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Abstract. Several evolutionary advanced nuclear reactors, whose operational life is intended to be 60
years, are currently being built throughout the world. Deterministic uncertainty propagation methods
are certainly powerful and time-sparing but their access to uncertainties related to the power map stays
difficult due to a lack numerical convergence. On the contrary, stochastic methods facilitate the propagation
of uncertainties related to the core power map and they enable a more rigorous access to those concerning
the prompt fission neutron spectrum. In this sense, they supplement previous studies. Our method combines
an innovative calculation chain and a stochastic way of propagating uncertainties on nuclear data : first, our
calculation scheme consists in the calculation of assembly self-shielded cross sections and a flux calculation
on the whole core. Bias is quantified and the CPU time needed is suitable to lead numerous calculations.
Then, we sample nuclear cross sections with consistent probability distribution functions with a correlated
sampling. Finally, we deduce the power map uncertainties from the study of the output response functions.
We performed our study on the system described in the framework of the OECD/NEA Expert Group in
Uncertainty Analysis in Modelling (UAM). Results show 2387J inelastic scattering, the 2>°U PFNS and the
26 Fecross sections as major contributors of the total uncertainty on the power map whose value is 3% (10)

with the COMAC covariance library.
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1 Introduction

1.1 Context GEN III cores

The improvements in reactor technology of the so-called
GEN-III reactors are intended to result in a longer op-
erational life (at least 60 years of operation) compared
with currently used GEN-II reactors (designed for 40 years
of operation). In particular, they take advantage from a
simpler and more rugged design, making them easier to
operate and less vulnerable to operational upsets. From
a neutronic point of view, a higher burn-up is accepted
to reduce fuel use as well as the amount of corresponding
waste. More specifically, we will study PWRs cores part of

the Generation-III which are bigger than those of GEN-II.

1.2 Objectives

Whilst powerful and time - sparing methods have been
largely used to propagate uncertainties in core calculations
[1], a great endeavour is made to brush up on brute force
methods. Actually, thanks to growing calculation means,
stochastic methods become more attractive to calculate
the uncertainty introduced by simulation codes. These
methods consist in taking into account the uncertainties
either since the very beginning of the calculation chain
[2] or by sampling nuclear cross sections with consistent
probability distribution functions [3]. Having regard to the
nuclear model parameters uncertainty ranges one can pro-
cess nuclear data libraries (for example with TALYS [4]).
Finally, the uncertainties are deduced from the study of

the output parameters of interest distribution function.

Here, we propose a similar method which combines an
innovative calculation chain and a stochastic way of prop-
agating uncertainties on nuclear data. Given that larger
cores are more sensitive to an external perturbation, the
uncertainties associated with calculation parameters and
design dimensions are worth studying. We propose then
here to propagate uncertainties due to nuclear data on
LWR key parameters such multiplication factor and core

power map.

1.3 Theoretical background

The Boltzmann equation, which translates the neutron
balance in a nuclear reactor, can be written in a compact

form as

(Ag — XoFp)po =0 (1)

where Aq is the disappearance operator, Fy the neutron
production operator, ¢g is the unperturbed neutron flux
and Ao = 1/ko with ko the first eigenvalue associated with
the fundamental mode flux ¢g. Theoretical arguments lead
to express a perturbed flux sensitivity coefficient a; as

following

1 (d1|(AOF — 6A)¢o)

a Q= Ao (61| Fodr)
—EVS

(2)

ay

where A\ = 1/k; is the inverse of the first harmonic eigen-
value of the flux. While the scalar product is dependent

on the external perturbation only, the first term is di-

rectly related to the size of the core. is called the

1
A1—Xo
Eigenvalue Separation Factor (EVS) and grows like the

size of the core. Thus, with the same initial perturbation,
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the larger is the core, the higher will be the resulting flux
perturbation amplitude. The deterministic nuclear data
uncertainty propagation on a manifold sample of french
PWRs (from 900 MWe up to 1700 MWe) showed that the
central assembly power uncertainty increases from 1.5%
to 4% (10)[5] mainly due to the uncertainty on U238 in-

elastic scattering.

2 The core calculation scheme

2.1 Physical model

Our model is based on a sample proposed in the frame-
work of the Working Party on International Nuclear Data
Evaluation Co-operation (WPEC) of the OECD/Nuclear
Energy Agency[6]. An international numerical benchmark
has been proposed to study the uncertainties related to
large cores : a fresh core with 241 assemblies, each of them
containing 265 pins. We consider a situation at Hot Zero
Power. A whole 2D core calculation is undertaken, with
a refined pin description and a flux calculation scheme in
two steps. First, each individual assembly geometry in an
infinite lattice is described and self-shielded 281 SHEM
[7] energy groups cross sections are produced. Then, the
neutron flux is calculated thanks to the Method of Char-
acteristics (MOC) onto the whole geometry. Even though
the computational power has been steadily growing with
time, yet the CPU time needed in order to have flux con-
vergence is still too high. That is why several assump-
tions are made in order to reduce CPU time cost. Given

that the steady state Boltzmann equation is discretized
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Fig. 1. Spatial Core Mesh : Interface between the peripheral

assemblies and the heavy reflector

in space and energy, we decided to make the calculation
parameters vary from the industrial calculation routine

APOLLO2.8/CEA2005V) usually used at CEA [8].

— In terms of angular discretization of the flux, we de-
cided to work with conventional P3 calculation.

— Concerning the space discretization of the character-
istics tracking, we chose to work with a refined mesh,
imposing a distance between each characteristic which
amounts to an order of magnitude of 0.04cm.

— We present in Fig.1 the spatial mesh of our study. The
interface between the reflector and the peripheral as-
sembly has been highly meshed to keep a good descrip-
tion of the impact of the reflector on the power map.
[9]

— Finally, we used the 20 groups energy mesh [8] cf. Table
1 for the core flux calculation which is optimized for

LWR calculations.
In short, our simplified scheme consists in two parts :

1. Calculation of self-shielded cross sections above 23eV
for each assembly and determination of the 281g flux

spectrum (SHEM mesh) using Pij method.



Group Energy upper bound Comments

1 19.64 MeV (n,2n) and 2" chance fission
2 4.490 MeV Fast domain

3 2.231 MeV First resonance of °0O

4 1.337 MeV

5 494 eV

6 195keV

7 67.38keV

8 25keV

9 9.12keV Unresolved domain

10 1.91keV

11 411eV Resolved resonances

12 52.67eV 3 first resonances of 238U
13 4.000eV 240 py, & 2*2 Py, resonances
14 625 meV

15 353 meV Resonances of 2*° Py
16 231.2meV

17 138 meV

18 76.5 meV Purely thermal domain
19 34.4meV

20 10.4 meV

Table 1. Description of the 20 groups energy mesh

2. Flux calculation (MOC) on the core with collapsed 20

group cross-sections.

Our method allowed to reduce the CPU cost from 1 day
to 1 hour, on a single Intel 3GHz processor with 11Go of

RAM use.

Ludovic Volat et al.: Stochastic Propagation of Uncertainties along large cores power maps

3 The cross sections sampling method

The covariance input data file are given in terms of mean
values and standard deviation. We choose to model the
input uncertainty as a gaussian probability density func-
tion with the mean and standard deviation given by our
covariance library. Given that the number of calculations
is limited, the population of our statistical sample must be
small. This so-called Design of Experiments must be then
wisely chosen in order to fulfill the three following prop-
erties : optimal covering of the input parameter space,
robustness of projections over 2D subspaces and sequen-
tiality. Now, we will show that the Latin Hypercube Sam-
pling is the optimum fitting to our need. The LHS sam-
pling comes down to equally chop off all the dimensions,
and thus make sub-intervals of equal bin width. Each sam-
pling point coordinate is the only one in each sub-interval.
Then, due to the non-uniqueness of a LHS for a given di-
mension and population, a optimization criterion must be
found in order to get the best LHS with the smallest pop-
ulation. We show in Fig. 2 the efficiency of the estimator
associated to the mean of the effective multiplication fac-
tor (kesys) for different ways of producing and optimizing
our LHS design of experiments. The L2star discrepancy
optimization and C2 discrepancy optimization have al-
ready been largely described in [10]. Even though we can
see here that it gives a better efficiency of the estimator
at small populations, the limiting criterion to choose the
best population is the empirical standard deviation of the
mean of the k.y; (right -hand side of the figure). In order

to get the best conpromise between a low standard devi-



Ludovic Volat et al.: Stochastic Propagation of Uncertainties along large cores power maps 5

60
61 * ° e optL2star
= , ¢ unoptimised 155
ER optC2 ?
E 50 &
PRSP E
< e, . 53
g 0 * ° optL2star, o f‘v:
“‘z oo, ¢ . ° +  unoptimized, o 402
E -2 ° optC2, o 5 ,%
£, ‘., 30
E . 2
g 6 . 25 £
8 +
-8 . 20

50 100 150 200
n : population [-]

Fig. 2. Estimators convergence function of the population

ation and a limited population, we chose a population of
50 with a L2-star optimized LHS. Once we sampled each
cross section in each energy group as a gaussian N(0,1)
, covariance libraries have to be taken into account. This
was made by using a Cholesky-type decomposition. Here
we note the covariance matrix C, the dimension of our
problem d, the vector containing all the means 7. We
are looking for a multivariate gaussian vector Y € R4,
whose probability density function (pdf) is N'(77, C) with
Tt the vector of the means along all dimensions. Let us
note Y = QX + 7¢. The problem is actually equivalent
to choose Q so that E(Y'Y) = C. We took eventually Q
as Q = PD'Y? where D is the eigenvalues diagonal ma-
trix of C and P the corresponding transfer matrix. In the
frame composed by the eigenvectors, the linear application
corresponding to D'/ is a dilatation of the distribution
and P corresponds to a rotation. Then the distribution is

shifted by 77.
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Fig. 3. Probability plot to deduce the uncertainty related to

the center of the power map, COMAC V2

4 Results

The cross-section values calculated during the self- shield-
ing step are modified according to Y. Then, for each sam-
pling, our calculation routine is run. Then we study the
final distribution function of the multiplication factor and
the one of the assembly power map in order to deduce the
associated uncertainties. The aussian output function is
infered by fitting the probability plot, like shown in Fig.
3.p For this work, we chose to use two sets of covariances
matrices taken from COMAC : the first one, called here
COMAC VO [11], was released in 2012 and the second one,
called COMAC V2 contains major results obtained until
2016 [12], [13]. Thus, we want to compare the impact of
the two libraries on the power map and highlight how the
library change has contributed to reduce the contribution
of several major isotopes to the total uncertainty. Figure
2 spots the majors contributions to the total uncertainty

on the k.fr, the center of the power map, and the pe-
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Contributor rank unc. keyy pcm | unc. Peenter std unc. Pperiph. ass. std
1 28U (n, f) | 409 PUx 24% U x 2.0%
2 B (n,y) | 312 | U (n,n) 2.0% B (n,n) 1.5%
3 By v 273 'H(n,n)  1.2% YH(n,n) 1.1%
4 350 x 215 | o6Fe(n,n)  0.7% 26 Fe(n,n) 0.8%
5 B5Y (n, f) | 147 'H(n,v)  0.3% B8 (n, f) 0.4%
6 B (n,y) | 143 | 38U (n,y) 0.3% B8 (n,y) 0.3%
Total uncertainty kefys 737 Prenter 3.6% Pperiph. ass. 2.8%

Table 2. Main contributors and total propagated uncertainty (1o) with COMAC V0

unc. keyr  pem | unc. Peenter and unc. Pperiph. ass.
1 By v 277 | 38U (n,n') 0.8%
2 B8 (n,y) 248 25U 0.8%
3 350 (n,y) 145 | 26Fe(n,n) 0.8%
4 250 (n, f) 144 | U (n,7) 0.3%
5 H(n,~) 132 | #8%U (n,7) 0.3%
6 B (n, f) 116 YH(n,n) 0.3%
7 BT 103 YH(n,v) 0.3%
Total uncertainty kegs 634 | Peenter : 3%  Pperiph. ass. : 2.3%

Table 3. Main contributors and total propagated uncertainty (1o) with COMAC V2

ripheral assemblies. Those two latters contain the highest standards. That leads to a reduction of its contribution
uncertainties of the power map. Results show that the cal- by a factor 4 on the keyy.

culated total uncertainty on the k. f f stands at 737 pcm, — Concerning the contribution of the inelastic cross sec-
on the center of the map 3.6% and on the last ring of as- tion of 238U , the uncertainty value above the threshold
semblies 2.8%. Similarly, Table. 4 presents the last results has been taken at around 15%, as the value given in
obtained with the new covariance library, COMAC V2. JENDL-4.0. These values stay much lower than the

— The contribution due to the 238U fission cross section

one given e.g. by ENDF_VIIL.1 (30%). Anyway, the im-

portance of this uncertainty has been proven in recent

has dramatically been reduced : above 1 MeV, the

standard deviation in COMAC V2 has been taken to

work. That is why latests evaluations and experimen-

be around 2-3%, the same order of magnitude as the



Ludovic Volat et al.: Stochastic Propagation of Uncertainties along large cores power maps 7

0.77 084 088 096 101 103

3.0
(2.5%) (1.9%) (1.1%) (0.3%) (0.8%) (1.4%) H
076 08 083 092 101 11 109

(2:9%) (2.5%) (1.8%) (1.0%) (0.1%) (1.0%) (1.6%) L5

076 079 081 083 094 106 113 114
(2:9%) (2.6%) (2.1%) (1.5%) (0.7%) (0.3%) (1.2%) (1.9%)

077 08 08 087 092 105 114 11 113 2.0
61@5%) (2.5%) (2.1%) (1.7%) (1.0%) [(0.2%) (0.8%) (1.5%) (2.0%) o

084 083 088 092 103 114 129 134 E
57(1.9%) (1.8%) (1.5%) (1.0%) (0.3%) (0.6%) (1.4%) (2.0%) o

088 092 094 105 114 12 122 131 =

=

1(1.1%) (1.0%) (0.7%) (0.2%) (0.6%) (1.1%) (1.8%) (2.3%)

096 10l 106 114 120 122 L1 Lo
1(0.3%) (0.1%) (0.3%) (0.8%) (1.4%) (1.8%) (1.9%)

w

101 11 113 11 134 131
1(0.8%) (1.0%) (1.2%) (1.5%) (2.0%) (2.3%)

&)

0.5
103 109 114 113
101.4%) (1.6%) (1.9%) (2.0%)

—_

j K L M X P R s T

Fig. 4. Normalized Power Map with uncertainties (10) under-

neath

tal measurements contributed very recently to reduce
it even more [14].

— The contribution of the 23U PFNS uncertainty has
been reduced : the niveau of the input uncertainty has
been reduced by more than a factor 2 on the whole
energy range, reducing drastically the uncertainty on
the power map.

— Concerning the contribution of the (n,n) of *H, CO-
MAC VO suggest an increase of the uncertainty above
70keV. However, by conservation of the whole uncer-
tainty, the value at high energies should be much lower

[15]. It was then taken into account in COMAC V2.

Finally, the Fig. 4 shows the whole uncertainty map on
our core. It shows then clearly the radial swing between

the centre and the last ring of assemblies.

5 Summary and Conclusions

Through this, we proved that uncertainties on LWR pa-
rameters due to nuclear data can be propagated through a
brute force method thanks to enhanced and enlarged cal-
culation means. This method gives access to all of the
needed uncertainties without developing any dedicated
perturbation theory or using special hypothesis.

We applied this method to a PWR large core NEA
benchmark and showed that the overall k.y; uncertainty
reaches 634 pcm, 3 % for the centre of the power map and
2.3% for the last ring of assemblies. The main contribu-
tors are 7, the capture and fission cross sections of 23°U
, the capture cross section of 238U for the k, t#- Inelastic
scattering of 238U | PFNS of 23U and elastic scattering
of 96 F'e are the main contributors to the assembly power.
This method could be then applied to propagate other un-
certainties, especially design and technological uncertain-

ties, whose analytical expressions are difficult to derive.
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