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aInstitut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cédex, France
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ABSTRACT

This is a brief history of what I consider as very important, some of which truly seminal,
contributions made by young Korean nuclear theorists, mostly graduate students working on
PhD thesis in 1990s and early 2000s, to nuclear effective field theory, nowadays heralded as
the first-principle approach to nuclear physics. The theoretical framework employed is an
effective field theory anchored on a single scale-invariant hidden local symmetric Lagrangian
constructed in the spirit of Weinberg’s “Folk Theorem” on effective field theory. The problems
addressed are the high-precision calculations on the thermal np capture, the solar pp fusion
process, the solar hep process – John Bahcall’s challenge to nuclear theorists – and the
quenching of gA in giant Gamow-Teller resonances and the whopping enhancement of first-
forbidden beta transitions relevant in astrophysical processes. Extending adventurously the
strategy to a wild uncharted domain in which a systematic implementation of the “theorem”
is far from obvious, the same effective Lagrangian is applied to the structure of compact
stars. A surprising, unexpected, result on the properties of massive stars, totally different
from what has been obtained up to day in the literature, is predicted, such as the precocious
onset of conformal sound velocity together with a hint for the possible emergence in dense
matter of hidden symmetries such as scale symmetry and hidden local symmetry.

1 Introduction

With supersymmetry still invisible at the super-accelerator energies at CERN, and conse-
quently string theory, the would-be “Theory of Everything” (TOE), in – perhaps temporary
– doldrums, it has become a vogue to resort to effective field theories to make further progress,
ranging from particle physics at the smallest scale all the way to cosmology dealing with large
scale universe. To some extent this may be more of a desperation, given no other alternatives
available, but the currently favored view is to think that independently of whether there is
ultimately a TOE, going the route of effective field theories would be an extremely fruitful
way to unravel Nature. This attitude applies even to the case where a potential “fundamental
theory” exists, such as for instance QED for condensed matter physics and QCD for nuclear
physics. Although both are “effective theories” from the point of view of TOE, they can be
considered a complete theory within the domain relevant to these subsystems.
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In this article I address the second matter in connection with nuclear physics.

There is little doubt that QCD is the correct fundamental theory for strong interactions.
With nuclear interactions involving strong interactions, QCD therefore must be able to ex-
plain everything that’s going on in nuclear physics. Just to cite a few examples, QCD should
explain how the first excited 0+ state at 6.06 MeV of 16O on top of the spherical ground
state is deformed, the structure of the rotational band of the famous Hoyle state in 12C,
the long life-time of 14C responsible for the carbon-14 dating etc. These apparently complex
and intriguing phenomena have been fairly sell explained in various models developed in the
field since a long time in nuclear physics circle without any recourse to the QCD degrees of
freedom, quarks and gluons. Attempts are being made to go from QCD proper to nuclear
processes using lattice techniques, and there have been some progresses [1], in particular, in
calculating baryon-baryon potentials, essential for many-body systems, electroweak response
functions for light nuclei and so on. So far whatever has been feasible for reliable calculations
shows that QCD à la lattice does give post-dictions satisfactorily and indicate that ultimately
such first-principle calculations will achieve to explain many, if not all, of nuclear processes
that have been calculated with some accuracy, including perhaps what’s mentioned above, in
the standard nuclear physics approach (SNPA for short). The only thing is that it will take
a very very long time.

Now what about the highly compressed hadronic matter considered to be present inside
massive compact stars?

Due to the famous sign problem, it is not at all clear when and how this problem will
be solved by lattice techniques. Although at low density below nuclear matter, various
approximate methods could be employed, the high density involved in the stars cannot be
accessed at all. There are no other known techniques in QCD that can unravel what happens
in the ∼ 2-solar mass stars recently determined [2]. At superhigh density, way above the
pertinent density, perturbative QCD is perhaps applicable, but this perturbative regime is
most likely irrelevant to the problem. So it looks that even if there is a well-defined “theory
of everything” within the nuclear domain, it is not directly relevant.

How does one go about talking about the deformed 0+ state in 16O, the Hoye state etc.
on the one hand and on the other hand, unravel what happens in dense compact stars and
possibly gravity waves coming from merging neutron stars?

This is where effective field theories come in. I would like to recount what effective field
theory is all about and how it figures in nuclear physics and what seminal contributions
several Korean nuclear theorists have made to the early development in the field.

Let me start with what is called “Folk Theorem” on effective quantum field theory.

2 The Folk Theorem

What is quantum field theory and how does effective field theory (EFT for short) work?
This question was raised some time ago and has since then been answered by Weinberg in
terms of a “theorem” [3, 4]. It is classified as a “Folk Theorem,” not a rigorous physical or
mathematical theorem, because as explained by Weinberg, it is not a bona-fide theorem in
the sense it can be given a rigorous proof approved by axiomatic field theorists. This is the
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reason why I put the quotation mark. Nonetheless nowadays it figures legitimately in field
theory textbooks [5]. This note is an offer of support to that theorem from nuclear physics.
It is in my mind the most concrete and perhaps the most successful case of how it works.

The “Folk Theorem” (FT for short) states: “If one writes down the most general possi-
ble Lagrangian, including all terms consistent with assumed symmetry principles, and then
calculates matrix elements with this Lagrangian to any given order of perturbation theory,
the result will simply be the most general possible S-matrix consistent with perturbative uni-
tarity, analyticity, cluster decomposition, and the assumed symmetry properties.” Though it
does not enjoy a rigorous proof, one cannot see how it can go wrong

The point is that this theorem should apply to all interactions in Nature even if there
existed a “Theory of Everything.” The most prominent cases are seen in condensed matter
physics. In strongly correlated condense matter systems, a large variety of effective field
theories are uncovering a wealth of fascinating phenomena, exposing emergent symmetries
with no visible connections to QED, the “fundamental theory” for condensed matter systems.
In particle physics, the Standard Model is a preeminent case of effective field theory in search
of more fundamental theory or “ultimate theory,” which can be solved to a great accuracy
to confront Nature [6]. Unlike in QED, however, QCD, the theory for strong interactions,
cannot yet be solved in the nonperturbative regime and hence cannot have a direct access
to nuclear phenomena. Thus effective field theory is the only approach available in nuclear
physics. And it has proven to be highly successful.

There are two ways the FT could play a crucial role in nuclear physics. One way, Class
A, is that it can be exploited for high precision calculations for the nuclear processes that
are accurately known empirically but cannot be calculated reliably by available methods.
Here effective field theories representing QCD as faithfully as feasible in the sense of the FT
could give highly precise results. This will be a post-diction, but it can also lead to spin-off
predictions related to them. The other, Class B, is that it can be exploited for making genuine
predictions of what could happen in the domain that QCD proper cannot access within a
foreseeable future. For the class A, I will describe certain response functions in light nuclear
systems and for the class B, what takes place in highly dense baryonic matter as what’s
expected to be found in compact stars for which the lattice QCD is currently powerless.

In this paper, it will be argued that this success in nuclear physics in the class A could
be taken as a “folk proof” of the FT. In my view, this offers the most solid case of how the
theorem works in strong interaction physics. In fact the initial development dates way back
to 1960’s with Skyrme’s pioneering work on unified theory of mesons and baryons [7] and
his energy density functional approach (known in the literature Skyrme potential) in nuclear
physics [8].1 It has then evolved with the recognition of chiral symmetry in nuclear dynamics
via current algebras in 1970’s before the advent of QCD and then chiral perturbation theory
in 1990’s for nuclear forces and nuclear response functions.

Here Korean nuclear theorists made seminal contributions. It is one of the objectives of
this paper to bring this to the attention of the Korean physics community.

This series of developments in nuclear physics is aptly captured by Weinberg’s words [4]:
“The use of effective quantum field theories has been extended more recently to nuclear

1The two ideas brought out by Skyrme turn out to be connected in an intricate and involved way. This
matter is however out of the scope of this note. See [9] for discussions on this matter.
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physics, where although nucleons are not soft they never get far from their mass shell, and
for that reason can be also treated by similar methods as the soft pions. Nuclear physicists
have adopted this point of view, and I gather that they are happy about using this new
language because it allows one to show in a fairly convincing way that what they’ve been
doing all along .... is the correct first step in a consistent approximation scheme.” Let me
call this observation “Corollary” to the FT.

I first illustrate, with a few selected cases, how the “proof” works out in nuclear pro-
cesses. In the coming years, the folk theorem will be more quantitatively verified in nuclear
physics in the vicinity of normal nuclear matter density n0 or slightly above as higher-order
corrections, in principle systematically doable, are calculated with more powerful numerical
techniques within the well-defined effective field theory scheme and more and higher-accuracy
experimental data become available. Given an EFT framework accurately formulated along
the FT, what is needed is then high-powered numerical techniques to solve the given well-
defined many-body problems. Such techniques have been actively developed – and are being
developed further – outside of the context of the EFT formalism, and the recent develop-
ment renders such techniques implementable to the EFT strategy. Some notable examples,
just to name a few, are the ab initio methods with or without core [10], Green’s function
methods [11], quantum Monte Carlo [12], renormalization-group strategy [13] etc.

The next objective is to go beyond what’s established by the FT under normal conditions
to the domain of nuclear physics for which very little is established, both theoretically and
experimentally. One particularly challenging – and very poorly understood – domain is
the high density regime that is considered to be relevant for massive compact stars. QCD,
with the lattice technique hampered by the sign problem, cannot access such conditions.
Therefore effective field theory is the only tool that offers the possibility. Given the paucity
of experimental information and trustful model-independent tools currently available, this
endeavor is unquestionably exploratory. It involves assumptions and simplifications, with
full of holes in the reasoning far fetched even from the non-axiomatic FT. What is obtained
is admittedly very tentative. However the results are highly promising and represent yet
another potential achievement from Korean nuclear theorists.

3 How Nuclear EFT Fares: Precision Calculation

Let me start with what I would consider as a “proof” – and a very compelling one – of the
FT in nuclear physics.

The current breakthrough in EFT in nuclear physics initially germinated from Weinberg’s
1979 article on phenomenological Lagrangians for pion dynamics [3] and got materialized in
1990’s in the formulation from effective chiral Lagrangians of nuclear forces [14, 15] and of
electroweak responses [16]. A remarkable progress has been made since then on formulating
systematic approaches to wide-ranging nuclear dynamics, ranging from nuclear forces to
nuclear structure and confronting nature. There are numerous reviews on the current status
of nuclear EFT, among which are some recent ones on nuclear forces [17, 18] and on nuclear
weak response functions [19, 20]. The EFT approach as it stands now is established as the
standard tool to probe strongly-interacting highly correlated matter under normal conditions,
say, up to ∼ n0 or perhaps slightly above. It is also most likely the only tool to go beyond the
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normal towards the extreme conditions met in compact stars and merging of neutron stars
giving rise to gravity waves.

To see how this development constitutes a proof of the the FT in nuclear physics, we go
back to the pre-QCD period. For this, as stated, we focus on nuclear response functions to
external fields instead of on nuclear forces. This is because while the nuclear currents and
spectra are intimately connected to each other in EFT, the nuclear response functions can
be more accurately calculated and compared with experiments than the nuclear spectra. It
renders precision calculations feasible and meaningful.

That chiral symmetry could play an important role in nuclear physics was recognized
already in early 1970’s. It was implicit in considerations of pion-mediated nuclear potentials,
but the first realization of its potential impact in nuclear physics was in nuclear response
functions to the electroweak external potential. There was no effective field theory then
but just phenomenological Lagrangians built with identified hadronic degrees of freedom
considered to be relevant to the kinematic regime concerned. Both the nuclear potentials
and response functions were then calculated only – and by necessity – at the tree order. It
was in calculating the EW response functions that the soft-pion theorems, applicable at the
tree order with the Lagrangian, were applied to pionic exchange currents. Given that the
pion-exchange represented dominant contribution, with heavier meson degrees of freedom
suppressed by their heavy mass, the soft-pion contribution with constraints from the current
algebras were calculated reliably parameter-free. This represented the first indication that
chiral symmetry could figure significantly in nuclear processes [21]. The further development
in this line of reasoning led to the prediction that the M1 matrix element and the weak axial-
charge matrix element should receive an important contribution from the soft-pion theorems.
It was recognized on the ground of the soft-pion theorems that the axial-charge transitions can
have an extremely clean meson-exchange effects [22]. Indeed the nuclear EFT so formulated
led to high precision calculations of electroweak processes in light nuclei, a brief summary of
which is given in [23].

It is here Korean nuclear theorists first entered. To recount this development, let us
consider two processes.

One is on the thermal np capture

n+ p→ d+ γ (1)

and the other is the solar fusion processes

p+ p→ d+ e+ + νe. (2)

Historically, the process (1) was first explained quantitatively two decades ago by Riska
and Brown [24] who showed that the ∼ 10% discrepancy present at that time between the
experimental cross section and the theoretical impulse approximation prediction is eliminated
by exchange currents. Riska and Brown computed, using realistic hard-core wavefunctions,
the electroweak exchange current suggested by Chemtob and Rho [21] coming from current-
algebra low-energy theorems. Since the current algebra term is the leading-order contribution
in chiral perturbation theory2, what Riska and Brown calculated is incorporated in the chiral

2We denote by SχEFT the chiral perturbation theory that involves nucleons and pions only, to be distin-
guished from chiral effective field theory that includes the light vector mesons, ρ and ω, and also a dilaton
scalar, which will be denoted σ.
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expansion as the leading order term. The first calculation in standard chiral effective field
theory (SχEFT) in the next-to-next-to-leading order (N2LO) in the chiral counting was made
by Tae-Sun Park, a graduate student at Seoul National University, giving the result [25]

σth = (334± 2)mb (3)

to be compared with the experiment

σexp = (334.2± 0.5)mb. (4)

The error bar in the theory (3) represents uncertainty in dealing with the cutoff (short-
distance regularization in coordinate space). This is shown, just to highlight the point,
in Fig. 1 (left panel). With the modern refinement in more than two decades after the first
SχEFT calculation, it is very possible that one can do a lot better, eliminating the little holes
there might haver been, than what’s done in [25] and reducing even further the theoretical
uncertainty.

Figure 1: n+ p→ d+ γ. Left panel: SχEFT calculation for σ [25] vs. rc. Here ∆ and ω are
invoked for the resonance saturation of the constants. Right panel: Lattice calculation for
2-body correction vs m2

π [26]. Here the MEC given by l1, calculated on lattice, contains m2
π.

In the meantime, lattice QCD techniques have advanced well enough to calculate certain
light-nuclear processes [1]. A recent lattice QCD calculation of this particular process “mea-
sured” with heavy pion mass extrapolated to the physical pion mass using pionless effective
field theory which brings in uncertainty3 gave [26]

σlatticeQCD = 334.9.± 5.3 (5)

The main uncertainty coming from the pion mass extrapolation is given in Fig. 1 (right
panel). Although apparently unrelated, the errors involved are comparable between the two

3Possibly justified for this process, but not for axial charge transitions discussed below.
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results. I take this as one of the most beautiful cases that confirm nicely the FT in action in
nuclear physics.

Another case that belongs to the class A listed above to which Tae-Sun Park made the
pivotal contribution is the solar pp process (2) and especially the hep process

3He + p→4 He + e+ + νe. (6)

The processes (2) and (6) are, respectively, the lowest and the highest in the solar neutrino
spectra. I will discuss both because the former is very well controlled by SχEFT, but the
latter is highly uncertain, involving higher-order corrections. The problem here is that the
two processes involve at the leading order the Gamow-Teller operator. While it contributes
rather straightforwardly in the former process, the latter involves delicate cancellations and
hence requires fine-tuned higher-order corrections.

The process (2) was first computed in SχEFT by Tae-Sun Park in 1998 [27]. Dominated by
the Gamow-Teller operator, soft-pions do not contribute, and hence for precision calculation
one has to go to higher orders than in the case of the np capture. The exchange current
corrections are much smaller than in the case of the np capture. Going to N3LO the result
obtained was

Spp(0) = 4.05× 10−25(1± 0.01) MeV b (7)

where

Spp(E) = σ(E)Ee2πη (8)

with σ(E) the total cross section for the pp fusion and η = mpα/2p. The result (7) was
further improved to [28]

Spp(0) = 3.91× 10−25(1± 0.008) MeV b. (9)

The updated accepted value is [29]

Spp(0) = 4.01× 10−25(1± 0.009)MeV b. (10)

A lattice QCD calculation using a similar pion-mass extrapolation procedure as in the np
capture case [26] verifies this value, again providing a proof of the FT. There are other cases
that offer equally strong support to how the FT works in nuclear dynamics, e.g., νd reactions
νe + d→ e−+ p+ p, ν+ d→ ν+n+ p, triton beta decay, polarized np capture ~n+ ~p→ d+ γ
etc. with tiny theoretical error bars, all more or less postdictions, though highly precise.

When the transition is of Gamow-Teller type, unless there is an accidental cancelation, the
single-particle operator dominates. With soft-pion contributions absent, exchange-current
corrections are largely suppressed. Thus given accurate wave functions, with the SNPA
exchange currents with no systematic (chiral) power counting, as was done in [21], it is not
surprising that the SNPA can also capture rather closely the flux factor (10). In fact this
is what was found in [30]. This confirms that the SNPA was going in the right direction,
providing a proof to the corollary of the FT. What matters in this case is essentially the
nuclear potential – giving accurate wave functions – and the sophisticated potential fit to
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data is as good as, or even better, than what one can get at high n – in NnLO SχEFT –
calculations.

Now let me turn to a case where the theoretical situation is completely barren, the hep
process (6). This process is the source of the pp chain’s most energetic neutrino with an
endpoint energy of 18.8 MeV. It has not yet been seen experimentally, with both the Super
Kamiokande and SNO collaborations setting only limits on the hep neutrino flux. It is a
formidable task to calculate this process. First, the leading one-body Gamow-Teller operator
cannot connect the main (s-wave) component of the initial and final wave functions, second
the meson-exchange currents, even with the soft-pion terms suppressed, get enhanced by the
p-wave component of the wave functions, and most importantly the single-body and two-
body current matrix elements tend to largely cancel. This requires that higher chiral order
terms, both in the potential and currents, be calculated with great accuracy.

Historically from 1952 to 1992, the hep flux Shep(0) ranged in unit of 10−20 keV barn from
630 to 1.3 [31]. Given this “wilderness” in nuclear theory, John Bahcall made a challenge to
nuclear theorists in 2000 [32]: “I do not see anyway at present to determine from experiment
or first principles theoretical calculations a relevant, robust upper limit to the hep production
cross section (and therefore the hep solar neutrino flux). .. The most important unsolved
problem in theoretical nuclear physics related to solar neutrinos is the range of values allowed
by fundamental physics for the hep process cross section.”

Bahcall’s challenge was first met in 2000 [33] and then with further precision in 2001 [34]
by Tae-Sun Park with his collaborators. The result obtained to N3LO in the chiral order is

Shep(0) = (8.6± 1.3)× 10−20keV b. (11)

Given the extremely delicate cancelations in the current operators and high sensitivity to
the wave functions involved, the theoretical precision is far from what’s obtained for the pp
fusion. Nonetheless it is a stunning calculation, not just giving the range as challenged by
Bahcall, but narrowing the order-of-magnitude uncertainty down to a tens of %, a prediction
with no free parameters. It represented a giant step forward in nuclear theory. It will of
course ultimately be up to Nature to give a verdict on this prediction. A search is going on
in the SNP collaboration.

An important point to make here with respect to the FT – and more appropriately the
corollary to it – is that the standard nuclear physics approach (SNPA) with exchange currents
incorporated along the line of [21] with certain constraints consistent with Ward identities [35]
gives a result not so numerically different from the N3LO SχEFT,

SSNPA
hep (0) = (10.1± 0.6)× 10−20 keV b. (12)

The upshot of these results means two things. First, the SNPA – what nuclear theorists
have been doing since very long time in nuclear physics – was effectively doing the “right”
first step along the line of the FT in QCD. Second, what makes SχEFT superior in rigor
to SNPA is that corrections to what is calculated can be, in principle, precisely defined, so
one can make systematic improvement, whereas in SNPA, they cannot even be defined other
than at the level of soft-pions as in [21]. Therefore it is in practice unknown whether one can
trust what is obtained in SNPAs, however sophisticated it may be – and even if it may agree
with available experiments. This is where the power of effective field theory comes in.
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I should mention here that Tae-Sun Park’s calculation [23] exploits “accurate” wave func-
tions obtained with what is called “the most sophisticated or realistic potential” V and
the currents J derived to high an n as possible in the NnLO chiral expansion. (In [23],
nJ ∼ 3). Given that V is in principle “exactly” fit to experimental data, one may consider
it as n = nV ∼ ∞ in the chiral expansion. This procedure was referred to, provocatively, as
“more effective effective field theory (MEEFT)” or, less provocatively, as EFT∗ because it
exploits the high precision of the potential and the high chiral order of the current but with
nJ 6= nV . This is a hybrid approach to differentiate it from the “first-principle” EFT that
insists on nV = nJ . There has been criticism on the “MEEFT” on the ground that there
is a mismatch in the chiral counting between the potential and the current. This criticism
is justified since the mismatch can generate ambiguities in implementing the FT to the ef-
fective field theory. For instance it could lead to what is known as “off-shell” ambiguities.
This “in-principle objection” is, however, moot and insignificant in practice – except for the
“right-lunatic fringe” bent on rigorous EFT. In the actual implementation of the FT to “ab
intio first-principle calculations” in nuclei of mass number greater than 2 or 3, one necessarily
breaks the nV = nJ constraint. Examples described below illustrate this point. Even for few-
body nuclei, there is no known case where the hybridization suffers from the mismatch. One
can think of this hybridization as something akin to the scheme dependence in high-order
perturbation calculations in QCD or other gauge theories.

4 FT in Baryonic Matter

The next question I raise is: What is EFT in the spirit of the FT when one addresses heavy
nuclei, nuclear matter and dense matter? For the systems discussed above, lattice QCD is
seen – and will continue – to confirm the validity of the FT. For systems with high density,
however, this is no longer feasible. To go forward, therefore, additional ingredients to first
principles pertaining to QCD are bound to enter. It will therefore be inevitable that holes
and flaws sneak in in formulating the pertinent EFT.

In this section I will treat two cases. One, normal nuclear matter and the other, highly
compressed baryonic matter relevant to compact stars. What one can do here is hardly
rigorous. Somewhat complicated details will be left out whenever feasible without losing the
key features.

4.1 The problem

How the weak axial-vector coupling constant gA behaves in nuclei has a very long history.
A fundamental quantity, it has impacts on nuclear structure as well as nuclear astrophysical
processes. The basic issue raised is associated with how chiral symmetry, a fundamental
property of QCD, is manifested in nuclei where the presence of strongly interacting nucleons
modifies the vacuum and hence the quark condensate Σ ≡ |〈q̄q〉| as density is increased.
Although there is no rigorous QCD proofI as for high temperature it is now widely accepted
that the pion decay constant fπ decreases, following the decrease of the condensate Σ at
increasing density, which is a fundamental property of QCD. It seems natural then to expect
that the axial coupling constant will undergo a similar intrinsic decrease in nuclear matter.
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There has been a suggestion since 1970’s [36] that the axial coupling constant, gA ≈ 1.27
determined in the matter-free space, quenches to gA ≈ 1 in nuclei [37], which has invited
an interpretation that it, in consistency with the dropping of fπ, also signals a precursor to
chiral restoration. This has led to extensive studies accompanied by controversies in nuclear
Gamow-Teller transitions, most notably giant Gamow-Teller resonances. A review up to
1992 is found in [38]. It was deduced from sd-shell nuclei [39] and fp-shell nuclei with A ≤
49 [40, 41] and with A = 48−64 [42] that the effective Gamow-Teller coupling constant needed
was g∗A ≈ 0.8gA. In a more recent development, it was shown that with a 20% quenching in
gA, the Gamow-Teller strengths distribution can be quantitatively reproduced by shell-model
calculation in pf shell for the transition 56Ni →56Cu [43]. It has been suggested that g∗A = 1
is “universally” applicable in nuclear medium. What makes this possible universality in this
gA value is that it seems to insinuate partial restoration of chiral symmetry in finite nuclei.

In this Section, I revisit this long-standing problem and give an extremely simple and
unambiguous answer with an effective field theory in which scale symmetry and chiral sym-
metry of QCD are incorporated. I predict that gA for Gamow-Teller transitions should remain
unaffected by the vacuum change with density – at least up to density n ∼ 2n0, whereas in
a stark contrast, it gets strongly enhanced in axial-charge (first-forbidden) transitions. This
implies that if there is indeed quenching of gA in Gamow-Teller transitions in finite nuclei
as it has been thought, it cannot be the vacuum change manifested in the intrinsic chiral
condensate that is responsible for it.

Nonetheless at high density n >> n0, there is what is referred to as “dilaton-limit fixed
point ” (DLFP) at which g∗A does approach 1. This comes about not because of chiral
symmetry restoration as previously thought but because of the “emergence” of scale (or
conformal) symmetry in dense medium. But this density is way beyond the measurable.

4.2 Scale-Invariant HLS Lagrangian (sHLS)

My reasoning exploits the recently formulated effective field theory (EFT) Lagrangian [44, 45]
which is valid for phenomena at low density as well as for high density appropriate for
compressed baryonic matter inside such compact stars as the recently discovered ∼ 2-solar
mass neutron stars [2].

It is constructed by implementing scale symmetry and hidden local symmetry (HLS) to
baryonic chiral Lagrangian consisting of the pseudo-scalar Nambu-Goldstone bosons, pions
(π), and baryons. The basic assumption that underlies the construction of the effective
Lagrangian, denoted bsHLS, with b standing for baryons and s standing for the scalar meson,
is that there are two hidden symmetries in QCD: one, scale symmetry broken both explicitly
by the QCD trace anomaly and spontaneously with the excitation of a scalar pseudo-Nambu-
Goldstone boson, i.e., “dilaton” σ; two, a local flavor symmetry higgsed to give massive ρ and
ω. Neither is visible in QCD in the matter-free vacuum, but the possibility, suggested in [44],
is that both can appear as “emergent symmetries” in dense matter and control the equation
of state (EoS) for highly compressed baryonic matter. I will use this same Lagrangian for
calculating nuclear responses to the electro-weak current. There are no unknown parameters
in the calculation.

Since the arguments are quite involved and given in great detail elsewhere [44, 45], I
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summarize as concisely as feasible only the essential points that I need for the discussion. In
addition to the nucleon and the pion, there are two additional – massive – degrees of freedom
essential for the bsHLS Lagrangian: The vector mesons V = (ρ, ω) and the scalar meson
denoted σ. By now a very well-known procedure, the vectors V are incorporated via hidden
gauge symmetry (HLS) [46, 47, 48], which is gauge-equivalent to non-linear sigma model at
low energy, that elevates the energy scale to that of the vector mass ∼ 770 MeV. The scalar
σ is incorporated [49] by using the “conformal compensator field” χ transforming under scale
transformation with scale dimension 1, χ = fχe

σ/fχ .

The underlying approach to nuclear EFT with bsHLS is the Landau Fermi-liquid theory
anchored on Wilsonian renromalization group (RG). For this, the “bare” parameters of the
EFT Lagrangian are determined at a “matching scale” ΛM from which the RG decimation
is to be made for quantum theory4.The matching is performed with the current correlators
between the EFT and QCD, the former at the tree-order and the latter in OPE. The QCD
correlators contain, in addition to perturbative quantities, nonperturbative ones, i.e., the
quark condensate 〈q̄q〉, the dilaton condensate 〈χ〉, the gluon condensate 〈G2

µν〉 and mixed
condensates. The matching renders the bare parameters of the EFT Lagrangian dependent
on those condensates. Since the condensates are characteristic of the vacuum, as the vacuum
changes, the condensates slide with the change. Here we are concerned with density, so
those condensates must depend on density. This density dependence, inherited from QCD, is
an “intrinsic” quantity to be distinguished from mundane density dependence coming from
baryonic interactions. It will be referred to as “intrinsic density dependence” or IDD for
short.

There are two scales to consider in determining how the IDDs enter in the EFT La-
grangian.

One is the energy scale. The (initial) energy scale is the matching scale from which
the initial (or first) RG decimation is performed. In principle it could be the chiral scale
Λchiral ∼ 4πfπ ∼ 1 GeV. In practice it could be lower, typically just above the vector meson
mass. The scale to which the first decimation is to be made could be taken typically to be
the top of the Fermi sea of the baryonic matter.

The other scale is the baryon density. The density relevant for massive compact stars
can reach up to as high as ∼ 6n0. To be able to describe reliably the properties of both
normal nuclear matter and massive stars, a changeover from the known baryonic matter to
a different form of matter at a density ∼ 2n0 is required. In [44, 45], it is a topology change
from a skyrmion matter to a half-skyrmion matter. Being topological this property can be
taken to be robust. In quark-model approaches, it could be the hadron-quark continuity that
encodes continuous transitions from hadrons to strongly-coupled quark matter or quarkyonic
matter [50]. I believe, as conjectured in [45], that the two approaches are in some sense
equivalent. I will come back to this matter later.

The changeover, as I will explain later, is not a bona-fide phase transition. However
it impacts extremely importantly on the EoS in the formalism I am adopting, making, for
instance, the nuclear symmetry energy transform from soft to hard at that density, thereby
accommodating the observed ∼ 2-solar mass stars. Of crucial importance for the process is

4In what follows, “bare” parameters put in quotation mark will stand for these quantities defined by the
matching. I will eschew using the quotation whenever feasible.
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that when the matter is treated in terms of topological objects, skyrmions, this changeover
induces dramatic changes in the physical quantities involved in dense matter. This feature,
translated to the bare parameters of bsHLS Lagangian, makes the IDDs differ drastically from
below to above at the changeover density n1/2, which is estimated to be around 2n0 [44].

It turns out that up to n ∼ n1/2, the IDD is entirely given by the dilaton condensate
〈χ〉. This is because below n1/2 the bare parameters of the Lagrangian do not depend much
on the quark condensate as explained in [44, 45]. The χ field is a chiral scalar, whereas q̄q
is the fourth component of the chiral four vector. Therefore the dilaton condensate is not
directly connected to the quark condensate, but as mentioned below, this dilaton condensate
gets locked by strong interactions to the pion decay constant which is related to the quark
condensate. While the quark condensate does not figure explicitly in the IDD at low densities,
it controls the behavior of vector-meson masses at compact-star densities, n ∼> n1/2 [44].

4.3 Axial Current with IDD

That the IDD could be entirely given by the dilaton condensate was conjectured in 1991 [51],
and it has been confirmed to hold up to the density n ∼< n1/2 [44, 45]. What is new in
the new development is that in the Wilsonian renormalization-group formulation of nuclear
effective field theory, this IDD-scaling is indeed all that figures up to n1/2. It does undergo
a drastic change at n ∼> n1/2 affecting the EoS for compact stars, but it does not affect the
axial-current problem that I address below.

Now how the dilaton condensate takes the place of the quark condensate in the IDDs for
n ∼< n1/2 is intricate involving the role of explicit scale symmetry breaking in the spontaneous
breaking. I will say a bit more on this in connection with the sound velocity of massive stars
where this issue is relevant, but let me admit that this is an issue that is not well understood
even by experts. There have been extensive discussions on the matter of “light scalars” in the
effort to understand the light Higgs boson in terms of dialtonic structure for large number of
flavors Nf ∼ 8, but little has been clarified of the matter in QCD for Nf ∼ 3 we are concerned
with. In the present case of low density, n ∼< n1/2, however, the effect of the scale-symmetry
explicit breaking, at the leading order, turns out to be embedded entirely in the dilaton
potential, so it does not enter explicitly in the axial response functions in nuclei and nuclear
matter that we are interested in. This makes the calculation of the “intrinsically modified”
g∗A in nuclear medium extremely simple. All we need is the part of the bsHLS Lagrangian,
scale invariant and hidden local symmetric, that describes the coupling of the nucleon to
the external axial field Aµ. Writing out explicitly the covariant derivatives involving vector
fields, hidden local and external, and keeping only the external axial vector field Aµ, and to
the leading order in the explicit scale symmetry breaking, the relevant Lagrangian takes the
simple form

L = iNγµ∂µN −
χ

fχ
mNNN + gANγ

µγ5NAµ + · · · (13)

Note that the kinetic energy term and the nucleon coupling to the axial field are scale-
invariant by themselves and hence do not couple to the conformal compensator field. Put
in the nuclear matter background, the bare parameters of the Lagrangian will pick up the
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medium VeV. Thus in (13) the nucleon mass parameter will scale while gA will not:

m∗N/mN = 〈χ〉∗/fχ ≡ Φ, g∗A/gA = 1 (14)

where fχ is the medium-free VeV 〈χ〉0 and the ∗ represents the medium quantities. The first
relation is one of the scaling relations given in [51]. The second is new and says that the
Lorentz-invariant axial coupling constant does not scale in density. Now in medium, Lorentz
invariance is spontaneously broken, which means that the space component, gs

A, could be
different from the time component gt

A. Writing out the space and time components of the
nuclear axial current operators, one obtains

~J±A (~x) = gs
A

∑
i

τ±i ~σiδ(~x− ~xi), (15)

J0±
5 (~x) = −gt

A

∑
i

τ±i ~σi · (~pi − ~k/2)/mNδ(~x− ~xi) (16)

where ~p is the initial momentum of the nucleon making the transition and ~k is the momentum
carried by the axial current. In writing (15) and (16), the nonrelativistic approximation is
made for the nucleon. This approximation is valid not only near n0 but also in the density
regime n ∼> n1/2 ∼ 2n0. This is because the nucleon mass never decreases much after the
parity-doubling sets in at n ∼ n1/2 at which m∗N → m0 ≈ (0.6− 0.9)mN [44].

A simple calculation gives

gs
A = gA, gt

A = gA/Φ (17)

with Φ given by (14). This is the unequivocal prediction of the bsHLS with IDDs.

4.4 Axial-Charge Transitions

An extremely interesting process in the context of nuclear EFT, going beyond the conventional
chiral perturbation theory (SχEFT), is the first forbidden (FF) process involving the axial-
charge operator J0

5
±

,

A(0±)→ B(0∓) + e+ ν, ∆T = 1. (18)

In nuclear EFT, the leading term in the chiral power counting is the one-body axial-charge
operator (16). From (17), one has

gtA = gA
fπ
f∗π
. (19)

This follows because in the approximation adopted, the ratio 〈χ〉∗/fχ ≈ f∗π/fπ [44] where
f∗π is the pion decay constant in nuclei. The “effective” pion decay constant is measured
experimentally in deeply bound pionic systems, and it has been determined at normal nuclear
matter density n0 [52]

f∗π(n0)/fπ ≡ Φ(n = n0) ≈ 0.8. (20)
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One has to be cautious as to whether this effective constant is the IDD appropriate as
thescaling parameter in the EFT Lagrangian we are using. This is because the experimental
value is not extracted using the very EFT Lagrangian used, so it may have some corrections
but it cannot be much different from the canonical value (20).5

To the next order in the chiral counting, two-body currents contribute. The most im-
portant one is the pion-exchange term depicted in Fig. 2. Consider the upper vertex. One

Figure 2: Two-body exchange current. The upper vertex involves two soft pions for the axial
charge transition.

can take the time component of the axial field as soft in the first-forbidden beta decay that
involves long wave-length probe. With the exchanged pion also soft, the vertex involves two
soft pions controlled by the current algebra. It is O(1) in the chiral counting and hence
will make a huge contribution. This was recognized already in 1978. In terms of chiral La-
grangian, this is automatically encoded at the leading chiral order. It is easy to work out the
two-body charge operator [22]

J0±
5 (~x)2−body = gtAΦ−1 m2

π

8πf2
π

∑
1<j

(τi × τj)±[~σi · r̂δ(~x− ~xj) + (i↔ j)]Y(r) (21)

with

Y =
e−mπr

mπr

(
1 +

1

mπr

)
.

Given accurate wavefunctions, the transition matrix elements of both the one-body and two-
operators can be calculated extremely accurately. The ratio R

R

Φ
=
〈B|J0±

5 (~x)2−body|A〉
〈B|J0±

5 (~x)1−body|A〉
(22)

is found to be highly insensitive to the wave functions and hence to the density of the system.
One gets

R = 0.5± 0.1 (23)

5It cannot be overemphasized that this is a just parameter specific to the Lagrangian constructed, not
a physical quantity, and the precise value will depend on how the EFT is defined. This point is widely
misinterpreted in nuclear physics community, which has led to some absurd statements on the idea of [51].
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ranging in mass number from A = 12 to A = 280. This can be understood by the fact that
the two-body operator is long-ranged given by the soft-pion exchange, totally controlled by
chiral symmetry. Note that the ratio of the 2-body over the one-body matrix elements (22)
is BIG, ∼ 0.6 for the nuclei involved.6

The effective axial-charge operator is then given by replacing gt
A in (16) by the effective

one

gA
eff = gtA(1 +

R

Φ
). (24)

Precise experimental data are available for the FF transitions in the Pb region A = 205 −
212 [53]. The analysis in [53] is given in terms of the medium-renormalization of the free-space
axial-coupling constant gA

ε = gA
eff/gA. (25)

The prediction for n = n0 given by (25) with (24) comes out to be [54]

ε(n0)theory = 2.0± 0.2 (26)

to be compared with the experiment in the Pb region [53]

εexp = 2.01± 0.05. (27)

This leads to a large enhancement in the FF transitions.

This huge enhancement could have an important impact in astrophysical processes. For
instance it was observed [55] that in N = 126 isotones, the first-forbidden transition – which
is relevant to astrophysics – affects appreciably the half-lives for larger Z: For Z = 72, the
half-life is quenched by a factor of ∼ 5 by the FF contribution. This calculation however does
not take into account the ε factor. If the FF process is dominated by the single-particle axial
charge operator in this process, a back-of-envelope estimate shows that the soft-pion-exchange
contribution could make the half-life an order of magnitude shorter than the estimate given
in [55]. It would be interesting to re-do the calculation with this enhancement effect duly
taken into account and see how it affects the astrophysical process in question.

Similar enhancements are found in precision experiments in the lighter nuclei A = 12 −
15 [56, 57]. This confirms the universality of the effect. In this mass range, an extremely
accurate calculation in full consistency with chiral perturbation theory should be feasible.
Higher-order corrections to the two-body axial-charge operator, e.g., multi-body currents, are
strongly suppressed making the calculation free of uncertainty, thereby offering a powerful
proof to the FT. If the process probed short-range interactions, then short-range multi-body
currents could come in importantly, but not in long-ranged processes considered here. This
could be considered also as a pristine evidence for the soft-pion dominance in certain nuclear
processes unhampered by higher-order intrusion.

What’s discussed above raises the issue on the role of NG bosons in nuclear physics.
When the energy scale probed in nuclear processes is much less than the pion mass ∼ 140

6This is the largest exchange current correction in nuclei I know of outside of anomalous cases where
accidental cancellations are involved.
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MeV, the pion can also be integrated out in the spirit of the FT and one obtains “pionless
effective field theory ( 6 πEFT)” for nuclear physics, which is eminently a respectable effective
field theory. But how do the soft-pion theorems, encoded in chiral Lagrangians, manifest
in 6 πEFT? It is not at all obvious that a term of this nature is captured in the pionless
treatment. With no pions present, there is no explicit footprint of chiral symmetry for the
spontaneous breaking of chiral symmetry. Yet the theory seems to work fairly successfully in
various low-energy processes involving light nuclei, e.g., the pp fusion, the thermal np capture
etc. The solar proton fusion process is dominated by the Gamow-Teller operator, so it could
very well be captured. But what about the double-soft process that makes such a huge effect
in the axial-charge transitions? Is it hidden in the pionless theory?

4.5 Gamow-Teller Transitions

The Gamow-Teller (GT) transition in nuclei is given by the space component of the axial
current (15). Unlike the time component treated above, this transition receives no soft-pion
contribution and the matrix element is predicted to be unaffected by the IDD as given in
(17) at least up to the density n1/2 ∼ 2n0. This means that the space component of gA
should remain unmodified by density in contrast to the pion decay constant fπ which drops
at increasing density, signaling partial restoration of chiral symmetry. What this means in
nuclear GT transitions can be seen in the so-called GT sum rule. Consider the operator
identity

(S− − S+) = 3(N − Z) (28)

where S− and S+ are the transition strengths, corresponding to the square of the matrix
elements of the operator

∑
i τ
±
i ~σi summed over all final states. Now suppose one measures

the Gamow-Teller strengths, corresponding to the operator Eq. (15), in experiments. Then
the prediction (17) says that if two-body and higher multi-body exchange currents were
ignored, which is justified in SχEFT for allowed Gamow-Teller transitions, one would expect
that the GT sum rule with the strengths multiplied by (g∗A)2 should be satisfied by g∗A ≈ gA,
the free-space gA ≈ 1.27. In other words, there will be no quenching. What does this mean
in giant Gamow-Teller resonance processes in nuclei?

At first sight, such a GT sum-rule result seems to be at odds with the QCD sum-rule
calculation [58] which finds g∗A is quenched to 1 as the quark condensate decreases. The
QCD sum-rule result seems to be consistent with the observations made in light nuclei [37],
namely that the Gamow-Teller transition in light nuclei can be described in simple shell-
model treatments with the “intrinsic” g∗A = 1. On the other hand, the theory developed in
[45], as discussed above, suggests that the GT strength should be governed by (14) and hence
unquenched gA in nuclei. It is only at what is called “dilaton-limit fixed point” at high density,
n > n1/2 ∼ 2n0, where scale symmetry gets unhidden, that g∗A should approach 1. That the
GT sum rule might be saturated with very little quenching has been discussed [59, 60].

That the effective g∗A in Gamow-Teller transitions in light nuclei described in a simple
shell model is quenched from the free-space value has been argued to be explainable by
“nuclear core polarizations” [38] that are corrections to the simple shell-model wave functions
constructed within a limited shell. In this description, it is the higher energy-scale multi-
particle-multi-hole configurations (e.g., high-order core polarizations) “integrated out” (in
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the language of effective field theory) that result in the renormalization of the axial coupling
constant. If one were to do a full shell model calculation in the space of nucleon configurations,
this quenching would not be needed. This should be verifiable by realistic “no core” shell
model calculations that are being actively developed. Should this be confirmed, then why
the effective g∗A in nuclei in single-shell (e.g., fp, sd etc) model (analog to mean-field theory)
is universally very near 1 as observed would then remain mysterious.

From the point of view of EFT à la FT, that the Gamow-Teller sum rule may be entirely
or mostly satisfied by g∗A = gA, i.e., unquenched, is actually unnatural for the following
reason. Although the IDD – effective from the matching scale – does not affect the gsA,
one still has to consider what other degrees of freedom intervening at scales lower than the
matching scale ∼ 1 GeV can contribute in the renormalization decimations involved in the
EFT Lagrangian. The first energy scale one encounters in the Gamow-Teller channel as one
makes the decimation from the matching scale is the ∆-hole excitation energy E∆−h lying
∼ 300 MeV above the Fermi sea. This channel is strongly coupled to nucleon-hole states while
other resonance channels can be ignored, so there is no reason why this ∆-hole effect cannot
contribute significantly to the Gamow-Teller response functions in the decimation down to
E∆−h. Since the weak current acts only once, this effect can be included in the modification
of the Gamow-Teller coupling constant gsA to g∗A 6= gA. From that scale it will then be purely
the correlations involving nucleons only that should figure, therefore the duly renormalized
constant g∗A should be effective in full, no core, shell-model calculations. This renormalized
constant was worked out a long time ago, which could be phrased in terms of Landau-Migdal’s
g′0 parameter in the ∆-N channel [61, 62, 63, 64] when treated in Landau’s Fermi liquid theory
in the space of N and ∆. This can also be phrased in terms of the Ericson-Ericson-Lorentz-
Lorenz (EELL) effect in pion-nuclear interactions [65, 66]. Since Landau-Migdal theory works
excellently in the nucleon space, it seems reasonable to expand the space to both spin-1/2
and spin-3/2 spaces and treat the interactions in three (coupled) channels, NN, ∆N and
∆∆. In this generalized Fermi-liquid theory, the Gamow-Teller process will then involve
the Landau-Migdal’s quasiparticle interactions g′0(σ1 · σ2)(τ1 · τ2) in the three channels. If
one takes the universal value for all three channels, g′0|NN = g′0|∆N = g′0|∆∆, then from
the g′0|NN determined from pion-nuclear interactions, one predicts that g∗A for Gamow-Teller
transitions in nuclear matter is renormalized to g∗A ≈ 1. However analysis of experiments on
giant Gamow-Teller resonances in terms of the Landau-Migdal parameters [59, 60] indicates
that g′0|∆N could be considerably smaller than g′NN , violating the “universality.” Whether and
how this can be related to the QCD sum-rule result [58] is not clear. What is clear, however,
is that this effect is not the IDD inherited from QCD at the matching scale in the bsHLS
formulation. Therefore it cannot be taken as a precursor to chiral restoration as the pion
decay constant going to zero is. It is just a renormalization due to “mundane” correlations in
the hadronic sector generalized to the ∆-N space, not directly tied to the quark condensate,
the order parameter of chiral symmetry.

It may be possible to argue away the presence of the ∆ degree of freedom for the gA
problem. Given that nucleon-hole states can be strongly excited by the tensor force to the
excitation energies ∼ (200− 300) MeV comparable to ∆-hole states, taking into account the
g′0 effect in the ∆-hole channel may be simulated by multi-particle-multi-hole states of the
comparable energy-scale within the nucleon space without explicit ∆-hole states. Thus it
may be the Gamow-Teller sum rule (limited to the nucleon space) could be saturated with
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nearly unquenched gA in a full scale “no core” calculations. It may be that by going higher in
energy scale with multi-particle-multi-hole states, g′0|∆N << g′0|NN could be accommodated.
However this does not invalidate the result that exploits the ∆-hole excitations [67, 68]. It
is just that with the strong spin-isospin excitations involved, the nucleon-hole space and ∆-
hole space may not be sharply delineated. From the point of view of quark models, there
is no qualitative difference between nucleon-nuclear interactions and ∆-nuclear interactions.
There is an analogy to this dichotomy in the Carbon-14 dating – discussed below – where
part of three-body forces and “Brown-Rho scaling” play the same role. In this connection,
the argument made by Gerry Brown in his unpublished note [69] is highly pertinent: that
“the g′0 interaction is by far the most important interaction between nucleon quasiparticles
and together with the Brown-Rho scaling, runs the show and make all forces equal.”

4.6 Postdicting the Hoyle state and the Carbon-14 dating

4.6.1 The Holye state

Among various applications of the FT to nuclear physics, the calculation of the Hoyle state
is interesting in two ways. The Hoyle state plays a key role in the helium burning of heavy
stars and in the production of carbon and other elements.

Now with the great development of the numerical techniques mentioned above as ab ini-
tio, the many-body problem for the mass number ∼> 12 could be addressed, given accurate
potentials. Indeed this state has been calculated with Monte Carlo lattice simulation using
the potential calculated to O(Q3) in SχEFT, successfully obtaining the Hoyle state as well
as low-lying spin-2 rotational bands [70]. It seems plausible that highly sophisticated phe-
nomenological potentials could do equally well in the sense of MEEFT. I think this result
nicely illustrates the working of both the FT and its Corollary.

That the FT could work in practice in various different ways is aptly illustrated in the
Skyrme model description. The Skyrme model – with pion field only – is shown to cor-
rectly describe the Hoyle state and its rotational band as well as the ground-state rotational
band [71]. The ground state is interpreted as an equilateral triangle of B = 4 (B being the
topological winding number) skyrmions, i.e., alpha particles, and the Hoyle state is a linear
chain. As discussed below, other degrees of freedom, such as vector mesons and scalar dila-
ton, figure in the skyrmion dynamics for dense matter. For the Hoyle state and its ground
state properties, however, what matters is the topology that is carried by the pion field. Thus
topology must play an essential role in giving the correct structure. There is no translation
between this skyrmion description and the Monte Carlo lattice calculation of [70], so it is
difficult to see how the FT works here. There seems also to be some basic difference in the
structure of the Hoyle state: The ab initio lattice calculation seems to favor an obstruce
triangular structure in contrast to the linear chain of alpha particles in the skyrmion pic-
ture. In any case one intriguing possibility is that as I will develop below, one could resort
to the Cheshire Cat mechanism that trades in topology of the skyrmion structure for the
quark-gluon structure of QCD in an EFT. Ultimately one could invoke a similar mechanism
to relate the two pictures of the Hoyle state. In fact this “trading” of topology for certain
properties of field theory will be exploited below in formulating the VlowkRG formalism to
access compact star matter.
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4.6.2 The carbon-14 dating

The beta decay transition from the initial state (Jπ, T ) = (0+, 1) of 14C to the final state
(Jπ, T ) = (1+, 0) of 14N is singularly retarded with the half-life of 5730 years despite that
it involves allowed Gamow-Teller transition. Explaining this anomalous behavior illustrates
the extreme subtlety in accessing dense matter in effective field theory. It was shown [72]
that the wave functions involved in the transition probe the density of ∼ 0.75n0 and it is at
this density that the Gamow-Teller matrix element nearly vanishes. The cancellation in the
matrix element is extremely sensitive to the decrease in the nuclear tensor force as density
increases towards n = n1/2 ∼ 2n0 (see Fig. 5 below). This behavior will turn out to be a
key feature in going to compact stars described below. Although 14C is a light nucleus, it is
at density near n0 that the overlap of the wave functions peaks. The interplay between the
cancellation in the Gamow-Teller matrix element and the splitting between the 1+

1 and 0+
1

in 14N provides a strong support to the validity of this interpretation. In [72], the density-
scaling of the tensor force is simulated with an effective density dependence in the parameters
of the exchanged mesons in the two-body forces, referred by the authors to as “Brown-Rho
scaling.” It is important to note that this contains not just the IDD defined above but also
“induced” effect that I will explain.

It has been shown that with the introduction of chiral three-body forces, the suppressed
rate can be equally well explained [73]. What is significant in this treatment is that the
principal mechanism is provided by the short-range three-body force. In terms of the bsHLS
Lagrangian, such short-range interactions can be generated by the vector-meson exchanges,
in particular, one and two ω exchanges. In the VlowkRG approach with bsHLS of [72], the
decimation is done from a cutoff slightly below the vector-meson mass. The effect of three-
body interactions exchanging massive mesons that give rise to the contact interactions are to
be integrated out and hence will be effectively lodged in the parameter for the tensor forces
as an “induced density-depence” correction to the IDD discussed above. Thus the effective
IDDs figuring in [72] contain the effect of contact three-body interactions.[74]. It does not
contain, however, long-ranged three-body force effects. Such long-range three-body effects
will have to be included in the Vlowk approach as a higher-order correction.

Suppose one includes three-nucleon interactions in the Vlowk calculation. The three-body
interactions exchanging pions, vector mesons and the dilaton, would then consist of long-
ranged interactions involving pion exchanges and short-range ones involving vectors with
appropriate IDD’s incorporated. It is likely that the short-range three body force generated
in this approach with no parameters will have its strength much reduced from what is needed
in [73] without IDD’s which is just an unconstrained parameter.

4.7 Venturing into Compact-Star Matter

Beyond the density ∼ 2n0, there is no help from experiments and lattice QCD. Thus going
into the regime where compact-star physics takes place is an adventure. How to apply the
FT in this regime is therefore an effort anchored on no solid ground. I describe here what
has been done in going to compact stars based on the bsHLS Lagrangian. Here again Korean
nuclear theorists enter, making crucial contributions. The key role was, and continues to
be, played by the young Korean graduate student Won-Gi Paeng. What is described below
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is based on his work, first as his PhD thesis and then his on-going work at RAON in the
Institute for Basic Science (IBS) in Korea.

Since bsHLS is defined to be applicable below the the chiral scale, it seems reasonable that
the dense matter relevant in compact stars with density reaching n ∼ (5−6)n0 can be accessed
entirely without invoking other degrees of freedom than what’s in the Lagrangian. For this,
we opt to resort to information available from topological structure of baryons present in
the Lagrangian, i.e., skyrmions present in scale-invariant HLS Lagrangian, at higher density
n ∼> 2n0. The basic premise is that quark-gluon dynamics at low energy can be traded in
for topology, representing quark-hadron continuity. This derives from that in the large Nc

limit, skyrmions are the baryons in QCD [75]. This trade-in is modeled in the Cheshire-Cat
phenomenon [76, 77, 78] where it is suggested that where and how the trade-in is done is a
gauge degree of freedom. This picture has been extended to holographic QCD coming from
gravity-gauge duality in string theory [79]. The strategy is to extract from the skyrmion
model certain topological properties that are robust. This comes about because, as stressed,
topology is carried uniquely by the pion and is not affected by other degrees of freedom
involved in the dynamics. These robust properties are translated into the bare parameters
sliding with density of the bsHLS Lagrangian. The changeover takes place at the density
denoted as n1/2 at which skyrmions fractionalize into half-skyrmions.

4.7.1 Skyrmion-half-skyrmion transition

Skyrmions put on crystal lattice to simulate density effect are found to undergo a transition
from skyrmions to half-skyrmions at a density n = n1/2 [80].7 Another graduate student at
Seoul National University, Hee-Jung Lee, contributed to, and wrote his thesis on, this develop-
ment [81, 82]. To calculate quantum effects beyond the mean field in the field theory to treat
many-nucleon correlations, an efficient and powerful way is to resort to the renormalization-
group (RG) flow analysis à la Wilson in the presence of Fermi sea [83, 84, 85]. The density
effects due to both the sliding vacuum implemented in IDDs and nuclear correlations are
captured in the RG approach. There are various different approaches doing RG in nuclear
theory. The approach most versatile with the bsHLS Lagrangian is the Vlowk formalism [86].
In this approach, one does the double decimations, the first decimation defining Vlowk with
the sliding vacuum effect and higher-order correlations taken into account in the second dec-
imation. The advantage of this RG approach is that it is most faithful to the FT theorem
and is close to Landau Fermi-liquid fixed point theory [87]. This procedure as applied to the
compact-star physics is detailed in [88, 44, 45].

There are two important effects of topology change at n ∼> n1/2 that can be imported
into the RG with bsHLS. The first is that what is equivalent to the quark condensate in
QCD variables Σ ≡ 〈q̄q〉 where q is the light-quark field u and d (and sometimes s for three
flavors) vanishes when averaged over the unit cell of the crystal lattice (with the FCC favored
energetically), which will be denoted as Σ = 0. The condensate is not zero locally. It’s only

7While the existence of the skyrmion fractionalization is robust depending only on the presence of pions
in strong correlations, the precise value of n1/2 does depend on what degrees of freedom are included. With
the vector and scalar mesons included as in sHLS, this transition comes about at ∼ 2n0. This is an appro-
priate density where there could be a smooth transition from baryons to quarks in the sense of quark-hadron
continuity.
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the average over the cell that vanishes. It supports chiral density wave. Though globally
zero, this does not imply that chiral symmetry is restored since there is pionic excitation in
the system. This means that Σ is not the order parameter for chiral symmetry. The pion
decay constant is found to be non-zero [80]. Thus the topology change does not involve phase
transition in the sense of Ginzburg-Landau-Wilson (GLW) paradigm. I will therefore eschew
referring to it as a phase transition and call it “topology change.”

The second observation is in the nuclear symmetry energy Esym defined in the energy per
particle E(n, α) as

E(n, α) = E0(n, α = 0) + α2Esym + · · · (29)

where α = (N − Z)/(N + Z) with N(Z) standing for the neutron(proton) number in the
nuclear system of mass A = N + Z. The symmetry energy Esym represents the energy
change due to the neutron excess α > 0 and plays an extremely important role in asymmetric
nuclear systems, specially in neutron stars. E0 is the energy per particle for the familiar
symmetric nuclear matter. In the skyrmion description of many-nucleon systems, Esym is
given by 1/(8Iτ ) [89] where Iτ is the isospin moment of inertia coming from the rotational
quantization of the soliton, so it is an effect of O(N−1

c ) to be compared with the leading
term of E0 ∼ O(Nc). The behavior of Iτ as a function of density is controlled by the soliton
structure, hence principally on the hedgehog pion field, and is not sensitive to other degrees
of freedom. In fact it is characterized by the cusp structure as shown in Fig. 3.

Figure 3: Symmetry energy as a function of density calculated in skyrmion crystal model.
The cusp is located at n1/2. The lower density part is not shown because the crystal approach
and the collective quantization method used are not applicable in that region. The location
of the changeover density depends a bit on the scalar dilaton mass, which is shown for two
different masses.

21



4.7.2 From the cusp to the nuclear tensor force

The discovery of the cusp in the symmetry energy, made principally by Byung-Yoon Park
in his weekly visits to the newly established Korean Institute for Advances Studies (KIAS)
in early 2000s, is a crucial element in the development that follows. Whether the whole
idea is right or wrong hangs principally on this observation and the interpretation thereof in
constructing the effective field theory.8

Taking that this cusp is a robust feature coming from topology, and generic in the dy-
namics, the next step is to reproduce this feature by fixing the bare parameters of the bsHLS
Lagrangian sliding with density. In order to do so, let us see how to understand it from the
point of view of an EFT with the given Lagrangian. In the standard nuclear physics approach
(SNPA), the symmetry energy is known to be controlled predominantly by the nuclear tensor
force V T . The tensor force acting on the ground state excites strongly the states lying at
∼ 200 MeV above the ground state. Using the closure approximation, which is the first
approximation, the symmetry energy is then given by [90]

Esym ≈ c
〈|V T |2〉

200 MeV
(30)

where c is a dimensionless constant independent of density. To reproduce the cusp with this
formula, the tensor potential needs to decrease as n1/2 is approached from below and then
increase after n1/2. Let us therefore look at the tensor force effective in medium. In the Vlowk
formalism with bsHLS with IDDs, the tensor force is given by the sum of the pionic and ρ
exchange contributions. Taking the nucleon to be nonrelativistic in the domain of density
relevant to compact stars, which is a good approximation since the nucleon mass remains
O(m0) ∼ mN , the pion and ρ tensors are of the form

8It is perhaps worth recounting here an event that took place with this development. When the cusp
was discovered, Byung-Yoon and his collaborators, Hyun Kyu Lee and the author of this article, excited
about the totally unexpected result and its implication on compact stars, submitted a short note to Physical
Review Letters. It was rejected by the referees. Disagreeing with the referees’ assessment and verdict on its
suitability in PRL, we submitted arguments rebutting their conclusion. Since the referees and the authors
could not come to an agreement, the Divisional Associate Editor at the time (circa 2010) was recruited to
intervene. The DAE formally rejected the paper on the ground – to paraphrase – that “all the nuclear theorists
abandoned the skyrmion model, so this paper cannot be accepted for publication in PRL.” It is true that with
daunting mathematical difficulties and most of the mathematically astute theorists turned to string theory,
there was little progress in nuclear circle and most of the frustrated nuclear theorists dropped the model and
moved over to SχEFT, which was becoming fashionable. An irony however was that at the time the cusp
was discovered, skyrmions were having a series of remarkable breakthroughs, though at lower dimensions, in
condensed matter physics. In fact, the key idea in that article (submitted to PRL) was inspired by certain
phase transitions associated with “deconfined quantum critical phenomenon,” chiral superconductivity etc.
involving half-skyrmions or merons and monopoles. (This development in condensed matter and also in string
theory for holographic baryons is found in the recent volume [91].) It is that idea that inspired what’s presented
in this article. The power of topological concepts encoded in the skyrmion is more widely recognized and duly
appreciated in all other areas of physics than in nuclear physics, precisely the area for which Skyrme came
up with the original, revolutionary idea. Currently, fascinating discoveries in topological phase transitions,
including possibly quantum computation, are witnessing the wealth of marvels buried in the idea. Our response
to the DAE at the time was that what’s visible for skyrmions as a whole, and in particular in nuclear physics,
is just “the tip of a giant iceberg,” much to be encouraged to explore, rather than to be suppressed. The
recent development in compact-star physics, I claim, is a support for the idea presented in that paper. Some
of the recent developments in this line of research in nuclear and astro physics are collected in a monograph
volume [9].
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V T
M (r) = SM

f∗ 2
NM

4π
τ1 τ2 S12I(m∗Mr) (31)

I(m∗Mr) ≡ m∗M

([
1

(m∗Mr)
3

+
1

(m∗Mr)
2

+
1

3m∗Mr

]
e−m

∗
Mr

)
, (32)

where M = π, ρ, Sρ(π) = +1(−1) and

S12 = 3
(~σ1 · ~r ) (~σ2 · ~r )

r2
− ~σ1 · ~σ2 (33)

with the Pauli matrices τ i and σi for the isospin and spin of the nucleons with i = 1, 2, 3. A
qualitatively important quantity is the ratio f∗NM/fNM

RM ≡
f∗NM
fNM

=
g∗MNN

gMNN

mN

m∗N

m∗M
mM

(34)

where gMNN are the effective meson-nucleon couplings. What is the most notable in (31)
is that given the same radial dependence, the two forces (through the pion and ρ meson
exchanges) come with an opposite sign.

First, we discuss the d(ensity)-scalings of the two tensor forces in medium given by IDDs
and predict how the net tensor force depends on density. For the π tensor force, we have

Rπ =
g∗πNN
gπNN

mN

m∗N

m∗π
mπ
≈ m∗π
mπ

. (35)

Thus the π-tensor force principally depends only on the d-scaling of the pion mass.

The behavior of the in-medium pion mass is a very subtle matter. This is because the pion
mass is negligible on the scale of chiral symmetry and depends on the anomalous dimension
of the quark mass term, which is not known. Whatever the case is, it is fair to take it
non-scaling in the density regime considered. A careful analysis in [45] taking into account
various mechanisms shows that this is confirmed. The result obtained in [45] is summarized
in Fig. 4.

Now look at the ρ tensor. The crucial quantity is the raitio

Rρ =
g∗ρNN
gρNN

mN

m∗N

m∗ρ
mρ

. (36)

Both theoretically and experimentally, up to nuclear matter density, the ratio is expected to
be density-independent,

R ≈ 1. (37)

While the pion mass does not change with density, the ρ mass scales as m∗ρ/mρ ≈ 〈χ〉∗/〈χ〉 ≈
f∗π/fπ. Thus with the opposite signs, the two tensor forces will start cancelling each other,
with the ρ tensor becoming greater in strength, as density goes up. It is reasonable to assume
that this tendency continues to n1/2. As will be shown below, the two cancel each other almost
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Figure 4: Ṽ π
T (r) ≡ V π

T (r) (τ1 τ2 S12)−1 with n1/2 = 2n0.

completely at n ≈ n1/2 = 2n0 for r ∼> 1 fm. This reproduces qualitatively – with (30) – the
dropping Esym up to n1/2 of the skyrmion model.

Now the only possible way that the cusp structure can arise at n1/2 is that the ratio R
must change drastically. It should drop faster than the ρ mass does. Here enters the most
important ingredient of the theory, that is, the “vector manifestation (VM)” predicted in
hidden local symmetry [48], that as 〈q̄q〉 → 0, the ρ mass goes to the (VM) fixed point,

m∗ρ ∝ g∗ → 0. (38)

Here g is the hidden gauge coupling constant. With the nucleon mass going to m0, the ratio
R goes as

R ∝ (g∗/g)2. (39)

With the ratio of the coefficient of the ρ tensor (39) decreasing faster than the ρ mass, the
ρ tensor gets strongly suppressed for n ∼> n1/2. This is shown in Fig. 5. At n ≈ n1/2 the
ρ tensor is more or less completely killed, with the pion tensor taking over, making the net
tensor force increase with density. This reproduces the cusp. Thus the implementation of
the topology change in the skyrmion crystal model, presumably valid at high density and in
the large Nc limit, in bsHLS Lagrangian determines the crucial properties of the Lagrangian
for n ∼> n1/2.

What is done up to here is essentially doing a mean-field treatment of the EFT. In
the VlowkRG framework, the second decimation taking into higher correlations has to be
implemented. As shown in [45], a full RG analysis in the given framework “smooths” the
cusp structure, giving the changeover from a soft to hard symmetry energy as shown in Fig. 6.

Let me elaborate here on the structure of the net tensor force, which is the key ingredient
of HLS. That the effective tensor force in nuclear interactions is given by the exchanges of
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Figure 5: ṼT (r) ≡ VT (r) (τ1 τ2 S12)−1. For illustration, we take n1/2 = 2n0.

π and ρ is characteristic of the bsHLS formulation. That the nuclear tensor force has a
component that is pionic and some other which is not pionic is actually seen in lattice QCD
calculations as shown in Fig. 7. The short-range components in the lattice measurement may
require contributions from the infinite tower of ρ mesons as in holographic QCD, but it is clear
that the lowest-lying ρ should play a dominant role in counter-balancing the pionic tensor
in nuclear matter. (This specially important role of the lowest ρ in the nucleon structure
has been beautifully confirmed in the holographic dual QCD model anchored on gravity-
gauge duality in string theory [91].) It is the delicate interplay between the two tensor forces
with the important role of IDD that makes it different from the SχEFT approach to the
problem. In the latter, what corresponds to the ρ tensor would be simulated at higher orders
in pionic interaction in chiral perturbation series. In principle there should be no difficulty in
accounting for the tensor force structure in nuclei with pions-only chiral perturbation scheme.
This point is discussed in [74]. It is in going to density n ∼> 2n0 that the present approach has
an advantage over the SχEFT. The bsHLS offers a lot simpler accounting of the transition
region from hadronic structure to non-ordinary, be that in terms of topology or hadron-quark
continuity.9

4.8 Massive compact stars

The effective field theory bsHLS that incorporates both hidden scale invariance and hidden
local symmetry as formulated in terms of VlowkRG with only one parameter describing the

9I should mention here a difference in opinion on the role of the ρ meson in nuclear effective field theory
between Gerry Brown and Steven Weinberg. Gerry insisted on having the ρ degree of freedom explicitly
present in nuclear physics, whereas Weinberg did not see the necessity of introducing other degrees of freedom
than pions. Having worked for a long time with Gerry, I of course prefer Gerry’s point of view. This is the
line adopted in this note. There are still lots of mysterious things about HLS that are not understood, such
as for instance, the exactness of the KSRF relation and other low-energy theorems and the validity of the VM
fixed point and the possibility of Weinberg’s “‘mended symmetries” realized with local gauge fields etc. As
they stand, Weinberg’s view with pions only, I think, seems more “rigorous” with respect to the FT.
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Figure 6: The symmetry energy Esym. The constraints presently available coming from
experiments (heavy ions) are indicated. The predicted values are consistent with the data.

scaling Φ = f∗χ/fχ ≈ f∗π/fπ gives equally well as sophisticated energy-functional models
with ∼ 10 or more arbitrary parameters do all the properties of normal nuclear matter,
such as binding energy, equilibrium density, compression modulus etc. This is not surprising
because it is essentially Walecka relativistic mean-field model with multi-dimension meson
fields incorporated, the difference being that here the IDDs encode the multi-dimension fields
in mean field. That the mean-field treatment of bsHLS-type Lagrangian leads to a Landau
Fermi-liquid fixed point theory and hence is equivalent to Waleck’s nonlinear mean-field
model was explicitly worked out in Chaejun Song’s thesis work [93]. It was first shown there
that having the IDDs in the Lagrangian, if done correctly, does not violate thermodynamic
consistency as had been thought incorrectly by workers who were putting density dependence
arbitrarily in relativistic mean field theory.

What is not at all trivial is that one also gets straightforwardly the maximum neutron
mass ∼ 2M� and radius R ≈ 12 km, all consistent with the observation. The result of the
analysis made in [45] is depicted in Fig. 8. The large mass results due to the stiffening of
the symmetry energy – and consequently the EoS – at n ∼ 2n0. Here it is the consequence
of the topology change, whereas in the description that invokes quark degrees of freedom it
is the hadron-quark crossover at a density (2 − 3)n0 with strong quark coupling that gives
the requisite repulsion [94, 50]. This could perhaps be phrased as hadron-quark duality or
Cheshire Cat phenomenon.

With large number of parameters, many conventional nuclear models that may appear
different can fit nuclear matter properties and also support massive neutron stars. The
problem here is that it is not clear what one is learning. There is little predictiveness in these
calculations since the plethora of parameters can fit practically anything. Future experiments,
including gravity waves from merging neutron star, may eventually weed out the variety of
models and lead to a clearer understanding of the dense matter.

As for the model I am discussing, I must admit there is at present nothing definite to
say either that what it describes is closer to nature than any other models as far as the
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Figure 7: Tensor force obtained in lattice QCD [92]. The solid line corresponds to one-
pion exchange. The phenomenological potential (AV18) and the ρ/π-exchange potential are
similar.

postdictions go. There are however a few predictions with no additional parameters that are
definitely different from other models available in the literature. What’s striking, if correct,
is that they can bear on the origin of the proton mass, emergent symmetries in dense matter
and their interplay at high density. One striking case is the massive stars’ sound velocity vs.
The prediction in this theory is that the sound velocity converges to the “conformal velocity”

vconformal
s =

√
1/3c. (40)

To explain what’s happening, I need to go a little bit into the issue of scale symmetry and
dilaton in QCD. In full generality the matter is quite complex, so I won’t go into details. It
requires setting up hidden local symmetric Lagrangian including baryons to which the dilaton
field is coupled with matter fields as mentioned above with the conformal compensator. There
is an unresolved problem of whether one can actually talk about the scalar as a dilaton because
the dilaton should be a Nambu-Goldstone boson of spontaneously broken scale symmetry.
However it turns out that one cannot talk about spontaneous breaking of scale symmetry
without talking about explicit symmetry breaking, which in QCD is due to the trace anomaly.
It is not known whether one can therefore have a dilaton treated as a NG boson in QCD
with three flavors. There is no lattice calculation that shows that an infrared fixed point
exists in QCD for Nf ≤ 3 relevant for nuclear physics. There have been several attractive
schemes proposed [95, 96] that allow to set up a scale-chiral perturbative expansion that
combines scale symmetry and chiral symmetry with the departure from the presumed IR
fixed point as perturbation in scale symmetry breaking on the same order as the quark mass
that breaks chiral symmetry. The problem is that the uncertainty mentioned above on the
property of scale symmetry in hadronic physics adds uncertainty in applying the FT to this
scale-invariant HLS Lagrangian that we are dealing with, so this represents an important
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Figure 8: The mass vs. radius of the neutron star in beta equilibrium.

hole in the reasoning. The procedure adopted – and its caveats – in what follows is explained
in [97, 45, 49].

The bsHLS Lagrangian constructed, the details of which are found in [49], is quite involved
but it simplifies greatly if one treats the dilaton-matter coupling in the limit that the explicit
symmetry breaking is ignored and the explicit symmetry breaking is put entirely in the
dilaton potential. Let me call this “scale limit.” This is somewhat like the chiral limit in
which the pseudoscalar NG coupling to matter fields is chiral invariant with the symmetry
breaking put entirely in the NG boson mass term. There is a basic difference between the
two limits, however, which makes a caveat to the application of the FT to the dense system
we are interested in. The difference is that one can talk about spontaneous breaking of chiral
symmetry in the chiral limit, whereas scale symmetry cannot spontaneously break without
explicit breaking. Nonetheless I think that the “scale-limit” treatment that I describe here
makes sense. Fortunately what was discussed above and what comes next do not crucially
depend on the explicit form of the symmetry breaking potential.

To be as explicit as feasible, let me write down the relevant part of the Lagrangian from
[45]:

L = Linv + LSB (41)

where

Linv = LN + LM (42)

LN = N̄
(
iD/+

gA
2
γµγ5α̂⊥µ +

gV
2
γµα̂‖µ

)
N − ζmN N̄N (43)

LM = ζ2
(
fπ

2Tr[α̂⊥µα̂
µ
⊥] + afπ

2Tr[α̂‖µα̂
µ
‖ ]
)
− 1

2g2
Tr[VµνV

µν ] (44)

where the conformal compensator is written with ζ = χ/fχ. LSB contains the dilalton
potential V (χ) that breaks scale symmetry, both explicitly and spontaneously, and the chiral
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symmetry breaking mass term. For the purpose of what comes below, we don’t need the
specific form of the dilaton potential V (χ). The Maurer-Cartan 1-forms α̂µ are made up
of covariant derivatives, all defined in [45]. In [49], the potential is written down explicitly
for small scale symmetry breaking. For ease of notation, the Lagrangian is written in U(2)
symmetric form for the vector mesons.

In the VlowkRG approach, doing mean-field treatment of the Lagrangian (41) corresponds
to doing the first decimation in RG flow. It is a bit involved but the result is rather simple.
Since it contains the key points, let me go into some details of the argument involved.

The thermodynamic potential Ω = E−TS−µN at zero temperature taken in mean-field
with (41) for symmetric nuclear matter10

Ω(T = 0)

V

∣∣∣∣
ω0=〈ω0〉, χ=〈χ〉

=
1

4π2

[
2E3

FkF −m∗ 2
N EFkF −m∗ 4

N ln

(
EF + kF
m∗N

)]
+ V (〈χ〉)

+ [gω (gV ω − 1) 〈ω0〉 − µ]
2

3π2
k3
F −

1

2
f2
σωg

2
ω

〈χ〉2

f2
σ

〈ω0〉2 (45)

where 〈ω0〉 and 〈χ〉 are the “vacuum” (medium) expectation value (VeV) of ω0 and χ, m∗N =
〈χ〉
fσ
mN and EF =

√
k2
F +m∗ 2

N . The nucleon number density is

n ≡ N/V = −∂(Ω/V )

∂µ
=

2

3π2
k3
F (46)

where kF is the Fermi momentum and the chemical potential µ given by the condition
∂(Ω/V )
∂n = 0 is

µ = EF + gω (gV ω − 1) 〈ω0〉 . (47)

The energy density ε and the pressure P at T = 0 are given by

ε =
1

4π2

[
2E3

FkF −m∗ 2
N EFkF −m∗ 4

N ln

(
EF + kF
m∗N

)]
+gω (gV ω − 1) 〈ω0〉n−

1

2
f2
σωg

2
ω

〈χ〉2

f2
σ

〈ω0〉2 + V (〈χ〉) (48)

and

P = − Ω

V

∣∣∣∣
ω0=〈ω0〉, χ=〈χ〉

(49)

=
1

4π2

[
2

3
EFk

3
F −m∗ 2

N EFkF +m∗ 4
N ln

(
EF + kF
m∗N

)]
+

1

2
f2
σωg

2
ω

〈χ〉2

f2
σ

〈ω0〉2 − V (〈χ〉) . (50)

10For ease of writing in this part, the ∗ is ignored on the in-medium quantities – density-dependent due to
the IDDs – apart from the “effective” nucleon mass that gets a tadpole contribution in addition to the IDDs in
medium. No confusion arises for the result we are getting at. For the symmetric nuclear matter in the mean
field, the ρ does not contribute. U(2) symmetry is broken at high density n ∼> n1/2, therefore the subscript ω
stands for local hidden U(1) symmetry for ω. Explanations for additional notations, which are not essential
for the discussion but figure nontrivially in the hidden local symmetry theory, are in order for gV ω and fσω.
The former is the loop correction in decimating from the matching scale to the scale where the Lagrangian
is defined. It is just the loop renormalization to the hidden gauge coupling to the nucleon. The latter is the
decay constant of the would-be scalar NG boson that gets “eaten” by Higgs mechansim to give the mass to
ω. All these details are found in [98].
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From the stationarity conditions for the gap equations for χ and ω

∂ Ω

∂χ

∣∣∣∣
ω0=〈ω0〉, χ=〈χ〉

= 0 ,
∂ Ω

∂ω0

∣∣∣∣
ω0=〈ω0〉, χ=〈χ〉

= 0 (51)

we have

m2
N 〈χ〉
π2f2σ

[
kFEF −m∗ 2

N ln
(
kF+EF
m∗
N

)]
− f2σω

f2σ
g2
ω〈ω0〉2〈χ〉+ ∂ V (χ)

∂χ

∣∣∣
χ=〈χ〉

= 0 , (52)

gω (gV ω − 1)n− f2
σωg

2
ω
〈χ〉2
f2σ
〈ω0〉 = 0 . (53)

One obtains from (52) and (53) the VeV of the trace of energy-momentum tensor θµµ, which
in the chiral limit reads

〈θµµ〉 = 〈θ00〉 −
∑
i

〈θii〉 = ε− 3P

= 4V (〈χ〉)− 〈χ〉 ∂V (χ)

∂χ

∣∣∣∣
χ=〈χ〉

. (54)

This is just what one gets by taking in the chiral limit the mean-field value of the TEMT θµµ,

θµµ = 4V (χ)− χ∂V (χ)

∂χ
. (55)

Thus in the mean field of bsHLS, the trace of energy momentum tensor (TEMT) is given
solely by the dilaton condensate. What this shows is that the Fermi surface does not spoil
scale symmetry.

Now a most striking observation in the mean-field treatment is that the nucleon mass
scales in density as

m∗N/mN ≈ 〈χ〉∗/〈χ〉 (56)

and that for a specific scaling of the renormalization constant (gV ω−1) the dilaton condensate
is independent of density. This is shown in Fig. 9 taken from [98]. What this means is that at
some higher density, the trace of energy momentum tensor, a non-zero value, is independent
of density. This observation agrees with the parity-doubling scenario for the nucleon [99].
This result will be supported in the VlowkRG calculation going beyond the mean-field as will
be shown below. An important point to make at this point is that parity doubling, absent in
low-density regime, emerges in this theory at n1/2 with the topology change. This is related
also to the emergence of scale symmetry in nuclear medium in the guise of “dilaton-limit
fixed point (DLFP)” [100, 101, 45]. In the parity-doublet model, the chiral-invariant mass
m0 is put in by hand. Here a mass m′0 ∝ 〈χ〉 emerges from strong correlations in hadronic
interactions.

The mean-field treatment is a single-decimation approach to Landau Fermi-liquid fixed
point theory. It is the limit N →∞ where N = kF /(Λ− kF ) where Λ is the cut-off scale for
the decimation. The VlowkRG does better in the sense that it takes into account certain 1/N
corrections via ring diagrams [102, 103].
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Figure 9: The ratio m∗N/mN ≈ 〈χ〉∗/〈χ〉0 as a function of density for varying density depen-
dence of g∗V ω. What is notable is that the nucleon mass stops dropping at a density slightly
above nuclear matter density n0 and stays more or less constant above that density.

Unlike the mean-field calculation, it is not feasible to do analytic calculation in VlowkRG.
It is purely numerical. There is one intriguing complication in doing the numerical work that
is absent in the mean-field calculation. In the mean-field calculation of the TEMT, all matter
field contributions drop out, that is, they get cancelled away exactly, leaving terms involving
only the diilaton field. The IDDs do not figure in the TEMT. A similar cancelation takes
place in VlowkRG, however, for a certain condition on the vector manifestation with the ρ
meson as described below.

The result of the calculation of the TEMT in VlowkRG with bsHLS Lagrangian carrying
IDDs [45] as described above is given in Fig. 10. What comes out in this high-order calculation
turns out to be remarkably close to the mean-field result. This indicates that the cancellation
that takes place in the mean field persists at higher orders. This is consistent with the
structure of the Lagrangian that has the explicit scale symmetry breaking lodged entirely in
the dilaton potential. Neither the Fermi sea nor high-order nuclear correlations disturb it.
Also the strength of the explicit symmetry breaking does not influence the feature that the
TEMT is independent of density. This is important for the sound velocity.

4.9 Sound velocity vs =
1√
3
c

The density independence of the TEMT for n ∼> 2n0 predicts a precocious onset of conformal
sound velocity in massive compact stars [104, 45]. To see this, look at the relation between
the trace of energy-momentum tensor and the sound velocity, which is given by

∂

∂n
〈θµµ〉 =

∂ε(n)

∂n

(
1− 3

v2
s

c2

)
(57)
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Figure 10: 〈θµµ〉 for both nuclear and pure neutron matter.

with v2
s/c

2 = ∂P (n)
∂n /∂ε(n)

∂n . Since we have, from Fig. 10, the TEMT independent of density,
the left-hand side of (57) is zero. If we assume that there is no extremum in the energy

density for density n > n1/2 – which we believe is justified11, then ∂ε(n)
∂n 6= 0. It then follows

that

v2
s/c

2 ≈ 1/3. (58)

One can see in Fig. 11 that this indeed is verified in the calculation.

It is interesting to see how the conformal velocity (1/
√

3)c is approached. It starts with
v2
s/c

2 < 1/3 at low density n < 2n0, goes up to v2
s/c

2 > 1/3 at n ∼ 2n0, drops below 1/3
and then climbs to, and asymptotes at, 1/3 at higher density n ∼> 3n0. This feature closely
resembles the scenario arrived at by Bedaque and Steiner [106] in the study of the sound
velocity based on their analysis of neutron stars with mass around two solar mass with various
phenomenological equations of state. In our theory, there is a rather abrupt changeover of
the bsHLS Lagrangian parameters due to a topology change (i.e., the cusp in the skyrmion
crystal description), so one might imagine that such a behavior could be an artifact of the
sharp transition. One of the characteristic features arising from the topology change, as
stressed, is the stiffening of the symmetry energy at higher density n > 2n0. It is responsible
for the relatively high proton fraction of nuclear matter in beta equilibrium. It might render
the direct URCA process to set in precociously and trigger too rapid a star cooling which
might be at odds with observation. If it turned out to be serious, then that would indicate
within our formalism that we need to improve on how the vector manifestation property of
the ρ meson sets in at high density. On the other hand, the fact that the dense baryonic
matter in our description is in the precursor state to an emerging scale invariance and hence
manifesting a conformal-type sound velocity as we are proposing is highly suggestive of the
intricate mechanism of the Bedaque-Steiner scenario. What is surprising in our description

11So far there is no indication for abnormal states of the type called “Lee-Wick state” proposed by Lee and
Wick [105].
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Figure 11: Sound velocity for both nuclear and pure neutron matter.

is, however, that what attributes to “conformality” with v2
s/c

2 = 1/3 sets in so precociously
in density and for θµµ 6= 0. We find it appealing to identify this phenomenon as a precursor to
an emergent conformality. In [106], in contrast, the matter with v2

s/c
2 > 1/3 should prevail

up to density n ∼ 5n0, the maximum central density of ∼ 2-solar mass objects because of the
strong hadronic interactions intervening in the phenomenological models they relied on. As
noted before, all phenomenological models fit accurately to the properties of nuclear matter
(at n = n0) and consistent with the symmetry “constraints” have v2

s/c
2 > 1/2 [107]. It is of

course expected that the conformal velocity will appear at very super-high density.

5 Discussions

While the first part of this article dealt with what I would consider as a rather convincing
“proof” of the FT – and its corollary, the second part went into an uncharted domain with
certain unverifiable guess works. However some of the results are quite reasonable and at the
same time intriguing. The intriguing part has to do with the sound velocity with the compact
stars. In the literature there is practically no discussion of what a particular sound velocity
implies other than the constraint due to causality, which forbids the sound velocity from
exceeding the velocity of light. The VlowkRG calculation that correctly describes normal
nuclear systems, both finite and infinite, and also accounts well for the observed massive
compact stars predicts the emergence at high density of various symmetries, party doubling,
scale symmetry, hidden local symmetry etc. invisible in the matter-free vacuum. At present
those features have not been confirmed or invalidated by Nature. This theory predicts that
the sound velocity of massive stars approaches the conformal velocity (1/

√
3)c at a density

∼ 3n0 and stays the same up to the maximum density supported by the star ∼ (5 − 6)n0.
The tendency for the sound velocity to shoot up with stiff EoS seen in conventional nuclear
models is absent in this description even though the symmetry energy is stiffened due to the
topology change and accommodates the massive stars.
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What is interesting about this prediction is that the VeV of the trace of energy-momentum
tensor 〈θµµ〉 is independent of density for n ∼> n1/2 ∼ 2n0. This means that in the RG flow,
both the IDDs inherited from QCD and the induced density dependence due to nuclear
correlations must be canceling exactly in the TEMT. The cancelation takes place both in the
single-decimation calculation and in the double decimation calculation. This means that the
cancelation takes place density-independently.

Another puzzling observation is that in the VlowkRG, there is an intricate interplay of
the ω-nucleon coupling and the vector manifestation of the ρ meson. The former is seen at
the mean-field level as in Fig. 9 and the latter requires a large density at which the VM
manifestation sets in. In [44], the VM took place at n ≈ 6.6n0 and the sound velocity did not
converge to the conformal value, but increased monotonically beyond (1/

√
3)c. This means

that the density dependence coming from the IDDs and the correlation-induced effect remain
uncanceled. In [45], the VM fixed point is required to be at ∼ 25n0, which then makes the
sound velocity converge, way before the VM fixed point, to the conformal value. Other than
the VM fixed point, the two calculations are qualitatively – and semi-quantitatively – the
same. This shows that the VM fixed point density plays a crucial role for the sound velocity.

In discussing the Hoyle state, I alluded at Cheshire Cat for a possible link between the
description of an ab initio approach with SχEFT potential and a skyrmion description where
topology and strong nuclear correlations could be trading in. There also seems to insinuate a
similar duality between the description of massive compact stars based on the skyrmion-half-
skyrmion topology change described in this note and the one anchored on the hadron-quark
(e.g., quarkyonic) crossover discussed in [50, 94], both taking place at density ∼ 2n0. It is not
at all obvious how to formulate the suggestive connection as in the case treated in terms of
the chiral bag and skyrmions for, e.g., the flavor singlet axial charge worked out by Hee-Jung
Lee and collaborators [108], but it would be worth thinking about it.

Finally I must mention a crucial open problem that needs to be resolved to confirm
or invalidate the scenario developed for compact-star matter. The basic assumption made
throughout is that the explicit scale symmetry breaking can be ignored in the matter sector,
with the symmetry breaking effect lodged entirely in the dilaton potential. As shown in [49],
this is justified in the scale-chiral expansion if the anomalous dimension of G2

µν – denoted β′

– where Gµν is the gluon stress-energy tensor satisfies |β′| � 1. At present this quantity is
totally unknown for QCD with Nf ∼ 3. It could be ∼ 3 or bigger [109]. Intriguingly there
is an indication that a skyrmion description of dense matter, realistically formulated, could
provide an answer [110].
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