were used to argue that direct sampling or optimization-based approaches will not be able to match this performance [START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF]. Whether this statement is correct goes beyond the scope of the present paper.

Application to learning and inference

In this section, we report what our results imply for the information-theoretically optimal errors, and those reached by the GAMP algorithm for several interesting cases of output functions ϕ and prior distributions P 0 . We do not seek to be exhaustive in any way, we simply aim to illustrate the kind of insights about the GLM that can be obtained from our results. We focus on determination of phase transitions in performance as we vary parameters of the model, e.g. the number of samples or the sparsity of the signal. We use careful numerical procedures to compute the expectations required in the formula (4), and check that the reported results are stable towards the choice of various precision-parameters. In this section we, however, do not seek rigor in bounding formally the corresponding numerical errors. Many of the codes used in this section are 4) for this case, we nd that a recovery of the signal is information-theoretically impossible for α < α IT = ρ. Recovery becomes possible starting from α > ρ, just as in the canonical compressed sensing. Algorithmically the sign-less case is much harder. Evaluating [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF] we conclude that GAMP is not able to perform better than a random guess as long as α < α c = 1/2, and the same is true for spectral algorithms, see [START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF]. For larger values of α, the inference using GAMP leads to better results than a purely random guess. GAMP can recover the signal and generalize perfectly only for values of α larger than α AMP (full red line). The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed sensing.

Center: Analogous to the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better than random guessing using GAMP. The dotted red line shows the algorithmic phase transition when using information only about the non-zero observations. Right: Phase diagram for the symmetric door output function ϕ(z) = sign(|z| -K) for a Rademacher signal, as a function of α and K. The stability line α c is depicted in dashed blue, the information-theoretic phase transition to almost exact recovery α IT in black, and the algorithmic one α AMP in red.

given online in a github repository [62].

General observations about xed points and terminology

• Non-informative xed point and its stability: It is instrumental to analyze under what conditions q * = 0 is the optimizer in (3). Our result [START_REF] Lecun | Deep learning[END_REF] about the MMSE implies that if q * = 0 then the MMSE is as large as if we had no samples/measurements at our disposition. A necessary condition for q * = 0 is that it is a xed point of the state evolution. In turn, a su cient condition for the state evolution [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF] to have such a xed point is that i) the output density P out (y|z) is even in the argument z, and ii) that the prior P 0 has zero mean. A proof of this is given in the SI. In order for q * = 0 to be a xed point to which the state evolution [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF] converges, it needs to be stable. We detail in the SI that under properties i) and ii) this xed point is stable when

α dy Dz(z 2 -1)P out (y| √ ρz) 2 DzP out (y| √ ρz) < 1 . (11) 
In what follows we will denote α c the largest value of α for which the above condition holds. Consequently the error reachable by the GAMP algorithm is as bad as random guessing for both the estimation and generalization errors as long at α < α c . For α > α c , starting with in nitesimal positive q the state evolution will move towards larger q as in [START_REF] Fletcher | Iterative reconstruction of rank-one matrices in noise[END_REF]. Note that the condition (11) also appears in a recent work [START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF] as a barrier for performance of spectral algorithms. Concerning the information-theoretically optimal error, we will call the phase where MMSE = ρ, i.e. q * = 0 is the extremizer of ( 4), the non-informative phase. Existing literature sometimes refers to such behavior as retarded learning phase [START_REF] Hansel | Memorization without generalization in a multilayered neural network[END_REF], in the sense that in that case a critical number of samples is required for the generalization error to be better than random guessing. Below we will evaluate condition [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF] explicitly for several examples.

• Almost exact recovery xed point: Another xed point of (10) that is worth our particular attention is the one corresponding to almost exact recovery, meaning with average error per coordinate going to 0 as n → ∞, where q * = ρ. A su cient and necessary condition for this to be a xed point is that lim q→ρ Ψ Pout (q; ρ) = +∞. This means that the integral of the Fisher information of the output channel diverges:

dydω e -ω 2 2ρ √ 2πρ P out (y|ω) 2 P out (y|ω) = +∞ ,
where P out (y|ω) denotes the partial derivative w.r.t. ω. This typically means that the output channel should be noiseless. For example, for the Gaussian channel with noise variance ∆, the above expression equals 1/∆. For the probit channel where P out (y|z) = erfc(-yz/ √ 2∆)/2 the above expression at small ∆ is proportional to 1/ √ ∆. Stability of the almost exact recovery xed point depends non-trivially on both the properties of the output channel, and of the prior. Below we give several examples where almost exact recovery either is or is not possible. In what follow we call the region of parameters for which MMSE = 0, i.e. q * = ρ is the extremizer in (3), the almost exact recovery phase.

• Hard phase: As can be anticipated from the statement of our main algorithmic result, there are regions of parameters for which the error reached by GAMP is asymptotically equal to the optimal error, and regions where it is not. We will call hard phase the region of parameters where MMSE < MSE AMP with a strict inequality. Focusing on the ratio α between the number of samples and the dimensionality, we will denote α IT the ratio for which the hard phase appears, and α AMP > α IT the ratio for which it disappears. In other words, the hard phase is an interval (α IT , α AMP ), and is associated to a rst order phase transition in the Bayes-optimal posterior probability distribution.

It remains a formidable open question of average computational complexity whether in the setting of this paper (and for problems that are NP-complete in the worst case) there exists an e cient algorithm that achieves better performance than GAMP in the hard phase. The authors are not aware of any, and tend to conjecture that there is none.

Sensing compressively with non-linear outputs

Existing literature covers in detail the case of noiseless compressed sensing, i.e. when the output function ϕ(z) = z. Representative sparse prior distribution is the Gauss-Bernoulli (GB) distribution P 0 = ρN (0, 1) + (1 -ρ)δ 0 , where ρ is the average fraction of non-zeros, which are in this case standard Gaussians. The phase diagram of this case is well known see e.g. [START_REF] Wu | Rényi information dimension: Fundamental limits of almost lossless analog compression[END_REF][START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF]. In noiseless compressed sensing with random i.i.d. matrices and GB prior, almost exact recovery of the signal is possible for α > α IT = ρ and GAMP recovers the signal for α > α AMP,CS where α AMP,CS is plotted in Fig. 1 (left) with a dotted red line, thus delimiting the hard phase of compressed sensing. We note that the Donoho-Tanner phase transition [START_REF] Donoho | Sparse nonnegative solution of underdetermined linear equations by linear programming[END_REF] known as the performance limit of the LASSO 1 regularization is slightly higher than α AMP,CS .

• Sign-less output channel: The phase diagram of noiseless compressed sensing changes intriguingly when only the absolute value of the output is measured, i.e. when ϕ(z) = |z| instead of ϕ(z) = z. Such an output channel is reminiscent of the widely studied phase retrieval problem [START_REF] Fienup | Phase retrieval algorithms: a comparison[END_REF] where the signal is complex valued and only the amplitude is observed. Generalization of our results to the complex case would require extensions, as done for the algorithmic aspects in [START_REF] Maleki | Asymptotic analysis of complex lasso via complex approximate message passing (camp)[END_REF]. The real-valued case was studied under the name sparse recovery from quadratic measurements in the literature, e.g. [START_REF] Soltanolkotabi | Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization[END_REF] and references therein, when the number of The red line is the Bayes-optimal generalization error (9) while the green line shows the (asymptotic) performances of GAMP as predicted by the state evolution [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF]. For comparison, we also show the results of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver. Left: Perceptron, with ϕ(x) = sign(x) and a binary Rademacher signal. While a perfect generalization is information-theoretically possible starting from α IT ≈ 1.249, the state evolution predicts that GAMP will achieve such perfect prediction only above α AMP ≈ 1.493. The results of a logistic regression with ne-tuned regularizations with the software scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli distribution of the weights. No phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression are very close to optimal. Right: The symmetric door activation rule with parameter K chosen in order to observe the same number of occurrence of the two classes. In this case there is a sharp phase transition from as bad as random to perfect generalization at α IT = 1. GAMP identi es the rule perfectly only starting from α AMP ≈ 1.566. The non-informative xed point is stable up to α c = 1.36 (dashed line). Interestingly, this non linear rule seems very hard to learn for standardly used solvers. Using Keras [START_REF] Chollet | keras[END_REF], a neural network with 2 hidden layers was able to learn only approximately the rule, only for considerably larger training set sizes and much larger number of iterations than GAMP. non-zero variables grows slower than linearly with the dimension n. Our results give access to the phase diagram of sparse recovery from quadratic (or equivalently sign-less) measurements, that is presented in Fig. 1 (left) for the GB prior.

We observe that the information-theoretical phase transition α IT is the same in the sign-less sparse recovery as in the canonical linear case, i.e. almost exact recovery is possible whenever α > ρ. However, the algorithmic phase transition α AMP above which GAMP is able to nd the sparse signal1 is strikingly larger for the sign-less case (red line in left panel of Fig. 1). We note that even for a dense signal ρ = 1 almost exact recovery is algorithmically possible only for α > α AMP (ρ = 1) ≈ 1.128. For very sparse signals, small ρ, the situation is even more striking because measurement rate of at least α > α c = 1/2 is needed for algorithmically tractable almost exact recovery for every ρ. This is in sharp contrast with the canonical compressed sensing where α AMP,CS → 0 as ρ → 0. The nature of this algorithmic di culty of GAMP is related to the symmetry of the output channel thanks to which the non-informative xed point is stable for α < α c = 1/2. Summarizing this result in one sentence, tractable compressive sensing is impossible (for α < 1/2) if we have lost the signs. We remind that this result holds in the setting of the present paper, i.e. in particular when the sparsity ρ is of constant order. For signals where ρ = O(1) the situation is expected to be di erent [START_REF] Soltanolkotabi | Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization[END_REF].

• ReLU output channel: Another case of output channel that attracted our interest is the recti ed linear unit (ReLU), ϕ(z) = max(0, z), as widely used in multi-layer feed-forward neural networks. In the present single-layer case reconstruction with the ReLU output is interesting mathematically. With GB signals, roughly half of the measurements are given without noise, but the only information we have about the other half is its sign. A straightforward upper-bound for both information-theoretic and tractable almost exact recovery is simply twice as many measurements than needed in the canonical noiseless compressed sensing. It is interesting to ask whether this bound is tight. Results in the present paper imply that for the information-theoretic performance this bound indeed is tight. However, the phase transition α AMP above which almost exact re-covery is possible with the GAMP algorithm is strictly lower than twice the phase transition of compressed sensing; both are depicted in the central panel on Fig. 1. This implies that while the negative outputs are not useful information-theoretically, they do help to achieve better performance algorithmically.

Perceptron and alike

• Binary and Gauss-Bernoulli perceptron: One of the most studied problems that ts in the setting of the present paper is the problem of perceptron [START_REF] Rosenblatt | The perceptron, a perceiving and recognizing automaton Project Para[END_REF], where ϕ(z) = sign(z), that has been analyzed for random patterns Φ in the statistical physics literature, see [START_REF] Seung | Statistical mechanics of learning from examples[END_REF][START_REF] Watkin | The statistical mechanics of learning a rule[END_REF][START_REF] Engel | Statistical mechanics of learning[END_REF] for reviews. We plot in Fig. 2 the optimal generalization error (9) as follows from our results for the binary perceptron, i.e. weights taken from the Rademacher distribution P 0 = 1 2 δ +1 + 1 2 δ -1 (left panel), and for the GB perceptron where P 0 = ρN (0, 1) + (1-ρ)δ 0 (central panel). The information-theoretically optimal value of the generalization error that we report and prove agrees with existing predictions obtained by the non-rigorous replica method from [START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF][START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF][START_REF] Opper | Generalization performance of bayes optimal classi cation algorithm for learning a perceptron[END_REF]. Notably, we see that for the GB case the optimal generalization error decreases smoothly as α increases, while for the binary case the generalization error has a rst order (i.e. discontinuous) phase transition towards perfect generalization at α IT ≈ 1.249 as predicted already in [START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF]. Our results provide rigorous validation for these old conjectures.

Furthermore, our results together with recent literature on GAMP provide a refreshing clari cation of the algorithmic questions. It is natural to ask for what region of parameters the optimal generalization error can be provably achieved with e cient algorithms. This question remained unanswered until now. Indeed, for the spherical perceptron the optimal generalization error was computed in [START_REF] Opper | Generalization performance of bayes optimal classi cation algorithm for learning a perceptron[END_REF], and argued empirically on small instances to be achievable with a TAP-like algorithm [START_REF] Opper | Mean eld approach to bayes learning in feed-forward neural networks[END_REF]. The state evolution of GAMP together with our formulas for the generalization error ((9) for the average optimal one and with q t replacing q * in this formula for GAMP) imply that the optimal generalization error is indeed achievable asymptotically for all α in the GB perceptron.

For the binary perceptron the optimal generalization error was computed in [START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF][START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF]. By comparison with the state evolution of GAMP we obtain that it can also be asymptotically achieved by GAMP, but this time only outside of the hard phase (α IT , α AMP ) with α AMP ≈ 1.493. The past literature was unclear on the algorithmic question, Ref. [START_REF] Györgyi | First-order transition to perfect generalization in a neural network with binary synapses[END_REF] identi ed the spinodal of the replica-symmetric solution to be at α ≈ 1.493, but did not attribute it any algorithmic nor physical meaning. Ref. [START_REF] Sompolinsky | Learning from examples in large neural networks[END_REF] argues that metastable states exist at least up to α RSB ≈ 1.628 and speculates that Gibbs sampling based algorithms will not be able to reach perfect generalization before that point [START_REF] Seung | Statistical mechanics of learning from examples[END_REF]. Taking our results into account, the main algorithmic question that remains open is whether e cient algorithms can reach perfect generalization for α IT < α < α AMP .

• Symmetric door: Out of interest we explored an example of binary output channel for which P out (y|z) is even in the argument z, so that the non-informative xed point q * = 0 exists. Speci cally we analyzed the symmetric door channel with ϕ(z) = sign(|z| -K) and Rademacher prior P 0 . In existing literature such a perceptron was studied with the replica method in the context of lossy data compression [START_REF] Hosaka | Statistical mechanics of lossy data compression using a nonmonotonic perceptron[END_REF]. In Fig. 1 (right panel) we report the phase diagram in terms of the stability line of the non-informative xed point α c (below which GAMP is not better than random guesses), the information-theoretic phase transition towards perfect generalization α IT , and the phase transition of GAMP to perfect generalization α AMP .

A simple counting lower bound states that for binary outputs and weights X * i perfect generalization is not possible for α < 1. Thus it is interesting to notice that the symmetric door channel is able to saturate this lower-bound for K ≈ 0.6745 for which the probability of y µ = 1 is 1/2. This saturation was already remarked in [START_REF] Hosaka | Statistical mechanics of lossy data compression using a nonmonotonic perceptron[END_REF]. Our results also, however, imply that in that case the perfect generalization will not be achievable with GAMP (and we conjecture no other e cient) algorithm unless α > α AMP ≈ 1.566. The generalization error that GAMP provides for this case is depicted in Fig. 2 (right).

Empirical comparison with general purpose algorithms

In this section we argue that many cases that t into the setting of the present paper could serve as useful benchmarks for existing machine learning algorithms. We believe that the situation is perhaps similar to Shannon coding theorems that have driven algorithmic developments in error correcting codes, achieving the Shannon bound being the primary goal in many works in communications. In machine learning, classi cation is a natural task and algorithms are usually benchmarked using open access databases. In current state-of-theart applications of machine learning we usually have very little insight about what is the sample complexity, i.e. how many samples are truly needed so that a given generalization error can be achieved. In our setting the situation is di erent: We can present samples (y µ , Φ µ ) to generic out-of-the-box classi cation algorithms and see how their performances compare to the information-theoretic optimal performance and to the one of the GAMP algorithm that is ne-tuned to the problem.

In Fig. 2 we present examples of state-of-the-art classi cation algorithms compared to our results. In the left and center panels we compare the optimal and GAMP performances to a simple logistic regression, ne-tuned by manually optimizing the ridge penalty (for 2 regularization) and LASSO penalty (for a sparsityenhancing 1 regularization) with the software scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. We observe that while for the GB case the logistic regression is comparable to the performance of GAMP, for binary weights perfect generalization is not achieved close to the GAMP phase transition.

In the right panel of Fig. 2 we study classi cation for labels generated by the symmetric door channel. A general purpose algorithm would not know about the form of the channel. A neural network with only two hidden units is in principle able to represent the corresponding function (each of the hidden neurons can learn one of the two planes that separate data in the symmetric door function). A more intriguing question is whether a more generic multi-layer neural network is indeed able to learn this rule and how many samples does it need? In the example used in Fig. 2, using the software Keras [START_REF] Chollet | keras[END_REF] with a tensor ow backend, we show the performance of a network with two hidden layers, ReLU activation and dropout (the details for this particular run can be found on the github repository [62]). The symmetric door function thus provides a challenging benchmark that could be used to study how to improve performance of the general purpose multilayer neural network classi ers. In the SI we provide additional examples comparing the optimal performance to general-purpose algorithms for regression.

Methods and proofs

In this section we give the main theorem for the free entropy and main ideas of the proof. An essential tool is the adaptive interpolation method recently introduced in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] which is a powerful evolution of the Guerra and Toninelli interpolation method developed for spin glasses [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF]. Reference [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] analyzed simpler inference problems. In particular the proof for the upper bound in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] does not apply to GLMs and requires non-trivial new ingredients. One such new ingredient is to work with a potential f RS (q, r; ρ) depending on two parameters (q, r) instead of a single one as in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF]. This allows us to use convexity arguments that are crucial in order to nish the proof, see the last section "Matching bounds and end of proof". We stress that the present analysis heavily relies on properties of Bayes-optimal inference that translate into remarkable identities between correlation functions (called Nishimori identities by physicists; see SI for their formulation) valid for all values of parameters. These identities are used in the derivation of ( 17) and (18) below, which are two essential steps of our proof. The formula from Theorem 1 relies on the Nishimori identities and does not hold out of the Bayes-optimal setting.

Main theorems

For the proof it is necessary to work with a slightly di erent model with an additive regularizing Gaussian noise with variance ∆ ≥ 0:

Y µ = ϕ 1 √ n [ΦX * ] µ , A µ + √ ∆Z µ , 1 ≤ µ ≤ m, (12) 
where (Z µ ) iid ∼ N (0, 1), and (A µ ) iid ∼ P A are r.v. that represent the stochastic part of ϕ. It is also instrumental to think of the measurements as the outputs of a "channel"

Y µ ∼ P out (•| 1 √ n [ΦX * ] µ ) with transition density P out (y|z) = (2π∆) -1/2 dP A (a) exp{-1 2∆ (y -ϕ(z, a)) 2 } if ∆ > 0, or P out (y|z) = dP A (a)1(y = ϕ(z, a)
) else, where 1(•) is the indicator function. Our main theorem holds under the following rather general hypotheses:

(h1) The prior distribution P 0 admits a nite third moment and has at least two points in its support. (h2) The sequence

(E[|ϕ( 1 √ n [ΦX * ] 1 , A 1 )| 2+γ ]) n≥1 is bounded for some γ > 0.
(h3) The r.v. (Φ µi ) are independent with zero mean, unit variance and nite third moment bounded with n. (h4) For almost-all values of a (w.r.t. the distribution P A ), the function x → ϕ(x, a) is continuous almost everywhere. (h5) (∆ > 0) or (∆ = 0 and ϕ takes values in N).

In general, when ϕ is continuous the condition ∆ > 0 (but arbitrarily small) is necessary for the existence of a nite limit of the free entropy (for particular choices of (ϕ, P A ) this might not be needed, e.g. ϕ(z, A) = z + A with A ∼ N (0, σ 2 )). We also assume that the kernel P out is informative, i.e. there exists y such that P out (y | •) is not equal almost everywhere to a constant. If P out is not informative, it is not di cult to show that estimation is then impossible. We de ne the set of the critical points of f RS , (4), also called "state evolution xed points" (as it is clear from [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF]):

Γ ≡ (q, r) ∈ [0, ρ] × (R + ∪ {+∞}) q = 2ψ P 0 (r) r = 2αΨ Pout (q; ρ) . De ne f n ≡ Ef n (Y, Φ) = 1 n E ln Z(Y, Φ).
Then the main theorem of this paper is stated as follows: Theorem 1 (Replica-symmetric free entropy). Suppose that (h1)-(h2)-(h3)-(h4)-(h5.a) hold. Then, for the GLM [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF],

lim n→∞ f n = sup q∈[0,ρ] inf r≥0 f RS (q, r) = sup (q,r)∈Γ f RS (q, r) .
Moreover, as one can see in the SI, the "sup inf" and the supremum over Γ above are achieved over the same couples. Under stronger assumptions on P 0 and P out , one can show (see Theorem 6 in the SI) that f n (Y, Φ) concentrates around its mean f n and thus obtains convergence in probability [START_REF] Fienup | Phase retrieval algorithms: a comparison[END_REF].

An immediate corollary of Theorem 1 is the limiting expression of the mutual information I(X * ; Y|Φ) ≡ E ln P (Y, X * |Φ) -E ln(P (Y|Φ)P (X * )) between the observations and the unknown vector:

Corollary 1 (Mutual information). Under the same hypotheses as in Theorem 1, the mut. info. for the GLM (12) veri es

lim n→∞ 1 n I(X * ; Y |Φ) = inf q∈[0,ρ] sup r≥0 i RS (q, r) = inf (q,r)∈Γ i RS (q, r) , i RS (q, r) ≡ αΨ Pout (ρ; ρ) -αΨ Pout (q; ρ) -ψ P 0 (r) + rq/2 .
Finally, we gather our main results related to the optimal errors in a single theorem, see the SI for more details, including results on the optimality of the GAMP algorithm: Theorem 2 (Optimal errors). Assume the same hypotheses as in Theorem 1. Then formula (9) for the generalization error is true as n, m → ∞, m/n → α whenever the maximizer q * (α) of (3) is unique, which is the case for almost every α. If moreover all the moments of P 0 are nite, then formula [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF] for the overlap as well as the following matrix-MMSE formula

1 n 2 E X * X * -E P (x|Y,Φ) [xx ] 2 F → ρ 2 -q * (α) 2 (13) 
are true, where -F is the Frobenius norm.

There are cases of GLMs (e.g. the sign-less output channel Y = |ΦX * |/ √ n + Z) where the sign of X * simply cannot be estimated (thus the absolute value in [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF]). This is why our general theorem is related to an error metric [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF] insensitive to this ± symmetry. Nevertheless formula [START_REF] Lecun | Deep learning[END_REF] for the signal MSE is formally valid when there is no such sign symmetry.

Proof by the adaptive interpolation method

We now give the main ideas behind the proof of Theorem 1. We defer to the SI the details, as well as those of Corollary 1 and Theorem 2.

A word about notation. The r.v. Y (and also Φ, X * , A, Z) are called quenched because once the measurements are acquired they are xed. The expectation w.r.t. all quenched r.v. will be denoted by E without subscript. In contrast, expectation of annealed variables w.r.t. a posterior distribution at xed quenched variables is denoted by Gibbs brackets -.

Two scalar inference channels

An important role in the proof is played by two simple scalar inference channels. The free entropy is expressed in terms of the free entropies of these channels. This "decoupling property" stands at the root of the replica approach in statistical physics.

The rst scalar channel is an additive Gaussian channel. Suppose that we observe Y 0 = √ r X 0 + Z 0 where X 0 ∼ P 0 and Z 0 ∼ N (0, 1) are independent. Consider the inference problem consisting of retrieving X 0 from the observation Y 0 . The free entropy associated with this channel is the expectation of the logarithm of the normalization factor of the associated posterior dP (x|Y 0 ), that is given by (5) (up to a constant).

The second scalar channel that appears naturally in the problem is linked to the channel P out through the following inference model. Suppose that V, W * iid ∼ N (0, 1) where V is known while the inference problem is to recover the unknown W * from the observation Ỹ0 ∼ P out (• | √ q V + √ ρ -q W * ) where ρ > 0 and q ∈ [0, ρ]. The free entropy for this model, again related to the average logarithm of the normalization factor of the posterior of w given Ỹ0 and V , is exactly (6).

Interpolating estimation problem

To carry on the proof, we introduce an "interpolating estimation problem" that interpolates between the original problem

Y µ ∼ P out (•| 1 √ n [ΦX * ] µ ) at t = 0, t ∈ [0, 1]
being the interpolation parameter, and the two scalar problems described above at t = 1. For t ∈ (0, 1) the interpolating estimation problem is a mixture of the original and the scalar problems. This interpolation scheme is inspired by the interpolation paths used by Talagrand to study the perceptron, see [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF]. Thanks to a novel ingredient speci c to the adaptive interpolation method [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF], it allows to obtain in a uni ed manner a complete proof of the replica formula for the free entropy and this in the whole phase diagram.

Let q : [0, 1] → [0, ρ], r : [0, 1] → [0, r max ], r max ≡ 2αΨ Pout (ρ; ρ), be two continuous "interpolating functions" parametrized by

= ( 1 , 2 ) ∈ B n ≡ [s n , 2s n ] 2 , with (s n ) n≥1 ∈ (0, 1/2] N a sequence that tends to zero slowly enough. Set R 1 (t, ) ≡ 1 + t 0 r (v)dv, R 2 (t, ) ≡ 2 + t 0 q (v)dv and de ne S t,µ = S t,µ (X * , W * µ , V µ , Φ) as S t,µ ≡ 1-t n [ΦX * ] µ + R 2 (t, ) V µ + ρt-R 2 (t, )+2s n W * µ
where (V µ ), (W * µ ) iid ∼ N (0, 1). Consider the following observation channels, with two types of observations obtained through

Y t,µ ∼ P out ( • | S t,µ ) , for 1 ≤ µ ≤ m, Y t,i = R 1 (t, ) X * i + Z i , for 1 ≤ i ≤ n, (14) 
where (Z i ) iid ∼ N (0, 1). We assume that V = (V µ ) m µ=1 is known and that the inference problem is to recover both

W * = (W * µ ) m µ=1 and X * = (X * i ) n i=1 from the "t-dependent" observations Y t = (Y t,µ ) m µ=1 and Y t = (Y t,i ) n i=1 .
We now understand that (R 1 , R 2 ) and 1 -t appearing in the rst and second set of measurements in ( 14) play the role of signal-to-noise ratios (snr) in the interpolating problem, with t giving more and more "power" to the scalar inference channels when increasing. Here is the rst crucial ingredient of our interpolation scheme. In classical interpolations, these snr would all take a trivial form, i.e. be linear in t, but here, the nontrivial integral dependency in t of (R 1 , R 2 ) allows for much more exibility when choosing the interpolation path. This allows us to actually choose the "optimal interpolation path". This will become clear below as well as the role of the "small perturbation" parameters ( 1 , 2 ).

De ne u y (x) ≡ ln P out (y|x) and, with a slight abuse of notations, we also de ne the quantity s t,µ = s t,µ (x, w µ , V µ , Φ) ≡ S t,µ (x, w µ , V µ , Φ), the expression above with X * , W * µ replaced by x, w µ . We introduce the interpolating Hamiltonian

H t = H t (x, w; Y t , Y t , Φ, V) H t ≡ - m µ=1 u Yt,µ (s t,µ ) + 1 2 n i=1 Y t,i -R 1 (t, ) x i 2
and the corresponding (t-dependent) Gibbs brackett which is the expectation w.r.t. the joint posterior distribution of (x, w) given the observations Y t , Y t (and Φ, V), de ned as

L(x, w) t ≡ 1 Z t (Y t , Y t , Φ, V) dP 0 (x)DwL(x, w)e -Ht ,
for every continuous bounded test function L. Here Z t ≡ dP 0 (x)Dw exp{-H t (x, w; Y t , Y t , Φ, V)} is the appropriate normalization, Dw is the standard Gaussian measure. Finally we introduce

f n, (t) ≡ 1 n E ln Z t (Y t , Y t , Φ, V)
which is the interpolating free entropy. One veri es that

f n, (0) = f n -1 2 + O(s n ) , f n, (1) = ψ P 0 ( 1 0 r (t)dt) -1 2 (1 + ρ 1 0 r (t)dt) + m n Ψ Pout ( 1 0 q (t)dt; ρ) + O(s n ) , (15) 
where |O(s n )| ≤ Cs n for a constant C > 0. Now comes another crucial property of the interpolating model: It is such that at t = 0 we recover the original problem and f n, (0) = f n -1/2 + O(s n ) (the constant 1/2 comes from the purely noisy measurements of the second channel in ( 14)), while at t = 1 we have two scalar inference channels and thus the associated terms ψ P 0 and Ψ Pout appear in f n, [START_REF] Nelder | Generalized linear models[END_REF]. These are precisely the terms appearing in the free entropy potential (4).

Entropy variation along the interpolation

From the understanding of the previous section, it is natural to evaluate the variation of entropy along the interpolation, which allows to "compare" the original and purely scalar models thanks to the identity

f n = f n, (1) - 1 0 df n, (t) dt dt + 1 2 + O(s n ) . ( 16 
)
Then by choosing the optimal interpolation path thanks to the non-trivial snr dependencies in t, we are able to show the equality between the replica formula and the free entropy f n .

We thus compute the t-derivative of the free entropy (see the SI for the details of this calculation). It is given by

df n, (t) dt = r (t) 2 (q (t) -ρ) - 1 2 E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) Q -q (t) t + O n (1) , ( 17 
)
where O n (1) is a quantity that goes to 0 in the n, m → ∞ limit, uniformly in t, , and in the interpolating functions q , r . The overlap is Q = Q n ≡ n i=1 X * i x i /n. We now state a crucial result in an informal way and refer to the SI for precise statements. Formally, the overlap concentrates around its mean (for all t ∈ [0, 1]), a behaviour called "replica-symmetric" in statistical physics. In order to make this statement rigorous, one has to include the -dependent small perturbation in ( 14) which e ectively adds "side-information" about X * (e.g. think of t = 0) without a ecting the asymptotic free entropy density. This perturbation forces the overlap to concentrate. We prove that: If for each t the map

R t : ( 1 , 2 ) ∈ B n → (R 1 (t, ), R 2 (t, )) ∈ R t (B n ) is a C 1 di
eomorphism whose Jacobian has determinant greater or equal to 1, then we have for s n = 1 2 n -1/16 (see Proposition 4 of Sec. 4.3 in the SI for the precise statement)

1 s 2 n Bn d 1 0 dt E Q -E Q t 2 t = O(n -1/8 ) . ( 18 
)
As will be seen below it is possible to choose interpolating functions that satisfy the required condition.

Canceling the remainder

Note from ( 15) and ( 4) that the rst term appearing in [START_REF] Bayati | The lasso risk for gaussian matrices[END_REF] is precisely the missing one to obtain the expression of the potential on the r.h.s. of [START_REF] Schniter | Compressive phase retrieval via generalized approximate message passing[END_REF]. Thus we would like to "cancel" the Gibbs bracket in [START_REF] Bayati | The lasso risk for gaussian matrices[END_REF]. This term is called remainder. In order to prove the replica formula, we have to show that this remainder vanishes: Thanks to the freedom of choice of interpolation paths (r , q ), we are able to do so by "adapting" the interpolation. Thus we would like to choose q (t) = E Q t ≈ Q because of [START_REF] Karoui | On robust regression with high-dimensional predictors[END_REF]. However, E Q t is a function of t 0 q (v)dv (and of t, and t 0 r (v)dv). The equation q (t) = E Q t is therefore a rst order di erential equation over t → t 0 q (v)dv. Assuming for the moment that this di erential equation has a solution, the Cauchy-Schwarz inequality applied to the remainder together with [START_REF] Karoui | On robust regression with high-dimensional predictors[END_REF] allows to show that the absolute value of this remainder integrated over

( , t) ∈ B n × [0, 1] is O(s 2 n n -1/16
). Combining this result with [START_REF] Xu | Bayesian signal reconstruction for 1-bit compressed sensing[END_REF] and ( 16) leads to the following fundamental sum rule (Proposition 5 of Sec. 4.3 in SI):

f n = 1 s 2 n Bn d ψ P 0 ( 1 0 r (t)dt) + αΨ Pout ( 1 0 q (t)dt; ρ) -1 2 1 0 r (t)q (t)dt + O n (1) . (19) 

Matching bounds and end of proof

We now possess all the necessary tools to nish the proof of Theorem 1. We rst prove that lim n→∞ f n = sup r≥0 inf q∈[0,ρ] f RS (q, r). Then in the SI, we show that i) this is also equal to sup q∈[0,ρ] inf r≥0 f RS (q, r) which gives the rst equality of the theorem; ii) that this sup inf is attained at the supremum of the state evolution xed points, which gives the second equality.

• Lower bound: We choose the constant function r (t) = r for t ∈ [0, 1]. In the SI we show, using the Cauchy-Lipschitz theorem and the Liouville formula, that the di erential equation q (t) = E Q t posseses a unique solution and that the map

R t : ( 1 , 2 ) → ( 1 + rt, 2 + t 0 q (v)dv) is a C 1 di
eomorphism with Jacobian greater than 1 (so (18) is valid). Identity [START_REF] Donoho | High dimensional robust m-estimation: asymptotic variance via approximate message passing[END_REF] then implies lim inf n→∞ f n ≥ inf q∈[0,ρ] f RS (q, r) for all r ∈ [0, r max ]. Thus lim inf n→∞ f n ≥ sup r∈[0,rmax] inf q∈[0,ρ] f RS (q, r). In the SI an easy argument shows the r.h.s. is in fact equal to sup r≥0 inf q∈[0,ρ] f RS (q, r).

• Upper bound: We choose the interpolating functions as solutions of the following system of 1st order di erential equations:

r (t) = 2αΨ Pout (E Q t ), q (t) = E Q t .
Again, applying the Cauchy-Lipschitz theorem and the Liouville formula we show in the SI that this system admits a unique solution and the map

R t : ( 1 , 2 ) → (R 1 (t, ), R 2 (t, )) is a C 1 di
eomorphism with determinant greater or equal to 1. So with this choice of interpolating functions [START_REF] Karoui | On robust regression with high-dimensional predictors[END_REF] is valid and we have [START_REF] Donoho | High dimensional robust m-estimation: asymptotic variance via approximate message passing[END_REF]. We show in the SI (Proposition 18) that Ψ Pout (q; ρ) is convex in q and thus g : q ∈ [0, ρ] → 2αΨ Pout (q; ρ) -r (t)q is convex too. Since by the di erential equations r (t) = 2αΨ Pout (q (t)), the function g must attain its minimum at q = q (t). By Proposition 17 in the SI ψ P 0 (r) is convex, thus from Jensen and the last remark, the integrand {• • • } in ( 19) is bounded as

ψ P 0 ( 1 0 r (t)dt) + αΨ Pout ( 1 0 q (t)dt; ρ) -1 2 1 0 r (t)q (t)dt ≤ 1 0 dt ψ P 0 (r (t)) + αΨ Pout (q (t); ρ) -1 2 r (t)q (t) = 1 0 dt ψ P 0 (r (t)) + inf q∈[0,ρ] (αΨ Pout (q; ρ) -1 2 r (t)q) ≤ sup r≥0 inf q∈[0,ρ] ψ P 0 (r) + αΨ Pout (q; ρ) - 1 2 rq which implies lim sup n→∞ f n ≤ sup r≥0 inf q∈[0,ρ] f RS (q, r).
Part II Supplementary informations iid ∼ P 0 be the components of a signal vector X * (this is also denoted X * iid ∼ P 0 ). We x a function ϕ : R × R k A → R and consider

(A µ ) m µ=1 iid ∼ P A , where P A is a probability distribution over R k A , k A ∈ N. We acquire m measurements through Y µ = ϕ 1 √ n [ΦX * ] µ , A µ + √ ∆Z µ , 1 ≤ µ ≤ m , (20) 
where

(Z µ ) m µ=1 iid ∼ N (0, 1
) is an additive Gaussian noise, ∆ ≥ 0, and Φ is a m × n measurement matrix with independent entries that have zero mean and unit variance. The estimation problem is to recover X * from the knowledge of Y = (Y µ ) m µ=1 , ϕ, Φ, ∆, P 0 and P A (the realization of the random stream A itself, if present in the model, is unknown). We use the notation

[ΦX * ] µ = n i=1 Φ µi X * i . When ϕ(x, A) = ϕ(x) =
x we have a random linear estimation problem, whereas if, say, ϕ(x) = sgn(x) we have a noisy single layer perceptron. Sec. 3 discusses various examples related to non-linear estimation and supervised learning.

Denote the prior over the signal as dP 0 (x) = n i=1 dP 0 (x i ), and similarly dP A (a) = m µ=1 dP A (a µ ). It is also fruitful to think of the measurements as the outputs of a "channel",

Y µ ∼ P out • 1 √ n [ΦX * ] µ . (21) 
When ∆ > 0 the transition kernel P out admits a transition density with respect to (w.r.t.) Lebesgue's measure, given by

P out (y|x) = 1 √ 2π∆ dP A (a)e -1 2∆ (y-ϕ(x,a)) 2 . ( 22 
)
When ∆ = 0, we will only consider discrete channels where ϕ takes values in N2 . In that case P out admits a transition density with respect the counting measure on N given by (here 1(•) is the indicator function)

P out (y|x) = dP A (a)1(y = ϕ(x, a)) . (23) 
Note that for deterministic models, A in ( 20) is absent and thus the associated dP A (a) integral in ( 22)-( 23) simply disappears. In fact [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] is sometimes called a "random function representation" of a transition kernel P out . Our analysis uses both representations [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] and [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF].

Throughout this paper we often adopt the language of statistical mechanics. In particular the random variables Y (and also Φ, X * , A, Z) are called quenched variables because once the measurements are acquired they have a " xed realization". An expectation taken w.r.t. all quenched random variables appearing in an expression will simply be denoted by E without subscript. Subscripts are only used when the expectation carries over a subset of random variables appearing in an expression or when some confusion could arise.

A fundamental role is played by the posterior distribution of (the signal) x given the quenched measurements Y (recall that X * , A and Z are unknown). According to the Bayes formula this posterior is

dP (x|Y, Φ) = 1 Z(Y, Φ) dP 0 (x) m µ=1 P out Y µ 1 √ n [Φx] µ (24) = 1 Z(Y, Φ) dP 0 (x)e -H(x;Y,Φ) (25) 
where the Hamiltonian is de ned as

H(x; Y, Φ) := - m µ=1 ln P out Y µ 1 √ n [Φx] µ (26) 
and the partition function (the normalization factor) is de ned as

Z(Y, Φ) := dP 0 (x)e -H(x;Y,Φ) . ( 27 
)
From the point of view of statistical mechanics ( 25) is a Gibbs distribution and the integration over dP 0 (x) in the partition function is best thought as a "sum over annealed or uctuating degrees of freedom". Let us introduce a standard statistical mechanics notation for the expectation w.r.t. the posterior [START_REF] Watkin | The statistical mechanics of learning a rule[END_REF], the so called Gibbs bracketde ned as

g(x) := E[g(X)|Y, Φ] = dP (x|Y, Φ)g(x) (28) 
for any continuous bounded function g. The main quantity of interest here is the associated averaged free entropy (or minus the averaged free energy)

f n := 1 n E ln Z(Y, Φ) . (29) 
It is perhaps useful to stress that Z(Y, Φ) is nothing else than the density of Y conditioned on Φ so we have the explicit representation (used later on)

f n = 1 n E Φ dYZ(Y, Φ) ln Z(Y, Φ) = 1 n E Φ dYdP 0 (X * )e -H(X * ;Y,Φ) ln dP 0 (x) e -H(x;Y,Φ) , (30) 
where dY = m µ=1 dY µ . Thus f n is minus the conditional entropy -H(Y|Φ)/n of the measurements. One of the main contributions of this paper is the derivation, thanks to the adaptive interpolation method, of the thermodynamic limit lim n→∞ f n in the "high-dimensional regime", namely when n, m → ∞ while m/n → α > 0 (α is sometimes referred to as the "measurement rate" or "sampling rate").

The teacher-student scenario

We now describe an important conceptual setting, the teacher-student scenario (also called planted model), that allows to then de ne the optimal generalization error. We voluntarily employ terms coming from machine learning instead of the signal processing terminology used until here.

First the teacher randomly generates a classi er X * ∈ R n (the signal in the estimation problem) with X * iid ∼ P 0 and an ensemble of m patterns (row-vectors)

Φ µ ∈ R n for µ = 1, . . . , m such that Φ µ iid ∼ N (0, I n ).
The teacher then chooses a model (ϕ, P A , ∆) or equivalently P out , which are linked through ( 22)- [START_REF] Seung | Statistical mechanics of learning from examples[END_REF]. The teacher then output labels Y µ ∈ R through [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] or [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF] for µ = 1, . . . , m.

The student is given the distribution P 0 , the model (ϕ, P A , ∆) or equivalently P out and the training data composed of the pattern-label pairs {(Y µ ; Φ µ )} m µ=1 generated by the teacher. His (supervised) learning task is then to predict the labels associated with new, yet unseen, patterns from all this knowledge.

How does the teacher may evaluate the student's prediction capabilities? The teacher starts by randomly generating a new line of the matrix, or pattern, Φ new . Then, still using the same X * , he generates the associated new label

Y new ∼ P out (• | Φ new • X * / √ n).
He is now ready to evaluate the student generalization performance. For that purpose, an important quantity is the generalization error (or prediction error). If we denote Y (Φ new , Φ, Y) the estimator used by the student (which is thus a measurable function of the observations), the generalization error is de ned as

E gen ( Y ) := E Y new -Y (Φ new , Φ, Y) 2 . ( 31 
)
The optimal generalization error is then de ned as the minimum of E gen over all estimators Y (Φ new , Φ, Y):

E opt gen := min Y E gen ( Y ) = MMSE(Y new |Φ new , Φ, Y) = E Y new -E[Y new |Φ new , Φ, Y] 2 . ( 32 
)
Here, and for the rest of the paper, we de ne the minimum mean-square error (MMSE) function as follows: Given two random variables A, B, the MMSE in estimating A given B is de ned as

MMSE(A|B) := E A -E[A|B] 2 , (33) 
where E[A|B] is the expectation of A with respect to its posterior given B.

A word about notations: Let us emphasize on the link between the di erent notations that we use in the present supplementary material and in the main text. E.g., the expectation w.r.t. to the posterior of Y new appearing in [START_REF] Shwartz-Ziv | Opening the black box of deep neural networks via information[END_REF] can be written equivalently as:

E[Y new |Φ new , Φ, Y] = E P A (a) E P (x|Φ,Y) ϕ Φ new • x √ n , a = E P A (a) ϕ Φ new • x √ n , a . (34) 
To see that, just write:

E[Y new |Φ new , Φ, Y] := dY new Y new P (Y new |Φ new , Φ, Y) = dY new Y new P out Y new 1 √ n Φ new • x dP (x|Y, Φ) = dY new Y new P out Y new 1 √ n Φ new • x = dP A (a)dY new Y new 1 √ 2π∆ e -1 2∆ Ynew-ϕ 1 √ n Φnew•x,a 2 = E P A (a) ϕ 1 √ n Φ new • x, a . (35) 
Here we used de nition [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF] for the transition kernel, but using instead [START_REF] Seung | Statistical mechanics of learning from examples[END_REF] would lead to the same identity.

Two scalar inference channels

An important role in our proof of the asymptotic expression of the free entropy is played by simple scalar inference channels. As we will see, the free entropy is expressed in terms of the free entropy of these channels. This "decoupling property" results from the mean-eld approach in statistical physics, used through in the replica method to perform a formal calculation of the free entropy of the model [START_REF] Mézard | Spin glass theory and beyond[END_REF][START_REF] Mezard | Information, physics, and computation[END_REF]. Let us now introduce these two scalar denoising models. The rst one is an additive Gaussian channel. Let r ≥ 0, which plays the role of a signal-to-noise ratio (snr). Suppose that X 0 ∼ P 0 and that we observe

Y 0 = √ r X 0 + Z 0 , (36) 
where Z 0 ∼ N (0, 1) independently of X 0 . Consider the inference problem consisting of retrieving X 0 from the observations Y 0 . The associated posterior distribution is

dP (x|Y 0 ) = dP 0 (x)e √ r Y 0 x-rx 2 /2 dP 0 (x)e √ r Y 0 x-rx 2 /2 . ( 37 
)
In this expression all the x-independent terms have been simpli ed between the numerator and the normalization. The free entropy associated with this channel is just the expectation of the logarithm of the normalization factor

ψ P 0 (r) := E ln dP 0 (x)e √ r Y 0 x-rx 2 /2 . (38) 
The basic properties of ψ P 0 are presented in Appendix B.1 .

The second scalar channel that appears naturally in the problem is linked to the transition kernel P out through the following inference model. Suppose that V, W * iid ∼ N (0, 1) where V is known while the inference problem is to recover the unknown W * from the following observation where ρ > 0, q ∈ [0, ρ]. Notice that the channel ( 39) is equivalent to Y 0 = ϕ( √ q V + √ ρ -q W * , A) + √ ∆Z with ∆ ≥ 0 and where (A, Z) ∼ P A ⊗ N (0, 1), independently of V, W * . The free entropy for this model, again related to the normalization of the posterior dP (w| Y 0 , V ), is

Ψ Pout (q; ρ) = Ψ Pout (q) := E ln DwP out Y 0 | √ q V + √ ρ -q w , (40) 
where Dw := dw(2π) -1/2 e -w 2 /2 is the standard Gaussian measure. In (40) above, P out denotes either the transition density with respect to Lebesgue's measure (given by ( 22)) in the case ∆ > 0, or the density with respect to the counting measure over N (given by ( 23)), in the case of a "discrete" channel (ϕ takes values in N and ∆ = 0). We prove in Appendix B.2 that this function is convex, di erentiable and non-decreasing w.r.t. its rst argument.

2 Main results

Replica-symmetric formula and mutual information

Let us now introduce our rst main result, a single-letter replica-symmetric formula for the asymptotic free entropy of model ( 20), [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF]. The result holds under the following rather general hypotheses. We will consider two cases, that is when there is some Gaussian noise (∆ > 0, see (h5.a) below) and the case without Gaussian noise (∆ = 0, see (h5.b) below):

(h1) The prior distribution P 0 admits a nite third moment and has at least two points in its support. (h2) There exists γ > 0 such that the sequence

(E[|ϕ( 1 √ n [ΦX * ] 1 , A 1 )| 2+γ ]) n≥1 is bounded. (h3)
The random variables (Φ µi ) are independent with zero mean, unit variance and nite third moment that is bounded with n. (h4) For almost-all values of a ∈ R k A (w.r.t. P A ), the function x → ϕ(x, a) is continuous almost everywhere.

We will also assume that one of the two following hypotheses hold: Remark 1. The above hypotheses are here stated using the "random function" representation of [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF]. In many cases, it can be useful to state them using the "transition kernel" representation of [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF]. The hypotheses (h2) and (h4) are respectively equivalent3 to:

(h2') There exists γ > 0 such that E[|Y 1 | 2+γ ] remains bounded with n. (h4') x ∈ R → P out (•|x
) is continuous almost everywhere for the weak convergence.

Under the above hypothesis (h5.a) (respectively (h5.b)), the transition kernel P out admits a density with respect to Lebesgue's measure on R (resp. the counting measure on N) that will be denoted by P out (•|x). We will call the kernel P out informative if there exists y ∈ R (resp. y ∈ N) such that P out (y | •) is not equal almost everywhere to a constant. If P out is not informative, it is not di cult to show that estimation is then impossible.

Let us de ne the replica-symmetric potential (or just potential). Call ρ := E[(X * ) 2 ] where X * ∼ P 0 . Then the potential is

f RS (q, r; ρ) = f RS (q, r) := ψ P 0 (r) + αΨ Pout (q; ρ) - rq 2 . ( 41 
)
We de ne also f RS (ρ, +∞) = lim r→∞ f RS (ρ, r). From now on denote ψ P 0 (r) and Ψ Pout (q) = Ψ Pout (q; ρ) the derivatives of ψ P 0 (r) and Ψ Pout (q; ρ) w.r.t. their rst argument. We need also to de ne the set of the critical points of f RS :

Γ := (q, r) ∈ [0, ρ] × (R + ∪ {+∞}) q = 2ψ P 0 (r) r = 2αΨ Pout (q; ρ) , (42) 
where, with a slight abuse of notation, we de ne ψ P 0 (+∞) = lim r→∞ ψ P 0 (r) and Ψ Pout (ρ) = lim q→ρ Ψ Pout (q). These limits are well de ned by convexity of ψ P 0 and Ψ Pout . The elements of Γ are called " xed points of the state evolution". Our rst main result is Theorem 1 (Replica-symmetric formula for the free entropy). Suppose that hypotheses (h1)-( h2)-( h3)-(h4) hold. Suppose that either hypothesis (h5.a) or (h5.b) holds. Then, for the generalized linear estimation model (20), ( 21) the thermodynamic limit of the free entropy (29) veri es

f ∞ := lim n→∞ f n = sup q∈[0,ρ] inf r≥0 f RS (q, r) = sup (q,r)∈Γ f RS (q, r) . (43) 
Moreover, if P out is informative, then the "sup inf" and the supremum over Γ in [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF] are achieved over the same couples (q, r).

An immediate corollary of Theorem 1 is the limiting expression of the mutual information between the signal and the observations. To state the result, we need to introduce two mutual informations associated to the two scalar channels presented in Sec. 1.3, namely

I P 0 (r) := I(X 0 ; √ r X 0 + Z 0 ) = rρ 2 -ψ P 0 (r) (44) 
for the channel [START_REF] Barron | Toward fast reliable communication at rates near capacity with gaussian noise[END_REF] and

I Pout (q) := I(W * ; Y 0 |V ) = Ψ Pout (ρ) -Ψ Pout (q) (45) 
for the channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF].

Corollary 2 (Single-letter formula for the mutual information). The thermodynamic limit of the mutual information for model [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF], ( 21) between the observations and the hidden variables veri es

i ∞ := lim n→∞ 1 n I(X * ; Y |Φ) = inf q∈[0,ρ] sup r≥0 i RS (q, r) = inf (q,r)∈Γ i RS (q, r) , (46) 
where i RS (q, r)

:= I P 0 (r) + αI Pout (q) - r 2 (ρ -q) . (47) 
Proof. This follows from a simple calculation:

1 n I(X * ; Y|Φ) = 1 n H(Y|Φ) - 1 n H(Y|X * , Φ) = -f n + 1 n E ln P (Y|X * , Φ) = -f n + m n E ln P out (Y 1 | Φ 1 • X * / √ n) . (48) 
By the central limit theorem (that we can apply under hypotheses (h1)-(h3)) we have

S n := 1 √ n Φ 1 • X * = 1 √ n n i=1 Φ 1,i X * i (d) ---→ n→∞ N (0, ρ) .
Now, under the hypotheses (h2)-(h4) and either (h5.a) or (h5.b) it is not di cult to verify that

E ln P out (Y 1 | Φ 1 • X * / √ n) = E dY P out (Y |S n ) ln P out (Y |S n ) ---→ n→∞ E dY P out (Y | √ ρ V ) ln P out (Y | √ ρ V ) = Ψ Pout (ρ)
where V ∼ N (0, 1). We conclude, using (48):

1 n I(X * ; Y|Φ) = -f n + αΨ Pout (ρ) + o n (1) (49) 
where lim n→∞ o n (1) = 0.

The next proposition, proved in Appendix A.2, states that for almost every α > 0 there is one unique optimizer q * in (43) (or equivalently in ( 46)):

Proposition 1. Assume that the assumptions of Theorem 1 hold and that P out is informative. De ne D * := α > 0 (43) (or equivalently [START_REF] Barbier | The mutual information in random linear estimation[END_REF]) admits a unique optimizer q * (α) .

(
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the set D * is equal to R * + minus some countable set. Moreover α → q * (α) is continuous on D * . As an application of Theorem 1 we can compute the free entropy of the "planted perceptron" on the hypercube and the sphere. This perceptron model has already been studied in physics [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF] and more recently in statistics, where it is known as "one-bit compressed sensing" [START_REF] Boufounos | 1-bit compressive sensing[END_REF][START_REF] Xu | Bayesian signal reconstruction for 1-bit compressed sensing[END_REF]. The limit of the free entropy follows from an application of Theorem 1 with ϕ(x) = sgn(x) and P 0 = 1 2 δ -1 + 1 2 δ 1 (for the hypercube) or P 0 = N (0, 1) (for the sphere). For µ ∈ {1, . . . , m} we de ne

S µ := x ∈ R n sgn(x • Φ µ ) = sgn(X * • Φ µ ) . ( 51 
)
We will use the notation N (x) = P(Z ≤ x) for Z ∼ N (0, 1). Let S n be the unit sphere in R n and µ n the uniform probability measure on S n .

Corollary 3 (Free entropy of the planted perceptron). Let Z, V iid ∼ N (0, 1). We have

1 n E ln # m µ=1 S µ ∩ {-1, 1} n ---→ n→∞ ln(2) + sup q∈[0,1) inf r≥0 E ln cosh( √ rZ + r) + 2αE N √ q V √ 1 -q ln N √ q V √ 1 -q - r(q + 1) 2 , (52) 
1 n E ln µ n m µ=1 S µ ∩ S n ---→ n→∞ sup q∈[0,1) 1 2 ln(1 -q) + 2αE N √ q V √ 1 -q ln N √ q V √ 1 -q + q 2 . ( 53 
)

Optimal reconstruction (or estimation) error

We rst consider the problem of estimating X * given Y and Φ. The following theorem states that the optimizer q * (α) of the replica-symmetric formula [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF] gives the asymptotic correlation between the planted solution X * and a typical sample from the posterior distribution

P (• | Y, Φ):
Theorem 2 (Limit of the overlap). Assume that all the moments of P 0 are nite and that P out is informative. Assume that (h1)-( h2)-( h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all α ∈ D * ,

1 n x • X * = 1 n n i=1 x i X * i ---→ n→∞ q * (α) , in probability, (54) 
where x = (x 1 , . . . , x n ) is sampled from the posterior distribution of the signal P (• | Y, Φ) given by (24), independently of everything else.

Theorem 2 is proved in Sec. 5.3. Notice that in all generality it is only possible to estimate X * up to its sign (think for instance to

Y = |ΦX * |/ √ n + √ ∆Z)
, this is why the absolute values in [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF] are needed. For this reason, the usual MSE on X * mse(

X) := 1 n E X * -X(Y, Φ) 2
is not (in all generality) an appropriate error metric. Indeed, in the case where

Y = |ΦX * |/ √ n + √ ∆Z,
where Φ, X * , Z have all independent N (0, 1) entries, then E[X * |Y, Φ] = 0 and min X mse( X) = 1. This means that the minimum mean-square error is always equal to the variance and thus, in this sense, it is never possible to estimate the signal better than trivial estimators. For this reason, the appropriate error metric for the reconstruction problem is the MSE on X * X * . From Theorem 2 one deduces the limit of the MMSE in estimating X * X * : Corollary 4 (Matrix minimum mean-square error). Under the same conditions as in Theorem 2, for all α ∈ D * we have

MMSE n := 1 n 2 E X * X * -E[X * X * |Y, Φ] 2 F ---→ n→∞ ρ 2 -q * (α) 2 , ( 55 
)
where -F denotes the Frobenius norm.

Optimal generalization (or prediction) error

In order to express the optimal generalization error we introduce the following function (recall that Y 0 is drawn from the channel (39)):

E(q) := MMSE( Y 0 |V ) = E Y 0 -E[ Y 0 |V ] 2 (56) = E V dY Y 2 P out (Y | √ ρ V ) -E V E W dY Y P out (Y | √ q V + √ ρ -q W ) 2 (57) 
= E ϕ( √ ρ V, A) 2 -E V E W,A ϕ( √ q V + √ ρ -q W, A) 2 + ∆ (58) 
where V, W iid ∼ N (0, 1), A ∼ P A are independent random variables, E W,A denotes the expectation w.r.t. W and A only and 2 . We recall ρ := E[(X * ) 2 ] with X * ∼ P 0 . With a slight abuse of notation dY denotes in [START_REF] Kabashima | Inference from correlated patterns: a uni ed theory for perceptron learning and linear vector channels[END_REF] either the integration w.r.t. Lebesgue's measure on R in the case ∆ > 0 or the integration w.r.t. the counting measure on N (in the case ∆ = 0).

E W [-] 2 = (E W [-])
Recall the teacher-student setting of Sec. 1.2: The generalization error is related to the estimation of a new output

Y new ∼ P out (• | Φ new • X * / √ n)
where Φ new is a new row of the matrix, and is de ned by [START_REF] Shwartz-Ziv | Opening the black box of deep neural networks via information[END_REF].

Theorem 3 (Optimal generalization error). Assume that P out is informative, that (h1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) hold. Then for all α ∈ D * we have

E opt gen (α) ---→ n→∞ E(q * (α)) (59) 
where q * (α) is the optimizer of the replica-symmetric formula [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF], see Proposition 1.

Theorem 3 follows from a more general result, that we state now. Let f : R → R and consider the generalized optimal generalization error

E f,n (α) := MMSE(f (Y new )|Φ new , Y, Φ) = E f (Y new ) -E[f (Y new )|Φ new , Y, Φ] 2 (60)
which is the minimum mean-square error on f (Y new ). In particular E opt gen (α) = E f,n (α) for f : x → x. We de ne also

E f (q) := MMSE(f ( Y 0 )|V ) = E f ( Y 0 ) -E[f ( Y 0 )|V ]
Theorem 4 (Generalized optimal generalization error). Let f : R → R be a measurable function such that

E[|f (Y 1 )| 2+γ
] remains bounded as n grows, for some γ > 0. Assume that P out is informative and that (h1)-(h2)-(h3)-(h4) hold and that either (h5.a) or (h5.b) holds. Then for all α ∈ D * we have

E f,n (α) ---→ n→∞ E f (q * (α)) (63) 
where q * (α) is the optimizer of the replica-symmetric formula [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF], see Proposition 1.

Theorem 4 is proved in Sec. 5.1.

Optimality of the generalized approximate message-passing algorithm 2.4.1 The generalized approximate message-passing algorithm

While the main results presented until now are information-theoretic, our next one concerns the performance of a popular algorithm to solve random instances of generalized linear problems, called generalized approximate message-passing (GAMP). We shall not re-derive its properties here, and instead refer to the original papers for details. This approach has a long history, especially in statistical physics [START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF][START_REF] Thouless | Solution of'solvable model of a spin glass[END_REF][START_REF] Kabashima | Inference from correlated patterns: a uni ed theory for perceptron learning and linear vector channels[END_REF][START_REF] Baldassi | E cient supervised learning in networks with binary synapses[END_REF], error correcting codes [START_REF] Richardson | Modern coding theory[END_REF], and graphical models [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF]. For a modern derivation in the context of linear models, see [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF][START_REF] Vila | Expectation-maximization gaussian-mixture approximate message passing[END_REF]. The case of generalized linear models was discussed by Rangan in [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF], and has been used for classi cation purpose in [START_REF] Ziniel | Binary linear classi cation and feature selection via generalized approximate message passing[END_REF].

We rst need to de ne two so-called threshold functions that are associated to the two scalar channels ( 36) and [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF]. The rst one is the posterior mean of the signal in channel [START_REF] Barron | Toward fast reliable communication at rates near capacity with gaussian noise[END_REF] with signal-to-noise ratio r:

g P 0 (y, r) := E[X 0 |Y 0 = y] . (64) 
The second one is the posterior mean of W * in channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF] with "noise level" η = ρ -q:

g Pout ( y, v, η) := E[W * | Y 0 = y, √ q V = v] . (65) 
These functions act componentwise when applied to vectors. Given initial estimates ( x 0 , v 0 ) for the means and variances of the elements of the signal vector X * , GAMP takes as input the observation vector Y and then iterates the following equations with initialization g 0 µ = 0 for all µ = 1, . . . , m (we denote by u the average over all the components of the vector u and Φ is the transpose of the matrix Φ):

From t = 1 until convergence,                        V t = v t-1 ω t = Φ x t-1 / √ n -V t g t-1 g t µ = g Pout (Y µ , ω t µ , V t ) ∀ µ = 1, . . . m λ t = α g 2 Pout (Y, ω t , V t ) R t = x t-1 + (λ t ) -1 Φ g t / √ n x t i = g P 0 (R t i , λ t ) ∀ i = 1, . . . n v t i = (λ t ) -1 ∂ R g P 0 (R, λ t )| R=R t i ∀ i = 1, . . . n (66)
One of the strongest asset of GAMP is that its performance can be tracked rigorously in the limit n, m → ∞ while m/n → α via a procedure known as state evolution (SE), see [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF][START_REF] Bayati | Universality in polytope phase transitions and message passing algorithms[END_REF] for the linear case, and [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Javanmard | State evolution for general approximate message passing algorithms, with applications to spatial coupling[END_REF] for the generalized one. In our notations, state evolution tracks the asymptotic value of the overlap between the true hidden value X * and its estimate by GAMP x t de ned as q t := lim n→∞ X * • x t /n (that is related to the asymptotic mean-square error (MSE) E t between X * and its estimate x t by E t = ρ -q t , where recall that ρ := E[(X * ) 2 ] with X * ∼ P 0 ) via:

q t+1 = 2ψ P 0 (r t ) , r t = 2αΨ Pout (q t ; ρ) . (67) 
From Theorem 1 we realize that the xed points of these equations correspond to the critical points of the asymptotic free entropy in [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. In fact, in the replica heuristic, the optimizer q * of the potential is conjectured to give the optimal value of the overlap, a fact that was proven for the linear channel [START_REF] Barbier | The mutual information in random linear estimation[END_REF][START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF][START_REF] Reeves | The replica-symmetric prediction for compressed sensing with gaussian matrices is exact[END_REF]. We will see in Sec. 3 that q t ---→ t→∞ q * for a large set of parameters.

Estimation and generalization error of GAMP

Perhaps more surprisingly, one can use GAMP in the teacher-student scenario described in Sec. 1.2 in order to provide an estimation of a new output

Y new ∼ P out (• | Φ new • X * / √ n)
where Φ new is a new row of the matrix. As x t is the GAMP estimate of the posterior expectation of X * , with estimated variance v t , the natural heuristic is to consider for the posterior probability distribution of the random variable

Φ new • X * / √ n a Gaussian with mean Φ new • x t-1 /
√ n and variance V t = E t = ρ -q t (the fact that the variance and MSE are equal follows from the Nishimori identity of Proposition 12 but applied to GAMP instead of the Gibbs measure, see e.g. [START_REF] Zdeborová | Statistical physics of inference: thresholds and algorithms[END_REF] where this is shown). This allows to estimate the posterior mean of the output, which leads to the GAMP prediction (recall the P out de nition ( 22)-( 23)):

Y GAMP,t := y P out y 1 √ n Φ new • x t-1 + ρ -q t w Dwdy , (68) 
where Dw denotes the standard Gaussian measure. The following claim, from [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF], gives the precise estimation error of GAMP. It is stated there as a claim because some steps of the proof are missing. The paper [START_REF] Javanmard | State evolution for general approximate message passing algorithms, with applications to spatial coupling[END_REF] a rms in its abstract to prove the claim of [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF], but without further details. For these reasons, we believe that the claim holds, however we prefer to state it here as a claim (instead of a theorem).

Claim 1 (GAMP estimation error, [START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF]). We have almost surely for all t ∈ N,

lim n→∞ 1 n x t • X * = lim n→∞ 1 n x t 2 = q t , (69) 
as well as

lim n→∞ 1 n 2 E X * X * -x t ( x t ) 2 = ρ 2 -(q t ) 2 . (70) 
Compairing [START_REF] Soltanolkotabi | Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization[END_REF] with the MMSE given by Corollary 5, we see that if lim t→∞ q t = q * (α), then GAMP achieves the MMSE. Provided that Claim 1 holds we can deduce the generalization error of GAMP: Proposition 2 (GAMP generalization error). Suppose that hypotheses (h1)-(h2)-(h4) hold. Moreover suppose that either (h5.a) or (h5.b) holds. Assume that (Φ µi ) iid ∼ N (0, 1), and that x → P out (•|x) is continuous almost everywhere for the Wasserstein distance of order 2. Let t ∈ N. Assume that the limit (69) holds in probability and that there exists η > 0 such that E[| Y GAMP,t | 2+η ] remains bounded (as n grows). Then we have

lim n→∞ E GAMP,t gen := lim n→∞ E Y new -Y GAMP,t 2 = E(q t ) . ( 71 
)
Remark 2. If we modify slightly the GAMP estimator of (68) by changing the rst y into f (y), it is not di cult to show (following the steps of Proposition 2) that this new estimator achieves an asymptotic error of E f (q t ), given by (61), for estimating f (Y new ).

Proposition 2 is proved in Sec. 5.2. We see that this formula matches the one for the Bayes-optimal generalization error, see Theorem 3, up to the fact that instead of q * (α) (the optimizer of the replica formula [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]) appearing in the optimal error formula, here it is q t which appears. Thus clearly, when q t converges to q * (α) (we shall see that this is the case in many situations in the examples of Sec. 3) this yields a very interesting and non trivial result: GAMP achieves the Bayes-optimal generalization error in a plethora of models (a task again often believed to be intractable) and this for large sets of parameters.

Optimal denoising error

Another interesting error measure to study is the following "denoising error". Assume that the observations are noisy, i.e. ∆ > 0 in [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF]. The goal here is to denoise the observations Y µ and estimate the signal which in this case is

ϕ 1 √ n [ΦX * ] µ , A µ .
The minimum denoising error (in L 2 sense) is actually a simple corollary from the replica-symmetric formula of Theorem 1 and follows from a so-called "I-MMSE relation", see Proposition 13. We will need the joint posterior distribution of (W * , A) given (V, Y 0 ) for the scalar channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF]. So we de ne the Gibbs bracket for the scalar channel by (here a ∈ R k A ):

g(w, a) sc := E[g(W * , A)| Y 0 , V ] = DwdP A (a)g(w, a)e -1 2∆ Y 0 -ϕ( √ q V + √ ρ-q w,a) 2 DwdP A (a)e -1 2∆ Y 0 -ϕ( √ q V + √ ρ-q w,a) 2 , (72) 
for any continuous bounded function g. When the function depends only on w it may be re-written as

g(w) sc = Dwg(w)P out Y 0 √ q V + √ ρ -q w DwP out Y 0 √ q V + √ ρ -q w . ( 73 
)
Corollary 5 (Optimal denoising error). Suppose that hypotheses (h1)-(h2)-(h3)-(h4) hold. Suppose that either hypothesis (h5.a) or (h5.b) holds. Then for almost every ∆ > 0, for any optimal couple (q * , r * ) of (43),

lim n→∞ 1 m MMSE ϕ 1 √ n ΦX * , A Φ, Y = MMSE ϕ( q * V + ρ -q * W * , A) Y 0 , V = E ϕ( √ ρ V, A) 2 -E ϕ( q * V + ρ -q * w, a) 2 sc , (74) 
wheresc acts jointly on (w, a) and is de ned by [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF], and V, W * iid ∼ N (0, 1).

Note that the joint posterior over both the signal X * and the random stream A is simply expressed as

dP (x, a|Y, Φ) ∝ dP 0 (x)dP A (a) m µ=1 e -1 2∆ Yµ-ϕ 1 √ n [Φx]µ,aµ 2 . ( 75 
)
The proof of Corollary 5 is presented in Sec. 5.4.

Application to concrete situations

In this section, we show how our main results can be applied to several models of interest in elds ranging from machine learning to signal processing, and unveil several interesting new phenomena in learning of generalized linear models. For various speci c cases of prior P 0 and output P out , we evaluate numerically the free entropy potential [START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF], its stationary points Γ and identify which of them gives the information-theoretic results, i.e. is the optimizer in [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. We also identify which of the stationary points corresponds to the result obtained asymptotically by the GAMP algorithm, i.e. the xed point of the state evolution [START_REF] Wu | Rényi information dimension: Fundamental limits of almost lossless analog compression[END_REF]. Finally we compute the corresponding generalization error [START_REF] Rosenblatt | The perceptron, a perceiving and recognizing automaton Project Para[END_REF]. We stress that in this section the results are based on numerical investigation of the resulting formulas: We do not aim at rigor that would involve precise bounds and more detailed analytical control for the corresponding integrals.

Generic observations

Using the functions g Pout and g P 0 introduced in Sec. 2.4 we can rewrite the xed point equations [START_REF] Bolthausen | An iterative construction of solutions of the tap equations for the sherringtonkirkpatrick model[END_REF] as

q = 2ψ P 0 (r) = E[g P 0 (Y 0 , r) 2 ] , (76) 
r = 2αΨ Pout (q) = α ρ -q E[g Pout ( Y 0 , √ q V, ρ -q) 2 ] , (77) 
where the expectation in [START_REF] Richardson | Modern coding theory[END_REF] corresponds to the scalar channel [START_REF] Barron | Toward fast reliable communication at rates near capacity with gaussian noise[END_REF] and the expectation in (77) corresponds to the second scalar channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF].

Non-informative xed point and its stability: It is interesting to analyze under what conditions q * = 0 is the optimizer of [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. Notice that q * = 0 corresponds to the error on the recovery of the signal as large as it would be if we had no observations at our disposition. Theorem 1 gives that any optimal couple (q * , r * ) of ( 43) should be a xed point of the state evolution equations ( 76)- [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF]. A su cient condition for (q, r) = (0, 0) to be a xed point of ( 76)-( 77) is that:

(a) The transition density P out (y|z) is even in the argument z.

(b) The prior P 0 has zero mean.

In order to see this, notice that if P out (y|z) is even in z then from the de nition (65) of the function g Pout we have g Pout (y, 0, ρ) = 0 and consequently from [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF] we have Ψ Pout (0) = 0. From the second point, notice that we have ψ P 0 (0) = 1 2 E P 0 [X 0 ]2 = 0. We assume now that the transition density P out (y|z) is even in the argument z and that the prior P 0 has zero mean. In order for q = 0 to be the global maximizer q * of (43) or to be a relevant xed point of the state evolution (67) (relevant in the sense that GAMP might indeed converge to it in a practical setting) we need q = 0 to be a stable xed point of the above equations ( 76)- [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF]. We therefore need to expand (76)-( 77) around q = 0, and doing so, we obtain that q = 0 is stable if

2αΨ Pout (0) × 2ψ P 0 (0) = αE w 2 sc -w 2 sc -1 2 < 1 , (78) 
where the expectation corresponds to the scalar channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF] with q = 0 and the Gibbs bracketsc is given by [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF]. The expectation quanti es how the observation of Y 0 in the scalar channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF] modi es the variance of W * (which is 1 without any observation). Rewriting this condition more explicitly into a form that is convenient for numerical evaluation we get (recalling [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF], q = 0 and condition (a))

α dy Dz(z 2 -1)P out (y| √ ρz)
Exact recovery xed point: Another particular xed point of ( 76)-( 77) that we observe is the one corresponding to exact recovery q * = ρ. A su cient and necessary condition for this to be a xed point is that lim q→ρ Ψ Pout (q) = +∞. Heuristically, this means that the integral of the Fisher information of the output channel should diverge:

dydω e -ω 2 2ρ √ 2πρ P out (y|ω) 2 P out (y|ω) = +∞ , (80) 
where P out (y|ω) denotes the partial derivative w.r.t. ω. This typically means that the channel should be noiseless. For the Gaussian channel with noise variance ∆, the above expression equals 1/∆. For the probit channel where P out (y|z) = erfc(-yz/ √ 2∆)/2 the above expression at small ∆ is proportional to 1/ √ ∆. Stability of the exact recovery xed point was also investigated, but we did not obtain any uni ed expression. The stability depends non-trivially on both the properties of the output channel, but also on the properties of the prior. Below we give several examples where exact recovery either is or is not possible, or where there is a phase transition between the two regimes.

Phase diagram of perfect learning

In this section we consider deterministic (noiseless) output channels and ask: How many measurements are needed in order to perfectly recover the signal?

Our crucial point is to compare with the well explored phase diagram of Bayesian (noiseless) compressed sensing in the case of the linear channel [START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF][START_REF] Krzakala | Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices[END_REF]. As the number of samples (measurements) varies we encounter ve di erent regimes of parameters:

• The tractable recovery phase: This is the region in the parameter space where GAMP achieves perfect reconstruction.

• The non-informative phase: Region where perfect reconstruction is information-theoretically impossible and moreover even the Bayes-optimal estimator is as bad as a random guess based on the prior information and on the knowledge of the output function.

• The no recovery phase: Region where perfect reconstruction is information-theoretically impossible, but an estimator positively correlated with the ground truth exists.

• The hard phase: Region where the perfect reconstruction is information-theoretically possible, but where GAMP is unable to achieve it. At the same time, in this region GAMP leads to a better generalization error than the one corresponding to the non-informative xed point. It remains a challenging open question whether polynomial-time algorithms can achieve perfect reconstruction in this regime.

• The hard non-informative phase: This phase corresponds to the region where perfect reconstruction is information-theoretically possible but where GAMP only achieves an error as bad as randomly guessing, given by the trivial xed point. In this phase as well, the existence of polynomial-time exact recovery algorithms is an open question. This phase does not exist for the linear channel.

Some of the codes used in this section can be consulted online on the github repository [62].

The linear channel

The case of exact recovery of a sparse signal after it passed trough a noiseless linear channel, i.e. ϕ(x) = x, is studied in the literature in great details, especially in the context of compressed sensing [START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF][START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF]. For a signal with a fraction ρ of non-zero entries it is found that as soon as α > ρ, perfect reconstruction is theoretically possible, although it may remain computationally di cult. The whole eld of compressed sensing builds on Evaluating the free entropy for this case, we nd that a recovery of the signal is informationtheoretically impossible for α < α IT = ρ. Recovery becomes possible starting from α > ρ, just as in the canonical compressed sensing. Algorithmically the sign-less case is much harder. Evaluating [START_REF] Ziniel | Binary linear classi cation and feature selection via generalized approximate message passing[END_REF] we conclude that GAMP is not able to perform better than a random guess as long as α < α c = 1/2. For larger values of α, the inference using GAMP leads to better results than a purely random guess. GAMP can exactly recover the signal and generalize perfectly only for values of α larger than α AMP (full red line). The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed sensing. Center: Analogous to the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better than random guessing using GAMP. The dotted red line shows the algorithmic phase transition when using information only about the non-zero observations. Right: Phase diagram for the symmetric door output function ϕ(z) = sign(|z| -K) for a Rademacher signal, as a function of α and K. The stability line α c is depicted in dashed blue, the information-theoretic phase transition to exact recovery α IT in black, and the algorithmic one α AMP in red.

the realization that, using the 1 norm minimization technique, one can e ciently recover the signal for larger α values than the so-called Donoho-Tanner transition [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Donoho | Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing[END_REF].

In the context of the present paper, when the empirical distribution of the signal is known, one can fairly easily beat the 1 transition and reconstruct the signal up to lower values of α using the Bayesian GAMP algorithm [START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF][START_REF] Rangan | Generalized approximate message passing for estimation with random linear mixing[END_REF][START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF][START_REF] Krzakala | Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices[END_REF]. In this case, three di erent phases are present [START_REF] Krzakala | Statistical-physics-based reconstruction in compressed sensing[END_REF][START_REF] Krzakala | Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices[END_REF]: i) For α < ρ, perfect reconstruction is impossible; ii) for ρ < α < α s reconstruction is possible, but not with any known polynomialcomplexity algorithm; iii) for α > α s , the so-called spinodal transition computed with state evolution, GAMP provides a polynomial-complexity algorithm able to reach perfect reconstruction. The line α s (ρ) depends on the distribution of the signal. For a Gauss-Bernoulli signal with a fraction ρ of non-zero (Gaussian) values we compare the GAMP performance to the optimal one in Fig. 3 (left and right). This is the same gure as in the main text. We copy it here so that the SI is self-contained.

The recti ed linear unit (ReLU) channel

Let us start by discussing the case of a generalized linear model with the ReLU output channel, i.e. ϕ(x) = max(0, x), with a signal coming from a Gauss-Bernoulli distribution P 0 = ρN (0, 1) + (1 -ρ)δ 0 with a fraction ρ of non-zero (Gaussian) values. We are motivated by the omnipresent use of the ReLU activation function in deep learning, and explore its properties for GLMs that can be seen as a simple single layer neural network.

Our analysis shows that a perfect generalization (and thus a perfect reconstruction of the signal as well) is possible whenever the number of samples per dimension (measurement rate) α > 2ρ, and impossible when α < 2ρ. This is very intuitive, since half of the measurements (those non-zero) are giving as much information as in the linear case, thus the factor 2.

How hard is it to actually solve the problem with an e cient algorithm? The answer is given by applying the state evolution analysis to GAMP, which tells us that only for even larger values of α, beyond the spinodal transition, does GAMP reach a perfect recovery. Notice, however, that this spinodal transition occurs at a signi cantly lower measurement rate α than one would reach just keeping the non-zero measurements. This shows that, actually, these zero measurements contain a useful information for the algorithm. The situation is shown in the center panel of Fig. 3: The zero measurements do not help information-theoretically but they, however, do help algorithmically.

The sign-less channel

We now discuss the sign-less channel where only the absolute value of the linear mixture is observed, i.e. ϕ(x) = |x|. This case can be seen as the real-valued analog of the famous phase retrieval problem. We again consider the signal to come from a Gauss-Bernoulli distribution with a fraction ρ of non-zero (Gaussian) values.

Sparse phase retrieval has been well explored in the literature in the regime where the number s of nonzeros is sub-leading in the dimension, s = O(n). This case is known to present a large algorithmic gap. While analogously to compressed sensing exact recovery is information-theoretically possible for a number of measurement Ω(s ln(n/s)), best known algorithms achieve it only with Ω(s 2 / ln n) measurements [START_REF] Oymak | Simultaneously structured models with application to sparse and low-rank matrices[END_REF], see also [START_REF] Soltanolkotabi | Structured signal recovery from quadratic measurements: Breaking sample complexity barriers via nonconvex optimization[END_REF] and references therein for a good discussion of other related literature. This is sometimes referred to as the s 2 barrier. We are not aware of a study where, as in our setting, the sparsity is s = ρn and the number of measurements is αn with α = Ω(1). Our analysis in this regime hence sheds a new light on the hardness of the problem of recovering a sparse signal from sign-less measurements.

Our analysis of the mutual information shows that a perfect reconstruction is information-theoretically possible as soon as α > ρ: In other words, the problem is -information-theoretically-as easy, or as hard as the compressed sensing one. This is maybe less surprising when one thinks of the following algorithm: Try all 2 m choices of the possible signs for the m outputs, and solve a compressed sensing problem for each of them. Clearly, this should yields a perfect solution only in the case of the actual combination of signs.

Algorithmically, however, the problem is much harder than for the linear output channel. As shown in the left side of Fig. 3, for small ρ one requires a much larger fraction α of measurements in order for GAMP to recover the signal. For the linear channel the algorithmic transition α s (ρ) → 0 as ρ → 0, while for the sign-less channel we get α s (ρ) → 1/2 as ρ → 0. In other words if one looses the signs one cannot perform recovery in compressed sensing with less than n/2 measurements.

What we observe in this example for α < 1/2 is in the statistical physics literature on neural networks known as retarded learning [START_REF] Hansel | Memorization without generalization in a multilayered neural network[END_REF]. This appears in problems where the ϕ(x) function is symmetric, as seen at the beginning of this section: There is always a critical point of the mutual information with an overlap value q = 0. For this problem, this critical point is actually "stable" (meaning that it is actually a local minimum in q in the mutual information ( 46)) for all α < 1/2 independently of ρ. To see that, we have to go back to [START_REF] Vila | Expectation-maximization gaussian-mixture approximate message passing[END_REF]. For the absolute value channel, the posterior distribution of W * given Y 0 = √ ρ |W * | in the second scalar channel (39) is a mean of two Dirac masses on -W * and W * . Thus, the posterior variance is w 2 sc -w 2 sc = (W * ) 2 . Consequently, (78) leads to the stability condition α < 1/2.

This has the two following implications: i) In the non-informative phase, when α < 1/2 and ρ > α, the minimum at q = 0 is actually the global one. In this case, the MMSE on X * and the generalization error are the ones given by using 0 as a guess for each element of X * ; in other words, there is no useful information that one can exploit and no algorithmic approach can be better than a random guess. ii) In the hard noninformative phase when α < 1/2, GAMP initialized at random, i.e. close to the q = 0 xed point, will remain there. This suggests that in this region, even if a perfect reconstruction is information-theoretically possible, it will still be very hard to beat a random guess with a tractable algorithm. The red line is the Bayes-optimal generalization error, while the green one shows the (asymptotic) performances of GAMP as predicted by the state evolution (SE), when di erent. For comparison, we also show the result of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver, both tested on a single randomly generated instance. Left: Perceptron, with ϕ(x) = sgn(x) and a Rademacher (±1) signal. While a perfect generalization is information-theoretically possible starting from α = 1.249(1), the state evolution predicts that GAMP will allow such perfect prediction only from α = 1.493 [START_REF] Nelder | Generalized linear models[END_REF]. The results of a logistic regression with ne-tuned ridge penalty with the software scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli coe cients for the signal. No phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression with ne-tuned 1 sparsity-enhancing penalty (again with [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]) are very close to optimal. Right: The symmetric door activation rule with parameter K = 0.67449 chosen in order to observe the same number of occurrence of the two classes. In this case there is a sharp phase transition at α = 1 from a situation where it is impossible to learn the rule, so that the generalization is not better than a random guess, to a situation where the optimal generalization error drops to zero. However, GAMP identi es the rule perfectly only starting from α s = 1.566(1) (GAMP error stays 1 up to α stab = 1.36, see the black dashed curve). Interestingly, this non-linear rule seems very hard to learn for other existing algorithms. Using Keras [START_REF] Chollet | keras[END_REF], a neural network with two hidden layers was able to learn approximately the rule, but only for much larger training set sizes (shown in inset, the Keras/tensor ow code for this particular run can be found on the github repository [62]).

The symmetric door channel

The third output channel we study in detail is the symmetric door channel, where ϕ(x) = sgn(|x| -K). In case of channels with discrete set of outputs exact recovery is only possible when the prior is also discrete. In the present case we consider the signal to be Rademacher, where each element is chosen at random between 1 and -1, i.e. P 0 = 1 2 δ +1 + 1 2 δ -1 . This channel was studied previously using the replica method in the context of optimal data compression [START_REF] Hosaka | Statistical mechanics of lossy data compression using a nonmonotonic perceptron[END_REF].

This output channel is in the class of symmetric channels for which overlap q = 0 is a xed point. This xed point is stable for α < α c (K). Exact recovery is information-theoretically possible above α IT (K) and tractable with the GAMP algorithm above the spinodal transition α s (K). The values of these three transition lines are depicted in the right panel of Fig. 3.

We note that α IT ≥ 1 is a generic bound on exact recovery for every K, required by a simple counting argument. While a-priori it is not clear whether this bound is saturated for some K, we observe that it is for K = 0.67449 such that half of the observed measurements are negative and the rest positive. This is, however, not e ciently achievable with GAMP. The saturation of the α IT ≥ 1 bound was remarked previously in the context of the work [START_REF] Hosaka | Statistical mechanics of lossy data compression using a nonmonotonic perceptron[END_REF] on optimal data compression. Our work predicts that this information-theoretic result will not be achievable with known e cient algorithms.

Examples of optimal generalization error

Besides the formula for the mutual information, the main result of this paper is the Theorem 3 for the optimal generalization error, and formula [START_REF] Rosenblatt | The perceptron, a perceiving and recognizing automaton Project Para[END_REF] for the generalization error achieved by the GAMP algorithm. In this section we evaluate both these generalization errors for several cases of priors and output functions. We study both regression problems, where the output is real-valued, and classi cation problems, where the output is discrete.

While in realistic regression and classi cation problems the matrix Φ corresponds to the data, and is thus not i.i.d. random, we view the practical interest of our theory as a benchmark for state-of-the art algorithms. Our work provides an exact asymptotic analysis of optimal generalization error and sample complexity for a range of simple rules where a teacher uses random data to generate labels. The challenge for state-of-the-art multi-purpose algorithms is to try to match as closely as possible the performance that can be obtained with GAMP that is ne-tuned to the speci c form of the output and prior.

Threshold output: The perceptron

The example of non-linear output that is the most widely explored in the literature is the threshold output, where the deterministic output (or "activation") function is ϕ(x) = sgn(x). This output in the teacher-student setting of the present paper is known as the perceptron problem [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF], or equivalently, the one-bit compressed sensing in signal processing [START_REF] Boufounos | 1-bit compressive sensing[END_REF]. Its solution has been discussed in details within the replica formalism (see for instance [START_REF] Xu | Bayesian signal reconstruction for 1-bit compressed sensing[END_REF][START_REF] Opper | Generalization performance of bayes optimal classi cation algorithm for learning a perceptron[END_REF][START_REF] Kabashima | Inference from correlated patterns: a uni ed theory for perceptron learning and linear vector channels[END_REF][START_REF] Baum | The transition to perfect generalization in perceptrons[END_REF]) and we con rm all of these heuristic computations within our approach. Let V ∼ N (0, 1). The formula (57), [START_REF] Fletcher | Iterative reconstruction of rank-one matrices in noise[END_REF] for the generalization error then reduces to (recall q * = q * (α) is an optimizer of ( 43))

lim n→∞ E opt gen = 1 -DV 2 √ π V q * 2(ρ-q * ) 0 dt e -t 2 /2 2 = 1 -E erf V q * 2(ρ -q * ) 2 . ( 81 
)
In Fig. 4 (left) we plot the optimal generalization error of the perceptron with a Rademacher signal, the state evolution prediction of the generalization error of the GAMP algorithm, together with the error actually achieved by GAMP on one randomly generated instance of the problem. We also compare these to the performance of a standard logistic regression. As expected from existing literature [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF][START_REF] Seung | Statistical mechanics of learning from examples[END_REF] we con rm that in this case the information-theoretic transition appears at a number of samples per dimension α IT = 1.249(1), while the algorithmic transition is at α s = 1.493 [START_REF] Nelder | Generalized linear models[END_REF]. Logistic regression does not seem to be able to match the performance on GAMP in this case.

In Fig. 4 (center) we plot the generalization error for a Gauss-Bernoulli signal with density ρ = 0.2. Cases as this one were studied in detail in the context of one-bit compressed sensing [START_REF] Xu | Bayesian signal reconstruction for 1-bit compressed sensing[END_REF] and GAMP was found to match the optimal generalization performance with no phase transitions observed, which is con rmed by our analysis. In this case the logistic regression is rather close to the performance of GAMP.

Symmetric Door

The next classi cation problem, i.e. discrete output rule, we study is the symmetric door function ϕ(x) = sgn(|x| -K). In this case the generalization error (57) becomes (here again V ∼ N (0, 1))

lim n→∞ E opt gen = 1 -E V erf K - √ q * V 2(ρ -q * ) -erf - K + √ q * V 2(ρ -q * ) -1 2 . ( 82 
)
In Fig. 4 (right) we plot the generalization error for K = 0, 67449 such that 1/2 of the outputs are 1 and 1/2 are -1. The symmetric door output is an example of function for which the optimal generalization error for α < α IT = 1 (for that speci c value of K, see phase diagram in the right panel of Fig. 3) is as bad as if we were guessing randomly. The GAMP algorithm still achieves such a bad generalization until α stab = 1.36, and achieves perfect generalization only for α > α s = 1.566 [START_REF] Nelder | Generalized linear models[END_REF].

Interestingly, labels created from this very simple symmetric door rule seem to be very challenging to learn for general purpose algorithms. We tried to optimize parameters of a two-layers neural network and The generalization error for three regression problems is plotted as a function of the number of samples per dimension α. The red line is again the Bayes-optimal generalization error, while the green one shows the (asymptotic) performances of GAMP as predicted by the state evolution (SE), when di erent. Again, we also show the result of GAMP on a particular instance (black dots) and, in blue, the performance of an out-of-the-box solver. Left: White Gaussian noise output and a Gauss-Bernoulli signal. For this choice of noise, there is no sharp transition (as opposed to what happens at smaller noises). The results of a LASSO with ne-tuned 1 sparsityenhancing penalty (with [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]) are very close to optimal. Middle: Here we analyze a ReLU output function ϕ(x) = max(0, x), still with a Gauss-Bernoulli signal. Now there is an information-theoretic phase transition at α = 2ρ = 0.4, but GAMP requires α s = 0.589(1) to reach perfect recovery. We show for comparison the results of maximum likelihood estimation performed with CVXPY -a powerful python-embedded language for convex optimization [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF]-using two methods that are both amenable to convex optimization: In CVX-1 we use only the non-zero values of Y, and perform a minimization of the 1 norm of x subject to Y µ = Φ µ • x for µ ∈ {1, . . . , m} such that Y µ = 0, while in CVX-2, we use all the dataset, with the constraint that Y µ = Φ µ • x for µ ∈ {1, . . . , m} such that Y µ = 0 (as before) and the additional restriction Φ µ • x ≤ 0 for µ ∈ {1, . . . , m} such that Y µ = 0. In both case, a perfect generalization is obtained only for α 1. Right: The sign-less output function ϕ(x) = |x|. The information-theoretic perfect recovery starts at α = ρ = 0.5, but the problem is again harder algorithmically for GAMP that succeeds only above α s = 0.90 [START_REF] Nelder | Generalized linear models[END_REF]. Again, the problem appears to be hard for other solvers. In inset, we show the performance for the estimation problem using PhaseMax [START_REF] Goldstein | Phasemax: Convex phase retrieval via basis pursuit[END_REF], which is able to learn the rule only using about four times as many measurements than needed information-theoretically. only managed to get the performances shown in the inset of Fig. 4 (right). It is an interesting theoretical challenge whether a deeper neural network can learn this simple rule from fewer samples.

Linear regression

The additive white Gaussian noise (AWGN) channel, or linear regression, is de ned by ϕ(x, A) = x+σA with A ∼ N (0, 1). This models the (noisy) linear regression problem, as well as noisy random linear estimation and compressed sensing. In this case (57) leads to

lim n→∞ E opt gen = ρ -q * + σ 2 . ( 83 
)
This result agrees with the generalization error analyzed heuristically in [START_REF] Seung | Statistical mechanics of learning from examples[END_REF] in the limit σ → 0. Fig. 5 (left) depicts the generalization error for this example. The performance of GAMP in this case is very close to the one of LASSO.

Recti ed linear unit (ReLU)

In Fig. 5 (center) we analyze the generalization error for the ReLU output function, ϕ(x) = max(0, x). This channel models the behavior of a single neuron with the recti ed linear unit activation [START_REF] Lecun | Deep learning[END_REF] widely used in multilayer neural networks. In this case (57) becomes after simple algebra and Gaussian integration by parts

(again V ∼ N (0, 1)), lim n→∞ E opt gen = ρ 2 - q * 4 1 + E V V 2 erf V q * 2(ρ -q * ) 2 - (ρ -q * ) 3/2 √ ρ + q * 1 2π + q * ρπ ρ + q * ρ -q * . (84) 
For sparse Gauss-Bernoulli signals in Fig. 5 (center) we observe again the information-theoretic transition to perfect generalization to be distinct from the algorithmic one. At the same time our test with existing algorithms were not able to closely match the performance of GAMP. This hence also remains an interesting benchmark.

Sign-less channel

In Fig. 5 (right) we analyze the generalization error for the sign-less output function where ϕ(x) = |x|. This models a situation similar to compressed sensing, except that the sign of the output has been lost. This is a real-valued analog of the phase retrieval problem as discussed in Sec. 3.2.3. In this case the generalization error ( 57) becomes (again V ∼ N (0, 1))

lim n→∞ E opt gen = ρ -E V b(V q * , ρ -q * ) 2 , (85) 
where b(x, y) = 2y π e

-x 2 2y + x 2 erfc - x √ 2y - x 2 1 + erf - x √ 2y . (86) 
Our comparison with the performance of a state-of-the-art algorithm PhaseMax [START_REF] Goldstein | Phasemax: Convex phase retrieval via basis pursuit[END_REF] suggests that also for this simple benchmark there is room for improvement in term of matching the performance of GAMP.

Sigmoid, or logistic regression

Let us also consider an output function with auxiliary randomization. After having generated the classi er X * , the teacher randomly associates the label +1 to the pattern Φ µ with probability f λ (n -1/2 Φ µ • X * ), where f λ (x) = (1 + exp(-λx)) -1 ∈ [0, 1] is the sigmoid of parameter λ > 0, and the label -1 with probability 1 -f λ (n -1/2 Φ µ • X * ). One of the (many) possible ways for the teacher to do so is by selecting ϕ

(x, A) = 1(A ≤ f λ (x)) -1(A > f λ (x))
, where 1(E) is the indicator function of the event E. He then generates a stream of uniform random numbers A iid ∼ U [0,1] and obtains the labels through [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] (with ∆ = 0). Let V, w iid ∼ N (0, 1). In this setting the error (57) becomes

lim n→∞ E opt gen = 2 -4 E V E w f λ ( q * V + ρ -q * w) 2 . ( 87 
)
This formula reduces to (81) when λ → ∞ as it should.

Proof of the replica formula by the adaptive interpolation method

We now prove Theorem 1. Our main tool will be an interpolation method recently introduced in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] and called "adaptive interpolation method". Here we formulate the method as a direct evolution of the Guerra and Toninelli interpolation method developed in the context of spin glasses [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF]. In contrast with the discrete and more pedestrian version of the adaptive interpolation method presented in [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF], here we employ a continuous approach which is more straightforward (see [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] for the links between the discrete and continuous versions of the method) and that has also been recently used in [START_REF] Barbier | The Layered Structure of Tensor Estimation and its Mutual Information[END_REF] for studying non-symmetric tensor estimation. We will prove Theorem 1 under the following hypotheses:

(H1) The support of the prior distribution P 0 is included in [-S, S], for some S > 0.

(H2) ϕ is a bounded C 2 function with bounded rst and second derivatives w.r.t. its rst argument. (H3) (Φ µi ) iid ∼ N (0, 1).

These stronger assumptions will then be relaxed in Appendix C to the weaker assumptions (h1)-( h2 

Y µ := ∆ -1/2 Y µ = ∆ -1/2 ϕ 1 √ n [ΦX * ] µ , A µ + Z µ , 1 ≤ µ ≤ m , (88) 
the variance ∆ of the Gaussian noise can be "incorporated" inside the function ϕ. Thus, it su ces to prove Theorem 1 for ∆ = 1 and we suppose, for the rest of the proof, that we are in this equivalent case.

Interpolating estimation problem

We introduce an "interpolating estimation problem" that interpolates between the original problem ( 21) at t = 0, t ∈ [0, 1] being the interpolation parameter, and the two scalar problems described in Sec. 1.3 at t = 1 which are analytically tractable. For t ∈ (0, 1) the interpolating estimation problem is a mixture of the original and scalar problems. This interpolation scheme is inspired from the interpolation paths used by Talagrand to study the perceptron, see [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF]. There are two major di erences between the "non-planted perceptron" studied by Talagrand, and the "planted perceptron" that we are investigating:

• In the planted case, the presence of a planted solution forces (under small perturbations) the correlations to vanish for all values of the parameters, see [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF][START_REF] Korada | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF]. In the non-planted case, proving such decorrelation is much more involved, and is proved only in a limited region of the parameter space, see [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF].

• However, in the planted case, there can be arbitrarily many solutions to the state evolution equations (42) (see Remark 21 in [START_REF] Wu | Optimal phase transitions in compressed sensing[END_REF]), whereas in the region studied by [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF], there is only one solution. For this reason, our interpolation method needs to be more sophisticated in order to interpolate with the "right xed point".

We x a sequence (s n ) n≥1 ∈ (0, 1/2] N that converges to 0 as n goes to in nity (s n will be chosen in Sec. 4.3 below to be equal to 1 2 n -1/16 ). We de ne B n := [s n , 2s n ] 2 . For all = ( 1 , 2 ) ∈ B n , we consider two continuous "interpolation functions" q : [0, 1] → [0, ρ] and r : [0, 1] → [0, r max ], where r max := 2α sup q∈[0,ρ] Ψ Pout (q; ρ) = 2αΨ Pout (ρ; ρ) (recall that by Proposition 18, Ψ Pout is non-decreasing). We de ne also for all t ∈ [0, 1] and all

∈ B n R 1 (t, ) := 1 + t 0 r (v)dv , R 2 (t, ) := 2 + t 0 q (v)dv . (89) 
We will be mainly interested in functions r , q that satisfy some regularity properties. We will use the following de nition:

De nition 1 (Regularity). We say that the families of functions (q ) ∈Bn and (r ) ∈Bn , taking values respectively in [0, ρ] and [0, r max ], are regular if for all t ∈ [0, 1] the mapping

R t : (s n , 2s n ) 2 → R t (s n , 2s n ) 2 → R 1 (t, ), R 2 (t, ) (90) 
is a C 1 di eomorphism, whose Jacobian is greater or equal to 1.

De ne

S t,µ := 1 -t n [ΦX * ] µ + R 2 (t, ) V µ + ρt -R 2 (t, ) + 2s n W * µ ( 91 
)
where V µ , W * µ iid ∼ N (0, 1). Consider the following observation channels, with two types of observations obtained through

Y t,µ ∼ P out ( • | S t,µ ) , 1 ≤ µ ≤ m, Y t,i = R 1 (t, ) X * i + Z i , 1 ≤ i ≤ n, (92) 
where

(Z i ) n i=1
iid ∼ N (0, 1). We assume that V = (V µ ) m µ=1 is known. Then the inference problem is to recover both unknowns W * = (W * µ ) m µ=1 and X * = (X * i ) n i=1 from the knowledge of V, Φ and the "time-dependent" observations Y t = (Y t,µ ) m µ=1 and Y t = (Y t,i ) n i=1 . We now understand that R 1 (t, ) appearing in the second set of measurements in [START_REF] Hartman | Ordinary Di erential Equations[END_REF], and the terms 1 -t, R 2 (t, ) and ρt -R 2 (t, ) + 2s n appearing in the rst set all play the role of signal-to-noise ratios in the interpolating model, with t giving more and more "power" (or weight) to the scalar inference channels when increasing. Here is the rst crucial and novel ingredient of our interpolation scheme. In the classical interpolation method, these signal intensities would all take a trivial form (i.e. would be linear in t) but here, the non-trivial (integral) dependency in t of the intensities through the use of the interpolation functions q and r allows for much more exibility when choosing the interpolation path. This will allow us to actually choose the "optimal interpolation path" (this will become clear soon).

De ne u y (x) := ln P out (y|x) and, with a slight abuse of notations,

s t,µ = s t,µ (x, w µ ) := 1 -t n [Φx] µ + R 2 (t, ) V µ + ρt -R 2 (t, ) + 2s n w µ . (93) 
We introduce the interpolating Hamiltonian

H t, (x, w; Y t , Y t , Φ, V) := - m µ=1 ln P out (Y t,µ |s t,µ ) + 1 2 n i=1 Y t,i -R 1 (t, ) x i 2 . ( 94 
)
The dependence in Φ and V of the Hamiltonian is through the (s t,µ ) m µ=1 . It becomes, when the observations are replaced by their expression [START_REF] Hartman | Ordinary Di erential Equations[END_REF],

H t, (x, w; Y t , Y t , Φ, V) = - m µ=1 u Yt,µ (s t,µ ) + 1 2 n i=1 R 1 (t, ) (X * i -x i ) + Z i 2 . ( 95 
)
We also introduce the corresponding Gibbs bracketn,t, which is the expectation operator w.r.t. the (t, )dependent posterior distribution of (X * , W * ) given (Y t , Y t , Φ, V). It is de ned as

g(x, w) n,t, := 1 Z t, (Y t , Y t , Φ, V)
dP 0 (x)Dw g(x, w) e -Ht, (x,w;Yt,Y t ,Φ,V) ,

for every continuous bounded function g on R n × R m . In (96) Dw = (2π) -m/2 m µ=1 dw µ e -w 2 µ /2 is the m-dimensional standard Gaussian distribution and Z t, (Y t , Y t , Φ, V) is the appropriate normalization (or partition function):

Z t, (Y t , Y t , Φ, V) := dP 0 (x)Dw e -Ht, (x,w;Yt,Y t ,Φ,V) .

(97)

Finally the interpolating free entropy is

f n, (t) := 1 n E ln Z t, (Y t , Y t , Φ, V) . (98) 
Note that the presence of the perturbation = ( 1 , 2 ) induces only a small change in the free entropy, namely of the order of s n :

Lemma 1 (Small free entropy variation under perturbation). For all 1 , 2 ∈ [s n , 2s n ],

|f n, (0) -f n, =(0,0) (0)| ≤ Cs n ( 99 
)
for some constant C that only depends on S, α and ϕ.

Proof. Let us compute df n, (0)

d 1 = 1 2 |E Q n,0, | ≤ S 2 2 , (100) 
by hypothesis (H1). Next we compute df n, (0)

d 2 = 1 2n m µ=1 E u Y 0,µ (S 0,µ ) u Y 0,µ (s 0,µ ) n,0, . (101) 
This identity is obtained using very similar steps as in Sec. A.5 to which we refer. Under hypothesis (H2) this quantity is bounded by a constant that only depends on α and ϕ. Then by the mean value theorem we obtain |f n, (0) -f n,(0,0) (0)| ≤ C ≤ 2 √ 2s n C for some constant C that only depends on S, α and ϕ.

One veri es easily, using the Lemma 1, that for all

∈ B n          f n, (0) = f n,(0,0) (0) + O(s n ) = f n -1 2 + O(s n ) , f n, (1) = ψ P 0 (R 1 (1, )) -1 2 (1 + ρR 1 (1, )) + m n Ψ Pout (R 2 (1, ); ρ + 2s n ) = ψ P 0 ( 1 0 r (t)dt) -1 2 (1 + ρ 1 0 r (t)dt) + m n Ψ Pout ( 1 0 q (t)dt; ρ) + O(s n ) . (102) 
where f n is given by ( 30) and where O(s n ) denotes a quantity that is bounded by Cs n for some constant C > 0 that only depends on S, ϕ and α. For the last equality we used Proposition 17 in Appendix B.1 which says that ψ P 0 is ρ 2 -Lipschitz and, similarly to Proposition 18, it is not di cult to verify that (q 1 , q 2 ) → Ψ Pout (q 1 ; q 2 ) is C 1 on the compact set {(q 1 , q 2 ) | 0 ≤ q 1 ≤ q 2 ≤ ρ + 1} and is thus Lipschitz. We emphasize a crucial property of the interpolating model: It is such that at t = 0 we recover the original model and thus f n, (0) ≈ f n -1/2 (the trivial constant comes from the purely noisy measurements of the second channel in (92)), while at t = 1 we have the two scalar inference channels and thus the associated terms ψ P 0 and Ψ Pout discussed in Sec. 1.3 appear in f n, [START_REF] Nelder | Generalized linear models[END_REF]. These are precisely the terms appearing in the potential (41).

Free entropy variation along the interpolation path

From the understanding of the previous section, it is at this stage very natural to evaluate the variation of free entropy along the interpolation path, which allows to "compare" the original and purely scalar models thanks to the identity

f n = f n, (0) + 1 2 + O(s n ) = f n, (1) - 1 0 df n, (t) dt dt + 1 2 + O(s n ) , (103) 
where the rst equality follows from (102). As discussed above, part of the potential (41) appears in f n, [START_REF] Nelder | Generalized linear models[END_REF].

If the interpolation is properly done, the missing terms required to obtain the potential on the r.h.s. of ( 103) should naturally appear. Then by choosing the optimal interpolation path thanks to the non-trivial snr dependencies in t (i.e. by selecting the proper interpolating functions q and r), we will be able to show the equality between the replica formula and the free entropy lim n→∞ f n .

We thus now compute the t-derivative of the free entropy along the interpolation path (see Appendix A.5 for the proof). Let u y (x) be the derivative (w.r.t. x) of u y (x). Then we have the following.

Proposition 3 (Free entropy variation). The derivative of the free entropy (98) veri es, for all ∈ B n and all t ∈ (0, 1)

df n, (t) dt = - 1 2 E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) Q -q (t) n,t, + r (t) 2 (q (t) -ρ)+O n (1) , ( 104 
)
where O n (1) is a quantity that goes to 0 in the n, m → ∞ limit, uniformly in t ∈ (0, 1), ∈ B n and uniformly in the choice of the functions q and r . The overlap is

Q n = Q := 1 n X * • x = 1 n n i=1 X * i x i ( 105 
)
where x is a sample from the posterior of model (92) associated with the Gibbs bracketn,t, , see

.

Overlap concentration and fundamental sum rule

The next lemma plays a key role in our proof. Essentially it states that the overlap concentrates around its mean, a behavior called "replica symmetric" in statistical physics. Similar results have been obtained in the context of the analysis of spin glasses [START_REF] Coja-Oghlan | Information-theoretic thresholds from the cavity method[END_REF][START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF]. Here we use a formulation taylored to Bayesian inference problems as developed in the context of LDPC codes, random linear estimation [START_REF] Barbier | Mutual information and optimality of approximate message-passing in random linear estimation[END_REF] and Nishimori symmetric spin glasses [START_REF] Korada | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF][START_REF] Macris | Gri th-kelly-sherman correlation inequalities: A useful tool in the theory of error correcting codes[END_REF][START_REF] Korada | Tight bounds on the capacity of binary input random cdma systems[END_REF].

Proposition 4 (Overlap concentration). Assume that the interpolation functions (q ), (r ) are regular, see De nition 1. Let s n = 1 2 n -1/16 for all n ≥ 1. Under assumptions (H1), (H2) and (H3) there exists a constant C(ϕ, S, α) that depends only on S, ϕ and α such that

1 s 2 n Bn d 1 0 dt E Q -E Q n,t, 2 n,t, ≤ C(ϕ, S, α) n 1/8 . ( 106 
)
Proposition 4 follows from Proposition 29 proved in Appendix E.2, combined with (240) and Fubini's theorem. Note from ( 102) and ( 41) that the second term appearing in [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF] is precisely the missing one that is required in order to obtain the expression of the potential on the r.h.s. of [START_REF] Bezanzon | Julia: A fast dynamic language for technical computing[END_REF]. Thus in order to prove Theorem 1 we would like to "cancel" the Gibbs bracket in [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], which is the so called remainder (once integrated over t). This is made possible thanks to the adaptive interpolating functions.

One possible way to cancel the remainder is to choose q (t) = E Q n,t, , which is approximately equal to Q because it concentrates by Proposition 4. However, E Q n,t, depends on t 0 q (v)dv (and on t, t 0 r (v)dv and too). The equation q (t) = E Q n,t, is therefore a rst order di erential equation over t → t 0 q (v)dv.

We will see in details in Sec. 4.4 that it possesses a solution, but for the moment we just assume it exists in order to derive the following fundamental sum rule, which is a core identity in the proof scheme: Proposition 5 (Fundamental sum rule). Assume that the interpolation functions (q ) and (r ) are regular (see De nition 1). Assume that for all t ∈ [0, 1] and ∈ B n we have q (t) = E Q n,t, . Then

f n = 1 s 2 n Bn ψ P 0 1 0 r (t)dt + αΨ Pout 1 0 q (t)dt; ρ -1 2 1 0 q (t)r (t)dt d + O n (1) , (107) 
where O n (1) denotes a quantity that goes to 0 as n → ∞ uniformly w.r.t. the choice of the interpolation functions.

Proof. By the Cauchy-Schwarz inequality

1 s 2 n Bn d 1 0 dt E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) Q -q (t) n,t, 2 ≤ 1 s 2 n Bn d 1 0 dt E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) 2 n,t, × 1 s 2 n Bn d 1 0 dt E Q -q (t) 2 n,t, .
The rst term of this product is bounded by some constant C(ϕ, α) that only depend on ϕ and α, see Appendix A.6. The second term is bounded by C(ϕ, S, α)n -1/8 by Proposition 4, since we assumed that for all ∈ B n and all t ∈ [0, 1] we have q (t) = E Q n,t, . We have therefore

1 s 2 n Bn d 1 0 dt E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) Q -q (t) n,t, ≤ C(ϕ, S, α) n 1/16 .
Therefore from (104)

1 s 2 n Bn d 1 0 dt df n, (t) dt = 1 2s 2 n Bn d 1 0 dt q (t)r (t) -r (t)ρ + O n (1) + O(n -1/16 ) . ( 108 
)
Here the small terms are going to 0 both uniformly w.r.t. to the choice of q and r . When replacing (108) in ( 103) and combining it with (102) we reach the claimed identity (107), but up to the fact that Ψ Pout ( 1 0 q (t)dt; ρ) is multiplied by m/n instead of α. Recalling that m/n → α as m, n → ∞ allows to nish the argument (notice that Ψ Pout is continuous and hence bounded on [0, ρ], see Proposition 18).

We are now ready to prove matching bounds.

Lower and upper matching bounds

We now possess all the necessary tools to prove Theorem 1 in three steps.

(i) We prove that, under assumptions (H1), (H2) and (H3), lim n→∞ f n = sup r≥0 inf q∈[0,ρ] f RS (q, r).

(ii) Under hypothesis (H2), the function Ψ Pout is convex, Lipschitz and non-decreasing (Proposition 19). We thus apply Corollary 8 of Appendix D to get sup r≥0 inf q∈[0,ρ] f RS (q, r) = sup q∈[0,ρ] inf r≥0 f RS (q, r). We then deduce from (i) that lim n→∞ f n = sup q∈[0,ρ] inf r≥0 f RS (q, r) under (H1)-(H2)-(H3).

(iii) Finally, the approximation arguments given in Appendix C permit to relax (H1)-(H2) to the weaker hypotheses (h1)-(h2) and allow to replace the Gaussian assumption (H3) on Φ by (h1)-(h3)-(h4). The fact that for discrete channels the Gaussian noise can then be removed, allowing to replace (h5.a) (i.e. ∆ > 0 treated until here) to (h5.b) (i.e. ∆ = 0 and ϕ takes values in N), is proven in Sec. C.3. This proves the rst equality of Theorem 1. The last equality in [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF] and the remaining part of Theorem 1 follow then from Lemma 23.

It thus remains to tackle (i), but before that we need a de nition. For t ∈ [0, 1] and ∈ B n , we write R t ( ) = (R 1 (t, ), R 2 (t, )). The quantity E Q n,t, is a function of n, t, R t ( ) that we write E Q n,t, = F n t, R t ( ) , where F n is a function de ned on

D n := (t, r 1 , r 2 ) ∈ [0, 1] × R + × R + r 2 ≤ ρt + 2s n . (109) 
The following proposition, proven in Appendix A.7, will be useful. Let us now start with the lower bound.

Lower bound

Proposition 7 (Lower bound). The free entropy (29) veri es

lim inf n→∞ f n ≥ sup r≥0 inf q∈[0,ρ] f RS (q, r) . (110) 
Proof. We consider, for ( 1 , 2 ) ∈ B n and a xed value r ∈ [0, r max ], the following 1st order di erential equation:

y(0) = ( 1 , 2 ) and ∀ t ∈ [0, 1], y (t) = r, F n (t, y(t)) . (111) 
By the Cauchy-Lipschitz Theorem (see for instance Theorem 3.1 in Chapter V from [START_REF] Hartman | Ordinary Di erential Equations[END_REF]) this equation admits a (unique) solution that we write y(•, ) = y 1 (•, ), y 2 (•, ) . The hypotheses of the Cauchy-Lipschitz Theorem are veri ed, because of Proposition 6. We de ne then, for all t ∈ [0, 1],

r (t) = y 1 (t, ) = r and q (t) = y 2 (t, ) = F n (t, y(t, )) ∈ [0, ρ] .
We have therefore R 1 (t, ) = 1 + t 0 y 1 (s, )ds = y 1 (t, ) and similarly R 2 (t, ) = y 2 (t, ). We obtain that for all t ∈ [0, 1],

q (t) = F n (t, y(t, )) = F n t, (R 1 (t, ), R 2 (t, )) = E Q n,t, .
Let us show now that the functions (q ) and (r ) are regular (see De nition 1). Let t ∈ [0, 1]. The function

R t : → (R 1 (t, ), R 2 (t, )) = y(t,
) is the ow of (111) and is thus injective (by unicity of the solution) and C 1 because of the regularity properties (see Proposition 6) of F n . The Jacobian of the ow is given by the Liouville formula (see Corollary 3.1 in Chapter V from [START_REF] Hartman | Ordinary Di erential Equations[END_REF]):

det ∂R t ∂ ( ) = exp t 0 dv ∂F n ∂y 2 (v, y(v, )) ≥ 1,
because by Proposition 6 we have ∂ y 2 F n ≥ 0. We obtain (by the local inversion Theorem) that R t is a C 1 di eomorphism, and since its Jacobian is greater or equal to 1 the functions (q ) and (r ) are regular.

We have seen that for all ∈ B n and all t ∈ [0, 1], q (t) = E Q t,n, , so we can apply Proposition 5 to get

f n = 1 s 2 n Bn ψ P 0 (r) + αΨ Pout 1 0 q (t)dt; ρ -r 2 1 0 q (t)dt d + O n (1) = 1 s 2 n Bn f RS 1 0 q (t)dt, r d + O n (1) ≥ inf q∈[0,ρ] f RS (q, r) + O n (1)
and thus lim inf n→∞ f n ≥ inf q∈[0,ρ] f RS (q, r). This is true for all r ∈ [0, r max ] so we get

lim inf n→∞ f n ≥ sup r∈[0,rmax] inf q∈[0,ρ] f RS (q, r) . (112) 
Let r ≥ r max . We have for all q ∈ [0, ρ], ∂ q f RS (q, r) = αΨ Pout (q) -r 2 ≤ 0, because r ≥ r max ≥ 2αΨ Pout (q). Therefore for all r ≥ r max , inf q∈[0,ρ] f RS (q, r) = f RS (ρ, r) and

∂ ∂r inf q∈[0,ρ] f RS (q, r) = ∂ ∂r f RS (ρ, r) = ψ P 0 (r) - ρ 2 ≤ 0,
because by Proposition 17, ψ P 0 is ρ 2 -Lipschitz. The function r → inf q∈[0,ρ] f RS (q, r) is therefore non-increasing on [r max , +∞). Going back to (112), we conclude f RS (q, r) .

lim inf n→∞ f n ≥ sup r∈[0,rmax] inf q∈[0,ρ] f RS (q, r) = sup r≥0 inf q∈[0,ρ] f RS (q, r) . (113 
Proof. We consider, for ( 1 , 2 ) ∈ B n , the following order-1 system of di erential equations:

y(0) = ( 1 , 2 ) and ∀ t ∈ [0, 1], y (t) = 2αΨ Pout F n (t, y(t)) F n (t, y(t)) . (115) 
By Proposition 18 the function Ψ Pout is C 1 and takes values in [0, r max ]. By Proposition 6, the function F n is continuous, bounded and admits partial derivatives w.r.t. its second and third arguments, that are continuous. We can therefore apply the Cauchy-Lipschitz Theorem as in the proof of Proposition 7: The equation (115) admits a (unique) solution that we write y(•, ) = y 1 (•, ), y 2 (•, ) . We de ne then, for all t ∈ [0, 1],

r (t) = y 1 (t, ) = 2αΨ Pout F n (t, y(t, )) ∈ [0, r max ] and q (t) = y 2 (t, ) = F n (t, y(t, )) ∈ [0, ρ] .
We have therefore R 1 (t, ) = 1 + t 0 y 1 (s, )ds = y 1 (t, ) and similarly R 2 (t, ) = y 2 (t, ). We obtain that for all t ∈ [0, 1],

q (t) = F n (t, y(t, )) = F n t, (R 1 (t, ), R 2 (t, )) = E Q n,t, .
Let us show now that the functions (q ) and (r ) are regular (see De nition 1). Let t ∈ [0, 1]. The function

R t : → (R 1 (t, ), R 2 (t, )) = y(t,
) is the ow of (115) and is thus injective and C 1 because of the regularity properties (see Proposition 6) of F n . The Jacobian of the ow is again given by the Liouville formula:

det ∂R t ∂ ( ) = exp t 0 dv2α ∂F n ∂y 1 (v, y(v, ))Ψ Pout F n (v, y(v, )) + t 0 dv ∂F n ∂y 2 (v, y(v, )) ≥ 1,
because by Proposition 6, ∂Fn ∂y 1 and ∂Fn ∂y 2 are both non negative and since Ψ Pout is convex (see Proposition 18), we have also Ψ Pout ≥ 0. We obtain (by the local inversion Theorem) that R t is a C 1 di eomorphism. Its Jacobian is greater or equal to 1, and the functions (q ) and (r ) are therefore regular.

We have seen that for all ∈ B n and all t ∈ [0, 1], q (t) = E Q t,n, , so we can apply Proposition 5 to get . By de nition of r and q , we have

f n = 1 s 2 n Bn ψ P 0 1 0 r (t)dt + αΨ Pout 1 0 q (t)dt; ρ -1 2 1 0 q (t)r (t)dt d + O n (1) ≤ 1 s 2 n Bn 1 0 ψ P 0 (r (t)) + αΨ Pout (q (t); ρ) - 1 2 q (t)r (t) dtd + O n (1) ( 
r (t) = 2αΨ Pout F n (t, y(t, )) = 2αΨ Pout q (t) . ( 117 
)
The function g : q ∈ [0, ρ] → 2αΨ Pout (q; ρ) -r (t)q is convex by Proposition 18. By equation ( 117) above, we see that g (q (t)) = 0 and therefore:

αΨ Pout (q (t); ρ) - 1 2 q (t)r (t) = inf q∈[0,ρ] αΨ Pout (q; ρ) - 1 2 q r (t) .
This holds for all ∈ B n and all t ∈ [0, 1]. Plugging this back in (116), we get:

f n ≤ 1 s 2 n Bn 1 0 inf q∈[0,ρ] ψ P 0 (r (t)) + αΨ Pout (q; ρ) - 1 2 q r (t) dtd + O n (1) ≤ sup r≥0 inf q∈[0,ρ] ψ P 0 (r) + αΨ Pout (q; ρ) - 1 2 q r + O n (1) .
This proves Proposition 8.

From the arguments given at the beginning of the section, this ends the proof of Theorem 1.

5 Proofs of the limits of optimal errors 5.1 Optimal generalization error: Proof of Theorem 4

Formal derivation and proof idea: A teacher-student scenario with side information

Before proving Theorem 4 rigorously, we nd useful to provide a conceptual framework allowing to formally derive the generalization error (a framework that will actually serve as a basis for the rigorous derivation presented in the next section). In order to obtain the (generalized) optimal generalization error, we need rst to assume that the new "test labels" are also observed by the student in the teacher-student scenario of Sec. 1.2 but with a very low signal-to-noise ratio. The presence of this side information will allow us to use the I-MMSE relation (Proposition 13) to obtain the generalization error when small, but non-zero, information about the test labels is known by the student. Then, by formally taking the limit of vanishing side information on the resulting expression (and assuming that the large n and vanishing side information limits commute), we will recover the generalization error. We thus now introduce the following "train-test" observation model.

The set of patterns and labels are divided into two sets by the teacher: The training set S tr of size m that will be used as the main source of information by the student in order to then generalize, and the test set S te of size m = n that will be used by the teacher in order to evaluate the performance of the student, but also by the student as small additional side information. Let us be more precise: The teacher gives to the student both the patterns and associated labels of the training set, namely S tr := {(Y µ ; Φ µ )} m µ=1 (recall the labels are given by ( 20), ( 21)). For the test set, the test patterns to classify are given to the student but the associated labels are (almost) not: Let , λ ≥ 0. Instead of the test labels { Y µ } m µ=1 (that should be totally unknown to the student in the ideal setting), what is given to the student is

U µ = √ λ Y µ + Z µ , for 1 ≤ µ ≤ m = n , (118) 
where Z µ iid ∼ N (0, 1), and Y µ is given by

Y µ = f ( Y µ ) , Y µ ∼ P out • Φ µ • X * √ n , (119) 
where f : R → R is a continuous bounded function and Φ µ iid ∼ N (0, I n ) independently of everything else. We will rst prove Theorem 4 for continuous bounded functions f , and then relax this at the end of the proof. The test set given to the student, in addition of the training set, is

S te = S te (λ, ) := {(U µ = √ λ Y µ + Z µ ; Φ µ )} n µ=1
where λ is typically very small. Indeed, we are particularly interested in the case λ, → 0 when the student has no information about the test labels, which is the ideal setting we want to study. But in order to employ the I-MMSE relation we consider instead very small λ > 0.

The learning of the classi er X * given S tr and S te is a slight extension of model [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF]. De ne Y = (Y µ ) m µ=1 as the vector of test labels (before they are corrupted by additional noise through (118)). Then the (generalized) optimal generalization error with side information (i.e. at λ, > 0) in this "train-test" observation model is

E side f,n (λ, ) := min Y 1 n E Y -Y (S te , S tr ) 2 = 1 n E Y -E Y S te , S tr 2 . ( 120 
)
The "true" generalization error ( 60) is recovered by de ning instead S te = Φ or equivalently letting λ, → 0, i.e. when only S tr and the test patterns are given to the student: lim λ, →0 E side f,n (λ, ) = E f,n . Note that the f function only plays a role in the test set, while the labels of the training data are generated through the "pure model" [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF], [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF].

From there one can use the I-MMSE relation of Proposition 13 in order to formally compute the limiting n → ∞ expression of (120). Indeed, ∂ ∂λ

1 n I(Y ; √ λY + Z |Y, Φ, Φ ) = 2 E side f,n (λ, ) . (121) 
Fortunately, by a straightforward extension of the interpolation method presented in Sec. 4 one can generalize Theorem 1 to take into account this additional side information and access this mutual information (see the end of the section for the proof):

Lemma 2. For all , λ ≥ 0 we have

1 n I(Y ; √ λY + Z |Y, Φ, Φ ) ---→ n→∞ inf q∈[0,ρ] sup r≥0 ĩRS (q, r, λ) -i ∞ , ( 122 
)
where i ∞ is given by Corollary 2 and ĩRS (q, r, λ) := i RS (q, r)

+ I(f (Y (q) ); √ λ f (Y (q) ) + Z |V ) (123) 
= I P 0 (r) + αI Pout (q; ρ) + I(f (Y (q) );

√ λ f (Y (q) ) + Z |V ) - r 2 (ρ -q) . ( 124 
)
Recall that Y (q) is sampled from the "second scalar channel" (39):

Y (q) ∼ P out (• | √ q V + √ ρ -q W * ), where V, W * iid ∼ N (0, 1).
De ne the following MMSE function:

M f : (λ, q) → MMSE f (Y (q) ) √ λ f (Y (q) ) + Z , V . ( 125 
)
By concavity arguments detailed in the next section, we have almost everywhere

lim n→∞ ∂ ∂λ 1 n I(Y ; √ λY + Z |Y, Φ, Φ ) = ∂ ∂λ lim n→∞ 1 n I(Y ; √ λY + Z |Y, Φ, Φ ) = ∂ ∂λ inf q∈[0,ρ] sup r≥0 ĩRS (q, r, λ)
using Lemma 2 for the last equality. Assuming

∂ λ inf q∈[0,ρ] sup r≥0 ĩRS (q, r, λ) = ∂ λ ĩRS (q, r, λ)| (q * λ ,r * λ )
, where (q * λ , r * λ ) is an optimal couple, (121) and the last identity combined lead to

2 lim n→∞ E side f,n (λ, ) = ∂ ∂λ I f (Y (q) ); √ λf (Y (q) ) + Z V q * λ = 2 M f (λ, q * λ ) , (126) 
using again the I-MMSE relation for the last equality. Thus lim n→∞ E side f,n (λ, ) = M f (λ, q * λ ). A formal calculation of the vanishing side information limit of M f (λ, q * λ ) gives back E f (q * (α)) (recall (61) and q * (α) is the optimizer of the replica-symmetric formula ( 43)), so that lim λ, →0 lim n→∞ E side f,n (λ, ) = E f (q * (α)). It is very natural to believe that the vanishing side information limit of lim n→∞ E side f,n (λ, ) should give back the true asymptotic generalization error. So if one could justify the commutation of limits

lim λ, →0 lim n→∞ E side f,n (λ, ) = lim n→∞ lim λ, →0 E side f,n (λ, ) = lim n→∞ E f,n
this would end the proof. We prove this point in the next section.

Proof of Lemma 2: Extending the interpolation method presented in Sec. 4, one can generalize Theorem 1 to take into account this additional side information. This gives directly

1 n I(X * ; Y, √ λY + Z |Φ, Φ ) ---→ n→∞ Ĩ∞ (α, , λ) := inf q∈[0,ρ] sup r≥0 ĨRS (q, r, λ) (127) 
where ĨRS (q, r, λ) is given by ĨRS (q, r, λ) := I P 0 (r) + αI Pout (q; ρ)

+ I(W * ; √ λf (Y (q) ) + Z |V ) - r 2 (ρ -q) . ( 128 
)
Conditionally on (V, f (Y (q) )), the random variables W * and √ λf (Y (q) ) + Z are independent, therefore

I f (Y (q) ); √ λf (Y (q) ) + Z V = I W * , f (Y (q) ); √ λf (Y (q) ) + Z V .
Now, by the chain rule of the mutual information we have

I W * , f (Y (q) ); √ λf (Y (q) ) + Z V = I W * ; √ λf (Y (q) ) + Z V + I f (Y (q) ); √ λf (Y (q) ) + Z V, W * .
We obtain that

I W * ; √ λf (Y (q) )+Z V = I f (Y (q) ); √ λf (Y (q) )+Z V -I f (Y (q) ); √ λf (Y (q) )+Z V, W * . (129)
Notice that the last mutual information in the above equation does not depend on q nor r. Therefore we have:

inf q∈[0,ρ] sup r≥0 ĨRS (q, r, λ) = -I f (Y (q) ); √ λf (Y (q) ) + Z V, W * + inf q∈[0,ρ] sup r≥0 ĩRS (q, r, λ) . ( 130 
)
Now, by the chain rule, we have

1 n I(X * ; Y, √ λY + Z |Φ, Φ ) = 1 n I(X * ; Y|Φ) + 1 n I(X * ; √ λY + Z |Y, Φ, Φ ) . ( 131 
)
The limit of the left-hand side is given by (127). By Corollary 2, we have lim n→∞ I(X * ; Y|Φ)/n = i ∞ . It remains to investigate the last term of the equation above. By the arguments used to prove (129), we have

I(X * ; √ λY + Z |Y, Φ, Φ ) = I(Y ; √ λY + Z |Y, Φ, Φ ) -I(Y ; √ λY + Z |Y, Φ, X * , Φ ) = I(Y ; √ λY + Z |Y, Φ, Φ ) -I(Y ; √ λY + Z |X * , Φ ) . ( 132 
)
We have I(Y ;

√ λY + Z |X * , Φ )/n = I(Y 1 ; √ λY 1 + Z 1 |X * , Φ 1 )
and it is not di cult to show, using similar computations as in the proof of Corollary 2, that

I(Y 1 ; √ λY 1 + Z 1 |X * , Φ 1 ) ---→ n→∞ I f (Y (q) ); √ λf (Y (q) ) + Z V, W * ,
(recall that the right-hand side does not depend on q). Combining this with (132), ( 131), (127), Corollary 2 and (130), we obtain the desired result.

Proof of Theorem 4

In order to compute the limit of the (generalized) generalization error, we work in the teacher-student scenario with side-information discussed in the previous section.

Lemma 3. For all α, λ > 0 the set

D α,λ := ≥ 0 the in mum in (122) is achieved at a unique q * α, ,λ (133) 
is equal to [0, +∞) minus some countable set. Moreover, → q * α,λ, is continuous on D α, .

Proof. This follows from the same arguments than the proof of Proposition 1.

Lemma 4. For all α, λ > 0, we have for all ∈ D α,λ \ {0}

lim n→∞ MMSE(Y 1 |Y, U, Φ, Φ ) = M f (λ, q * α, ,λ ) ,
where q * α, ,λ is the unique minimizer of (122).

Proof. Let us x α, > 0. Consider the function

h α, : λ → inf q∈[0,ρ] sup r≥0 ĩRS (q, r, λ) . ( 134 
)
Corollary 4 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] gives that h α, is di erentiable at λ if and only if

∂ ∂λ I f (Y (q) ); √ λf (Y (q) ) + Z V = 2
M f (λ, q) q minimizer of (122) (or equivalently of ( 134))

is a singleton (the equality comes from the I-MMSE relation from Proposition 13). In such case, Corollary 4 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] also gives that

h α, (λ) = 2 M f (λ, q) , (135) 
for all q minimizer of (134). So if now ∈ D α,λ \ {0}, then the minimizer is unique and thus h α, is di erentiable at λ, with derivative h α,λ (λ) = M f (λ, q * α, ,λ )/2. However, by (122) in Lemma 2, h α, is the pointwise limit on R + of the sequence of concave functions

(h n ) n≥1 = λ → 1 n I Y ; √ λY + Z Y, Φ, Φ + i ∞ n≥1 .
Consequently, a standard convex analysis result gives that h n (λ) ---→ n→∞ h α, (λ). By the I-MMSE relation (Proposition 13) we have h n (λ) = MMSE(Y 1 |Y, U, Φ, Φ )/2 and we conclude using the fact that = 0. Lemma 5. For all α ∈ D * given by (50),

lim λ→0 lim →0 M f (λ, q * α, ,λ ) = E f (q * (α)) .
Proof. Let α ∈ D * and λ > 0. We have by de nition of D α,λ , of D * and using the link between ĩRS and i RS given by ( 123), that 0 ∈ D α,λ . By Lemma 3 above, we have

q * α, ,λ --------→ →0, ∈D α,λ
q * α,0,λ = q * (α) .

Analogously to Proposition 22, M f (λ, •) is continuous on [0, ρ], thus lim →0 M f (λ, q * α, ,λ ) = M f (λ, q * (α)). And we obtain the result by taking lim λ→0 M f (λ, q * (α)) = E f (q * (α)), using that M f (•, q) is continuous for q ∈ [0, ρ] xed (by Proposition 13) and by comparing (125) and [START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF].

In order to simplify the proof, we assume that m = αn. By de nition of the generalization error [START_REF] Opper | Tractable approximations for probabilistic models: The adaptive thoulessanderson-palmer mean eld approach[END_REF] and of the labels Y given by ( 119),

E f,n (α) := MMSE(Y 1 |Y, Φ, Φ ) .
Lemma 6 (Lower bound on the generalization error). For all α ∈ D * ,

lim inf n→∞ E f,n (α) ≥ E f (q * (α)) . Proof. Let α ∈ D * , λ > 0 and ∈ D α,λ \ {0}. Obviously, E f,n (α) ≥ MMSE(Y 1 |Y, U, Φ, Φ ) ---→ n→∞ M f (λ, q * α, ,λ ) ,
where we used Lemma 4. Consequently lim inf n→∞ E f,n (α) ≥ M f (λ, q * α, ,λ ) and we obtain the lower bound by letting , λ → 0 and using Lemma 5.

Let us now prove the converse upper bound.

Lemma 7. There exists a constant C > 0 (that only depend on f ) such that for all α, λ > 0 and all ∈ D α,λ \{0}

lim sup n→∞ E f,n (α + ) ≤ M f (λ, q * α, ,λ ) + Cλ .
Proof. We will let the signal-to-noise ratio (snr) of the observation of Y 1 go to zero. Let us denote by λ 1 this snr:

U 1 = √ λ 1 Y 1 + Z 1 .
We will let λ 1 go from λ to 0 while the other snr for the observations of U µ for µ = 2, . . . , n will remain equal to λ. Recall that we denote U = (U µ ) n µ=1 . Using Proposition 9 from [START_REF] Guo | Estimation in gaussian noise: Properties of the minimum mean-square error[END_REF],

∂ ∂λ 1 MMSE(Y 1 |Y, U, Φ, Φ ) = E Var(Y 1 |Y, U, Φ, Φ ) 2 ≤ E (Y 1 ) 4 ≤ f 4 ∞ .
We de ne C := f 4 ∞ . Consequently, by the mean value theorem,

MMSE(Y 1 |Y, U, Φ, Φ ) -MMSE(Y 1 |Y, (U µ ) n µ=2 , Φ, Φ ) ≤ Cλ . ( 136 
)
Since (U µ ) n µ=2 contains less information than ( Y µ ) n µ=2 because of the additional Gaussian noise and the application of the function f , we have

MMSE(Y 1 |Y, (U µ ) n µ=2 , Φ, Φ ) ≥ MMSE(Y 1 |Y, ( Y µ ) n µ=2 , Φ, Φ ) = E f,n (α + -1/n) ≥ E f,n (α + ) . ( 137 
)
The last identity combined with (136) leads to

MMSE(Y 1 |Y, U, Φ, Φ ) + Cλ ≥ E f,n (α + ) . ( 138 
)
By Lemma 4 we know that

lim n→∞ MMSE(Y 1 |Y, U, Φ, Φ ) = M f (λ, q * α, ,λ
). Thus we conclude by taking the limsup in the inequality above.

Corollary 6 (Upper bound on the generalization error). For all α ∈ D * ,

lim sup n→∞ E f,n (α) ≤ E f (q * (α)) .
Proof. Let α ∈ D * , λ > 0 and 1 > 0 such that α -1 ∈ D * . Since by Lemma 3 the set D α-1 ,λ is dense in R + , we can nd 2 ∈ D α-1 ,λ such that 0 < 2 ≤ 1 . Using Lemma 7 above, we have

lim sup n→∞ E f,n (α -1 + 2 ) ≤ M f (λ, q * α-1 , 2 ,λ ) + Cλ .
Now, using the fact that 2 ≤ 1 we have

lim sup n→∞ E f,n (α) ≤ lim sup n→∞ E f,n (α -1 + 2 ) ≤ M f (λ, q * α-1 , 2 ,λ ) + Cλ .
Now, by Lemma 5 we have

lim λ→0 lim 2 →0 M f (λ, q * α-1 , 2 ,λ ) + Cλ = E f (q * (α -1 ))
which leads to lim sup n→∞ E f,n (α) ≤ E f (q * (α -1 )). We conclude by letting 1 → 0 (recall that by Proposition 1 D * is dense in R + so it is possible to nd 1 > 0 arbitrary small such that α -1 ∈ D * ), using the continuity of E f (by Proposition 22) and the continuity of q * (by Proposition 1).

Proof of Theorem 4:

For the moment we have proven Theorem 4 when f is continuous and bounded. We are going to relax this assumption by approximation. Let f : R → R such that E[|f (Y new )| 2+γ ] remains bounded as n goes to in nity, for some γ > 0. Let > 0. By density of the continuous and bounded functions in the space L 2 (R) equipped with the law of

Y (q) ∼ P out (• | √ q V + √ ρ -q W ) (V, W iid ∼ N (0, 1)), we can nd a continuous bounded function f : R → R such that E[(f (Y (q) ) -f (Y (q) )) 2 ] ≤ .
Lemma 8. For all q ∈ [0, ρ] (because the law of Y (q) does not depend on q), we have

f (Y new ) -f (Y new ) (d) ---→ n→∞ f (Y (q) ) -f (Y (q) ) . (139) Proof. Let (A new , Z new ) ∼ P A ⊗ N (0, 1) such that Y new = ϕ(Φ new • X * / √ n, A new ) + √ ∆Z new .
By the central limit theorem (that we apply under (h1)-(h3) and using (h4))

ϕ Φ new • X * √ n , A new (d) ---→ n→∞ ϕ( √ ρZ, A new ) , (140) 
where Z ∼ N (0, 1) is independent from A new . Under (h5.b) this proves Lemma 8, because in that case

Y new = ϕ(Φ new • X * / √ n, A new )
takes values in N. Under (h5.a) we let g : R → R be a continuous bounded function and we write h := f -f . Then

E g • h(Y new ) = E g • h ϕ Φ new • X * √ n , A new + √ ∆Z new = E 1 √ 2π∆ g • h(z) exp - 1 2∆ z -ϕ Φ new • X * √ n , A new 2 dz . The function x → g • h(z) e -1 2∆ (z-x) 2 √ 2π∆
dz is continuous and bounded: (140) then gives that

E g • h(Y new ) ---→ n→∞ E 1 √ 2π∆ g • h(z) exp - 1 2∆ z -ϕ √ ρZ, A new 2 dz = E g • h(Y (q) ) ,
which concludes the proof by the Portemanteau Theorem.

The sequence (f (Y new ) -f (Y new )) 2 n≥0 is uniformly integrable because bounded in L 1+γ with γ > 0. Consequently, Lemma 8 above implies

E (f (Y new ) -f (Y new )) 2 ---→ n→∞ f (Y (q) ) -f (Y (q) ) 2 L 2 = E (f (Y (q) ) -f (Y (q) )) 2 ≤ . Therefore, we can nd n 0 ∈ N such that for all n ≥ n 0 , f (Y new )-f (Y new ) 2 L 2 = E[(f (Y new )-f (Y new )) 2 ] ≤ 2 .
If we now apply Theorem 4 for f , we can nd n 1 ≥ n 0 such that for all n ≥ n 1 , |E

1/2 f ,n -E f (q * (α)) 1/2 | ≤ √ .
Let n ≥ 1, and compute

E 1/2 f,n -E 1/2 f ,n = f (Y new ) -E[f (Y new )|Y, Φ, Φ new ] L 2 -f (Y new ) -E[ f (Y new )|Y, Φ, Φ new ] L 2 ≤ f (Y new ) -f (Y new ) L 2 + E[f (Y new ) -f (Y new )|Y, Φ, Φ new ] L 2 ≤ 2 f (Y new ) -f (Y new ) L 2 ≤ 2 √ 2 ,
where we successively used the triangular inequality twice for the rst inequality (||a -b| -|x -y|| ≤ |a -x + y -b| ≤ |a -x| + |y -b|) and Jensen's inequality for the second. By the same arguments we have also

|E f (q) 1/2 -E f (q) 1/2 | ≤ 2 √ for all q ∈ [0, ρ]. We conclude that for all n ≥ n 1 , E 1/2 f,n -E f (q * (α)) 1/2 ≤ E 1/2 f,n -E 1/2 f ,n + E f (q * (α)) 1/2 -E f (q * (α)) 1/2 + E 1/2 f ,n -E f (q * (α)) 1/2 ≤ (2 √ 2 + 3) √ , (141) 
which proves Theorem 4.

Generalization error of GAMP: Proof of Proposition 2

Let us decompose:

E GAMP,t gen := E Y new -Y GAMP,t 2 = E Y 2 new + E Y GAMP,t 2 -2E Y new Y GAMP,t . (142) 
Lemma 9. We have

E Y new Y GAMP,t ---→ n→∞ E V E W dY Y P out (Y | q t V + ρ -q t W ) 2 . ( 143 
)
Proof. Start by writing

E Y new Y GAMP,t = E y y P out y Φ new • X * √ n P out y Φ new • x t √ n + ρ -q t W dydy
where W ∼ N (0, 1) is independent of everything else. Φ new ∼ N (0, I n ) is independent of X * and x t , so, conditionally on X * , x t we have

Φ new • X * √ n , Φ new • x t √ n ∼ N 0, 1 n X * 2 x t •X * x t •X * x t 2
.

We assumed that (69) holds, i.e. X * • x t /n → q t and x t 2 /n → q t , in probability. By the law of large numbers X * 2 /n → ρ in probability. Consequently,

Φ new • X * √ n , Φ new • x t √ n (d) ---→ n→∞ N 0, ρ q t q t q t .
Since x → P out (•|x) is continuous almost everywhere for the Wasserstein distance of order 2, the function h : (a, b) → E W yy P out (y|a)P out (y |b + ρ -q t W )dydy with W ∼ N (0, 1) is continuous almost everywhere. Therefore

H n := h Φ new • X * √ n , Φ new • x t √ n (d) ---→ n→∞ h( q t Z 0 + ρ -q t Z 1 , q t Z 0 ) , (144) 
where Z 0 , Z 1 iid ∼ N (0, 1). We have by Jensen's inequality

E H n 1+η ≤ E Y new Y GAMP,t 1+η ≤ E 1 2 Y 2 new + 1 2 ( Y GAMP,t ) 2 1+η ≤ 1 2 E|Y 1 | 2+2η + 1 2 E Y GAMP,t 2+2η .
By assumption, there exists η > 0 such that the two last terms above remain bounded with n: H n is therefore bounded in L 1+η and is therefore uniformly integrable. From (144) we thus get

E Y new Y GAMP,t = E[H n ] ---→ n→∞ E h( q t Z 0 + ρ -q t Z 1 , q t Z 0 ) = E V E W dY Y P out (Y | q t V + ρ -q t W ) 2 .
Following the arguments of Lemma 9 one can also show that

E Y GAMP,t 2 ---→ n→∞ E V E W dY Y P out (Y | q t V + ρ -q t W ) 2 , E Y 2 new ---→ n→∞ E V dY Y 2 P out (Y | √ ρ V ) .
This proves (together with (142) and Lemma 9) Proposition 2.

Limit of the overlap: Proof of Theorem 2

Recall the de nition of the overlap (105): Q n := X * • x/n, where x = (x 1 , . . . , x n ) is a sample from the posterior distribution P (X * | Y, Φ), independently of everything else. In this section we will show that |Q n | converges in probability to q * (α), when α ∈ D * given by ( 50). We will rst show an upper-bound in Sec. 5.3.1 below, before proving the converse lower-bound in Sec. 5.3.2.

Upper bound on the overlap

Proposition 9 (Upper bound on the overlap). For all α ∈ D * and for all > 0,

P |Q n | ≥ q * (α) + ---→ n→∞ 0 .
Let us x α ∈ D * and let p ≥ 1. In order to obtain an upper bound on the overlap, we consider an observation model with some (small) extra information (that takes the form of a tensor of order 2p) in addition of the original model [START_REF] Advani | An equivalence between high dimensional bayes optimal inference and m-estimation[END_REF], i.e. we observe

   Y ∼ P out (• | ΦX * / √ n) , Y = λ n 2p-1 (X * ) ⊗2p + Z , (145) 
where λ ≥ 0, Z = (Z i 1 ...i 2p ) 1≤i 1 ,...,i 2p ≤n iid ∼ N (0, 1) and (X * ) ⊗2p = (X i 1 . . . X i 2p ) 1≤i 1 ,...,i 2p ≤n . In order to prove Proposition 9 we need the two results below, which are proven after the proof of Proposition 9.

Proposition 10 (Mutual information of the perturbed model). For all λ ≥ 0, the mutual information for model (145) veri es

lim n→∞ 1 n I X * ; Y, Y Φ = I(λ) , (146) 
where the right-hand-side is

I(λ) := inf q∈[0,ρ] sup r≥0 I P 0 (r+2pλq 2p-1 ) + αI Pout (q) - r 2 (ρ -q) + 2p -1 2 λq 2p -ρpλq 2p-1 + λ 2 ρ 2p . ( 147 
)
Lemma 10. The function I de ned above by (147) is concave on R + . Its left-and right-derivatives are given by

I (λ + ) = min 1 2 ρ 2p -q * (λ) 2p q * (λ) achieves the in mum in (147) , I (λ -) = max 1 2 ρ 2p -q * (λ) 2p q * (λ)
achieves the in mum in (147) .

We are now in position to prove Proposition 9.

Proof of Proposition 9: By the I-MMSE relation of Proposition 13,

1 n ∂ ∂λ I X * ; Y, Y Φ = 1 n ∂ ∂λ I (X * ) ⊗2p ; Y, Y Φ = 1 2n 2p MMSE (X * ) ⊗2p Y, Y , Φ .
Using Proposition 10 and Lemma 10 above we obtain by concavity that

1 2n 2p MMSE (X * ) ⊗2p Y, Y , Φ = 1 n ∂ ∂λ I X * ; Y, Y Φ ---→ n→∞ I (λ) = 1 2 ρ 2p -q * (λ) 2p ,
for all λ > 0 for which the in mum of ( 147) is achieved at a unique q * (λ). Consequently,

lim inf n→∞ 1 n 2p MMSE (X * ) ⊗2p Y, Φ ≥ lim inf n→∞ 1 n 2p MMSE (X * ) ⊗2p Y, Y , Φ = ρ 2p -q * (λ) 2p . (148) 
Let us now suppose that α ∈ D * . In that case, there exists a unique q * (λ = 0) = q * (α) that achieves the in mum in (147). Consequently, I (0

+ ) = 1 2 (ρ 2p -q * (α) 2p
). By concavity, I (λ) → I (0 + ) as λ → 0, which gives q * (λ) → q * (α). By taking the λ → 0 limit in (148) above we get

lim inf n→∞ 1 n 2p MMSE (X * ) ⊗2p Y, Φ ≥ ρ 2p -q * (α) 2p .
One veri es easily that

1 n 2p MMSE (X * ) ⊗2p Y, Φ = ρ 2p -E Q 2p n + o n (1) , (149) 
so we deduce that lim sup

n→∞ E Q 2p n ≤ q * (α) 2p .
Let > 0. By Markov's inequality we have

P |Q n | ≥ q * (α) + ≤ E Q 2p n (q * (α) + ) 2p .
By taking the lim sup in n on both sides we obtain

lim sup n→∞ P |Q n | ≥ q * (α) + ≤ q * (α) 2p (q * (α) + ) 2p ,
and Proposition 9 follows by taking the p → ∞ limit in the inequality above.

We now prove the two preliminary results used in the proof of Proposition 9.

Proof of Proposition 10: The proof is very similar to the one of Theorem 1 (and Corollary 2), by the adaptive interpolation method (see Sec. 4), so we provide only the main arguments and omit to write the small perturbation (i.e. the 1 , 2 present in Sec. 4) for simplicity.

In order to tackle model (145) we need rst to study a simpler one, namely when we have access to the simultaneous observations

Y ∼ P out (• | ΦX * / √ n) and Y = √ γ X * + Z .
De ne, for γ ≥ 0, the free entropy (expected log-partition function) of this model:

F n (γ) := 1 n E ln dP 0 (x) exp n i=1 √ γZ i x i + γx i X * i - γ 2 x 2 i m µ=1 P out Y µ 1 √ n Φ µ • x , (150) 
where Z i iid ∼ N (0, 1) are independent of everything else. Let us de ne

F RS (γ) := sup q∈[0,ρ] inf r≥0 ψ P 0 (r + γ) + αΨ Pout (q) - rq 2 . (151) 
A slight and easy modi cation of the Theorem 1 gives that for all γ ≥ 0

F n (γ) ---→ n→∞ F RS (γ) . ( 152 
)
F n is a convex function of γ (this can be checked by relating it to the mutual information like in Corollary 2 and then using the I-MMSE relation of Proposition 13), thus F RS is too. The function F RS is therefore continuous on R + . F n is also a non-decreasing function of γ (this is again checked using the I-MMSE relation). By Dini's second theorem we obtain that the convergence of ( 152) is uniform over all compact subsets of R + . Now that we have studied this simpler model, we come back to the analysis of (145). We proceed by interpolation as in Sec. 4.1. Let q : [0, 1] → [0, ρ] be a continuous interpolating function. For t ∈ [0, 1], consider the following "interpolating estimation model":

       Y µ ∼ P out ( • | ΦX * / √ n) , 1 ≤ µ ≤ m , Y t = λ(1-t) n 2p-1 (X * ) ⊗2p + Z , Y t,i = 2pλ t 0 q(v) 2p-1 dv X * i + Z i , 1 ≤ i ≤ n . (153) 
De ne the corresponding interpolating free entropy:

f n (t) := 1 n E ln dP 0 (x)e Hn,t (x) m µ=1 
P out Y µ 1 √ n Φ µ • x ,
where the Hamiltonian of the model is

H n,t (x) = n i=1 2pλ t 0 q(v) 2p-1 dv Z i x i + 2pλ t 0 q(v) 2p-1 dv x i X * i -pλ t 0 q(v) 2p-1 dv x 2 i + i 1 ,...,i 2p λ(1 -t) n 2p-1 Z i 1 ...i 2p x i 1 . . . x i 2p + λ(1 -t) n 2p-1 x i 1 . . . x i 2p X * i 1 . . . X * i 2p - λ(1 -t) 2n 2p-1 x 2 i 1 . . . x 2 i 2p .
We aim at computing f n := f n (0). We have f n (1) = F n (2pλ

1 0 q(t) 2p-1 dt).
Similarly to Proposition 3 one can compute (see [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF] where this computation is done):

f n (t) = - λ 2 E Q 2p t -2pq(t) 2p-1 Q t t (154) 
where Q t = n i=1 X * i x i /n is the overlap between the planted solution X * and x = (x 1 , . . . , x n ), a sample from the posterior distribution P (X * |Y, Y t , Y t ). Similarly as in Sec. 4.1 the Gibbs brackett denotes the expectation w.r.t. this t-dependent posterior acting on x, E is w.r.t. the quenched variables Y, Y t , Y t . By convexity of the function x → x 2p , we have for all a, b ∈ R, a 2p -2pab 2p-1 ≥ (1 -2p)b 2p . Consequently, if we choose q to be a constant function, i.e. q(t) = q for all t ∈ [0, 1], we have

f n (t) ≤ λ 2 (2p -1)q 2p .
This gives

f n = f n (0) = f n (1) - 1 0 f n (t)dt ≥ F n (2pλq 2p-1 ) - λ 2 (2p -1)q 2p .
By taking the lim inf in n on both sides, we obtain lim inf n→∞ f n ≥ F RS (2pλq 2p-1 ) -λ 2 (2p -1)q 2p using (152) and since this holds for all q ∈ [0, ρ] we get

lim inf n→∞ f n ≥ sup q∈[0,ρ] F RS (2pλq 2p-1 ) - λ 2 (2p -1)q 2p .
Let us now prove the converse upper-bound. One can show as in Sec. 4.3 that the overlap Q t concentrates around its expectation: Proposition 4 applies. This perturbation does not change the free entropy in the limit n → ∞ nor the following derivation, so we do not track it explicitely for the sake of simplicity. Let us go back to (154). Therefore, using this concentration and then choosing q(t) = q(t) = E Q t t as done in Sec. 4.4, we obtain that

f n (t) = λ 2 (2p -1)q(t) 2p + o n (1) .
Consequently,

f n = f n (1) - 1 0 f n (t)dt = F n 2pλ 1 0 q(t) 2p-1 dt - λ 2 (2p -1) 1 0 q(t) 2p dt + o n (1) ≤ F n 2pλ 1 0 q(t) 2p-1 dt - λ 2 (2p -1) 1 0 q(t) 2p-1 dt 2p 2p-1 + o n (1) ≤ sup q∈[0,ρ] F n (2pλq 2p-1 ) - λ 2 (2p -1)q 2p + o n (1) 
.

We use now the fact that the convergence in ( 152) is uniform over all compact sets to get the upper-bound: lim sup n→∞ f n ≤ sup q∈[0,ρ] F RS (2pλq 2p-1 ) -λ 2 (2p -1)q 2p . We conclude that

lim n→∞ f n = sup q∈[0,ρ] F RS 2pλq 2p-1 - λ 2 (2p -1)q 2p . (155) 
We are now going to simplify the right-hand side of the above equation.

Lemma 11. F RS is a convex function on R + , whose left-and right-derivatives at γ ≥ 0 are:

F RS (γ + ) = max 1 2 q * (γ) q * (γ) achieves the supremum in (151) , F RS (γ -) = min 1 2 q * (γ) q * (γ) achieves the supremum in (151) .
In particular, F RS is di erentiable at γ ≥ 0 if and only if the supremum in (151) is achieved at a unique q * (γ).

Proof. We already know that F RS is convex (as a limit of convex functions, see (152)). We have

F RS (γ) = sup q∈[0,ρ] inf r≥0 ψ P 0 (r + γ) + αΨ Pout (q) - rq 2 = sup q∈[0,ρ] αΨ Pout (q) -g(γ, q/2) (156) 
where g(γ, x) = sup r≥0 xr -ψ P 0 (γ + r) is the Legendre transform of r → ψ P 0 (γ + r). Let us now compute ∂g ∂γ (γ, x). If x ≤ ψ P 0 (γ), then the supremum in r is achieved at r = 0, g(x, γ) = -ψ P 0 (γ). If now x > ψ P 0 (γ) then

g(γ, x) = sup r≥-γ xr -ψ P 0 (γ + r) = -γx + sup r≥0 xr -ψ P 0 (r) .
The rst equality comes from the fact that the supremum can not be achieved on [-γ, 0] because for all r ∈ [-γ, 0], x > ψ P 0 (γ) ≥ ψ P 0 (γ + r). We obtain

g(γ, x) = -ψ P 0 (γ) if x ≤ ψ P 0 (γ) , -xγ + g(0, x) if x > ψ P 0 (γ) .
From there, we conclude that ∂g ∂γ (γ, x) = -max ψ P 0 (γ), x . By Lemma 23, every optimal couple (q * (γ), r * (γ)) satisfy q * (γ) = 2ψ P 0 (γ +r * (γ)). This implies (by convexity of ψ P 0 ) that q * (γ)/2 ≥ ψ P 0 (γ). Using Corollary 4 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] F RS we get that

F RS (γ + ) = max - ∂g ∂γ (γ, q * (γ)) q * (γ) maximizer of (151) = max 1 2 q * (γ) q * (γ) maximizer of (151)
and analogously for F RS (γ -).

Lemma 12. We have

sup q∈[0,ρ] F RS (2pλq 2p-1 )-(2p-1) λ 2 q2p = sup q∈[0,ρ] inf r≥0 ψ P 0 (r+2pλq 2p-1 )+αΨ Pout (q)- rq 2 -(2p-1) λ 2 q 2p .
Proof. Consider the equality above. The inequality l.h.s ≥ r.h.s. is obvious because it su ces to restrict the supremum over (q, q) ∈ [0, ρ] 2 to the supremum over the couples (q, q) for q ∈ [0, ρ].

Let us prove now the converse inequality. Let us do the change of variable x = q2p-1 and de ne H(x) 1) . F RS is left-and right-di erentiable everywhere, so is H. We have

:= F RS (2pλx) -(2p -1) λ 2 x 2p/(2p-
H (x) = 2pλF RS (2pλx) - λ 2 2px 1/(2p-1) = pλ 2F RS (2pλx) -x 1/(2p-1) (157) 
at the points at which H is di erentiable, and analogously for the left-and right-derivatives of H. Let x ∈ [0, ρ 2p-1 ] be a point at which H achieves its supremum over [0, ρ 2p-1 ]. Let us distinguish 3 cases:

• Case 1: x = 0. In that case, we have H (0 + ) ≤ 0 and thus F RS (0 + ) ≤ 0. Using Lemma 11, we obtain that the only q ∈ [0, ρ] that achieves the supremum in (151) is q = 0 = x 1/(2p-1) .

• Case 2: 0 < x < ρ 2p-1 . We have then H (x -) ≥ 0 and H (x + ) ≤ 0. Using (157), we deduce that

2F RS (2pλx) + ≤ x 1/(2p-1) ≤ 2F RS (2pλx) -.
F RS is convex, so the above inequalities collapses into equalities and we get that F RS is di erentiable at 2pλx with derivative given by F RS (2pλx) = x 1/(2p-1) /2. Lemma 11 above gives then that the supremum in (151) is achieved uniquely at q = x 1/(2p-1) .

• Case 3: x = ρ 2p-1 . Using the same arguments than in Case 1, we obtain also q = x 1/(2p-1) .

Conclusion: In all 3 cases above, q = x 1/(2p-1) achieves the supremum in (151). Recall that we used the change of variable x = q2p-1 . Consequently, if q ∈ [0, ρ] achieves the supremum of q → F RS (2pλq 2p-1 ) -(2p -1)λq 2p , then q achieves also the supremum in (151). This proves the converse bound.

By Lemma 12 and (155) above, we get that

f n ---→ n→∞ sup q∈[0,ρ] inf r≥0 ψ P 0 (r + 2pλq 2p-1 ) + αΨ Pout (q) - rq 2 -(2p -1) λ 2 q 2p .
Proposition 10 follows then by rewriting the above limit in terms of mutual information, as we did to deduce Corollary 2 from Theorem 1.

Proof of Lemma 10: The proof follows exactly the same steps than the one of Lemma 11, so we omit it for the sake brevity.

Lower bound using the generalization error

Let us x α ∈ D * . The sequence of the overlaps Q n n≥1 is tight (because bounded in L 1 ). By Prokhorov's Theorem we know that the sequence of the laws of Q n n≥1 is relatively compact. We can thus consider a subsequence along which it converges in law, to some random variable Q. In order to simplify the notations (and because working with an extraction does not change the proof) we will assume in the sequel that

Q n (d) ---→ n→∞ Q ,
for some random variable Q. We aim now at showing that |Q| = q * (α) almost-surely.

Lemma 13 (Upper bound on the overlap). |Q| ≤ q * (α) almost-surely.

Proof. Let > 0. The set [0, q * (α) + ] is closed, so by Portemanteau's Theorem

P |Q| ≤ q * (α) + ≥ lim sup n→∞ P |Q n | ≤ q * (α) + = 1 ,
by Proposition 9. So P |Q| ≤ q * (α) + = 1 for all > 0 which gives P |Q| ≤ q * (α) = 1.

We are going to prove the converse lower bound using Theorem 4. Let f : R → R be a continuous bounded function. Theorem 4 gives E f,n (α) ---→ n→∞ E f (q * (α)). The function E f can be written as

E f (q) = 1 2 E h f √ qZ 0 + √ ρ -qZ 1 , √ qZ 0 + √ ρ -qZ 1 where Z 0 , Z 1 , Z 1 iid ∼ N (0, 1) and h f : (a, b) ∈ R 2 → (f (y 1 ) -f (y 2 )
) 2 P out (y 1 |a)P out (y 2 |b)dy 1 dy 2 . By a central limit argument, we have:

Lemma 14. x • Φ new √ n , X * • Φ new √ n (d) ---→ n→∞ (Z 1 , Z 2 ) , where (Z 1 , Z 2 ) is sampled, conditionally on Q, from N 0, ρ Q Q ρ . Proof. Notice that x and X are independent of Φ new . If (Φ new,1 , . . . , Φ new,n ) iid ∼ N (0, 1), then Lemma 14 is obvious because in that case x • Φ new √ n , X * • Φ new √ n ∼ N 0, 1 n x 2 x•X * x•X * X * 2 and 1 n x 2 x•X * x•X * X * 2 (d) ---→ n→∞ ρ Q Q ρ .
Let us now suppose that the entries of Φ new are not i.i.d. standard Gaussian (but still verify hypothesis (h3)). Let g 1 , . . . , g n iid ∼ N (0, 1). Let L : R 2 → R be a bounded C 3 function, with bounded partial derivatives. We have to show that

E L x • Φ new √ n , X * • Φ new √ n ---→ n→∞ E L(Z 1 , Z 2 ) . (158) 
We have seen above that E L

x•g √ n , X * •g √ n ---→ n→∞ E[L(Z 1 , Z 2 )]
. We now apply Theorem 5 (Theorem 2 from [START_REF] Korada | Applications of the Lindeberg principle in communications and statistical learning[END_REF]) conditionally on x, X * to obtain

E L x • Φ new √ n , X * • Φ new √ n = E L x • g √ n , X * • g √ n + O n (n -1/2 ) ,
which proves (158) and therefore Lemma 14.

Proposition 11. We have

E f,n (α) ---→ n→∞ 1 2 E h f (Z 1 , Z 2 ) ,
where (Z 1 , Z 2 ) is de ned in Lemma 14 above.

Proof. We have

E f,n = E f (Y new ) -E f (Y new ) Φ new , Φ, Y 2 = 1 2 E (f (y new ) -f (y)) 2 P out y new Φ new • X * / √ n P out y Φ new • x/ √ n dy new dy = 1 2 E h f x • Φ new √ n , X * • Φ new √ n .
By Lemma 14 above, we have

x•Φnew √ n , X * •Φnew √ n (d) ---→ n→∞ (Z 1 , Z 2 )
. Using (h4) (and the fact that either (h5.a) or (h5.b) hold), we can nd a Borel set S ⊂ R of full Lebesgue's measure such that x → P out (y|x) is continuous on S, for all y ∈ R. By dominated convergence (recall that f is assumed to be bounded), we obtain that h f is continuous on S × S. The set of discontinuity points of h f has thus zero measure for the law of (Z 1 , Z 2 ). Indeed if we condition on Q:

• if |Q| < ρ, then (Z 1 , Z 2 ) has a density over R 2 .
• if Q = ρ, then Z 1 = Z 2 almost surely, but h f is continuous on (s, s) s ∈ S that has full Lebesgue's measure on the diagonal (x, x) x ∈ R .

• if Q = -ρ, then Z 1 = -Z 2 almost surely and we use then similar arguments as for the previous point.

We have therefore:

h f x • Φ new √ n , X * • Φ new √ n (d) ---→ n→∞ h f (Z 1 , Z 2 ) ,
and Lemma 11 follows from the fact that h f is bounded.

Let us now de ne:

H f : [-ρ, ρ] → R q → 1 2 E h f (G (q) ) (159) 
where G (q) ∼ N 0, ( ρ q q ρ ) . Notice that H f is equal to the function E f on [0, ρ]. By Proposition 11 above and Theorem 4, we have:

H f (q * (α)) = lim n→∞ E f,n (α) = E H f (Q) . ( 160 
) Lemma 15. For all q ∈ [-ρ, ρ], H f (q) ≥ H f (|q|). Proof. Let q ∈ [0, ρ] and Z 0 , Z 1 , Z 1 iid ∼ N (0, 1). H f (-q) = 1 2 E h f √ qZ 0 + √ ρ -qZ 1 , - √ qZ 0 + √ ρ -qZ 1 .
Let us denote by E Z 1 and E Z 1 the expectations with respect to Z 1 and Z 1 . By replacing h f by its expression, we have

H f (-q) = 1 2 E (f (y) -f (y )) 2 P out (y| √ qZ 0 + √ ρ -qZ 1 )P out (y | - √ qZ 0 + √ ρ -qZ 1 )dydy = 1 2 E (f (y) -f (y )) 2 E Z 1 P out (y| √ qZ 0 + √ ρ -qZ 1 )E Z 1 P out (y | - √ qZ 0 + √ ρ -qZ 1 )dydy = 1 2 E (f (y) -f (y )) 2 P out (y|Z 0 ) P out (y | -Z 0 )dydy , where P out (y|z) = E Z 1 P out (y| √ qz + √ ρ -qZ 1 )
. Let now Y and Y be two random variables that are independent conditionally on Z 0 and distributed as

Y ∼ P out (•|Z 0 ) and Y ∼ P out (•| -Z 0 ) .
Then we have

H f (-q) = 1 2 E f (Y ) -f (Y ) 2 = 1 2 E f (Y ) -E[f (Y )|Z 0 ] + E[f (Y )|Z 0 ] -f (Y ) 2 = 1 2 E f (Y ) -E[f (Y )|Z 0 ] 2 + 1 2 E E[f (Y )|Z 0 ] -f (Y ) 2 ,
because Y and Y are independent conditionally on Z 0 . The conditional expectation

E[f (Y )|Z 0 ] is Z 0 - measurable, therefore E (E[f (Y )|Z 0 ]-f (Y )) 2 ≥ E (E[f (Y )|Z 0 ]-f (Y )) 2 = E (E[f (Y )|Z 0 ]-f (Y )) 2 .
We conclude

H f (-q) ≥ E (E[f (Y )|Z 0 ] -f (Y )) 2 = H f (q) .
We have now all the tools needed to prove Theorem 2. Using Lemma 15 and (160) above, we get that

EH f (|Q|) ≤ EH f (Q) = H f (q * (α)). Since H f is equal to E f on [0, ρ] this gives E E f (|Q|) ≤ E f (q * (α)) . (161) 
If q * (α) = 0, then Theorem 2 follows simply from Proposition 9. We suppose now that q * (α) > 0 and consider ∈ (0, q * (α)). We de ne p( ) = P |Q| ≤ q * (α) -. We are going to show that p( ) = 0. We assumed that P out is informative, so by Proposition 23 and Proposition 24 in Appendix B.2, there exists a continuous bounded function f : R → R such that E f is strictly decreasing on [0, ρ]. In the following, f is assumed to be such a function. We have

E E f (|Q|) = E 1 |Q| ≤ q * (α) -E f (|Q|) + 1 |Q| > q * (α) -E f (|Q|) ≥ p( )E f (q * (α) -) + (1 -p( ))E f (q * (α))
.

because E f is non-increasing and because |Q| ≤ q * (α) almost-surely (Lemma 13). Combining this with (161) leads to p(

)E f (q * (α)) ≥ p( )E f (q * (α) -) .
Since E f is strictly decreasing: E f (q * (α)) < E f (q * (α) -), which implies p( ) = 0. This is true for all > 0, consequently |Q| ≥ q * (α) almost-surely. We get (using Lemma 13) that |Q| = q * (α) , almost-surely.

We conclude that the only possible limit in law of the tight sequence |Q n | n≥1 is q * (α). Therefore |Q n | → q * (α) in law and in probability because q * (α) is a constant.

Denoising error: Proof of Corollary 5

Start by noticing that the denoising error, i.e. the right hand side of [START_REF] Mezard | Information, physics, and computation[END_REF], is obtained through the I-MMSE theorem, see Proposition 13, applied to i n := I(X * , A; Y |Φ)/n:

∂ i n ∂∆ -1 = 1 2n MMSE ϕ 1 √ n ΦX * , A Φ, Y . (162) 
This mutual information is simply computed using our main theorem. Indeed,

i ∞ := lim n→∞ i n = lim n→∞ 1 n H(Y|Φ) -lim n→∞ 1 n H(Y|Φ, X * , A) = -f ∞ -lim n→∞ 1 n H(Y|Φ, X * , A) .
One can simply check that lim n→∞ H(Y|Φ, X * , A)/n = α ln(2π∆e)/2 by similar computations as in the proof of Corollary 2. Therefore, de ning

i RS (q, ∆) := - α 2 ln(2π∆e) -αΨ Pout (q) -inf r≥0 ψ P 0 (r) - qr 2 ,
we have i ∞ = sup q∈[0,ρ] i RS (q, ∆) from Theorem 1. One can verify easily that i n is a concave di erentiable function of ∆ -1 (this is again related to the I-MMSE theorem). Thus its limit i ∞ is also a concave function of ∆ -1 . Therefore, a standard analysis lemma gives that the derivative of i n w.r.t. ∆ -1 converges to the derivative of i ∞ at every point at which i ∞ is di erentiable (i.e. almost every points, by concavity):

lim n→∞ ∂ ∆ -1 i n = ∂ ∆ -1 i ∞ = ∂ ∆ -1 sup q∈[0,
ρ] i RS (q, ∆). The rst limit is given by the limit of the right hand side of (162). It thus remains to compute ∂ ∆ -1 sup q∈[0,ρ] i RS (q, ∆).

Assume for a moment that the ∂ ∆ -1 and sup q∈[0,ρ] operations commute. Then we need to compute ∂ ∆ -1 Ψ Pout (q); this follows from the I-MMSE theorem. Indeed, if we denote S = ϕ( √ q V + √ ρ -q W * , A), notice that Ψ Pout (q) = -I(S;

S + √ ∆Z | V ) -ln(2πe∆)/2, because Ψ Pout (q) = -H(S + √ ∆Z | V ) and I(S + √ ∆Z; S | V ) = H(S + √ ∆Z | V ) -H(S + √ ∆Z | V, S) = -Ψ Pout (q) -ln(2πe∆)/2. Therefore ∂Ψ Pout (q) ∂∆ -1 = ∆ 2 - ∂ ∂∆ -1 I(S + √ ∆Z; S | V ) = ∆ 2 - 1 2 MMSE(S | V, S + √ ∆Z) = ∆ 2 - 1 2 E ϕ( √ ρ V, A) 2 -E ϕ( √ q V + √ ρ -q w, a) 2 sc .
Consequently,

∂ i RS (q, ∆) ∂∆ -1 = α 2 E ϕ( √ ρ V, A) 2 -E ϕ( √ q V + √ ρ -q w, a) 2 sc .
Now, Theorem 1 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] gives that at every ∆ -1 at which i ∞ is di erentiable

∂ i ∞ ∂∆ -1 = ∂ ∂∆ -1 sup q∈[0,ρ] i RS (q, ∆) = α 2 E ϕ( √ ρ V, A) 2 -E ϕ( q * V + ρ -q * w, a) 2 sc
where q * ∈ [0, ρ] is a point where the supremum above is achieved, and thus corresponds to an optimal couple in [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. As explained above,

lim n→∞ ∂ ∆ -1 i n = ∂ ∆ -1 i ∞ at every ∆ -1 at which i ∞ is di erentiable, which concludes the proof.
is concave, continuously di erentiable over R + , with derivative given by

I P X (λ) = 1 2 MMSE(X | √ λX + Z) = 1 2 E X -E[X| √ λX + Z] 2 .
Remark: We will often apply Proposition 13 in a "conditional fashion". Let U be some random variable independent from Z, then

∂ ∂λ I(X; √ λX + Z|U) = 1 2 MMSE(X | √ λX + Z, U) = 1 2 E X -E[X| √ λX + Z, U] 2 .
Proposition 14. Let P 1 and P 2 be two probability distributions on R n , that admits a nite second moment. We denote by W 2 (P 1 , P 2 ) the Wasserstein distance of order 2 between P 1 and P 2 .

I(X 1 ; X 1 + Z) -I(X 2 ; X 2 + Z) ≤ E X 1 2 + E X 2 2 W 2 (P 1 , P 2 ) .
A similar result was proved in [START_REF] Wu | Functional properties of minimum mean-square error and mutual information[END_REF] but with a weaker bound for the W 2 distance.

Proof. Let > 0. Let us x a coupling of X 1 ∼ P 1 and X 2 ∼ P 2 such that

E X 1 -X 2 2 1/2 ≤ W 2 (P 1 , P 2 ) + .
Let us consider for t 1 , t 2 ∈ [0, 1] the observation model

Y (t 1 ) 1 = √ t 1 X 1 + Z 1 , Y (t 2 ) 2 = √ 1 -t 2 X 2 + Z 2 ,
where Z 1 , Z 2 iid ∼ N (0, I n ) are independent from (X 1 , X 2 ). De ne J(t 1 , t 2 ) = I(X 1 , X 2 ; Y

(t 1 ) 1 , Y (t 2 )
2 ) and I(t) = J(t, t). Let us now di erentiate J with respect to t 1 . Using the chain rule for the mutual information,

J(t 1 , t 2 ) = I(X 1 , X 2 ; Y (t 2 ) 2 ) + I(X 1 , X 2 ; Y (t 1 ) 1 |Y (t 2 ) 2 ) = I(X 1 , X 2 ; Y (t 2 ) 2 ) + I(X 1 ; Y (t 1 ) 1 |Y (t 2 ) 2 ) + I(X 2 ; Y (t 1 ) 1 |X 1 , Y (t 2 ) 2 ) = I(X 1 , X 2 ; Y (t 2 ) 2 ) + I(X 1 ; Y (t 1 ) 1 |Y (t 2 ) 2 )
because, conditionally on X 1 , X 2 and Y (t 1 ) 1 are independent. The quantity I(X 1 , X 2 ; Y

(t 2 )
2 ) does not depend on t 1 , therefore by the "I-MMSE relation" from Proposition 13:

∂J ∂t 1 (t 1 , t 2 ) = 1 2 MMSE(X 1 |Y (t 1 ) 1 , Y (t 2 )
2 )

and similarly

∂J ∂t 2 (t 1 , t 2 ) = - 1 2 MMSE(X 2 |Y (t 1 ) 1 , Y (t 2 )
2 ) .

Let us write E

i = E[X i |Y (t) 1 , Y (t) 
2 ] for i = 1, 2, then

I (t) = 1 2 MMSE(X 1 |Y (t) 1 , Y (t) 
2 ) -

1 2 MMSE(X 2 |Y (t) 1 , Y (t) 2 ) = 1 2 E X 1 -E 1 2 -X 2 -E 2 2 so that |I (t)| = 1 2 E X 1 -E 1 + X 2 -E 2 X 1 -E 1 -X 2 -E 2 ≤ 1 2 E X 1 2 + X 2 2 1/2 E X 1 -E 1 -X 2 -E 2 2 1/2 ≤ 1 2 E X 1 2 + X 2 2 1/2 E X 1 -X 2 + E 2 -E 1 2 1/2 ≤ 1 2 E X 1 2 + E X 2 2 E 2 X 1 -X 2 2 + 2 E 2 -E 1 2 1/2 ≤ E X 1 2 + E X 2 2 W 2 (P 1 , P 2 ) + .
We obtain the result by letting → 0.

Proposition 15. Let P U be a probability distribution over N m that admits a nite second moment. Let U ∼ P U and Z ∼ N (0, I m ) be two independent random variables. Then H(U) = -n∈N m P U (n) ln P U (n) is nite and for all ∆ ∈ (0, 1],

I(U; U + √ ∆Z) -H(U) ≤ 48me -1/(16∆) .
Proof. Let us de ne for ∆ > 0, h(∆) = I(U; U + √ ∆Z) = I P U (∆ -1 ). By Proposition 13 we have for all ∆ > 0,

h (∆) = - 1 2∆ 2 MMSE(U | U + √ ∆Z) . (165) 
We are now going to upper bound MMSE(U | U + √ ∆Z) by considering the following estimator:

θ i = arg min u∈N |u -U i + √ ∆Z i |,
for all i ∈ {1, . . . , m}. Note that θ i is well-de ned almost-surely since there is a.s. a unique minimizer above. We have

P( θ i = U i ) ≤ P √ ∆|Z i | ≥ 1/2 = 2P N (0, 1) ≥ 1 2 √ ∆ ≤ 2 1 √ 2π 2 √ ∆e -1/(8∆) ≤ 2 √ ∆e -1/(8∆) ,
by usual bounds on the Gaussian cumulative distribution function. We have then

MMSE(U | U + √ ∆Z) ≤ E U -θ 2 = m i=1 E(U i -θ i ) 2 = m i=1 E 1( θ i = U i )(U i -θ i ) 2 ≤ m i=1 2E 1( θ i = U i )(U i -(U i + √ ∆Z i )) 2 + 2E 1( θ i = U i )(U i + √ ∆Z i -θ i ) 2 ≤ m i=1 2E 1( θ i = U i )∆Z 2 i + 1 2 E 1( θ i = U i ) ≤ m i=1 2∆P( θ i = U i ) 1/2 E[Z 4 i ] 1/2 + 1 2 P( θ i = U i ) ≤ me -1/(16∆) 2 √ 6∆ 5/4 + √ ∆ ≤ 6me -1/(16∆)
for ∆ ≤ 1. Plugging this inequality in (165), we obtain for all ∆ ∈ (0, 1],

|h (∆)| ≤ 3m ∆ 2 e -1/(16∆) . (166) 
Since h( 1) is nite and

1 0 e -1/(16∆) ∆ 2
d∆ < +∞ we obtain that sup

∆∈(0,1] |h(∆)| < +∞ . (167) 
By de nition of h:

h(∆) = I(U; U + √ ∆Z) = - m 2 -E ln U∈N m P U (U) exp - 1 2∆ U + √ ∆Z -U 2 . ( 168 
)
By the previous equality and (167), the family of (non-negative) random variables -ln

U∈N m P U (U) exp - 1 2∆ U + √ ∆Z -U 2 ∆∈(0,1]
is bounded in L 1 . Notice that (by dominated convergence)

-ln

U∈N m P U (U) exp - 1 2∆ U + √ ∆Z -U 2 ---→ ∆→0 -ln P U (U)e -1 2 Z 2 = 1 2 Z 2 -ln P U (U)
almost-surely. This gives (by Fatou's Lemma) that this almost-sure limit is integrable and thus that H(U) = -E ln P U (U) is nite. Let us now show that h(∆) ---→ ∆→0 H(U). We have almost-surely

ln P U (U)e -1 2 Z 2 ≤ ln U∈N m P U (U) exp - 1 2∆ U + √ ∆Z -U 2 ≤ 0 .
Since we now know that the left-hand side is integrable (because H(U) is nite), we can apply the dominated convergence theorem to obtain that E ln

U∈N m P U (U) exp - 1 2∆ U + √ ∆Z -U 2 ---→ ∆→0 E ln P U (U)e -1 2 Z 2 = H(U) - m 2 ,
which combined with (168) gives h(∆) ---→ ∆→0 H(U). Now, using the bound on the derivative of h (166) we conclude that for all ∆ ∈ (0, 1],

|h(∆) -H(U)| ≤ 3m ∆ 0 e -1/(16t) t 2 dt = 3m 16e -1/(16t) ∆ 0 = 48me -1/(16∆) .
Corollary 7. Let U be a random variable over N m with nite second moment, let X be a random variable over R n and let Z ∼ N (0, I m ). We assume (U, X) to be independent from Z. Then, for all ∆ ∈ (0, 1],

I(X; U + √ ∆Z) -I(X; U) ≤ 100me -1/(16∆) .
Proof. We have by the chain rule of the mutual information:

I(U; U + √ ∆Z) = I(U, X; U + √ ∆Z) = I(X; U + √ ∆Z) + I(U; U + √ ∆Z|X) .
By applying Proposition 15 twice, we get

|I(U; U + √ ∆Z) -H(U)|, |I(U; U + √ ∆Z|X) -H(U|X)| ≤ 48me -1/(16∆) .
Since I(X; U) = H(U) -H(U|X) we obtain the desired inequality.

A.4 A simple consequence of hypotheses (h1)-(h2)-(h3)-(h4) Proposition 16. Assume that hypotheses (h1)-(h2)-(h3)-(h4) hold. Then there exists η > 0 such that

E ϕ( √ ρZ, A) 2+η < ∞ ,
where the expectation above is with respect to (Z, A) ∼ N (0, 1) ⊗ P A .

Proof. By the Central Limit Theorem (using the fact that the third moments of (X * i Φ 1,i ) are bounded with n, because of hypotheses (h1) and (h3)) we have

[ΦX * ] 1 / √ n, A 1 (d) ---→ n→∞ ( √ ρG, A 1 ). This implies that ϕ [ΦX * ] 1 √ n , A 1 (d) ---→ n→∞ ϕ( √ ρG, A 1 ) , (169) 
because ϕ( A.5 Derivative of the interpolating free entropy: Proof of Proposition 3

Recall u y (x) is the x-derivative of u y (x) = ln P out (y|x). Moreover denote P out (y|x) and P out (y|x) the rst and second x-derivatives, respectively, of P out (y|x). We will rst prove that for all t ∈ (0, 1)

df n, (t) dt = - 1 2 E 1 n m µ=1
u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r(t) Q -q(t)

n,t, + r(t) 2 (q(t) -ρ) - A n 2 , (170) 
where recall Q := n i=1 X * i x i /n and

A n, := E 1 √ n m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 1 √ n n i=1 (X * i ) 2 -ρ 1 n ln Z t, . (171) 
Once this is done, we will prove that A n, goes to 0 as n → ∞ uniformly in t ∈ [0, 1], in order to obtain Proposition 3.

A.5.1 Proof of (170)

Recall de nition (98) which becomes, when written as a function of the interpolating Hamiltonian [START_REF] Korada | Applications of the Lindeberg principle in communications and statistical learning[END_REF],

f n, (t) = 1 n E Φ,V dY t dY t dP 0 (X * )
DW * e -Ht, (X * ,W * ;Yt,Y t ,Φ,V) ln dP 0 (x)Dw e -Ht, (x,w;Yt,Y t ,Φ,V) .

(172)

We will need the Hamiltonian t-derivative H t, given by

H t, (X * , W * ; Y t , Y t , Φ, V) = - m µ=1 dS t,µ dt u Yt,µ (S t,µ ) - r(t) 2 R 1 (t) n i=1 X * i (Y t,i -R 1 (t)X * i ) . ( 173 
)
The derivative of the interpolating free entropy thus reads, for 0 < t < 1,

df n, (t) dt = - 1 n E H t, (X * , W * ; Y t , Y t , Φ, V) ln Z t, T 1 - 1 n E H t, (x, w; Y t , Y t , Φ, V) n,t, T 2 (174) 
where recall the de nition of Z t, = Z t, (Y t , Y t , Φ, V) given by [START_REF] Miolane | Phase transitions in spiked matrix estimation: information-theoretic analysis[END_REF].

Let us compute T 1 . Let 1 ≤ µ ≤ m. Let us start with the following term

E dS t,µ dt u Yt,µ (S t,µ ) ln Z t, = 1 2 E - [ΦX * ] µ n(1 -t) + q(t) R 2 (t) V µ + ρ -q(t) ρt -R 2 (t) + 2s n W * µ u Yt,µ (S t,µ ) ln Z t, . (175) 
Let us compute the rst term of the right-hand side of the last identity. By Gaussian integration by parts w.r.t Φ µi we obtain

1 n(1 -t) E [ΦX * ] µ u Yt,µ (S t,µ ) ln Z t, = 1 n(1 -t) n i=1 E dY t dY t e -Ht, (X * ,W * ;Yt,Y t ,Φ,V) Φ µi X * i u Yt,µ (S t,µ ) ln Z t, = 1 n n i=1 E (X * i ) 2 u Yt,µ (S t,µ ) + u Yt,µ (S t,µ ) 2 ln Z t, + E X * i x i u Yt,µ (S t,µ )u Yt,µ (s t,µ ) n,t, = E 1 n n i=1 (X * i ) 2 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) ln Z t, + E 1 n n i=1 X * i x i u Yt,µ (S t,µ )u Yt,µ (s t,µ ) n,t, , (176) 
where we used the identity

u Yt,µ (x) + u Yt,µ (x) 2 = P out (Y t,µ |x) P out (Y t,µ |x) . ( 177 
)
We now compute the second term of the right hand side of (175). Using again Gaussian integrations by parts but this time w.r.t V µ , W * µ iid ∼ N (0, 1) as well as the previous formula, we obtain similarly

E q(t) R 2 (t) V µ + ρ -q(t) ρt -R 2 (t) + 2s n W * µ u Yt,µ (S t,µ ) ln Z t, = E dY t dY t e -Ht, (X * ,W * ;Yt,Y t ,Φ,V) q(t) R 2 (t) V µ + ρ -q(t) ρt -R 2 (t) + 2s n W * µ u Yt,µ (S t,µ ) ln Z t, = E ρ P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) ln Z t, + E q(t)u Yt,µ (S t,µ )u Yt,µ (s t,µ ) n,t, . (178) 
Combining equations (175), ( 176) and (178) together, we have

-E dS t,µ dt u Yt,µ (S t,µ ) ln Z t, = 1 2 E P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 1 n n i=1 (X * i ) 2 -ρ ln Z t, + 1 2 E 1 n n i=1 X * i x i -q(t) u Yt,µ (S t,µ )u Yt,µ (s t,µ ) n,t,
.

As seen from ( 173), (174) it remains to compute E[X * j (Y t,j -R 1 (t)X * j ) ln Z t, ]. Recalling that for 1 ≤ j ≤ n, Y t,j -R 1 (t)X * j = Z j and then using again a Gaussian integration by parts w.r.t Z j ∼ N (0, 1) we obtain

E X * j (Y t,j -R 1 (t)X * j ) ln Z t, = E X * j Z j ln Z t, = E X * j Z j ln dP 0 (x)Dw e -Ht, (x,w;Yt,Y t ,Φ,V) = E X * j Z j ln dP 0 (x)Dw exp m µ=1 u Yt,µ (s t,µ ) - 1 2 n i=1 R 1 (t)X * i + Z i -R 1 (t) x i 2 = -E X * j R 1 (t)(X * j -x j ) + Z j n,t, = -R 1 (t) ρ -E X * j x j n,t, . (179) 
Thus, by taking the sum,

- r(t) 2 R 1 (t) E 1 n n i=1 X * i (Y t,i -R 1 (t)X * i ) ln Z t, = r(t)ρ 2 - r(t) 2 E 1 n n i=1 X * i x i n,t, . (180) 
Therefore, for all t ∈ (0, 1),

T 1 = 1 2 E 1 √ n m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 1 √ n n i=1 ((X * i ) 2 -ρ) 1 n ln Z t, + r(t)ρ 2 - r(t)q(t) 2 + 1 2 E 1 n m µ=1 u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r(t) 1 n n i=1 X * i x i -q(t) n,t, . (181) 
To obtain (170), it remains to show that T 2 = 0. This is a direct consequence of the Nishimori identity (see Appendix A.1):

T 2 = 1 n E H t, (x, w; Y t , Y t , Φ) n,t, = 1 n E H t, (X * , W * ; Y t , Y t , Φ) = 0 . ( 182 
)
For obtaining the Lemma, it remains to show that A n, goes to 0 uniformly in t ∈ [0, 1].

A.5.2 Proof that A n, vanishes as n → ∞

We now consider the nal step, that is showing that A n, given by (171) vanishes in the n → ∞ limit uniformly in t ∈ [0, 1] under conditions (H1)-(H2)-(H3). First we show that

E 1 √ n m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 1 √ n n i=1 (X * i ) 2 -ρ = 0 . ( 183 
)
Once this is done, we use the fact that 1 n ln Z t, concentrates around f n, (t) to prove that A n, converges to 0 as n → ∞. We start by noticing the simple fact that for all s ∈ R, P out (y|s)dy = 0. Consequently, for µ ∈ {1, . . . , m},

E P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) X * , S t = dY t,µ P out (Y t,µ |S t,µ ) = 0 . (184) 
Thus, using the "tower property" of the conditionnal expectation:

E n i=1 ((X * i ) 2 -ρ) m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) = E n i=1 (X * i ) 2 -ρ E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) X * , S t = 0
which gives (183). We now show that A n, goes to 0 uniformly in t ∈ [0, 1] as n → ∞. Using successively (183) and the Cauchy-Schwarz inequality, we have

|A n, | = E 1 √ n m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 1 √ n n i=1 (X * i ) 2 -ρ 1 n ln Z t, -f n, (t) ≤ E 1 √ n m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 1 √ n n i=1 (X * i ) 2 -ρ 2 1/2 E 1 n ln Z t, -f n, (t) 2 1/2 . ( 185 
)
Using again the "tower property" of conditional expectations

E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 n i=1 ((X * i ) 2 -ρ) 2 = E n i=1 (X * i ) 2 -ρ 2 E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 X * , S t . (186) 
Now, using the fact that conditionally on S t , the random variables

P out (Yt,µ|St,µ)
Pout(Yt,µ|St,µ) 1≤µ≤m are i.i.d. and centered, we have

E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 X * , S t = E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 S t = mE P out (Y 1 |S t,1 ) P out (Y 1 |S t,1 ) 2 S t . (187) 
Under condition (H2), it is not di cult to show that there exists a constant C > 0 such that

E P out (Y t,1 |S t,1 ) P out (Y t,1 |S t,1 ) 2 S t ≤ C . (188) 
Combining now (188), ( 187) and ( 186) we obtain that

E m µ=1 P out (Y t,µ |S t,µ ) P out (Y t,µ |S t,µ ) 2 n i=1 (X * i ) 2 -ρ 2 ≤ mC E n i=1 (X * i ) 2 -ρ 2 = mnC Var (X * 1 ) 2 .
Going back to (185), therefore there exists a constant C > 0 such that

|A n, | ≤ C E 1 n ln Z t, -f n, (t) 2 1/2 . ( 189 
)
By Theorem 6 we have

E[(n -1 ln Z t, -f n, (t)) 2 ] → 0 as n → ∞ uniformly in t ∈ [0, 1]. Thus A n, goes to 0 as n → ∞ uniformly in t ∈ [0, 1]
, and w.r.t. the choice of the interpolation functions. This ends the proof of Proposition 3.

A.6 Boundedness of an overlap uctuation

In this appendix we show that the "overlap uctuation"

E 1 n m µ=1
u Yt,µ (S t,µ )u Yt,µ (s t,µ ) -r (t) 

From ( 193) and ( 190) we see that it su ces to check that

m 2 n 2 E (2 sup |ϕ| + |Z µ |) 2 (sup |ϕ |) 2 2 ≤ C(ϕ, α)
where C(ϕ, α) is a constant depending only on ϕ and α. This is easily seen by expanding all squares and using that m/n is bounded.

A.7 Proof of Proposition 6

The continuity and di erentiability properties of F n follow from the standard theorems of continuity and derivation under the integral sign. The domination hypotheses are easily veri ed because we are working under hypotheses (H1)-(H2).

The overlap E Q n,t, is related to the minimum mean-square error by

1 n MMSE(X * |Y t , Y t , V, Φ) = 1 n E X * -E[X * |Y t , Y t , V, Φ] 2 = 1 n E X * -x n,t, 2 = ρ -E Q n,t, .
Since the left hand side belongs to [0, ρ], we obtain that E Q n,t, ∈ [0, ρ].

It remains therefore to prove that MMSE(X * |Y t , Y t , V, Φ) is separately non-increasing in R 1 and R 2 . R 1 only appears in the de nition of Y t . Recall that

Y t = √ R 1 X * + Z , where Z is a standard Gaussian vector, so MMSE(X * |Y t , Y t , V, Φ) is obviously a non-increasing function of R 1 . R 2 only plays a role in Y t ∼ P out (• | (1 -t)/n ΦX * + √ R 2 V + √ ρt -R 2 + 2s n W * ). Let 0 < r 2 ≤ r 2 < ρt. Let V ∼ N (0, I m ), independently of everything else. De ne Y t ∼ P out • 1 -t n ΦX * + √ r 2 V + r 2 -r 2 V + ρt -r 2 + 2s n W * ,
independently of everything else. Now notice that

MMSE(X * |Y t , Y t , V, Φ)| R 2 =r 2 = MMSE(X * | Y t , Y t , V, Φ), MMSE(X * |Y t , Y t , V, Φ)| R 2 =r 2 = MMSE(X * | Y t , Y t , V, V , Φ), which implies of course that MMSE(X * |Y t , Y t , V, Φ)| R 2 =r 2 ≥ MMSE(X * |Y t , Y t , V, Φ)| R 2 =r 2 . We have proved that MMSE(X * |Y t , Y t , V, Φ) is a non-increasing function of R 2 .
We will now compute Ψ Pout . To lighten the notations, we write u (w) for u Y (q) ( √ q V + √ ρ -q w). We compute

∂ q E u (w)u (W * ) sc = E 1 2 √ q V - 1 2 √ ρ -q W * u (W * ) u (w)u (W * ) sc (A) +2E 1 2 √ q V - 1 2 √ ρ -q W * u (W * )u (w) sc (B) +E 1 2 √ q V - 1 2 √ ρ -q W * u (W * ) 2 u (w) sc (C) -E u (W * )u (w) sc 1 2 √ q V - 1 2 √ ρ -q w u (w) sc (D) (195) 
Notice that (A) = (C). We compute, using Gaussian integration by parts and the Nishimori identity (Proposition 12)

(A) = 1 2 E u (W * ) u (W * )u (w) sc + 1 2 E u (W * ) u (W * )u (w) 2 sc - 1 2 E u (W * ) u (W * )u (w) sc u (w) sc ( 196 
) (B) = E u (W * )u (w) sc + E u (W * )u (w) 2 sc -E u (W * )u (w) sc u (w) sc ( 197 
) (D) = -E 1 2 √ q V - 1 2 √ ρ -q W * u (W * )u (w (1) )u (w (2) ) sc = -E u (W * )u (w (1) )u (w (2) ) sc -E u (W * )u (w (1) ) 2 u (w (2) ) sc + E u (W * )u (w (1) )u (w (2) ) sc u (w) sc (198) 
We now replace (196), (197) and (198) in (195): ) )u (w (2) )

2Ψ Pout (q) = E u (W * ) 2 u (w) sc + E u (W * ) 2 u (w) 2 sc -E u (W * ) 2 u (w ( 1 
sc

+ E u (W * )u (w) sc + E u (W * )u (w) 2 sc -E u (W * )u (w (1) )u (w (2) ) sc -E u (W * )u (w (1) )u (w (2) ) sc -E u (W * )u (w (1) ) 2 u (w (2) ) sc + E u (w) 4 sc .
Using the identity u

Y (x) + u Y (x) 2 = P out (Y |x)
Pout(Y |x) , this factorizes and gives

Ψ Pout (q) = 1 2 E P out (Y | √ q V + √ ρ -q w) P out (Y | √ q V + √ ρ -qw) sc -u Y (q) ( √ q V + √ ρ -q w) 2 sc 2 ≥ 0 . ( 199 
)
Ψ Pout is thus convex on [0, ρ]. It is not di cult to verify (by standard arguments of continuity under the integral) that Ψ Pout is continuous on [0, ρ], which gives that Ψ Pout is C 2 on its domain.

Proposition 19. Suppose that for all x ∈ R, P out (• | x) is the law of ϕ(x, A) + √ ∆Z where ϕ : R × R k A → R is a measurable function and (Z, A) ∼ N (0, 1) ⊗ P A , for some probability distribution P A over R k A . Assume also that

E[ϕ( √ ρZ, A) 2 ] < ∞ , (200) 
and that we are in one of the following cases:

(i) ∆ > 0.

(ii) ∆ = 0 and ϕ takes values in N.

Then q → Ψ Pout (q) is continuous, convex and non-decreasing over [0, ρ].

Notice that (200) is for instance veri ed under hypotheses (h1)-(h2)-(h3)-(h4), see Proposition 16.

Proof. We deduce Proposition 19 from Proposition 18 above by an approximation procedure. Since Ψ Pout = Ψ Pout (ρ)-I Pout , we will work with the mutual information I Pout . Let us de ne U (q) = ϕ √ q V + √ ρ -q W * , A and Y (q) = U (q) + √ ∆Z. We start by proving Proposition 19 under the assumption (i). Let > 0. By density of the C ∞ functions with compact support in L 2 (see for instance Corollary 4.2.2 from [START_REF] Bogachev | Measure theory[END_REF]), one can nd a C ∞ function ϕ with compact support, such that

E ϕ( √ ρ Z, A) -ϕ( √ ρ Z, A) 2 ≤ 2 .
Let us write U (q) = ϕ( √ q V + √ ρ -q W * , A) and Y (q) = U + √ ∆Z. We have by the chain rule for the mutual information

I(U (q) ; Y (q) |V ) = I(W * , U (q) ; Y (q) |V ) = I(U (q) ; Y (q) |V, W * ) + I(W * ; Y (q) |V ) = I(U (q) ; Y (q) |V, W * ) + I Pout (q) (201) 
and similarly, I Pout (q) = I( U (q) ; Y (q) |V ) -I( U (q) ; Y (q) |V, W * ). By Proposition 14, there exists a constant C > 0 such that

|I( U (q) ; Y (q) |V ) -I(U (q) ; Y (q) |V )| ≤ C and |I( U (q) ; Y (q) |V, W * ) -I(U (q) ; Y (q) |V, W * )| ≤ C .
We get that for all q ∈ [0, ρ], |I Pout (q) -I Pout (q)| ≤ C . The function I Pout can therefore be uniformly approximated by continuous, concave, non-increasing functions on [0, ρ]: I Pout is therefore continuous, concave and non-increasing.

Let us now prove Proposition 19 under the assumption (ii). Under this assumption we have I Pout (q) = I(W * ; U (q) |V ) and by the case (i) we know that the function i ∆ (q) = I(W * ; U (q) + √ ∆Z|V ) is concave and non-increasing for all ∆ > 0. By Corollary 7 we obtain that for all q ∈ [0, ρ] and all ∆ ∈ (0, 1] we have I Pout (q) -i ∆ (q) ≤ 100e -1/(16∆) , which proves (by uniform approximation) that I Pout is continuous, concave and non-increasing. Proposition 20. Under the same hypotheses than Proposition 19 above, Ψ out is di erentiable over [0, ρ) and for all q ∈ [0, ρ)

Ψ Pout (q) = 1 2(ρ -q) E w 2 sc ,
where we recall thatsc is de ned by [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF].

Proof. The fact that Ψ Pout is di erentiable on [0, ρ) follows from di erentiation under the expectation sign.

In order to see it, we de ne X = √ q V + √ ρ -q W * . Then, for all q ∈ [0, ρ):

Ψ Pout (q) = E dX 1 2π(ρ -q) e - (X- √ q V ) 2 2(ρ-q) dY P out (Y |X) ln dx 1 2π(ρ -q) e - (x- √ q V ) 2 2(ρ-q) P out (Y |x) . (202) 
We are now in a good setting to di erentiate under the expectation sign. We have for all q ∈ (0, ρ), ∂ ∂q

1 √ ρ -q e - (X- √ q V ) 2 2(ρ-q) = 1 2 √ ρ -q 1 ρ -q - (X - √ qV ) 2 (ρ -q) 2 + V (X - √ qV ) √ q(ρ -q) e - (X- √ q V ) 2 2(ρ-q) . (203) 
Thus

Ψ Pout (q) = 1 2 E 1 ρ -q - (X - √ q V ) 2 (ρ -q) 2 + V (X - √ q V ) √ q (ρ -q) ln dx 1 2π(ρ -q) e - (x- √ q V ) 2 2(ρ-q) P out (Y |x) + 1 2 E 1 ρ -q - (x - √ q V ) 2 (ρ -q) 2 + V (x - √ q V ) √ q (ρ -q) sc
where the Gibbs bracketssc denotes the expectation with respect to x ∼ P (X|Y (q) , V ). The second term of the sum above is equal to zero. Indeed by the Nishimori identity (Proposition 12):

E 1 ρ -q - (x - √ q V ) 2 (ρ -q) 2 + V (x - √ q V ) √ q (ρ -q) sc = E 1 ρ -q - (X - √ q V ) 2 (ρ -q) 2 + V (X - √ q V ) √ q (ρ -q) = 1 ρ -q E 1 -(W * ) 2 = 0 .
We now compute, by Gaussian integration by parts with respect to V ∼ N (0, 1):

E V (X - √ q V ) √ q (ρ -q) ln dx 1 2π(ρ -q) e - (x- √ q V ) 2 2(ρ-q) P out (Y (q) |x) = E   -1 ρ -q ln dx e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (Y (q) |x)   + E   (X - √ q V ) 2 (ρ -q) 2 ln dx e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (Y (q) |x)   + E (X - √ q V )(x - √ q V ) (ρ -q) 2 sc .
Bringing all together, we conclude:

Ψ Pout (q) = 1 2 E (X - √ q V )(x - √ q V ) (ρ -q) 2 sc = 1 2(ρ -q) E w 2 sc .
This derivative is continuous at q = 0 thus Ψ Pout is di erentiable at q = 0 with derivative given by the same expression.

Proposition 21. Assume that the hypotheses of Proposition 19 hold and suppose also that the kernel P out is informative. Then Ψ Pout is strictly increasing on [0, ρ].

Proof. Let us suppose that Ψ Pout is not strictly increasing on [0, ρ]. There exists thus q ∈ (0, ρ) such that Ψ Pout (q) = 0. This means that w sc = 0 almost surely and therefore that

R P out (Y (q) | √ q V + √ ρ -q w)we -w 2 /2 dw = 0 almost-surely. Let us write σ = √ ρ -q. Consequently, R P out (y | v + σw)we -w 2 /2 dw = 0 (204) 
for almost all y in R (if we are under assumption (i)) or all y ∈ N (under assumption (ii)) and almost all v ∈ R.

We will now use the following lemma:

Lemma 16. Let Z ∼ N (0, 1) and let f : R → R be a bounded function. Suppose that for almost all v ∈ R,

E[Zf (v + Z)] = 0 .
Then, there exists a constant C ∈ R such that f (v) = C for almost every v.

Proof. Let us de ne the function

h : t → E[f (Z -t)] = 1 √ 2π f (x)e -(x+t) 2 /2 dx . We have h (t) = -1 √ 2π f (x)(x + t)e -(x+t) 2 /2 dx = -E[Zf (Z -t)]
= 0 and therefore h is equal to some constant C ∈ R. We are going to show that f = C almost everywhere. Without loss of generality we can assume that C = 0, otherwise it su ces to consider the function f = f -C. Now we have for all n ≥ 0,

t ∈ R 0 = h (n) (t) = 1 √ 2π f (x) ∂ ∂t e -(x+t) 2 /2 dx = 1 √ 2π f (x)(-1) n H n (x + t)e -(x+t) 2 /2 dx ,
where H n is n th Hermite polynomial, de ned as H n (x) = (-1) n e x 2 /2 d n dx n e -x 2 /2 . Therefore, for all n ≥ 0, f (x)H n (x)e -x 2 /2 dx = 0 , which implies that f = 0 almost everywhere since the Hermite functions form an orthonormal basis of L 2 (R).

We apply now Lemma 16 to (204) where the function f is given by f (x) = P out (y | σx). We thus obtain that for almost every y, P out (y | •) is almost everywhere equal to a constant. Under assumption (ii), we get that for all y ∈ N, P out (y | •) is almost everywhere equal to a constant: this contradicts the hypothesis that P out is informative.

If now assumption (i) holds, then by [START_REF] Gardner | Three un nished works on the optimal storage capacity of networks[END_REF] the density function P out (• | x) is continuous on R for all x ∈ R. Let us x y ∈ R. We are going to show that P out (y | •) is almost everywhere equal to a constant C y . Given what we just showed, we can construct a sequence (y n ) n ∈ R N that converges to y such that for all n ≥ 0, there exists E n ⊂ R with full Lebesgue's measure and C n ∈ R such that for all x ∈ E n ,

P out (y n |x) = C n . Let us de ne E = ∩ n≥0 E n . E has therefore full Lebesgue's measure. Let now x 1 , x 2 ∈ E. By continuity of P out (•|x i ), we get P out (y n |x i ) ---→ n→∞ P out (y|x i ), for i = 1, 2.
Since we know that for all n ≥ 0 that P out (y n |x 1 ) = C n = P out (y n |x 2 ), we deduce that P out (y|x 1 ) = P out (y|x 2 ). This proves that P out (y | •) is almost everywhere equal to a constant C y and contradicts the fact that P out is informative.

We turn now our attention to the study of the function:

E f : [0, ρ] → R + q → E (f (Y (q) ) -E[f (Y (q) )|V ]) 2 (205) 
where f : R → R is a continuous bounded function. We will prove that E f is continuous (Proposition 22) and strictly decreasing (Proposition 23) under the following hypotheses.

(a) For all x ∈ R, P out (• | x) is the law of ϕ(x, A) + √ ∆ Z where ϕ : R × R k A → R is a measurable function and (Z, A) ∼ N (0, 1) ⊗ P A , for some probability distribution P A over R k A . (b) For almost all a ∈ R k A (w.r.t. P A ), ϕ(•, a) is continuous almost everywhere.

We suppose also that we are in one of the following cases: Proof. Consider expression (62): The rst term does not depend on q and the second one is continuous by Lebesgue's convergence theorem.

Proposition 23. Assume that the hypotheses of Proposition 22 hold. Suppose that x → f (y)P out (y | x)dy is not almost-everywhere equal to a constant. Then E f is strictly decreasing on [0, ρ].

Proof. E f (q) = E[f (Y (q) ) 2 ]-E E[f (Y (q)
)|V ] 2 . Since the rst term does not depend on q, it su ces to show that H : q → E E[f (Y (q) )|V ] 2 is strictly increasing on [0, ρ]. We have for q ∈ (0, ρ):

E[f (Y (q) )|V ] = f (y) e -w 2 /2 √ 2π P out (y| √ q V + √ ρ -q w)dydw = f (y) e - (x- √ qV ) 2 2(ρ-q)
2π(ρ -q) P out (y|x)dydx .

So we have, using (203):

∂ ∂q E[f (Y (q) )|V ] = f (y) 2 1 ρ -q - (x - √ q V ) 2 (ρ -q) 2 + V (x - √ q V ) √ q(ρ -q) e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (y|x)dydw = 1 2(ρ -q) E f (Y (q) ) 1 -W * 2 + √ ρ -q V W * √ q V .
We obtain

H (q) = 1 ρ -q E E[f (Y (q) )|V ] E f (Y (q) ) 1 -W * 2 + √ ρ -q V W * √ q V . (206) 
We compute by Gaussian integration by parts:

E E[f (Y (q) )|V ] E f (Y (q) )V W * V = E V E[f (Y (q) )|V ] E f (Y (q) )W * V = E ∂ ∂V E[f (Y (q) )|V ] E f (Y (q) )W * V + E E[f (Y (q) )|V ] ∂ ∂V E f (Y (q) )W * V . (207) 
We compute successively

∂ ∂V E[f (Y (q) )|V ] = ∂ ∂V f (y) e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (y|x)dydx = f (y) √ q (x - √ q V ) ρ -q e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (y|x)dydx = √ q √ ρ -q E f (Y (q) )W * V . ( 208 
) ∂ ∂V E[f (Y (q) )W * |V ] = ∂ ∂V f (y) x - √ q V √ ρ -q e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (y|x)dydx = f (y) - √ q √ ρ -q + √ q(x - √ q V ) 2 (ρ -q) 3/2 e - (x- √ q V ) 2 2(ρ-q) 2π(ρ -q) P out (y|x)dydx = √ q √ ρ -q E f (Y (q) ) -1 + W * 2 V . (209) 
By plugging (207)-( 208)-(209) back in (206) we get:

H (q) = 1 ρ -q E E f (Y (q) )W * V 2 ≥ 0 .
Let us suppose now that H is not strictly increasing on [0, ρ]. This means that we can nd q ∈ (0, ρ) such that H (q) = 0 and therefore E[f (Y (q) )W * |V ] = 0 almost-surely. This gives that for almost all v ∈ R,

E W f (y)P out (y| √ q v + √ ρ -q W )dy = 0 ,
where E is the expectation with respect to W ∼ N (0, 1). Lemma 16 gives then that the function x → f (y)P out (y|x)dy is almost everywhere equal to a constant: we obtain a contradiction. We conclude that H is strictly increasing on [0, ρ] and thus E f is strictly decreasing on [0, ρ].

Proposition 24. Assume that the hypotheses of Proposition 22 hold. If the channel P out is informative, then there exists a continuous bounded function f : R → R such that x → f (y)P out (y|x)dy is not almost everywhere equal to a constant.

Proof. Let us suppose that for all continuous bounded function f : R → R we have

f (y)P out (y|x)dy = C f for almost all x ∈ R, for some constant C f ∈ R. Let X ∼ N(0, 1) and Y ∼ P out (•|X). We have then E[f (Y )|X] = C f = E[f (Y )]
almost surely. Let g : R → R be another continuous bounded function and compute:

E[g(X)f (Y )] = E g(X)E[f (Y )|X] = E[g(X)]E[f (Y )] .
It follows that X and Y are independent: The measures P out (y|x) e -x 2 /2 √ 2π dydx and E[P out (y|X)] e -x 2 /2 √ 2π dydx are therefore equal. Consequently, for almost every x, y we have

P out (y|x) = E[P out (y|X)] .
This gives that for almost every y, P out (y|•) is almost everywhere equal to a constant. We conclude by the arguments presented at the end of the proof of Proposition 21 that P out is not informative, which is a contradiction.

Proof. The proof is based on the Lindeberg generalization theorem (Theorem 2 from [START_REF] Korada | Applications of the Lindeberg principle in communications and statistical learning[END_REF]) which is a variant of the generalized "Lindeberg principle" from [START_REF] Chatterjee | A generalization of the lindeberg principle[END_REF]:

Theorem 5 (Lindeberg generalization theorem). Let (U i ) 1≤i≤n and (V i ) 1≤i≤n be two collections of random variables with independent components and f

: R n → R a C 3 function. Denote a i = |EU i -EV i | and b i = |E[U 2 i ] -E[V 2 i ]|. Then |Ef (U) -Ef (V)| ≤ n i=1 a i E|∂ i f (U 1:i-1 , 0, V i+1:n )| + b i 2 E|∂ 2 i f (U 1:i-1 , 0, V i+1:n )| + 1 2 E U i 0 |∂ 3 i f (U 1:i-1 , 0, V i+1:n )|(U i -s) 2 ds + 1 2 E V i 0 |∂ 3 i f (U 1:i-1 , 0, V i+1:n )|(V i -s) 2 ds .
Let (Φ µ,i ) iid ∼ N (0, 1) and let (Φ µ,i ) be a family of independent random variables, with zero mean and unit variance. Let f n be the free entropy [START_REF] Baldassi | Unreasonable e ectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes[END_REF] with design matrix Φ and f n be the free entropy [START_REF] Baldassi | Unreasonable e ectiveness of learning neural networks: From accessible states and robust ensembles to basic algorithmic schemes[END_REF] with design matrix Φ.

We will apply Theorem 5 to the function

F : U ∈ R m×n → 1 n E ln x,a dP A (a)dP 0 (x) e -1 2 m µ=1 ϕ 1 √ n [UX * ]µ,Aµ -ϕ 1 √ n [Ux]µ,aµ +Zµ 2
where the expectation E is taken w.r.t. X * , A and Z. We have

f n = EF (Φ) and f n = EF (Φ ) .
It is not di cult to verify that F is a C 3 function and that for all 1 ≤ µ ≤ m and 1 ≤ i ≤ n:

∂ 3 F ∂U 3 µ,i ∞ ≤ C n 5/2 ,
for some constant C that only depends on ϕ and the rst three moments of P 0 . Thus, an application of Theorem 5 gives |f n -f n | ≤ C √ n . By Proposition 17, we know that Theorem 1 holds for f n , thus it holds for f n .

C.2 Relaxing the hypotheses on ϕ

It remains to relax the hypotheses on ϕ. This section is dedicated to the proof of the following proposition, which is of course exactly the statement of Theorem 1.

Proposition 25 (Relaxing ϕ). Suppose that (h1)-(h2)-(h3)-(h4) and (h5.a) hold. Then, Theorem 1 holds for the output channel [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF].

To prove Proposition 25 we will approximate the function ϕ with a function ϕ which is C ∞ with compact support. In the following, G is a standard Gaussian random variable, independent of everything else.

Proposition 26. Suppose that (h1)-(h2)-(h3)-(h4) hold. Then, for all > 0, there exist ϕ

∈ C ∞ (R × R k A ) with compact support, such that E (ϕ( √ ρG, A) -ϕ( √ ρG, A)) 2 ≤ ,
and for n large enough, we have

E ϕ 1 √ n [ΦX * ] 1 , A 1 -ϕ 1 √ n [ΦX * ] 1 , A 1 2 ≤ .
Proof. By the Central Limit Theorem (using the fact that the third moments of (X * i Φ 1,i ) are bounded with n, because of hypotheses (h1) and (h3))

[ΦX * ] 1 √ n , A 1 (d) ---→ n→∞ ( √ ρG, A 1 ) . (210) 
This implies that

ϕ [ΦX * ] 1 √ n , A 1 (d) ---→ n→∞ ϕ( √ ρG, A 1 ) , (211) 
because ϕ(•, A 1 ) is almost-surely continuous almost-everywhere, by assumption (h4). The following sequence (ϕ( 

ϕ 1 √ n [ΦX * ] 1 , A 1 -ϕ 1 √ n [ΦX * ] 1 , A 1 2 (d) ---→ n→∞ (ϕ( √ ρG, A) -ϕ( √ ρG, A)) 2 .
Now, hypothesis (h2) gives that the sequence above is uniformly integrable. This gives that

E ϕ 1 √ n [ΦX * ] 1 , A 1 -ϕ 1 √ n [ΦX * ] 1 , A 1 2 ---→ n→∞ E(ϕ( √ ρG, A) -ϕ( √ ρG, A)) 2 ≤ .
Consequently, the left-hand side is smaller that 2 for n large enough. This concludes the proof.

In the remaining of this section, we prove Proof. We have, for n large enough

E Y -Y 2 = mE ϕ 1 √ n [ΦX * ] 1 , A 1 -ϕ 1 √ n [ΦX * ] 1 , A 1 2 ≤ m .
By Proposition 14, we obtain that there exists a constant C > 0 (that depends only on ∆ and ϕ) such that

I(X * ; Y|Φ) -I(X * ; Y|Φ) ≤ Cm √ ,
which gives the result.

Let P out denote the transition kernel associated to ϕ and P out the one associated to ϕ. Analogously to the previous Lemma, one can show: Lemma 20. There exists a constant C > 0 such that for all q ∈ [0, ρ], |I Pout (q) -I Pout (q)| ≤ C √ .

From there we obtain that

inf q∈[0,ρ] sup r≥0 i RS (q, r) -inf q∈[0,ρ] sup r≥0 i RS (q, r) ≤ C √ . (212) 
Applying Theorem 1 for P out , we obtain that for n large enough | 1 n I(X * ; Y|Φ)-inf q∈[0,ρ] sup r≥0 i RS (q, r)| ≤ √ . We now combine this with (212) and Lemma 19 we obtain that for n large enough Since our control over ∆ is uniform in n, we can permute the n → ∞ limit with the ∆ → 0 limit to get: 

1 n I(X * ; Y|Φ)-inf q∈[0,ρ] sup r≥0 i RS (q, r) ≤ 1 n I(X * ; Y|Φ)-inf q∈[0,ρ] sup r≥0 i RS (q, r) +(C+C ) √ ≤ (C+C +1) √ , which 

Appendix D: Some sup-inf formulas

This appendix gathers some useful lemmas for the manipulations of "sup-inf" formulas like [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. 

In particular, if g is strictly convex then g * is di erentiable around every point in the interior of dom g * .

Proof. We rst extend the function g on R by setting g(x) = +∞ for all x / ∈ V . Notice that this does not change the de nition of the function g * . g is then a proper, closed convex function (see for instance [START_REF] Rockafellar | Convex analysis[END_REF] for the de nitions of these properties). By Theorem 12.2 in [START_REF] Rockafellar | Convex analysis[END_REF], g * is also a proper closed convex function on R, which gives that dom g * is a non-empty interval. We now apply Corollary 23.5.1 from [START_REF] Rockafellar | Convex analysis[END_REF] to obtain y ∈ ∂g * (x) ⇐⇒ x ∈ ∂g(y) ⇐⇒ y maximizes xy -g(y) , for all x ∈ dom g * , which concludes the proof.

Corollary 8. Let f : R + → R be a convex, Lipschitz, non-decreasing function. De ne ρ = sup x≥0 f (x + ). Let g : [0, ρ] → R be a convex, Lipschitz, non-decreasing function. For q 1 ∈ R + and q 2 ∈ [0, ρ] we de ne ψ(q 1 , q 2 ) = f (q 1 ) + g(q 2 ) -q 1 q 2 . Then sup q 1 ≥0 inf q 2 ∈[0,ρ] ψ(q 1 , q 2 ) = sup q 2 ∈[0,ρ] inf q 1 ≥0 ψ(q 1 , q 2 ) .

Proof. In order to apply Lemma 21 we need to extend g on R + . We thus de ne for x ≥ 0

g(x) = g(x) if x ≤ ρ , g(ρ) + (x -ρ)g (ρ -) if x ≥ ρ .
Obviously g is a convex, Lipschitz, non-decreasing function on R + . One can thus apply Lemma 21:

sup q 1 ≥0 inf q 2 ≥0
f (q 1 ) + g(q 2 ) -q 1 q 2 = sup

q 2 ≥0 inf q 1 ≥0
f (q 1 ) + g(q 2 ) -q 1 q 2 . (215)

We will show now that sup q 1 ≥0 inf q 2 ≥0 ψ(q 1 , q 2 ) = sup q 1 ≥0 inf q 2 ∈[0,ρ] ψ(q 1 , q 2 ). Let us de ne for q 1 ≥ 0 g * (q 1 ) = sup q 2 ∈[0,ρ] {q 1 q 2 -g(q 2 )} and h(q 1 ) = inf q 2 ∈[0,ρ] f (q 1 ) + g(q 2 ) -q 1 q 2 = f (q 1 ) -g * (q 1 ) .

notation for the convenience of the reader. Recall that the interpolating Hamiltonian ( 95)-( 93 

where Dw denote the standard m-dimensional Gaussian measure and where the Hamiltonian H t, is reexpressed as

H t, (x, w, a) = 1 2 m µ=1 Γ t,µ (x, w µ , a µ ) + Z µ 2 + 1 2 n i=1 R 1 (t) (X * i -x i ) + Z i 2 . ( 223 
)
The interpretation here is that x, w, a are annealed variables and Φ, V, A, Y t , Y t , X * , W * , or equivalently Φ, V, A, Z, Z , X * , W * are quenched. The inference problem is to recover X * , W * given Φ, V, Y t , Y t . The free entropy can be further re-expressed as Γ t,µ (x, w µ , a µ ) 2 + 2Z µ Γ t,µ (x, w µ , a µ )

+ 1 2 n i=1 R 1 (t)(X * i -x i ) 2 + 2Z i R 1 (t)(X * i -x i ) . (226) 
In order to prove Theorem 6 it remains to show that there exists a constant C(ϕ, S, α) > 0 such that Var(ln Ẑt, /n) ≤ C(ϕ, S, α)/n. This concentration property together with (224) implies (218). We will rst show concentration w.r.t. all Gaussian variables Φ, V, Z, Z , W * thanks to the classical Gaussian Poincaré inequality, then the concentration w.r.t. A and nally the one w.r.t. X * using classical bounded di erences arguments. The order in which we prove the concentrations matters. We recall here these two variances bounds. The reader can refer to [START_REF] Boucheron | Concentration inequalities[END_REF] (Chapter 3) for detailed proofs of these statements.

Proposition 27 (Gaussian Poincaré inequality). Let U = (U 1 , . . . , U N ) be a vector of N independent standard normal random variables. Let g : R N → R be a continuously di erentiable function. Then Var(g(U)) ≤ E ∇g(U) 2 .

(227)

Proposition 28 (Bounded di erence). Let U ⊂ R. Let g : U N → R a function that satis es the bounded di erence property, i.e., there exists some constants c 1 , . . . , c N ≥ 0 such that sup u 1 ,...,u N ∈U N u i ∈U |g(u 1 , . . . , u i , . . . , u N ) -g(u 1 , . . . , u i , . . . , u N )| ≤ c i for all 1 ≤ i ≤ N .

Let U = (U 1 , . . . , U N ) be a vector of N independent random variables that take values in U. Then t,µ to denote respectively the quantities Ĥt, and Γ t,µ where A is replaced by A (ν) . By an application of Jensen's inequality one nds

Var(g(U)) ≤ 1 4 N i=1 c 2 i . (228) 
1 n E G Ĥ(ν) t, -Ĥt, Ĥ(ν) t, ≤ g(A) -g(A (ν) ) ≤ 1 n E G Ĥ(ν) t, -Ĥt, Ĥt, (235) 
where the Gibbs brackets pertain to the e ective Hamiltonians (226 

Proof. The lemma is proved using again a bounded di erence argument. Let g = E Θ ln Ẑt, /n a function of X * . Let j ∈ {1, . . . , n}. Let X * , X * (j) ∈ [-S, S] n be two input signals such that X * (j) i = X * i for i = j. We are going to interpolate between g(X * ) and g(X * (j) ). For s ∈ [0, 1] we de ne ψ(s) = g(sX * + (1 -s)X * (j) ) .

Obviously ψ(1) = g(X * ) and ψ(0) = g(X * (j) ). Using Gaussian integration by parts, it is not di cult to verify that for s ∈ [0, 1] |ψ (s)| ≤ C(ϕ, S, α) n .

This implies the bounded di erence property |g(X * ) -g(X * (j) )| ≤ C(ϕ, S, α)/n and using Proposition 28 we obtain the lemma.

E.1.4 Proof of Theorem 6

From Lemmas 24, 27 and 28 above, we obtain directly that Var(ln Ẑt, /n) ≤ C(ϕ, S, α)/n for some constant C(ϕ, S, α) > 0. As mentioned before this implies, thanks to (224), the Theorem 6.

E.2 Concentration of the overlap

In this appendix we provide the proof of Proposition 4. Recall the notationn,t, for the Gibbs bracket associated to the Hamiltonian [START_REF] Korada | Applications of the Lindeberg principle in communications and statistical learning[END_REF]. It is crucial that it preserves the Nishimori identity of Appendix A.1, i.e. it must come from an inference problem with known parameters. Consider the corresponding average free entropy f n, (t). In this section we think of it as a function of R 1 = R 1 (t, ) and R 2 = R 2 (t, ) given by ( 89), i.e. (R 1 , R 2 ) → f n, (t). Similarly the free entropy for a realization of the quenched variables is also viewed here as a function (R 1 , R 2 ) → F n, (t) := ln Z t, (Y t , Y t , Φ, V)/n. For this section, we drop the indices in the Gibbs bracketn,t, and simply write -. Let

L := 1 n n i=1 x 2 i 2 -x i X * i - x i Z i 2 √ R 1 .
The uctuations of the overlap Q := n -1 n i=1 X * i x i and those of L are related through the remarkable identity

E (L -E L ) 2 = 1 4 E (Q -E Q ) 2 + 1 2 E[ Q 2 -Q 2 ] + 1 4nR 1 E[(X * 1 ) 2 ] . (239) 
In particular

E (L -E L ) 2 ≥ 1 4 E (Q -E Q ) 2 . (240) 
A detailed derivation of (239) involves only lengthy but straightforward algebra, using the Nishimori identity and integrations by parts w.r.t. the Gaussian noise Z i , and can be found in Sec. 6 of [START_REF] Barbier | The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference[END_REF]. Proposition 4 is then a direct consequence of the following: 

The proof of this proposition is broken in two parts. Notice that

E (L -E L ) 2 = E (L -L ) 2 + E ( L -E L ) 2 . ( 242 
)
Thus it su ces to prove the two following lemmas (see the proofs below). The rst lemma expresses concentration w.r.t. the posterior distribution (or "thermal uctuations") and is an elementary consequence of concavity properties of the free entropy and the Nishimori identity. 

We now turn to the proof of Lemmas 29 and 30. The main ingredient is a set of formulas for the rst two derivatives of the free entropy w.r.t. R 1 = R 1 (t, ). For any given realisation of the quenched disorder, dF n, (t)

dR 1 = -L - 1 2n n i=1 (X * i ) 2 + 1 √ R 1 X * i Z i , (245) 
1 n d 2 F n, (t) dR 2 1 = L 2 -L 2 - 1 4n 2 R 3/2 1 n i=1 x i Z i . (246) 
Averaging ( 245) and (246), using a Gaussian integration by parts w.r.t. Z i and the (Nishimori) identity E x i X * i = E[ x i 2 ] we nd df n, (t)

dR 1 = -E L - ρ 2 = 1 2n n i=1 E[ x i 2 ] - ρ 2 , ( 247 
)
1 n d 2 f n, (t) dR 2 1 = E[ L 2 -L 2 ] - 1 4n 2 R 1 n i=1 E[ x 2 i -x i 2 ] . (248) 
Proof of Lemma 29

From (248) we have

E (L -L ) 2 = 1 n d 2 f n, (t) dR 2 1 + 1 4n 2 R 1 n i=1 E[ x 2 i -x i 2 ] ≤ 1 n d 2 f n, (t) dR 2 1 + ρ 4n 1 , (249) 
where we used E x 2 i = E P 0 [(X * ) 2 ] = ρ by the Nishimori identity, and R 1 ≥ 1 . Recall B n := [s n , 2s n ] 2 . By assumption q and r are regular. Therefore R t : ( 1 , 2 ) → (R 1 (t, ), R 2 (t, )) is a di eomorphism whose From (253), (254) it is easy to show that Lemma 31 implies

| L -E L | ≤ δ -1 u∈{R 1 -δ,R 1 ,R 1 +δ} |F n, (t, R 1 = u) -f n, (t, R 1 = u)| + S|A| √ u + C + δ (R 1 ) + C - δ (R 1 ) + S|A| 2 √ 1 + ρ 2 - 1 2n n i=1 (X * i ) 2 + 1 √ R 1 X * i Z i (255) 
where C + δ (R 1 ) := f (R 1 + δ) -f (R 1 ) ≥ 0 and C - δ (R 1 ) := f (R 1 ) -f (R 1 -δ) ≥ 0. We used R 1 ≥ 1 for the term S|A|/(2 √ 1 ). Note that δ will be chosen later on strictly smaller than s n (namely δ = s n n -1/4 ) so that R 1 -δ ≥ 1 -δ ≥ s n -δ remains positive. Remark that by independence of the noise variables E[A 2 ] ≤ an -1 for some constant a > 0; and that by independence between signal and noise, the last term in the absolute value in (255), call it B, is satis es E[B 2 ] ≤ bn -1 for some constant b > 0. We now square the identity (255) and take its expectation. Then using ( p i=1 v i ) 2 ≤ p p i=1 v 2 i (by convexity), and that R 1 ≤ K (K = 1+max(ρ, r max ) upper bounds both R 1 and R 2 given by ( 89)), as well as the free entropy concentration Theorem 6,

1 10 E L -E L 2 ≤ 3δ -2 C + aS 2 (K + δ) 1 n + C + δ (R 1 ) 2 + C - δ (R 1 ) 2 + S 2 a 4 1 n + b n . ( 256 
)
where C = C(ϕ, S, α) is a positive constant depending only on ϕ, S and α that comes from the use of Theorem 6. Recall 

|C ± δ (R 1 )| = | f (R 1 ± δ) -f (R 1 )|. We have | f (R 1 )| ≤ 1 2 ρ + S √ R 1 ≤ 1 2 ρ + S √ 1 (257) 
+ f (s n -δ) -f (s n + δ) . ( 258 
)
where we used that the Jacobian J(R t ) of the C 1 di eomorphism R t : ( 1 , 2 ) → (R 1 (t, ), R 2 (t, )) is greater or equal to 1 (by regularity of the interpolation functions q and r) and R . We created the data in the symmetric manner, but when we ran GAMP to solve the problem, we broke the channel symmetry slightly. For instance, instead of solving with a door function that returns 1 only for -0.674489 < z < 0.674489, we use a function that instead returned 1 for -0.674489 < z < 0.6745. The same strategy was used for the absolute value function, which can be replaced by ϕ(z) = z for x > -and -z otherwise. Again, when is small, this makes only an unnoticeable di erence in the gures. This trick allowed GAMP to solve symmetric problems without trouble in practice, and to reach perfect recovery even in the symmetric problems as close to the theoretical threshold as numerically desired.

Figure 1 :

 1 Figure1: Phase diagrams showing boundaries of the region where almost exact recovery is possible (in absence of noise). Left: The case of sign-less sparse recovery, ϕ(x) = |x| with a Gauss-Bernoulli signal, as a function of the ratio between number of samples/measurements and the dimension α = m/n, and the fraction of nonzero components ρ. Evaluating (4) for this case, we nd that a recovery of the signal is information-theoretically impossible for α < α IT = ρ. Recovery becomes possible starting from α > ρ, just as in the canonical compressed sensing. Algorithmically the sign-less case is much harder. Evaluating[START_REF] Donoho | Message-passing algorithms for compressed sensing[END_REF] we conclude that GAMP is not able to perform better than a random guess as long as α < α c = 1/2, and the same is true for spectral algorithms, see[START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF]. For larger values of α, the inference using GAMP leads to better results than a purely random guess. GAMP can recover the signal and generalize perfectly only for values of α larger than α AMP (full red line). The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed sensing. Center: Analogous to the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better than random guessing using GAMP. The dotted red line shows the algorithmic phase transition when using information only about the non-zero observations. Right: Phase diagram for the symmetric door output function ϕ(z) = sign(|z| -K) for a Rademacher signal, as a function of α and K. The stability line α c is depicted in dashed blue, the information-theoretic phase transition to almost exact recovery α IT in black, and the algorithmic one α AMP in red.

Figure 2 :

 2 Figure2: Optimal generalization error in three classi cation problems versus the sample complexity α, the size of the training set being αn. The red line is the Bayes-optimal generalization error (9) while the green line shows the (asymptotic) performances of GAMP as predicted by the state evolution[START_REF] Candes | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF]. For comparison, we also show the results of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver. Left: Perceptron, with ϕ(x) = sign(x) and a binary Rademacher signal. While a perfect generalization is information-theoretically possible starting from α IT ≈ 1.249, the state evolution predicts that GAMP will achieve such perfect prediction only above α AMP ≈ 1.493. The results of a logistic regression with ne-tuned regularizations with the software scikit-learn[START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli distribution of the weights. No phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression are very close to optimal. Right: The symmetric door activation rule with parameter K chosen in order to observe the same number of occurrence of the two classes. In this case there is a sharp phase transition from as bad as random to perfect generalization at α IT = 1. GAMP identi es the rule perfectly only starting from α AMP ≈ 1.566. The non-informative xed point is stable up to α c = 1.36 (dashed line). Interestingly, this non linear rule seems very hard to learn for standardly used solvers. Using Keras[START_REF] Chollet | keras[END_REF], a neural network with 2 hidden layers was able to learn only approximately the rule, only for considerably larger training set sizes and much larger number of iterations than GAMP.

  (h5.a) ∆ > 0. (h5.b) ∆ = 0 and ϕ takes values in N.
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 3 Figure3: Phase diagrams showing boundaries of the region where exact recovery is possible (in absence of noise). Left: The case of sign-less sparse recovery, ϕ(x) = |x| with a Gauss-Bernoulli signal, as a function of the ratio between number of samples/measurements and the dimension α = m/n, and the fraction of non-zero components ρ. Evaluating the free entropy for this case, we nd that a recovery of the signal is informationtheoretically impossible for α < α IT = ρ. Recovery becomes possible starting from α > ρ, just as in the canonical compressed sensing. Algorithmically the sign-less case is much harder. Evaluating[START_REF] Ziniel | Binary linear classi cation and feature selection via generalized approximate message passing[END_REF] we conclude that GAMP is not able to perform better than a random guess as long as α < α c = 1/2. For larger values of α, the inference using GAMP leads to better results than a purely random guess. GAMP can exactly recover the signal and generalize perfectly only for values of α larger than α AMP (full red line). The dotted red line shows for comparison the algorithmic phase transition of the canonical compressed sensing. Center: Analogous to the left panel, for the ReLU output function, ϕ(x) = max(0, x). Here it is always possible to perform better than random guessing using GAMP. The dotted red line shows the algorithmic phase transition when using information only about the non-zero observations. Right: Phase diagram for the symmetric door output function ϕ(z) = sign(|z| -K) for a Rademacher signal, as a function of α and K. The stability line α c is depicted in dashed blue, the information-theoretic phase transition to exact recovery α IT in black, and the algorithmic one α AMP in red.

Figure 4 :

 4 Figure4: Generalization error in three classi cation problems as a function of the number of data-samples per dimension α. The red line is the Bayes-optimal generalization error, while the green one shows the (asymptotic) performances of GAMP as predicted by the state evolution (SE), when di erent. For comparison, we also show the result of GAMP (black dots) and, in blue, the performance of a standard out-of-the-box solver, both tested on a single randomly generated instance. Left: Perceptron, with ϕ(x) = sgn(x) and a Rademacher (±1) signal. While a perfect generalization is information-theoretically possible starting from α = 1.249(1), the state evolution predicts that GAMP will allow such perfect prediction only from α = 1.493[START_REF] Nelder | Generalized linear models[END_REF]. The results of a logistic regression with ne-tuned ridge penalty with the software scikit-learn[START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] are shown for comparison. Middle: Perceptron with Gauss-Bernoulli coe cients for the signal. No phase transition is observed in this case, but a smooth decrease of the error with α. The results of a logistic regression with ne-tuned 1 sparsity-enhancing penalty (again with[START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]) are very close to optimal. Right: The symmetric door activation rule with parameter K = 0.67449 chosen in order to observe the same number of occurrence of the two classes. In this case there is a sharp phase transition at α = 1 from a situation where it is impossible to learn the rule, so that the generalization is not better than a random guess, to a situation where the optimal generalization error drops to zero. However, GAMP identi es the rule perfectly only starting from α s = 1.566(1) (GAMP error stays 1 up to α stab = 1.36, see the black dashed curve). Interestingly, this non-linear rule seems very hard to learn for other existing algorithms. Using Keras[START_REF] Chollet | keras[END_REF], a neural network with two hidden layers was able to learn approximately the rule, but only for much larger training set sizes (shown in inset, the Keras/tensor ow code for this particular run can be found on the github repository [62]).
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 225 Figure5: The generalization error for three regression problems is plotted as a function of the number of samples per dimension α. The red line is again the Bayes-optimal generalization error, while the green one shows the (asymptotic) performances of GAMP as predicted by the state evolution (SE), when di erent. Again, we also show the result of GAMP on a particular instance (black dots) and, in blue, the performance of an out-of-the-box solver. Left: White Gaussian noise output and a Gauss-Bernoulli signal. For this choice of noise, there is no sharp transition (as opposed to what happens at smaller noises). The results of a LASSO with ne-tuned 1 sparsityenhancing penalty (with[START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]) are very close to optimal. Middle: Here we analyze a ReLU output function ϕ(x) = max(0, x), still with a Gauss-Bernoulli signal. Now there is an information-theoretic phase transition at α = 2ρ = 0.4, but GAMP requires α s = 0.589(1) to reach perfect recovery. We show for comparison the results of maximum likelihood estimation performed with CVXPY -a powerful python-embedded language for convex optimization[START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF]-using two methods that are both amenable to convex optimization: In CVX-1 we use only the non-zero values of Y, and perform a minimization of the 1 norm of x subject to Y µ = Φ µ • x for µ ∈ {1, . . . , m} such that Y µ = 0, while in CVX-2, we use all the dataset, with the constraint that Y µ = Φ µ • x for µ ∈ {1, . . . , m} such that Y µ = 0 (as before) and the additional restriction Φ µ • x ≤ 0 for µ ∈ {1, . . . , m} such that Y µ = 0. In both case, a perfect generalization is obtained only for α 1. Right: The sign-less output function ϕ(x) = |x|. The information-theoretic perfect recovery starts at α = ρ = 0.5, but the problem is again harder algorithmically for GAMP that succeeds only above α s = 0.90[START_REF] Nelder | Generalized linear models[END_REF]. Again, the problem appears to be hard for other solvers. In inset, we show the performance for the estimation problem using PhaseMax[START_REF] Goldstein | Phasemax: Convex phase retrieval via basis pursuit[END_REF], which is able to learn the rule only using about four times as many measurements than needed information-theoretically.

  )-(h3)-(h4) and (h5.a) or (h5.b). Since the observations (20) are equivalent to the rescaled observations

Proposition 6 .

 6 F n is a continuous function from D n to [0, ρ]. Let D • n denotes the interior of D n . F n admits partial derivatives with respect to its second and third argument on D • n . These partial derivatives are both continuous and non-negative on D • n .
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 442 Upper bound Proposition 8 (Upper bound). The free entropy (29) veri es lim sup n→∞ f n ≤ sup r≥0 inf q∈[0,ρ]

  (i) ∆ > 0. (ii) ∆ = 0 and ϕ takes values in N. Proposition 22. Under the hypotheses presented above, E f is continuous on [0, ρ].

Lemma 19 .

 19 Proposition 25. Let > 0. Let ϕ and ϕ as in Proposition 26. Let us de ne Y = ϕ(n -1/2 ΦX * , A) + √ ∆Z and Y = ϕ(n -1/2 ΦX * , A) + √ ∆Z. Suppose that (h1)-(h2)-(h3)-(h4) and (h5.a) hold. There exists a constant C > 0 such that for n large enough 1 n I(X * ; Y|Φ) -1 n I(X * ; Y|Φ) ≤ C √ .

  concludes the proof of Proposition 25, because of (49) and the de nition of the functions I P 0 and I Pout in Corollary 2. C.3 The case of discrete channels: Removing the Gaussian noise Now that we proved (Proposition 25) that Theorem 1 holds under hypotheses (h1)-(h2)-(h3)-(h4) and (h5.a), we are going to show that it holds under (h1)-(h2)-(h3)-(h4) and (h5.b) by letting ∆ → 0. We suppose in this section that ϕ takes values in N and write Y = ϕ ΦX * / √ n, A . By Proposition 25 we know that for all ∆ > 0, 1 n I(X * ; Y+ √ ∆Z|Φ) ---→ n→∞ inf q∈[0,ρ] sup r≥0I P 0 (r)+αI(W * ; ϕ( √ qV + √ ρ -qW * , A)+ √ ∆Z|V )-r 2 (ρ-q) ,where Z ∼ N (0, I m ) and (V, W * , Z, A) ∼ N (0, 1) ⊗3 ⊗ P A . Since Y takes values in N m and ϕ takes values in N, we can apply Corollary 7 twice to obtain that for all ∆ ∈ (0, 1],I(X * ; Y + √ ∆Z|Φ) -I(X * ; Y|Φ) ≤ 100me -1/(16∆)and (recall that by de nitionI Pout (q) = I W * ; ϕ( √ qV + √ ρ -qW * , A) V ):|I W * ; ϕ( √ qV + √ ρ -qW * , A) + √ ∆Z V -I Pout (q)| ≤ 100e -1/(16∆) .

I

  P 0 (r) + αI Pout (q) -r 2 (ρ -q) .

Lemma 21 .f

 21 Let f, g : R + → R be two non-decreasing convex functions. We havesup x≥0 inf y≥0 f (x) + g(y) -xy = sup y≥0 inf x≥0 f (x) + g(y) -xy .Proof. Let us de ne the monotone conjugate (see the end of §12 of[START_REF] Rockafellar | Convex analysis[END_REF]) of f and g:f * (y) = sup x≥0 xy -f (x)and g * (y) = sup x≥0 xy -g(x) . These conjugates satisfy an analog of the Fenchel-Moreau Theorem: f (x) = sup y≥0 {xy -f * (y)} and g(y) = sup x≥0 {xy -g * (x)}, see Theorem 12.4 from [101]. We have then sup x≥0 inf y≥0 f (x) + g(y) -xy = sup x≥0 f (x) -g * (x) = sup x≥0 sup y≥0 xy -f * (y) -g * (x) (x) + g(y) -xy .The next Lemma on the Legendre transform will be useful.Lemma 22. Let V ⊂ R be a non-empty, closed interval and let g : V → R be a continuous convex function.De neg * : x ∈ R → sup y∈V xy -g(y) ∈ R ∪ {+∞} . (213)Let dom g * = {x ∈ R | g * (x) < ∞}.Then g * is a closed convex function and dom g * is a non-empty interval. Moreover, for all x ∈ dom g * , ∂g * (x) = arg max y∈V xy -g(y) .

From ( 219

 219 ), (220), (221) we can express the free entropy of the interpolating model as 1 n ln Z t, = 1 n ln dP 0 (x)dP A (a)Dw e -Ht, (x,w,a) -m 2n ln(2π)

  ln dP 0 (x)dP A (a)Dw e -Ĥt, (x,w,a) ,

  Let us consider g = E G ln Ẑt, /n as a function of A only. Let ν ∈ {1, . . . , m}. We must estimate variations g(A) -g(A (ν) ) corresponding to two con gurations A and A (ν) with A (ν) µ = A µ for µ = ν and A (ν) ν = Ãν . We will use the notations Ĥ(ν) t, and Γ (ν)

Proposition 29 (

 29 Concentration of L on E L ). Let B n := [s n , 2s n ] 2, where the sequence (s n ) ∈ (0, 1/2] N . Assume that the interpolation functions (r ) and (q ) are regular (recall De nition 1). Under assumptions (H1), (H2) and (H3) there exists a constant C(ϕ, S, α) such thatBn d E (L -E L n,t, ) 2 n,t, ≤C(ϕ, S, α) n 1/4 .

Lemma 29 (

 29 Concentration of L on L ). Under the same hypotheses as in Proposition 29 we have Bn d E (L -L n,t, expresses the concentration of the average overlap w.r.t. the realizations of quenched disorder variables and is a consequence of the concentration of the free entropy (more precisely Theorem 6 in Appendix E.1). Lemma 30 (Concentration of L on E L ). Under the same hypotheses as in Proposition 29 there exists a constant C(ϕ, S, α) such that Bn d E ( L n,t, -E L n,t, ) 2 ≤ C(ϕ, S, α) n 1/4 .
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	4 Methods and proofs
	4.1

  116) by Jensen's inequality, because by Propositions 17 and 18 the functions ψ P 0 and Ψ Pout are convex. Let us x ∈ B n and t ∈ [0, 1]

  •, A 1 ) is almost-surely continuous almost-everywhere, by assumption (h4). The sequence of random variables ϕ([ΦX * ] 1 / √ n, A 1 ) n is by assumption (h2) bounded in L 2+η for some η > 0. By (169) we conclude that E[ϕ( √ ρG, A 1 ) 2+η ] < ∞.

  Yt,µ (s) = ln P out (Y t,µ |s) = ln dP A (a µ ) is the derivative w.r.t. the rst argument. From (20) at ∆ = 1 we get |Y t,µ | ≤ sup |ϕ| + |Z µ |, where the supremum is taken over both arguments of ϕ, and thus immediately obtain for all s ∈ R |u Yt,µ (s)| ≤ (2 sup |ϕ| + |Z µ |) sup |ϕ | .

	is bounded uniformly in t under hypothesis (H2) on ϕ. From the representation (22) (recall we consider ∆ = 1
	in Sec. 4)								
	u 1 √ 2π	e -1 2 (Yt,µ-ϕ(s,aµ)) 2		(191)
	and thus								
	u Yt,µ (s) =	dP A (a µ )(Y t,µ -ϕ(s, a µ ))ϕ (s, a µ )e -1 2 (Yt,µ-ϕ(s,aµ)) 2 dP A (a µ )e -1 2 (Yt,µ-ϕ(s,aµ)) 2		(192)
	where ϕ								
		2	n,t,	≤ 2r 2 max + 2E	1 n	m µ=1	u Yt,µ (S t,µ )u Yt,µ (s t,µ )	2	n,t,	(190)

  [ΦX * ] 1 √ n , A 1 )) n is by assumption (h2) bounded in L 2 , thus by (211) we have that E[ϕ( √ ρG, A 1 ) 2 ] < ∞. Let > 0. We have just proved that ϕ ∈ L 2 (R × R k A )with the measure induced by ( √ ρG, A 1 ).

	There exists (see for instance Corollary 4.2.2 in [98]) a C ∞ function with compact support ϕ such that E (ϕ( √ ρG, A) -ϕ( √ ρG, A)) 2 ≤ .
	One deduce from (210) and (211) that

  ) isH t, (x, w; Y t , Y t , Φ, V) = -m µ=1 ln P out (Y t,µ |s t,µ (x, w µ )) + 1 2 + k 1 (t)V µ + k 2 (t)w µ , k 1 (t) := R 2 (t) , k 2 (t) := ρt -R 2 (t) + 2s n .We nd it convenient to use the random function representation[START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] for the interpolating model, namely] µ + k 1 (t)V µ + k 2 (t)W * µ , A µ + Z µ , Y t,i = R 1 (t) X * i + Z i .In this representation the random variables (A µ ) 1≤µ≤m (0, 1). We have P out (Y t,µ |s t,µ (x, w µ )) = dP A (a µ ) -ϕ(s t,µ (x, w µ ), a µ )

						n
						(Y t,i -R 1 (t) x i ) 2	(219)
						i=1
	where				
	s t,µ (x, w µ ) :=	1 -t n [Φx]    Y t,µ = ϕ	1-t n [ΦX iid ∼ N (0, 1),
	(Z i ) 1≤i≤n				
					1 √ 2π	exp -	1 2	Y t,µ 2
				= dP A (a µ )	1 √ 2π	exp -	1 2	Γ (221)
	= ϕ	1 -t n	[ΦX		

µ * iid ∼ P A are arbitrary, and

(Z µ ) 1≤µ≤m iid ∼ N t,µ (x, w µ , a µ ) + Z µ 2 (220)

where, using the random function representation,

Γ t,µ (x,w µ , a µ ) * ] µ + k 1 (t)V µ + k 2 (t)W * µ , A µ -ϕ 1 -t n [Φx] µ + k 1 (t)V µ + k 2 (t)w µ , a µ .

  E.1.1 Concentration with respect to the Gaussian random variables Z, Z , V, W * , Φ Lemma 24. Let E G denotes the joint expectation w.r.t. Z, Z , V, W * , Φ only. There exists a constant C(ϕ, S, α) > Lemma 24 follows directly from Lemmas 25 and 26 below. Lemma 25. Let E Z,Z denotes the expectation w.r.t. Z, Z only. There exists a constant C(ϕ, S, α) > 0 such that Proof. We consider here g = ln Ẑt, /n only as a function of Z and Z and work conditionally on all other random variables. We have Each of these partial derivatives are of the form |∂ u g| = |n -1 ∂ u Ĥt, Ĥt, | where the Gibbs bracket -Ĥt, pertains to the e ective Hamiltonian (226). We nd∂g ∂Z µ = n -1 Γ t,µ Ĥt, ≤ 2n -1 sup |ϕ| , ∂g ∂Z i = n -1 R 1 (t) X * i -x i Ĥt, ≤ 2n -1 √ KS ,and replacing in (231) we get ∇g 2 ≤ 4n -1 ( m n (sup |ϕ|) 2 + KS 2 ). Applying Proposition 27 we haveProof. We consider here g = E Z,Z ln Ẑt, /n as a function of V, W * , Φ and we work conditionally on the other random variables. Let ∂ x ϕ be the derivative of ϕ w.r.t. its rst argument. We compute∂g ∂V µ = n -1 E Z,Z (Γ t,µ + Z µ ) ∂Γ t,µ∂V µ Ĥt, To compute the derivative w.r.t. Φ µi we rst remark∂g ∂Φ µi = n -1 E Z,Z (Γ t,µ + Z µ ) ∂Γ t,µ ∂Φ µi Ĥt, ≤ n -3/2 E Z,Z (2 sup |ϕ| + |Z µ |) 2S sup |∂ x ϕ| = n -3/22 sup |ϕ| + 2 π 2S sup |∂ x ϕ| . The lemma follows again from Proposition 27. E.1.2 Bounded di erence with respect to A µ The next step is an application of the variance bound of Lemma 28 to show that E G ln Ẑt, /n concentrates w.r.t. A (we still keep X * xed for the moment). Lemma 27. Let E A denotes the expectation w.r.t. A only. There exists a constant C(ϕ, α) > 0 such that

						E	1 n	E G ln Ẑt, -	1 n	E G,A ln Ẑt,
						E Z,Z				1 n	ln Ẑt, -	1 n	E Z,Z ln Ẑt,	2	≤	C(ϕ, S, α) n	.	(232)
	Taking the expectation in (232) gives the lemma.
	Lemma 26. There exists a constant C(ϕ, S, α) > 0 such that
						E	1 n	E Z,Z ln Ẑt, -	1 n	E G ln Ẑt,	2	≤	C(ϕ, S, α) n	.	(233)
	The same inequality holds for | ∂g ∂W *				
	0 such that [ΦX Putting these inequalities together we nd E 1 n ln Ẑt, -1 n E G ln Ẑt, ∂Γ t,µ ∂Φ µi = 1 -t n X * i ∂ x ϕ 1 -t n	2	≤	C(ϕ, S, α) n	.	(229)
	∇g 2 =	m µ=1	∂g ∂V µ	2	E + µ=1 n 1 m	ln Ẑt, -∂g ∂W * µ 2 +	1 n µ=1 E Z,Z ln Ẑt, i=1 ∂Φ µi m n ∂g	2 2	≤	C(ϕ, S, α) n	.	(230)
	≤ 2	m n 2 2 sup |ϕ| +			2 π	2	4K(sup |∂ x ϕ|) 2 +	mn n 3 2 sup |ϕ| +	2 π
										∇g 2 =	m µ=1	∂g ∂Z µ	2	+	n i=1	∂g ∂Z i	2	.	(231)

≤ n -1 E Z,Z (2 sup |ϕ| + |Z µ |) 2 √ K sup |∂ x ϕ| = n -1 2 sup |ϕ| + 2 π 2 √ K sup |∂ x ϕ| . µ |. * ] µ + k 1 (t)V µ + k 2 (t)W * µ , A µ -x i ∂ x ϕ 1 -t n [Φx] µ + k 1 (t)V µ + k 2 (t)w µ , a µ . Therefore, as t ∈ [0, 1], 2 4S 2 (sup |∂ x ϕ|) 2 .

  ). From (226) we obtain -Γ t,ν ) ≤ 8(sup |ϕ|) 2 + 8|Z ν | sup |ϕ|. Thus we conclude by (236) that g satis es a bounded di erence property: Lemma 27 follows then by an application of Proposition 28. E.1.3 Bounded di erence with respect to X * i Let E Θ = E A,G denote the expectation w.r.t. all quenched variables except X * . It remains to bound the variance of E Θ ln Ẑt, /n (which only depends on X * ).

	Ĥ(ν) t, -Ĥt, =	1 2	m µ=1	Γ (ν)2 t,µ -Γ 2 t,µ + 2Z µ (Γ	(ν) t,µ -Γ t,µ ) =	1 2	Γ	(ν)2 t,ν -Γ 2 t,ν + 2Z ν (Γ	(ν)
	Consequently							
	1 2n	E G Γ							
										≤	1 2n	E G Γ (ν)2 t,ν -Γ 2 t,ν + 2Z ν (Γ	(ν) t,ν -Γ t,ν )	Ĥt,	.	(236)
	Notice that Γ	(ν)2 t,ν -Γ 2 t,ν + 2Z ν (Γ t,ν |g(A) -g(A (ν) )| ≤ (ν)	4 n	sup |ϕ| sup |ϕ| +	2 π	.	(237)
	Lemma 28. There exists a constant C(ϕ, S, α) > 0 such that
						E	1 n	E Θ ln Ẑt, -	1 n	E ln Ẑt,	2	≤	C(ϕ, S, α) n	.

t,ν -Γ t,ν ) . (ν)2 t,ν -Γ 2 t,ν + 2Z ν (Γ (ν) t,ν -Γ t,ν ) Ĥ(ν) t, ≤ g(A) -g(A (ν) )

  √s n as 1 ≥ s n . Recall also that B n := [s n , 2s n ] 2 . Then (2s n + r max + δ) -f (2s n + r max -δ)

	Bn	d C + δ (R 1 (t, )) 2 + C -δ (R 1 (t, )) 2
		≤ ρ +	S √ s n Bn	d C + δ (R 1 (t, )) + C -δ (R 1 (t, ))
		= ρ +	S √ s n R t (Bn)	dR 1 dR 2 J(R t )	C + δ (R 1 ) + C -δ (R 1 )
		≤ ρ +	S √ s n R t (Bn)	dR 1 dR 2 C + δ (R 1 ) + C -δ (R 1 )
		≤ ρ +	S √ s n	2sn+ρ sn	dR 2 f

from (247), (252) and R 1 ≥ 1 . This implies

|C ± δ (R 1 )| ≤ ρ + S/ √ 1 ≤ ρ + S/

  t (B n ) ⊂ [s n , 2s n +r max ]×[s n , 2s n +ρ].The mean value theorem and (257) imply | f (R 1 -δ)-f (R 1 +δ)| ≤ δ(ρ+S/ √ s n ) uniformly in R 2 . Therefore

	associated GitHub repository [62]			
	S √ s n	2	.	(259)

Bn d C + δ (R 1 (t, )) 2 + C - δ (R 1 (t, )) 2 ≤ 2δ(s n + ρ) ρ +

We note that in order to break the symmetry that prevents GAMP to nd the signal in constant number of iteration steps, we mismatch in nitesimally the output function ϕ used in the algorithm from the symmetric one used to generate the data. Another way to deal with this issue is related to a spectral initialization as discussed recently in[START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF].

Notice that this allows to study any channel whose outputs belong to a countable set S by applying a injection u : S → N to the outputs.

The implications (h2) ⇔ (h2') and (h4) ⇒ (h4') are obvious. If (h4') holds one can show, by inverting cumulative distribution functions, that there exists a function ϕ : R × [0, 1] → R such that (20) holds for Aµ iid ∼ PA = Unif([0, 1]) and that (h4) is veri ed.

[START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF] = E f ϕ( √ ρ V, A) + √ ∆Z 2 -E V E W,Z,A f ϕ( √ q V + √ ρ -q W, A) + √ ∆Z 2 , (62)where Y 0 is the output of the second scalar channel[START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF].

DzP out (y| √ ρz) < 1 ,(79)where recall that Dz is a standard Gaussian measure. We conjecture that the condition (79) delimits precisely the region where polynomial-time algorithms do not perform better than "random guessing" (see the discussion below, where we will make this stability condition explicit for several examples of symmetric output channels). Note that the condition (79) also appears in a recent work[START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF] as a barrier for performance of spectral algorithms.
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Appendix A: Some technicalities

A. [START_REF] Nelder | Generalized linear models[END_REF] The Nishimori identity Proposition 12 (Nishimori identity). Let (X, Y) ∈ R n 1 × R n 2 be a couple of random variables. Let k ≥ 1 and let X (1) , . . . , X (k) be k i.i.d. samples (given Y) from the conditional distribution P (X = • |Y), independently of every other random variables. Let us denotethe expectation operator w.r.t. P (X = • |Y) and E the expectation w.r.t. (X, Y). Then, for all continuous bounded function g we have E g(Y, X (1) , . . . , X (k) ) = E g(Y, X (1) , . . . , X (k-1) , X) .

(163)

Proof. This is a simple consequence of Bayes formula. It is equivalent to sample the couple (X, Y) according to its joint distribution or to sample rst Y according to its marginal distribution and then to sample X conditionally to Y from its conditional distribution P (X = • |Y). Thus the (k + 1)-tuple (Y, X (1) , . . . , X (k) ) is equal in law to (Y, X (1) , . . . , X (k-1) , X).

A.2 Unicity of the optimizer q * of the replica formula: Proof of Proposition 1

The function

αI Pout (q) + sup r≥0

is concave (as an in mum of linear functions). An "envelope" theorem (Corollary 4 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF]) gives that h is di erentiable at α if and only if I Pout (q) q minimizer of ( 164) is a singleton. We assumed that P out is informative, so Proposition 21 gives that I Pout is strictly decreasing. We obtain thus that the set of points at which h is di erentiable is exactly D * . Since h is concave, D * is equal to R * + minus a countable set. Corollary 4 from [START_REF] Milgrom | Envelope theorems for arbitrary choice sets[END_REF] gives also that h (α) = I Pout (q * (α)), for all α ∈ D * . The function h is concave, so its derivative h is non-increasing. Since I Pout is strictly decreasing, we obtain that α ∈ D * → q * (α) is non-decreasing.

Let now α 0 ∈ D * . By concavity of h, h (α) → h (α 0 ) when α ∈ D * → α 0 . Therefore:

which implies q * (α) → q * (α 0 ) by strict monotonicity of I Pout .

A.3 Continuity properties of the mutual information

We establish in this section two continuity properties of the mutual information, namely Proposition 14 and Corollary 7. Recall de nition [START_REF] Shannon | A mathematical theory of communication, part i, part ii[END_REF] of the MMSE function. The following proposition comes from [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF] and will be repeatedly used in the sequel.

Proposition 13 (I-MMSE theorem, [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF][START_REF] Guo | Estimation in gaussian noise: Properties of the minimum mean-square error[END_REF]). Let P X be a probability distribution over R n that admits a nite second moment. Let X ∼ P X and Z ∼ N (0, I n ) be independent random variables. Then the function

Appendix B: Some properties of the scalar channels

B.1 The additive Gaussian scalar channel

We recall some properties (see [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF] and [START_REF] Miolane | Phase transitions in spiked matrix estimation: information-theoretic analysis[END_REF] for proofs) of the free entropy of the rst scalar channel [START_REF] Barron | Toward fast reliable communication at rates near capacity with gaussian noise[END_REF].

Proposition 17. Let X 0 ∼ P 0 be a real random variable with nite second moment. Let r ≥ 0 and Y 0 = √ rX 0 + Z 0 , where Z 0 ∼ N (0, 1) is independent from X 0 . Then the function

is convex, di erentiable, non-decreasing and 

B.2 The non-linear scalar channel

We prove here some properties of the free entropy of the second scalar channel [START_REF] Barbier | Threshold saturation of spatially coupled sparse superposition codes for all memoryless channels[END_REF], where V, W * iid ∼ N (0, 1) and

In this channel, the statistician observes V and Y (q) and wants to recover W * . Recall that by de nition

so the properties we will prove on Ψ Pout can be directly translated for I Pout , and vice-versa.

Proposition 18. Suppose that for all x ∈ R,

R is a measurable function and (Z, A) ∼ N (0, 1) ⊗ P A , for some probability distribution P A over R k A . In that case P out admits a density given by

Assume that ϕ is bounded and C 2 with respect to its rst coordinate, with bounded rst and second derivatives. Then q → Ψ Pout (q) is convex, C 2 and non-decreasing on [0, ρ].

Proof. Let V, W * iid ∼ N (0, 1) and Y (q) be the output of the scalar channel given by (194). Then for all q ∈ [0, ρ],

Under the hypotheses we made on ϕ, we will be able to use continuity and di erentiation under the expectation, because all the domination hypotheses will be easily veri ed. It is thus easy to check that Ψ Pout is continuous on [0, ρ].

We compute now the rst derivative. Recall thatsc , de ned in [START_REF] Guerra | The thermodynamic limit in mean eld spin glass models[END_REF], denotes the posterior distribution of W * given Y (q) . We will use the notation u y (x) = ln P out (y|x). For q ∈ (0, ρ) we have

where w ∼sc , independently of everything else. Ψ Pout is therefore non-decreasing. Using the boundedness assumption on ϕ and its derivatives, it is not di cult to check that Ψ Pout is indeed bounded.

Appendix C: Approximation

Let us recall the various hypotheses considered in this paper, starting with the stronger set:

(H1) The prior distribution P 0 has a bounded support. (H2) ϕ is a bounded C 2 function with bounded rst and second derivatives w.r.t. its rst argument. (H3) (Φ µi ) iid ∼ N (0, 1).

The aim of this section is to relax them to the weaker ones:

(h1) The prior distribution P 0 admits a nite third moment and has at least two points in its support. (h2) There exists γ > 0 such that the sequence

The random variables (Φ µi ) are independent with zero mean, unit variance and nite third moment that is bounded with n. (h4) For almost-all values of a ∈ R k A (w.r.t. P A ), the function x → ϕ(x, a) is continuous almost everywhere.

The hypotheses on the precence or not of the Gaussian noise in [START_REF] Gribonval | Reconciling" priors" &" priors" without prejudice?[END_REF] In this section, we suppose that Theorem 1 holds for channels of the form (20) (with ∆ > 0) under the hypotheses (H1), (H2) and (H3), as proven in Section 4.

We show in this section that this imply that Theorem 1 holds under the weaker hypotheses (h1)-( h2 Note that the statement of Theorem 1 is equivalent to the statement of Corollary 2, which simply express the result in terms of mutual information. This formulation will be slightly more convenient to relax the hypotheses. We will therefore prove in this section that [START_REF] Barbier | The mutual information in random linear estimation[END_REF] holds under the hypotheses (h1)-(h2)-(h3)-(h4), and either (h5.a) or (h5.b). The statement of Theorem 1 can then be directly obtained by using the expressions of I P 0 , I Pout in terms of ψ P 0 , Ψ Pout , the relation ( 49) and Lemma 23.

C.1 Relaxing the hypotheses on P 0 and Φ

As explained at the beginning of Sec. 4, it su ces to consider the case ∆ = 1. We start by relaxing the hypothesis (H1).

Lemma 17 (Relaxing P 0 ). Suppose that (h1)-(H2)-(H3) and (h5.a) hold. Then Theorem 1 holds.

Proof. The ideas are basically the same that in [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] (Sec. 6.2.2). We omit the details here for the sake of brevity.

We now relax the Gaussian assumption on the "measurement matrix" Φ.

Lemma 18 (Relaxing Φ). Suppose that ϕ : R × R k A → R is C ∞ with compact support and that (h1)-(h3)-(h5.a) hold. Then Theorem 1 holds.

For q 1 ≥ g (ρ -) we have g * (q 1 ) = q 1 ρ -g(ρ). The function h is therefore non-increasing on [g (ρ -), +∞), because f is ρ-Lipschitz. We get that h = f -g * achieves its supremum on [0, g (ρ -)]. Let q * 1 be the smallest point at which this supremum is achieved. Let us show that inf q 2 ∈[0,ρ] {g(q 2 )-q * 1 q 2 } = inf q 2 ≥0 {g(q 2 )-q * 1 q 2 }. • If q * 1 = 0, then the minimum over [0, ρ] is achieved at q 2 = 0, because g is non-decreasing. By convexity, q 2 is also the minimizer over R + : both in mum are equal.

• If q * 1 > 0, the optimality condition of q * 1 gives f (q * - 1 ) -(g * ) (q * - 1 ) ≥ 0. By (214) we obtain that there exists q * 2 ∈ arg min q 2 ∈[0,ρ] {g(q 2 ) -q * 1 q 2 } such that f (q * - 1 ) ≥ q * 2 . If q * 2 < ρ we conclude, as above, that both in mum are equal. Suppose now that q * 2 = ρ and de ne q 1 = g (ρ -). By the optimality condition of q * 2 = ρ we have

Since q 1 ≤ q * 1 and q * 1 is de ned as the smallest maximizer of h, we get that q * 1 = q 1 . The left-hand derivative of q 2 → g(q 2 ) -q * 1 q 2 at q = ρ is therefore equal to 0: ρ minimizes q 2 → g(q 2 ) -q * 1 q 2 over R + : both in mum are equal. We have proved that inf q 2 ∈[0,ρ] {g(q 2 ) -q * 1 q 2 } = inf q 2 ≥0 {g(q 2 ) -q * 1 q 2 }. Therefore

ψ(q 1 , q 2 ) .

We conclude that sup q 1 ≥0 inf q 2 ≥0 ψ(q 1 , q 2 ) = sup q 1 ≥0 inf q 2 ∈[0,ρ] ψ(q 1 , q 2 ) because the converse inequality is trivial. It remains to show now that sup q 2 ≥0 inf q 1 ≥0 ψ(q 1 , q 2 ) = sup q 2 ∈[0,ρ] inf q 1 ≥0 ψ(q 1 , q 2 ) to prove the Lemma, because of (215). The inequality "≥" is obvious and the inequality "≤" follows from the fact that inf q 1 ≥0 ψ(q 1 , q 2 ) = -∞ if q 2 > ρ.

Lemma 23. Let g be a strictly convex, di erentiable, Lipschitz non-decreasing function on R + . De ne ρ = sup x≥0 g (x). Let f be a convex, continuous, strictly increasing function on [0, ρ], di erentiable on [0, ρ). For (q 1 , q 2 ) ∈ [0, ρ] × R + we de ne ψ(q 1 , q 2 ) = f (q 1 ) + g(q 2 ) -q 1 q 2 . Then

where

where all the function are extended by there limits at the points at which they may not be de ned (for instance g (+∞) = lim q→∞ g (q), f (ρ) = lim q→ρ f (q)). Moreover, the above extremas are achieved precisely on the same couples.

Proof. Let q * 1 be a maximizer of f -g * over [0, ρ]. q * 1 is well de ned because f is continuous and g * is continuous over [0, ρ) and is either continuous at ρ or goes to +∞ at ρ (this comes from the fact that g * is a closed convex function, see Lemma 22).

Case 1: 0 < q * 1 < ρ. By strict convexity of g, ψ(q 1 , •) admits a unique minimizer q * 2 and (g * ) (q * 1 ) = q * 2 by Lemma 22. Thus, the optimality condition at q * 1 gives

The optimality of q * 2 gives then q * 1 ≤ g (q * 2 ). Suppose that q * 1 < g (q *

2 ). This is only possible when q * 2 = 0. De ne q 1 = g (q *

2 ) = g (0). Remark that g * (q 1 ) = -g(0) = g * (q * 1 ). We supposed that q 1 > q * 1 thus, by strict monotonicity of f , f (q 1 ) -g * (q 1 ) > f (q * 1 ) -g * (q * 1 ) which contradict the optimality of q * 1 . We obtain therefore that q * 1 = g (q * 2 ).

Case 2: q * 1 = 0. The optimality condition gives now

where q * 2 is again the unique minimizer of ψ(q * 1 = 0, •) = f (0) + g. g is strictly increasing, so q * 2 = 0. Therefore q * 2 = 0 = f (q * 1 = 0), by (217). As before we have necessarily, by optimality of q * 2 that q * 1 = g (q * 2 ).

Case 3: q * 1 = ρ. In that case arg min q 2 ≥0 {g(q 2 ) -q * 1 q 2 } = ∅ because g is strictly convex and ρ-Lipschitz. Lemma 22 gives then that ∂g * (ρ) = ∅ which implies (see Theorem 23.3 from [START_REF] Rockafellar | Convex analysis[END_REF]) that (g * ) (ρ -) = +∞. Since q * 1 = ρ maximizes f -g * , we necessarily have then f (ρ -) = +∞. Using the slight abuse of notation explained in the Lemma, we have f (q * 1 ) = +∞ = q * 2 , where q * 2 = +∞ is the unique "minimizer" of ψ(q * 1 , •), by strict convexity of g. By de nition of ρ we have also g (q * 2 ) = g (+∞) = ρ = q * 1 .

We conclude from the tree cases above that the "sup-inf" in ( 216) is achieved, and that all the couples (q * 1 , q * 2 ) that achieve this "sup-inf" belong to Γ. Thus

ψ(q 1 , q 2 ) ≤ sup (q 1 ,q 2 )∈Γ ψ(q 1 , q 2 ) .

Let now be (q 1 , q 2 ) ∈ Γ. By convexity of g we see easily that ψ(q 1 , q 2 ) = inf q 2 ψ(q 1 , q 2 ). Thus, ψ(q 1 , q 2 ) ≤ sup q 1 inf q 2 ψ(q 1 , q 2 ). Therefore sup (q 1 ,q 2 )∈Γ ψ(q 1 , q 2 ) ≤ sup

This concludes the proof of (216). It remains to see that a couple (q * 1 , q * 2 ) ∈ Γ that achieves the supremum in (216) also achieves the "sup-inf". This simply follows from the fact that ψ(q * 1 , q * 2 ) = inf q 2 ψ(q * 1 , q 2 ) and (216).

Appendix E: Concentration of free entropy and overlaps E.1 Concentration of the free entropy

The goal of this appendix is to prove that the free entropy of the interpolating model studied in Sec. 4.1 concentrates around its expectation. To simplify the notations we use C(ϕ, S, α) for a generic non-negative constant depending only on ϕ, S and α (S is the supremum over the signal values). We will also use the notation K = 1 + max(ρ, r max ) for a constant (depending only on ρ ≤ S 2 and ϕ) that upper bounds both R 1 and R 2 given by [START_REF] Wu | Optimal phase transitions in compressed sensing[END_REF]. It is also understood that n and m are large enough and m/n → α.

Theorem 6 (Free entropy concentration). Under assumptions (H1), (H2) and (H3) there exists a non-negative constant C(ϕ, S, α) such that the partition function (97) concentrates as

The remaining of this appendix is dedicated to the proof of Theorem 6. We rst recall some set-up and Jacobian J(R t ) veri es J(R t )( ) ≥ 1 for all ∈ B n . Integrating over ∈ B n we obtain

where in the integral above J(R t ) is a function of (R t ) -1 (R 1 , R 2 ). Note that from [START_REF] Wu | Optimal phase transitions in compressed sensing[END_REF] we have

using (247) combined with E x 2 i = ρ to assert that the derivative of the free entropy is bounded in absolute value by ρ/2. This concludes the proof of Lemma 29 using s n ≤ 1/2 and (ln 2)/4 < 1.

Proof of Lemma 30

Consider the two functions

Because of ( 246) we see that the second derivative of F (R 1 ) is positive so that it is convex (without this extra term F n, (t) is not necessarily convex in R 1 , although f n, (t) is, which can be shown easily). Note that f (R 1 ) is convex too. Convexity allows us to use the following lemma (proved at the end of this section):

Lemma 31 (A bound on di erences of derivatives due to convexity). Let G(x) and g(x) be convex functions. Let δ > 0 and de ne

From ( 252)

and from (245), (247) we obtain for the di erence of derivatives (w.r.t. R 1 )

Thus, integrating (256) over ∈ B n yields (using

Finally we choose δ = s n n -1/4 and obtain the desired result.

Proof of Lemma 31: Convexity implies that for any δ > 0 we have

Combining these two inequalities ends the proof.

Appendix F: Details on numerics

Most of our experiments and codes are provided on the associated GitHub repository [62], with codes in the Julia programming language [START_REF] Bezanzon | Julia: A fast dynamic language for technical computing[END_REF] (with a Jupyter notebook interface) and in matlab. In this appendix, we shall give additional details on how the plots have been obtained.

F.1 General purpose algorithms

We have been using free available softwares in our experiments: Standard machine learning tasks such as LASSO or logistic regression were done using scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. Keras [START_REF] Chollet | keras[END_REF], with a tensor ow backend [START_REF] Abadi | TensorFlow: Large-scale machine learning on heterogeneous systems[END_REF], was used for neural networks. We also used CVXPY, a python-embedded language for performing convex optimization [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF], as well as PhaseMax for phase retrieval [START_REF] Goldstein | Phasemax: Convex phase retrieval via basis pursuit[END_REF] experiments. Figure 4 (in both the main text and SI) constrasts results of these general purpose algorithms with the optimal generalization error in three classi cation problems. In the left pannel of Fig. 4 (for the binary perceptron), we used logistic regression with hand-tuned 2 regularization (basically, we have hand-selected the regularization parameter in order to obtain the best results) with the function Logistic Regression in the software scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF]. In the center pannel of Fig. 4 (this time for a sparse signal), we used the same software but this time with a sparsity enhancing 1 regularization, again ne-tuned by hand. In the right pannel of Fig. 4, we show, in the inset, how a neural network with 2 hidden layers was able to learn only approximately the "symmetric door" rule. In this experiment, we used Keras with a tensor ow backend.

The data are created with a signal-vector of dimension n = 2500 and are sent into a network made with a rst layer of dimension 2500 × 64 followed by a recti ed linear unit (ReLu), and a dropout layer with fraction 0.2 for regularization. This is followed by a second layer of dimension 64 × 64, this time with a sigmoid activation and again a dropout layer. Finally, we classify with a nal output layer with a softmax, using the categorical cross-entropy as the loss function. The minimization is done using the RMSprop optimizer for 1000 epochs. The code is shown in the GitHub repository [62].

We have tried many variations around this network. Interestingly, the dropout layers have a strong e ect on the regularization, and help signi cantly in improving the generalization error. Also interestingly, the number of epochs used for tting was an important parameter. Indeed, the quality of the t improves drastically as the number of epochs is increased: It seems that it actually takes a lot of time to escape the initial point, where prediction is just as bad as random. Finally, we also tried to increase the depth of the neural nets. Interestingly this did not a ect the performance and the network was tting the data and generalizing just as well with deeper and deeper networks. We believe that it should be very instructive to further study empirically this problem.

In Fig. 5 in this SI, simular plots are shown for three regression problems. In the left pannel, we used the LASSO function in the software scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] with its sparsity enhancing 1 regularization, again netuned by hand.

For the middle pannel, we had to turn to a di erent software. In this case, the idea was to solve Y = Relu(Φx) = max(0, Φx) (componentwise) subject to a sparse penalty on x. Luckily, this can be turned into a linear programming framework: Minimize the 1 norm of x subject to the constraint that Y = Relu(Φx) which can be implemented by enforcing Y µ = Φ µ • x for µ's such that Y µ > 0, and Φ µ • x < 0 for µ's such that Y µ = 0. This linear program is solved with CVXPY [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF] (CVX-2). We also show the results when only the indices µ associated with positive Y µ > 0 are used for comparaison (CVX-1). Finally, for the right gure, we used PhaseMax [START_REF] Goldstein | Phasemax: Convex phase retrieval via basis pursuit[END_REF] out-of-the-box to solve the problem.

F.2 Evaluating the replica formula

In order to evaluate numerically the replica formula [START_REF] Mézard | The space of interactions in neural networks: Gardner's computation with the cavity method[END_REF] we proceed as it is common in the statistical physics literature since the early papers on spin glasses. First, we found the critical points (42) by iterating the state evolution equations (67) -also called the replica self-consistent equations-starting from two di erent initial conditions (q t=0 = 0 and q t=0 = ρ). Next we computed the associated value of the free entropy and then selected, if two di erent xed points were found, the correct one following the prescription given by Theorem 1. We also took special care in checking that we could not identify other xed points. An example of such a procedure is shown in the GitHub repository [62], with codes in the Julia programming language [START_REF] Bezanzon | Julia: A fast dynamic language for technical computing[END_REF], for the perceptron problem.

F.3 Breaking the symmetry in GAMP

A last notable point concerns the symmetry issue in GAMP. Indeed, when q = 0 is a xed point of the state evolution (which is the case if the prior has zero mean and the channel is symmetric), then GAMP should stay in this xed point forever. This is the case, for instance, for two problems considered in the present paper: The symmetric door output function ϕ(z) = sgn(|z| -K) with a Rademacher prior ±1, and for the sign-less channel ϕ(z) = |z|. In both cases, both z and -z are giving the same output, and therefore so does both X * and -X * . Notice, however, that this is not a problem in the computation of the free entropy. Here, one has to compute all the xed points anyway. It is also not a problem if the prior is breaking the symmetry (for instance if one is working with a binary signal where X * i = 1 with probability p + = 1/2 + and X * i = -1 with probability p -= 1/2 -with, say, = 10 -7 . In this case the symmetry is broken, GAMP works, and the state evolution predicts its behavior correctly. Even though this problem is thus restricted to a very small class of channels and priors, and even though perturbations solve it, it is still an interesting mathematical challenge, especially from the rigorous point of view. Indeed, this problem has attracted attention recently where initializations based on spectral algorithms were analyzed [START_REF] Mondelli | Fundamental limits of weak recovery with applications to phase retrieval[END_REF].

In the present paper, we adopted a pragmatic point of view. We did not break the symmetry in the data generative model (as that would make the problem slightly easier), instead we broke the symmetry in the GAMP solver, thus making it slightly but un-noticeably suboptimal. An example of our code is given in the