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We show that fore-aft asymmetry, a generic feature of living organisms and some active matter systems,
can have a strong influence on the collective properties of even the simplest flocking models. Specifically, an
arbitrarily weak asymmetry favoring front neighbors changes qualitatively the phase diagram of the Vicsek
model. A region where many sharp traveling band solutions coexist is present at low noise strength, below the
Toner-Tu liquid, at odds with the phase-separation scenario well describing the usual isotropic model. Inside this
region, a “banded-liquid” phase with algebraic density distribution coexists with band solutions. Linear stability
analysis at the hydrodynamic level suggests that these results are generic and not specific to the Vicsek model.
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Nonreciprocal (effective) interactions are interesting but
rather rare in physical systems [1]. They are, however, likely
to be more common in active matter. A nice example of
action-reaction symmetry breaking was given recently by Soto
and Golestanian for catalytically active colloids [2]. A strong
case is that of self-propelled objects interacting solely via
volume exclusion: their shape governs their effective inter-
action (e.g., aligning or not) and thus their collective behavior
[3]. In the context of animal and human collective motion,
asymmetric interactions are quite generic, and this asymmetry
lies mostly in the relative position and weight of neighbors: the
importance and quality of the information perceived by living
organisms usually varies with its origin. In animal groups
one often—but not always, cf. the cannibalistic behavior of
locusts in Refs. [4] and [5]—expects that frontal stimuli
such as neighbor positions matter more to an individual than
events taking place in its back. Somewhat surprisingly, this
generic fore-aft asymmetry has not been much investigated
per se. It is explicitly mentioned in some works [6] and
implicitly present in a number of models, see, e.g., [7], and the
rather complicated escape-pursuit mechanisms introduced in
Refs. [8] and [9] to describe marching locusts, or the “motion
guided attention” described in Ref. [10]. It can even be found
in variants of simple flocking models such as the Vicsek
model, where local alignment of constant-speed particles
competes with noise [11–13]. In [14–18], the introduction of
a limited angle of vision was shown to have an influence
on the shape of cohesive moving groups, on the degree
of ordering, etc. Asymmetric interactions are also present
in “metric-free” models introduced in the context of bird
flocks [19–22].

In all cases mentioned above, it was not shown that fore-aft
asymmetry alone can lead to qualitatively new collective
phenomena. Recently, though, the influence of fore-aft asym-
metric neighbors was investigated in the context of flocking
models incorporating fast “inertial spin” variables [23,24].
Both these works argue that the combination of asymmetric
neighbors and fast variables induces new collective behavior.

In this Rapid Communication, we show that fore-aft
asymmetry alone has a strong influence on the collective

properties of even the simplest flocking models, devoid
of fast inertial variables. Specifically, an arbitrarily weak
asymmetry favoring front neighbors changes qualitatively the
phase diagram of the Vicsek model, chosen here once more
for its archetypical value. The phase diagram of the usual
symmetric Vicsek model—recalled in Fig. 1(e)—is now well
understood [25] as the result of a phase separation between a
disordered gas and a polarly ordered liquid endowed with the
nontrivial correlations and fluctuations akin to those predicted
by Toner and Tu [26]. Here we find that the microphase
coexistence region is very different even for weak fore-aft
asymmetry, and that the high-order high-density traveling
bands characterizing it are much more robust and dominant,
forcing one to reconsider the genericity of the liquid-gas
phase-separation scenario. We also show the emergence, for
strong-enough asymmetry, of an ordered phase different from
the Toner-Tu liquid, characterized by the heavy tail of its
distribution of local density. Finally, we derive hydrodynamic
equations which we show to have a linear stability phase
diagram in qualitative agreement with our findings at the
microscopic level, which suggests that our results are generic
and not specific to the Vicsek model.

Fore-aft asymmetry can be implemented in different ways.
We do so via a minimal modification of the two-dimensional
Vicsek model where the only new feature is that front and
back neighbors have respective weights 1+α

2 and 1−α
2 , so that

when α = 1 (resp. −1) only front (resp. back) neighbors are
taken into account (with equal weights). We thus consider N

point particles moving at constant speed v0 in a periodic square
domain of linear size L. At each discrete time step �t = 1,
the headings θ and positions r of all particles are updated in
parallel according to

θ t+1
j = arg

[〈
ωt

jk exp iθ t
k

〉
k∈Nj

] + η ξ t
j , (1)

rt+1
i = rt

i + v0et+1
i , (2)

where Ni is the unit disk around particle i, ξ t
i a random angle

drawn uniformly in [−π,π ], η sets the noise intensity, et+1
i is
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FIG. 1. Phase diagram of fore-aft asymmetric Vicsek model with front preference (α > 0) in (ρ0,η) plane. Cyan region: stability of the
one-band solution. Red region: Toner-Tu liquid phase. Blue-stripes region: banded-liquid phase. Black line: order-disorder transition. In the
white regions, one observes solutions with more than one band. Blue line: upper limit of “banded-liquid” phase. Cyan line: limit of stability
of the one-band solution. Magenta line: limit of stability of the two-band solution [only determined in (a), (b)]. Red line: upper limit of the
Toner-Tu liquid phase. (a)–(d) finite-size systems (L = 256) with α = 1, 0.6, 0.3, and 0.1. (e), (f) asymptotic (L → ∞) diagrams for α = 0
(usual Vicsek model, data from [25]) and α = 0.3.

the unit vector pointing in direction given by θ t+1
i , and the

weights ωt
jk = 1

2 (1 + α sign[(rt
k − rt

j ) · et
j ]).

We first present results obtained in a numerical study of the
model at α = 1 (only front neighbors are taken into account),
varying the global density ρ0 = N/L2 and the noise intensity
η. The phase diagram at fixed size L = 256 is presented
in Fig. 1(a). (See numerical protocol in Appendix A.) The
order-disorder transition line (black line) is similar to but
slightly lower than that of the symmetric model, whose phase
diagram is shown in Fig. 1(e). In strong contrast to this last
case, there is no region of homogeneous Toner-Tu liquid at low
noise strength. Instead, traveling band solutions, characteristic
of the coexistence phase, are observed everywhere below the
order-disorder line. More specifically, the solution containing
a single band is stable in the cyan region between the order-
disorder line and the C-shaped cyan line in Fig. 1(a). Similarly
the two-band solution is stable from almost the order-disorder
line until the C-shaped magenta line [27]. In the low noise
blue-stripes region below the blue line, a phase that we call
“banded liquid” (see below and Fig. 2) coexists with many
stable band solutions. Exploring very large values of ρ0, we
find that the lower branch of the C-shaped curves and the line
delimiting the banded liquid become largely independent of ρ0.
Above the C-shaped curves, at densities ρ0 � 20, we observed
what could be the usual Toner-Tu liquid (not shown), even
though it is hard to reach solid conclusions for such parameters.

One striking feature in the above observations is the
robustness of the band solutions, and their extremely sharp
fronts and small width in the low noise region. For η = 0.1,
for instance, the one-band solution seems stable for arbitrarily
large ρ0, reaching ever-higher peak densities as ρ0 increases
[Figs. 3(a) and 3(b)]. This solution is also stable for arbitrary
large system size L, all parameters being fixed [Figs. 3(c) and
3(d)]. These observations invalidate in practice the liquid-gas
scenario (which implies that the number of bands scales
linearly with ρ0 and/or L [25]). Nevertheless, we are not in the
presence of some “condensation” phenomenon: two bands at
short distance from each other do experience mutual repulsion,
leading them to be asymptotically equidistant (not shown).

We now turn to a description of the “banded liquid.” Like
the ordered liquid of the symmetric model, this phase shows

true long-range polar order (not shown) and exhibits “giant”
anomalous number fluctuations with approximately the same
scaling exponent [Fig. 2(c)]. But unlike the Toner-Tu liquid,
it always coexists with band solutions [28]. Moreover, as seen
from Fig. 2(a), extremely high density packets are present, and
the bandlike structures to which they belong are only seen if
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FIG. 2. Banded-liquid phase observed for α = 1, ρ0 = 1, η =
0.055. (a), (b) Snapshots of density field calculated over square
boxes of linear size 
 = 4 in a system of size L = 512 (logarithmic
color scale: (a) pure front model α = 1 and (b) Toner-Tu liquid of
symmetric Vicsek model α = 0. (c) Giant number fluctuations: rms
�n of number of particles n contained in boxes of various linear
sizes. Top three curves (shifted up for clarity): pure front model
(α = 1). Bottom three curves: symmetric Vicsek model (α = 0).
Dashed cyan (resp. magenta) line is a power law of exponent 0.7 (resp.
0.75). The system size is indicated near each curve. (d) Probability
distribution function of coarse-grained density (black and red lines:
α = 1, L = 256,512; green and blue lines: α = 0, L = 256,512).
Dashed magenta line is a power law of slope −1.7.
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FIG. 3. Robustness of the one-band solution (α = 1, η = 0.1).
(a) Time-averaged density profiles at various ρ0 values. From bottom
to top: ρ0 = 0.06, 0.1, 0.3, 1.2, 10, 20, 50 (L = 256). (b) Peak density
(top) and gas density (bottom) vs ρ0 (L = 256). (c) Time-averaged
profiles for L = 128,256,512,1024,2048 from bottom upward (ρ0 =
0.25). (d) Same as (b) but for profiles of (c).

some logarithmic density scale is adopted. This is in contrast
with the usual Toner-Tu liquid phase, a snapshot of which is
shown in Fig. 2(b) for comparison. Looking at the distribution
function of (coarse-grained) density, a qualitative difference
between the two ordered liquids appears: the banded liquid
exhibits a power-law tail with exponent ∼1.7, whereas only
an approximately exponential tail is seen for the Toner-Tu
liquid [Fig. 2(d)].

The results presented so far show that restricting neighbors
to those strictly in front (α = 1) induces strong differences
with the usual (α = 0) Vicsek model. This is not due to
some singularity of the α = 1 case: decreasing α from 1 to 0,
the phase diagram changes smoothly [Figs. 1(a)–1(d)]: the
banded-liquid region (blue stripes) shrinks to some triangle
near the origin of the (ρ0,η) plane and vanishes completely
for α � 0.25. The C-shaped curves delimiting the stability of
the one-band and two-band solutions move towards the origin
and open up into two separate regions for α � 0.4, while the
Toner-Tu liquid appears in a central red region. Approaching
α = 0, the lower region of stability of the one-band solution
recedes to larger and larger densities, leaving the familiar
phase diagram of the symmetric Vicsek model [Fig. 1(e)].

We now present evidence that our main findings hold in
the infinite-size limit. For that numerically demanding task,
we focused on the α = 0.3 case (see Appendix A for details).
Crossing the blue lines from below in Fig. 1, the banded liquid
disappears in a clearly discontinuous transition, typically
leaving many thin bands. We located this transition at fixed

ρ0 for systems of increasing size. The transition values ηbl(L)
thus defined increase with L and converge to a finite asymp-
totic value exponentially, ηbl(∞) − ηbl(L) ≈ exp(−kL), as
expected in first-order phase transitions. Repeating this for
different ρ0 values, we find that the banded-liquid region
converges to the blue line in Fig. 1(f). (For larger α values, the
asymptotic banded-liquid region remains unbounded in ρ0.)

Similarly, we tracked the stability region of the one-band
solution (again, some details are found in Appendix A). We
found that its lower part converges to a well-defined domain
delimited by the cyan line in Fig. 1(f). The upper part of the
stability region of the one-band solution behaves like in the
(α = 0) Vicsek model: it quickly converges onto the order-
disorder line as L increases [and is thus undistinguishable
from the black order-disorder line in Fig. 1(f)]. As for the
symmetric model, there exists, nevertheless, a coexistence
region containing smectic arrangements of band solutions
[white area in Fig. 1(f)]. We thus conclude that the asymptotic
phase diagram of our model for α = 0.3 is qualitatively
different from that of the symmetric model [compare Figs. 1(e)
and 1(f)]. It comprises an extra banded-liquid phase as well as a
second region supporting band solutions that seem unbounded
to the right.

In fact, the phase diagram seems to comprise a lower band
region for any finite α value: the one-band solution can be
found stable for values as low as α = 0.01, provided that
ρ0 is large enough. For instance, working at fixed low noise
η = 0.03 and L = 256, we find that the one-band solution
is stable for at least millions of time steps for ρ0 � ρ∗(α),
with ρ∗ � 0.65,1.1,1.8,3 for α = 0.06,0.04,0.02,0.01 and
that ρ∗

0 decreases with increasing system size (at fixed α). This
suggests nothing less than the singularity and “fragility” of the
classic Vicsek model—and thus, presumably, of many flocking
models in its class—with respect to fore-aft asymmetry.

We finally report evidence of the robustness of our findings.
First, they are not specific to the variant of the Vicsek model
defined by Eqs. (1) and (2): implementing instead a restricted
angle of vision [θi − δ; θi + δ] around the particle’s headings
θi , we found phase diagrams similar to those of Fig. 1 for δ ∈
[π

2 ,π ] (not shown). Next, we now show briefly how one can
account for our results at the hydrodynamic level (details can
be found in Appendix B). We use a variant of the Boltzmann-
Ginzburg-Landau method used successfully for Vicsek-style
models [29]. This approach, or for that matter any one based
on a controlled truncation and closure of a kinetic equation
governing the one-body distribution function f (θ,	r,t), can
only produce the following Toner-Tu equations coupling the
density and the ordering fields ρ and w = ρ P (where P is the
polar order field):

∂tρ + ∇ · w = D�w, (3)

∂tw + 1

2
∇ρ = [μ − ξ |w|2]w + Di�w + Da∇(∇ · w)

−λ1(w · ∇)w − λ2(∇ · w)w − λ3∇|w|2, (4)

but the explicit form of the ρ-dependent transport coefficients
does depend on the precise kinetic equation used. Here we
write a standard Boltzmann equation with effective positional
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FIG. 4. (a) Sketch of the geometry of interaction between
particles where particle 1 is taken as the reference particle. (b) Phase
diagram in the (ρ0,σ ) plane showing the linear stability analysis
of the homogeneous ordered solution |w|2 = μ/ξ of Eqs. (3) and
(4). The color coding indicates the direction of the most unstable
mode compared to that of the polar order. In the white region, the
homogeneous order is stable; the gray region denotes the stable
disordered phase.

diffusion [30] and the collision integral:

Icol[f ] =
∫

dθ1dθ2 f (θ1,	r)f (θ2,	r)
∫

dφ K(θ2 − θ1,φ)

×{Pη ∗ δ[�(θ1,θ2)] − δ(θ1 − θ )}, (5)

where Pη is the angular noise distribution, �(θ1,θ2) =
arg{exp[ i

2 (θ1 + θ2)]} the polar alignment function, and ∗ the
convolution operator. The main difference with respect to the
traditional modeling of collisions is encoded in the kernel
K(θ2 − θ1,φ) and the integral over φ, the angular position of
particle 2 in the reference frame of particle 1 [see Fig. 4(a)].
Following the usual route, collisions would be restricted to
those with particles ahead approaching the reference particle
and would hence discard the crucial, persistent, aligning events
with front particles going “away” from the focus particle. Here,
on the contrary, the structure of K favors those collisions,
something we encode in the following compact expression:

K(�,φ) = | sin(�/2)|[�(�,π,φ) + �(π,�,φ + π )], (6)

where �(a,b,x) = �(a − b)�(x − a
2 )�( b

2 − x) with � the
Heaviside step function [31].

The resulting expressions for the transport coefficients of
Eqs. (3) and (4) are given by Eqs. (B2)–(B8) in Appendix B.
The study of the existence and linear stability of the homo-
geneous solutions of Eqs. (3) and (4) is summarized in the
(ρ0,σ ) phase diagram presented in Fig. 4(b), where σ is the
rms of the microscopic noise Pη. Similar to the microscopic
model, the basic order-disorder transition line defined by
μ = 0 is lower than the one found with symmetric interactions.
Bordering this line, we find the usual longitudinal, “banding”
instability of the ordered solution |w|2 = μ/ξ , but also, at
low noise, a new, large, transversal instability region which
almost suppresses the longitudinal instability at low densities.
The exchange of instability direction is in fact the result of
growing “transverse” lobes in Fourier space (see Appendix B).
The new transverse instability causes the Toner-Tu liquid to
be unstable at low densities, in agreement with the phase
diagram of the microscopic model. Investigating whether this
agreement carries over to the nonlinear and fluctuating level

and possibly reveals the existence of a banded-liquid regime
for the stochastic version of hydrodynamic equations (3)
and (4) is a difficult task left for future studies. Preliminary
simulations at the deterministic level are encouraging in this
respect: in the transverse instability in Fig. 4(b), we observe
very sharp band solutions, reminiscent of those observed in
the microscopic model.

To summarize, even weak fore-aft asymmetry, a generic
feature of living organisms and some active matter systems,
can have a strong qualitative influence on the collective prop-
erties of even the simplest flocking models. Specifically, an
arbitrarily small asymmetry favoring front neighbors changes
qualitatively the phase diagram of the Vicsek model. A region
where many sharp traveling band solutions coexist is present
at low noise strength, below the usual Toner-Tu liquid, an
observation that forces one to revisit the phase-separation
scenario put forward for symmetric flocking models. Inside
this region, a banded-liquid phase with algebraic density
distribution coexists with the band solutions. Stability analysis
at the hydrodynamic level suggests that these results are
generic and not specific to the Vicsek model.

Future work will try to connect our results to the interesting
predictions made in Refs. [23] and [24] for asymmetric models
with fast underdamped inertial spin variables. More generally,
our results indicate that nonreciprocal interactions in active
matter deserve further study.
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APPENDIX A: NUMERICAL PROTOCOLS AND DETAILS

Numerical protocol for the phase diagrams in Figs. 1(a)–
1(d). In the cyan region, the one-band solution is observed

FIG. 5. (a) Convergence with system size of the transition point
η∗(L) delimiting the lower part of the stability region of the one-
band solution (α = 0.3, ρ0 = 0.5). The red solid line is a fit η∗(L) =
η∗

∞ − a exp(−bL) with η∗
∞ � 0.158. (b)–(e) Unstable modes for the

homogeneous solution |w|2 = μ/ξ at ρ0 = 1.5 in the (q‖,q⊥) plane
(q‖,q⊥ ∈ [−0.025,0.025]). Color codes for the growth rate only if it is
positive, from blue = 0 to red = 10−3: (b) σ = 0.267, (c) σ = 0.265,
(d) σ = 0.263, and (e) σ = 0.261.
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for at least 106 time steps. Similarly, the two-band solution is
observed for at least 106 time steps left of the magenta line in
Figs. 1(a) and 1(b). The black, cyan, and magenta transition
lines obtained are sharply defined because the lifetime of the
one-band and two-band solutions quickly and surely becomes
very short across them. The blue line marking the limit of
the banded-liquid phase is again defined by the condition that
the banded liquid is observed for at least 106 time steps. The
corresponding transition is sharp, as the breakdown of the
banded liquid quickly leads to a solution containing a number
of very thin bands, but it has all the features of a first-order
phase transition. In particular, the breakdown of the banded
liquid follows the nucleation of some local thin band(s). Our
protocol to locate the transition points was that, over 100 runs,
at least 50 of them led to band solutions within 106 time steps.

Convergence of transition points at fixed parameters as
L → ∞ [Fig. 1(f)]. to determine each of the transition points
shown in the asymptotic phase diagram in Fig. 1(f), we
followed the same protocol as outlined above for different
system sizes. This yielded a series of transition values which
typically converges exponentially to a finite asymptotic value.
An example is shown in Fig. 5(a).

APPENDIX B: DERIVATION OF HYDRODYNAMIC
EQUATIONS AND LINEAR STABILITY ANALYSIS

Derivation of hydrodynamic equations. The Boltzmann
kinetic equation describing the evolution of the single particle
distribution function f = f (r,θ,t) reads

∂tf + v0e(θ ) · 	∇f = Df + Idif[f ] + Icol[f ], (B1)

where e(θ ) is the unit vector along θ and Idif[f ] = −f + (Pη ∗
f ) is the angular self-diffusion integral, with P the distribution
of the angular noise and ∗ the convolution operator. In addition
to this rotational diffusion, we consider also spatial diffusion
expressed by the term Df . Our Vicsek-style model does not
have explicit positional diffusion, but its discrete-time dynam-
ics generates it. Here, we introduce it explicitly mostly because
this term, with D large enough, removes the spurious insta-
bility of the homogeneous state found away from the order-
disorder line in the resulting hydrodynamic equations [29].

For the standard (isotropic) Vicsek model, the collision
between two particles can happen along any approaching
direction. For the “front-biased” model (α > 0), in contrast,
we favor the “dominant” aligning interactions, which are those

taking place effectively with particles already following the
reference particle. These collisions are frequent, the relative
Velocity of the two particles is small, when the relative
direction of particle 2 lies in φ ∈ [π/2,3π/2]. This is encoded
in the K(θ2 − θ1,φ) given in the main text.

The hydrodynamic equations are then obtained following
the usual procedure: expanding the Boltzmann equation
in Fourier series of the angular variable θ , [f (r,θ,t) =∑∞

−∞ fk(r,t) exp(ikθ )], leading to a hierarchy of partial differ-
ential equations governing the fields fk . Using a propagative
scaling ansatz [29], this hierarchy is truncated and closed,
leading to the usual Toner-Tu equations given in the text with
the following transport coefficients:

μ(ρ) = P1 − 1 + 1

12π
[8P1 − (16 − 3π )]ρ, (B2)

ξ = −8P1 + 15π − 48

120π2μ2

[
4

3
− π

2
+ (4 − π )P2

]
, (B3)

Di = D − 1

4μ2
Da = 0, (B4)

λ1 = −κ2 − κ1 λ2 = −κ2 + κ1 λ3 = −λ2

2
, (B5)

with

μ2 = P2 − 1 − 1

2π

[(
8

3
− π

)
P2 +

(
56

15
− π

)]
ρ0, (B6)

κ1 = 1

2πμ2

[
4

3
− π

2
+ (4 − π )P2

]
, (B7)

κ2 = − 1

120πμ2
(8P1 + 15π − 48), (B8)

where Pk = ∫ ∞
−∞ dσPη(σ ) exp(ikσ ).

Linear stability analysis of the ordered solution. The ho-
mogeneous ordered solution |w|2 = μ/ξ to the hydrodynamic
equations is unstable in a large region. Near the order-disorder
transition line, the most unstable modes are longitudinal.
Decreasing σ , the most unstable modes become transversal
ones. In Figs. 5(b)–5(e), we show how this happens in the
(q‖,q⊥) Fourier space of perturbations. Only modes with
positive growth rate are shown. They form four “lobes” whose
relative strength varies with σ .
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