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In ultrarelativistic heavy-ion experiments, one estimates the centrality of a collision using a single
observable, say n, typically given by the transverse energy or the number of tracks observed in
a dedicated detector. The correlation between n and the impact parameter, b, of the collision is
then inferred by fitting a specific model of the collision dynamics, such as the Glauber model, to
experimental data. The goal of this paper is to assess precisely which information about b can be
extracted from data without any specific model of the collision. Under the sole assumption that the
probability distribution of n is Gaussian for a fixed b, we show that the probability distribution of
impact parameter in a narrow centrality bin can be accurately reconstructed up to 5% centrality.
We apply our methodology to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider
(LHC) data. We propose a simple measure of the precision of the centrality determination, which
can be used to compare different experiments.

I. INTRODUCTION

The impact parameter, b, of an ultrarelativistic
nucleus-nucleus collision is a crucial quantity. It deter-
mines the size and transverse shape of the quark-gluon
matter formed in the collision. Central collisions, at small
b, yield large and round interaction regions, while periph-
eral collisions, characterized by large values of impact
parameter, yield smaller interaction regions with a pro-
nounced elliptical anisotropy. The centrality dependence
of various observables provides, then, insight into their
dependence on the global geometry. The energy loss of
high-momentum particles [1, 2] or jets [3] is larger in cen-
tral collisions, as it increases with the length of the path
traversed by the particles inside the quark-gluon plasma.
By contrast, elliptic flow [4, 5] originates from the ellip-
tical shape of the nuclear overlap region, and is larger in
peripheral events [6].

The impact parameter of a single collision, even though
it is a perfectly well-defined quantity at ultrarelativistic
energies (in the sense that the quantum uncertainty is
negligible), is not directly measurable. In experiments,
impact parameter is estimated using a single observable,
which we denote generically by n [7]. Depending on the
experiment, n is either the number of particles (multi-
plicity) in a given detector [8–11] or the transverse energy
deposited in a calorimeter [12, 13]. The idea is that colli-
sions with a small impact parameter produce on average
larger values of n. However, the relation between n and
b is not one-to-one, and the variation of n with b is not
known a priori. This relation is usually inferred from a
microscopic model of the collision, such as HIJING [14],
or a two-component Glauber model [15] coupled with a
simple model of particle production. The parameters of
these models are tuned to reproduce the observed prob-
ability distribution of n. While these models offer a con-
venient parameterization, they may not describe the ac-
tual dynamics of a collision. This is suggested by the fact

that different sets of parameters must be used for differ-
ent colliding systems, and by the observation that the
two-component Glauber model is disfavored by analyses
of U+U collisions [16, 17].

The goal of this article is to assess which information
about the actual values of impact parameter can be ex-
tracted from the measured distributions of n, with as
little theoretical bias as possible. In particular, as we
shall see in the following sections, we do not need to in-
troduce the concept of “participant nucleon”, which is
a key ingredient of many microscopic models, but not a
measurable quantity.

The term centrality originally refers to a classifica-
tion according to impact parameter. In nowadays ex-
periments, however, it refers to the classification of the
collisions in terms of the parameter n. To avoid confu-
sion, we call b-centrality the centrality determined with
respect to impact parameter. The corresponding defini-
tions are recalled in Sec. II. In Sec. III, we show that a
correspondence between n and b can be drawn under the
sole assumption that fluctuations of n for a given impact
parameter are Gaussian. This Gaussian is characterized
by a mean n̄ and a width σ, which both depend on im-
pact parameter. We test the validity of this assumption
in Sec. III using model calculations. We argue that data
allow to reconstruct unambiguously the full impact pa-
rameter dependence of the mean n̄, and the value of the
width σ for central collisions, and we explain how this
can be done in practice. In Sec. IV, we validate the pro-
posed procedure using model calculations, where the im-
pact parameter is known. We show that the fluctuations
of impact parameter at a fixed centrality can be unam-
biguously reconstructed, and we apply this method to
experimental data in Sec. V.
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II. TWO DEFINITIONS OF CENTRALITY

Collisions can be classified according to their impact
parameter, b. We define the centrality, cb, as the cumu-
lative probability distribution of b:

cb ≡
1

σinel

∫ b

0

Pinel(b
′)2πb′db′, (1)

where σinel is the inelastic nucleus-nucleus cross section
and Pinel(b) is the probability that an inelastic colli-
sion occurs at impact parameter b. We name cb the b-
centrality of the collision, in order to distinguish it from
the usual centrality defined in heavy-ion experiments, to
be discussed below. The probability distribution of cb is
flat by construction: P (cb) = 1 for 0 < cb < 1. Neither b
nor cb can be measured experimentally. They are known
only in model calculations1.
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FIG. 1. (Color online) Histograms of the probability dis-
tribution of n measured by different experiments. Dashed
line: STAR data on Au+Au collisions at

√
s = 130 GeV.

Dot-dashed line: ALICE data on Pb+Pb collisions at
√
s =

2.76 TeV. Solid line: ATLAS data on Pb+Pb collisions at√
s = 2.76 TeV. The horizontal axis of each histogram has

been rescaled by the value of n at the knee (see text).

In experiments, collisions are instead classified accord-
ing to a single observable, n. The STAR Collabora-
tion [16] defines n as the number of tracks of charged par-
ticles detected in the pseudorapidity window −1 < η < 1.
The ALICE Collaboration [11] uses the number of hits in
two scintillators covering the windows −3.7 < η < −1.7
and 2.8 < η < 5.1. The ATLAS Collaboration [13] uses

1 The results in this paper use the variable cb, but one can easily
express them in terms of b using the change of variables cb =
πb2/σinel. The value of σinel needs to be taken from either data
or some collision model.

the energy deposited in two calorimeters in the symmet-
ric windows −4.9 < η < −3.2 and 3.2 < η < 4.9. Fig-
ure 1 displays the probability distribution of n, P (n),
measured by these three experiments2. Since different
detectors have different acceptance and efficiency, and n
can refer to a multiplicity or an energy, we rescale the
value of n by its value at the knee, to be defined precisely
in Sec. III. Once rescaled, ATLAS and ALICE data are
almost identical. STAR data differ in the tail, which is
twice as broad3.

The cumulative distribution of n defines the experi-
mental measure of centrality, which we denote by c. It is
defined by

c ≡
∫ ∞
n

P (n′)dn′. (2)

Note that the centrality classification is in ascending or-
der for b and in descending order for n, which explains
the different integration limits in Eqs. (1) and (2). The
probability distribution of c is also flat by construction:
P (c) = 1 for 0 < c < 1.

We have thus defined two measures of the centrality: cb
and c, depending on whether one sorts events according
to b or to n. If the relation between n and b is one-to-one,
both measures coincide, c = cb. In practice, one observes
a range of value of n at a given value of b. The joint
distribution of n and b is usually inferred from a specific
model of the collision [14, 15].

III. RELATING CENTRALITY TO
b-CENTRALITY

Here we simply assume that the probability of n for
fixed b is Gaussian [7]:

P (n|cb) =
1

σ(cb)
√

2π
exp

(
− (n− n̄(cb))

2

2σ(cb)2

)
, (3)

where both the mean n̄ and the width σ depend on the
impact parameter or, equivalently, on cb. We expect this
to be a good approximation because of the central limit
theorem: n is a multiplicity, or transverse energy, which
gets contributions from many collision processes which
are located at different points in the transverse plane,
and, therefore, causally disconnected and independent.

It is useful to check this Gaussian approximation on
a model4. We take n as the total entropy deposited in

2 Data on P (n) collected by the CMS and PHENIX Collaborations
are shown in [12] and [10], respectively.

3 We use uncalibrated 130 GeV STAR data [9] rather than cali-
brated 200 GeV data [16]. We have checked that, once rescaled,
the two distributions are very similar. The advantage of 130 GeV
data is that errors are provided, so that we are able to assess the
quality of our fits, as we shall see in Sec. V.

4 We stress, though, that our subsequent analysis of the experi-
mental results does not rely on whether or not the chosen model
provides a good description of data.
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FIG. 2. (Color online) Shaded areas: Histograms of the prob-
ability distribution of n for fixed impact parameter in Pb+Pb
collisions at

√
s = 2.76 TeV in the TRENTo model [17]. The

values b = 0 , 5, 8, 12 fm were used, which correspond to
cb = 0, 10%, 26%, 58%, respectively. We have generated
5 × 105 events for each value of b. Solid lines are Gaussian
fits. The quantity n is in arbitrary units.

the transverse plane by the TRENTo model of initial
conditions [17] in Pb+Pb collisions at

√
s = 2.76 TeV.

We employ TRENTo with reduced thickness parameter
p = 0, a setup which is known to reproduce accurately a
wide range of observables [18, 19], in particular, distribu-
tions of multiplicity at the LHC [17]. Figure 2 displays
the distribution of total entropy in this setup of TRENTo
for different fixed values of impact parameter. This plot
shows that the Gaussian approximation is valid in the
model up to ∼ 60% b-centrality. Although we do not
know whether the breakdown of the Gaussian approx-
imation is a mere default of the model or not, in the
following analysis we will exclude the most peripheral
collisions. This is also motivated by the fact that fluctu-
ations of n for large b are expected to be large, and large
fluctuations are in general non-Gaussian. Moreover, if
fluctuations are large, the condition n̄(cb)� σ(cb) is not
guaranteed, and integrating Eq. (3) over n from 0 to +∞
may not yield 1.

A crucial quantity which we will use throughout this
work is the position of the knee of the distribution of
n. We define it as the mean value of n at zero impact
parameter:

nknee ≡ n̄(0). (4)

The observed distribution of n, P (n), is eventually ob-
tained by integrating Eq. (3) over cb, i.e.,

P (n) =

∫ 1

0

P (n|cb)dcb. (5)

In this paper, we determine smooth functions n̄(cb) and
σ(cb) such that P (n) matches experimental data. This

problem is underconstrained, in the sense that one cannot
determined two unknown functions n̄(cb) and σ(cb) from
a single function P (n). We shall argue that one can only
constrain the mean n̄(cb), and the value of the width
for central collisions, σ(0). Since the variation of σ with
cb cannot be determined from data alone, we test two
different scenarios:

• (A) σ(cb) = σ(0)
√
n̄(cb)/n̄(0)

• (B) σ(cb) = σ(0).

The first scenario, (A), assumes that the variance is pro-
portional to the mean, which would be true if n were the
sum of contributions from independent nucleon-nucleon
collisions. Scenario (B) is motivated by the observation
that the width of the histograms observed in Fig. 2 varies
little between b = 0 and b = 8 fm. We state that this
is an artifact of the Monte Carlo model, where particle
production is essentially determined by the participant
nucleons. Since the number of participant nucleons is
bounded by the total number of nucleons, fluctuations of
n are consequently reduced by the presence of this upper
cutoff. There is, however, no deep theoretical reason to
believe that this particular feature of the Monte Carlo
models is realistic.

For each scenario, (A) or (B), we need a smooth func-
tion n̄(cb), and a constant, σ(0), such that P (n) defined
by Eqs. (3) and (5) fit experimental data. We use the
following functional form of n̄(cb), which guarantees pos-
itivity:

n̄(cb) = nknee exp
(
−a1cb − a2c

2
b − a3c

3
b

)
. (6)

One could as well use other functional forms, requiring
the final fitting function to be a smooth, positive, mono-
tonically decreasing function of cb, with no singularities
in the interval 0 ≤ cb < 1. We carry out a 5-parameter
fit to P (n) using Eqs. (3) and (5), with parameters given
by nknee, a1, a2, a3 and σ(0). In order to eliminate pe-
ripheral collisions from the fit, we only use values of n
above a cutoff nmin, which we specify in each case.

IV. VALIDATION OF THE METHOD

We now validate this procedure of relating n to cb us-
ing Monte Carlo simulations, where both b and n are
known in each event. We simulate Pb+Pb collisions at√
s = 2.76 TeV using the same setup of TRENTo as in

Fig. 2, and again we use the entropy of each event to
construct the probability distribution P (n). We gener-
ate 107 events. We determine cb of each event by sorting
events according to b, and c by sorting them according
to n. Symbols in Fig. 3 correspond to the distribution
P (n) from this Monte Carlo calculation.

We now apply the fitting procedure described in the
previous section to P (n). For scenario (A), we vary the
lower cutoff from nmin = 1.8 to nmin = 9.1, corresponding
to centralities c = 80% and c = 62%, and we find that
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FIG. 3. (Color online) Symbols: P (n) obtained from the
TRENTo model of initial conditions. Dashed line: Fit of P (n)
using Eqs. (3) and (5) in the scenario (A). The vertical line
indicates the position of the knee [see Table I]. The quantity
n is in arbitrary units.

the results of the fit are stable. The solid line in Fig. 3
displays the fit corresponding to the larger value of nmin.
The fit provides an excellent description of P (n) in the
model. For case (B), fluctuations are larger and we use
a larger cutoff, nmin = 36. Above the cutoff, the two fits
are indistinguishable in Fig. 3. The fit parameters are
listed in Table I, for both scenarios. The error on the
knee, nknee, returned by the fit is only 0.3%, while the
error on the width σ(0) is about 3%. Interestingly, the
two fitting procedures (A) and (B) return essentially the
same values of these two quantities.5

In Fig. 4, we show n̄(cb) returned by the fit, i.e., we
calculate Eq. (6) using the parameters of Table I for sce-
nario (A). We display the comparison between this ana-
lytical estimate and the results directly obtained by bin-
ning TRENTo results in cb, and computing the mean
value of n in each bin. Agreement is within 0.5%, all the
way up to cb = 70%, which corresponds to a value of n
smaller than the lower cutoff applied to P (n). We also
calculate σ(0) directly, by generating 105 collisions with
b = 0 fm, and computing the standard deviation of n.
The resulting value of σ(0) agrees with the correspond-
ing fit parameter.

It is useful to note that approximate values of σ(0) and
n̄(cb) can be read off directly from the shape of P (n).
Specifically, σ(0) can be inferred from the width of the
tail of the distribution on the right of the knee. n̄(cb) is

5 The larger difference in a2 and a3 is due to the different lower
cutoff, nmin, used for (B).
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FIG. 4. (Color online) Mean value of n versus b-centrality.
Symbols: calculated directly by binning TRENTo results in
cb. Dashed line: reconstructed from the fit of P (n) alone.
The inset shows a zoom of the most central collisions, where
we compare n̄(cb) to n(c) (dotted line).

instead related to the shape of P (n) left of the knee. If
σ(cb) is very small, the distribution of n for fixed b is very
narrow, so that c and cb tend to coincide. In this limit,
c(n) defined by Eq. (2) is equal to the inverse function
of n̄(cb) [7]. P (n) can thus be obtained by differentiating
the centrality with respect to n, according to Eq. (2):

P (n = n̄(cb)) ' −
(
dn̄(cb)

dcb

)−1

. (7)

In the inset of Fig. 4, we check the validity of this approx-
imation in our TRENTo calculation by direct comparison
of n̄(cb) to n(c). We find that n̄(cb) deviates from n(c)
only above n ' 170, corresponding to 1.5% centrality.
This means that n̄(cb) carries an information which can
not be inferred from data alone only in the vicinity of
nknee.

To complete our procedure, we show how one can re-
construct the distribution of impact parameter for a given

direct fit (A) fit (B)

σ(cb) ∝
√
n̄(cb) σ(cb) =const.

nknee 181.49± 0.13 182.03 181.91

σ(0) 7.79± 0.04 8.03 8.09

a1 4.36± 0.02 4.41 4.48

a2 −2.3± 0.1 −2.4 −3.0

a3 4.8± 0.1 4.9 6.5

TABLE I. Fit parameters obtained from fitting P (n) in the
TRENTo calculation [Fig. 3].
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FIG. 5. (Color online) Probability distribution of b-centrality
in a very narrow centrality bin. Histograms: direct calcula-
tion using TRENTo. Lines: Probability distributions of cb
reconstructed through the Bayes’ theorem, Eq. (8). Solid and
dashed lines correspond to scenarios (A) and (B), respectively.
The second panel corresponds to n = nknee. Note that for
n ≥ nknee (two uppermost panels), the most probable value
of cb is cb = 0%. Left of the knee, on the other hand, the
most probable value of cb is c [7], as clearly visible in the two
lowermost panels. All curves displayed in this figure have area
normalized to unity.

value of n, i.e., at a given value of centrality. In the
TRENTo model, this can done directly by sorting events
into very narrow centrality bins, and then looking at the
distribution of cb in each bin. We show such histograms of
cb for a few selected centrality bins in Fig. 5. Each panel
corresponds to a bin of width 0.1%, centered around the
displayed value of c (for instance, the panel with c = 1%

STAR [9] ALICE [11] ATLAS [13]

nknee 296.8 20406 3.5746

σ(0) 21.5 731 0.1131

a1 3.55 4.11 4.05

a2 0.8 -1.9 -1.5

a3 1.6 4.4 4.1

TABLE II. Values of fit parameters for several experiments.

shows the distribution of cb for 0.95% < c < 1.05%.)
In an experimental situation where the impact parame-

ter is not known, these distributions can be reconstructed
from P (n) using Bayes’ theorem:

P (cb|c) = P (c|cb)

=
P (n|cb)
P (n)

, (8)

where, in the first line, we have used the property that
the distribution of cb and c are uniform, i.e., P (cb) =
P (c) = 1. The distribution P (n|cb) is given by Eq. (3),
where n̄(cb) and σ(cb) can be obtained from the fitting
procedure.

One first needs to determine the value of n correspond-
ing to a given centrality, c. This can be done straightfor-
wardly using the fitting function, which offers a smooth
interpolation of P (n).6 Inserting Eq. (3) into Eq. (5),
and exchanging the integration order, Eq. (2) yields

c =

∫ 1

0

1

2
erfc

(
n− n̄(cb)√

2σ(cb)

)
dcb, (9)

where erfc(x) denotes the complementary error function.
Eventually, once n is determined, P (cb|c) is given by
application of Bayes’ theorem, Eq. (8), to P (n|cb) in
Eq. (3). The reconstructed distributions are shown as
lines in Fig. 5. Scenarios (A) and (B) are represented by
solid and dashed lines, respectively. Both are in perfect
agreement with the direct calculation up to 4% central-
ity. Discrepancies between both scenarios and the direct
calculation start to appear around c = 8%, meaning that
our approximated formulas for σ(cb) starts to break down
around c ∼ 10% in this model calculation. In a sense, this
is a consequence of the fact that the variation of σ with
cb can not be inferred from the sole P (n).

V. APPLICATION TO DATA

Our method of relating c to cb being validated on model
calculations, we apply now the fitting procedure to ex-
perimental data. We fit the experimental curves of P (n)

6 Experimental data typically present P (n) in a bin center, and
the centrality, c, at the boundary between two bins.



6

shown in Fig. 1 using Eq. (5). The results shown in this
section correspond to scenario (A), with a lower central-
ity cutoff. We have checked that results are stable if one
varies the cutoff, or if one uses scenario (B). The values of
the fit parameters extracted from experimental data are
given in Table II, for all the analyzed experiments. The
values of nknee and σ(0) are in the same units as n, which
are usually arbitrary, and vary from one experiment to
the other. The other fit parameters are dimensionless.

○

○

○

○
○
○
○
○
○○
○
○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○○○○○○○○○

○
○○○○○○○○○○○○

○○○○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○

○
○○○○○○○○
○○
○○○
○○
○○
○
○
○○
○○
○○○○
○
○○
○
○○○○○○○
○○○
○
○○○○○○○○
○○○○○○○
○
○
○○○
○
○○○○○
○○○○○○○○○○

○○
○○
○○○○○○○○
○
○○○○○○○
○
○○○○
○○○○○○○○○○○○○○○○○○○○

○
○○○○○○○○○

○
○○○○
○
○○○○
○
○○○○○○
○○○○
○○
○○○○
○
○○○○○○○○○○○○

○○○○○○○
○
○
○○○
○○○○○○
○○○○○○
○○
○○○○○○○○○

○
○
○○○○
○○
○○○
○○
○
○
○○○
○○○○○○
○
○
○

○
○○○○○
○
○○
○
○○○○

○
○○○○○○○○
○
○

○○○

○

○○
○

○
○

○

○○
○○

○○
○

○
○
○
○

○

○

○

●

●

●

●
●
●
●
●
●
●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●
●
●
●●●
●
●●
●●●
●
●
●
●●
●●●●●●●●●

●●●●●
●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●
●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●●
●●●●
●●●●●●
●●
●●●●●●●

●●●
●
●●
●●
●
●●●●●
●
●●●●●●
●
●
●●●
●●
●●
●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●
●
●●●●●●●●●●●

●●●●
●●●●●●●●●●

●
●●●●●●●

●●

●
●●●●●●

●

●
●●●●●●●●

●
●
●

●●
●●
●●●
●

●●●

●

●●●●

●
●

●
●

●

●
●

●

●

●

○ALICE data

●ALICEGlauber

— this paper

○
○○

○

○

○○○○
○○○○○○

○

○

○
○
○○

○

○○○○
○○
○○
○
○○
○
○○
○
○○○
○○○
○
○
○
○○

○

○

○
○
○○
○
○○
○

○○

○○○
○○

○
○

○

○

○○

○
○
○○
○○

○

○○

○

○○
○
○○
○○
○
○
○
○

○
○
○○○○
○○
○
○○○
○

○
○

○

○

○○

○

○

○
○
○
○

○

○
○
○
○○
○○
○○

○

○○

○
○○
○○
○○○○○

○

○
○○
○
○○
○

○

○○○○

○○
○○○○
○○○
○○○
○○
○
○○○
○○
○

○○
○

○
○
○○○○

○
○
○

○
○

○

○○○
○

○

○○○○
○
○
○
○
○
○

●
●●
●
●●
●●●
●

●
●●●●●●●

●

●●●
●●
●
●●●●
●
●
●●●●●

●●
●●●●
●●
●●●
●●
●●●●
●●●●
●
●●●●
●

●●●
●
●

●

●

●
●●

●

●●

●●●
●

●

●

●●
●●●
●
●
●
●
●●

●●●●●

●

●

●●
●●●
●●
●

●
●●

●●
●
●
●
●

●●●
●●
●●●●●

●
●
●●●
●
●●●●●

●

●

●
●
●
●

●●●
●●
●●
●●
●●●●
●

●

●
●●●●●●

●

●
●●●
●

●

●
●●
●
●

●

●●
●
●

●●
●●

●
●●
●●
●
●●
●
●

●

●
●

●
●

●

●

6000 8000 10000 12000 14000

n

P
(n
)

0 5000 10000 15000 20000

10-6

10-5

10-4

10-3

n

P
(n
)

FIG. 6. (Color online) Empty symbols: distribution of the
VZERO amplitude (denoted by n) used by the ALICE col-
laboration to determine centrality [11]. Full symbols: Glauber
model used by the ALICE collaboration to fit the measured
distribtuion. Line: Fit of data provided by Eq. (5). The inset
is a zoom of the central part of the histogram. The quantity
n is in arbitrary units.

In Fig. 6 we illustrate raw data on P (n) (empty sym-
bols) measured by the ALICE Collaboration, together
with our fit (line). The χ2 per degree of freedom of the
fit is 1.2. Along with data, we plot also the distribu-
tion of n provided by the Monte Carlo Glauber model
used by the ALICE collaboration (full symbols) to fit
their P (n), and, consequently, to perform the sorting of
events into centrality bins. A remarkable outcome of our
fitting method is that it provides a description of exper-
imental data which is better than that provided by the
Glauber model tuned to ALICE data, as evident from
the inset of Fig. 6, where we zoom in the central body of
the histogram. The fits of STAR and ATLAS data are of
the same quality.

A convenient measure of the accuracy of the central-
ity determination is the fraction of events above the knee
of the distribution, that is, the centrality of the knee,
which we denote by cknee. It is obtained by replacing n

with nknee in Eq. (9). Its value for each of the three
considered experiments is given in Table III. The re-
covered ordering of cknee among the considered experi-
ments is consistent with the curves shown in Fig. 1, since
cknee is proportional to the width of the tail of P (n).
We now derive a approximate expression of cknee which
provides a simple way to relate it to the fit parame-
ters of Table II. If n = nknee, only small values of cb
contribute to the integral in Eq.(5). Therefore, we can
expand n(cb) to first order in cb in Eq. (3), obtaining
n(cb)−nknee ' cb(dn̄/dcb)|cb=0. Neglecting the variation
of the width with cb, i.e., σ(cb) ≈ σ(0), and replacing
n̄(cb) in Eq. (9), one obtains

cknee = − σ(0)

dn̄
dcb

∣∣∣
cb=0

√
2π

=
σ(0)

nkneea1

√
2π
, (10)

where, in the last equality, we have used Eq. (6). We
have checked that, using this simple estimate, the val-
ues of cknee shown in Table II are reproduced to a good
accuracy, within 1%.

Ultimately, using Bayes’ theorem, we can use the fits of
experimental data to reconstruct the distribution of im-
pact parameter for a fixed centrality. Figure 7 presents
the distribution of cb for a few selected values of central-
ity percentile. The distributions obtained from ALICE
and ATLAS data are very similar, therefore, we show
only a comparison between the curves derived from AL-
ICE and STAR data. The distribution extracted from
STAR data is much broader than the one extracted from
ALICE data. This is a direct consequence of the wider
tail of P (n) measured by the STAR Collaboration [see
Fig. 1]. Note that, as expected, the distributions ex-
tracted from STAR and ALICE data are almost identi-
cal if one rescales both c and cb by cknee, as we show in
Fig. 8.

VI. CONCLUSION

We have shown that even though the impact param-
eter of a nucleus-nucleus collision is not a measurable
quantity, precise information about impact parameter is
contained in available experimental data. We have delin-
eated a procedure allowing to reconstruct accurately the
probability distribution of impact parameter at a given
centrality (as defined experimentally by a multiplicity or
a transverse energy), up to 5 − 10% centrality. This re-
construction does not involve the concept of participant

Experiment cknee

STAR [9] 0.81%± 0.10%

ALICE [11] 0.349%± 0.023%

ATLAS [13] 0.313%± 0.011%

TABLE III. Fraction of events above the knee for various
heavy-ion experiments.
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FIG. 7. (Color online) Probability distributions of b-centrality
for selected values of the centrality reconstructed from STAR
(dashed lines) and ALICE (solid lines) data using Bayes’ the-
orem. All curves shown in this figure have area normalized to
unity.

nucleons, or any microscopic model of the collision. Its
sole inputs are the distribution P (n), where n is the ob-
servable used to determine the collision centrality, along
with the assumption that the distribution of n for a fixed
b is Gaussian. We stress that this assumption is solidly
rooted in the central limit theorem.

The fraction of events above the knee of P (n), cknee,
provides a simple measure of the precision of the cen-
trality determination. It is below 0.4% at ATLAS and
ALICE, and twice larger at STAR. We have shown that
impact parameter fluctuations in the 0− 10% most cen-
tral collisions are essentially determined by this quantity

alone.

 0
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 0.3

 0.4
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 0  5  10  15  20

P(
c b

|c
) 

c k
ne

e

cb/cknee

c=0.5 cknee

c=cknee
c=10 cknee

ALICE
STAR

FIG. 8. (Color online) Probability distribution of cb/cknee
extracted from STAR (solid lines) and ALICE (dashed lines)
data for three selected values of c/cknee.

We have shown that the mean value of n at a fixed
impact parameter can be reconstructed accurately up to
70% b-centrality. The standard deviation of n around
the mean can instead be reconstructed only for b = 0:
Its centrality dependence cannot be inferred from P (n)
alone. The mean and the standard deviation of n at fixed
b are more natural quantities from a theory point of view
than P (n), as they can be directly obtained in a model
by fixing the impact parameter. While the standard de-
viation may depend on detector details (in particular,
purely statistical fluctuations are larger in relative value
if the acceptance is smaller), the mean, n̄(cb), provides a
robust quantity for model comparisons.

It would be useful to extend this study to proton-
nucleus collisions. However, our assumption that n has
Gaussian fluctuations is not satisfied in model calcula-
tions, even for central collisions. We have checked that
the fit procedure is less successful in describing p+Pb
collisions at

√
s = 5.02 TeV [20]. In particular, the tail

of the distribution of P (n) is not as well reproduced, be-
cause it is not Gaussian. It will be worth investigating
further the reasons of this failure of the Gaussian ansatz,
to shed more light on the eventual mechanism of medium
production in smaller collision systems.
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