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Abstract

In cosmological models where dark energy has a dynamical origin one would expect
that a primordial inflationary epoch leaves no imprint on the behavior of dark energy
near the present epoch. We show that a notable exception to this behavior is provided
by a nonlocal infrared modification of General Relativity, the so-called RT model. It
has been previously shown that this model fits the cosmological data with an accuracy
comparable to ΛCDM, with the same number of free parameters. Here we show that
in this model the dark energy equation of state (EOS) near the present epoch is
significantly affected by the existence of an epoch of primordial inflation. A smoking-
gun signature of the model is a well-defined prediction for the dark energy EOS,
wDE(z), evolving with redshift from a non-phantom to a phantom behavior, with
deviations from −1 already very close to the limits excluded by the Planck 2015 data.
Future missions such as Euclid should be able to clearly confirm or disprove this
prediction.
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1 Introduction

Understanding the origin of dark energy (DE) is among the most interesting problems
in cosmology. The simplest solution, a cosmological constant, fits the data very well,
so ΛCDM is at present the standard cosmological paradigm. However, the accuracy of
present and future observations allows us to test ΛCDM against competing theories, so
it is clearly interesting to develop alternatives to ΛCDM. At the conceptual level, an
especially intriguing possibility is to explain DE by modifying General Relativity (GR) at
cosmological distances, see e.g. [1–3] for reviews of different approaches.

Nonlocality opens up new interesting possibilities for building large-distance (“in-
frared”) modifications of GR. While at the fundamental level quantum field theory is
local, in the presence of massless or light particles the quantum effective action that in-
cludes quantum corrections unavoidably develops nonlocal terms, both at the perturbative
and at the non-perturbative level. In this spirit, a phenomenological nonlocal modification
of GR was first proposed in [4, 5] (see [6] for review), which however has been ruled out
by the comparison with structure-formation data [7]. In the last few years our group has
introduced a different class of nonlocal models, characterized by the fact that the nonlocal
operators are associated to a mass scale. These models, which evolved from previous work
related to the degravitation idea [8–10] as well as from attempts at writing massive gravity
in nonlocal form [11, 12], turn out to work extremely well in the comparison with cosmo-
logical observations. A first model of this class, proposed in [13], is based on a nonlocal
equation of motion,

Gµν −
m2

3

(
gµν2

−1R
)T

= 8πGTµν , (1.1)

where the superscript T denotes the operation of taking the transverse part of a tensor
(which is itself a non-local operation), and ensures energy-momentum conservation. We
will refer to this model as the “RT” model, where R stands for the Ricci scalar and T
for the extraction of the transverse part. A second model was introduced in [14], and is
defined by the quantum effective action

ΓRR =
M2

Pl

16π

∫
d4x
√
−g

[
R− m2

6
R

1

22
R

]
, (1.2)

where again m is the new mass parameter of the model. We will refer to it as the RR
model. Conceptual and phenomenological aspects of these models have been discussed in
a series of papers [13–31] and recently reviewed in [32]. Once interpreted in terms of the
dynamics of the in-in matrix elements induced by a quantum effective actions, the RT and
RR models have no problem with ghosts nor with causality (see in particular Sect. 5 of [32],
and references therein). The study of their cosmological solutions shows that, at the back-
ground level, they generate an effective dark energy and have a realistic background FRW
evolution, without the need of introducing a cosmological constant. Their cosmological
perturbations are well-behaved both in the scalar and in the tensor sector, and give predic-
tions consistent with CMB, supernovae, BAO and structure formation data. This allowed
us to move to the next step, implementing the cosmological perturbations in a Boltzmann
code and performing Bayesian parameter estimation and a detailed quantitative compar-
ison with ΛCDM [23, 29]. The result is that the RT model fits the data at a level which
is statistically indistinguishable from ΛCDM (and in fact even fits slightly better). The
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performance of the RR model is also statistically indistinguishable from that of ΛCDM,
once neutrino masses are left free to vary, within the existing experimental limits [33]. It
should also be appreciated that these two nonlocal models have the same number of free
parameters as ΛCDM, with the new parameter m replacing the cosmological constant.1

At smaller scales, both the RT and RR models have no vDVZ discontinuity and reduce
smoothly to GR. Hence, they pass without problems all solar-system tests.2

The purpose of this paper is to point out another phenomenologically interesting aspect
of the RT model (not shared, as we will see, by the RR model). Namely, it predicts a
very characteristic form of the equation of state of dark energy, which depends on the
existence of an epoch of primordial inflation. This connection between the behavior of DE
in the recent cosmological epoch, and the properties of the cosmological model during an
epoch of primordial inflation, is by itself quite interesting. Furthermore, we will obtain
a prediction for wDE(z) which is already very close to the region excluded by the Planck
2015 data, and should be clearly accessible to future missions such as Euclid. No tunable
parameter is involved in this prediction. Once we fix the model (that we will take to be
the RT model supplemented by a Starobinsky inflationary sector) and choose any number
of e-folds ∆N during inflation, larger than the minimal value required for solving the
standard flatness and horizon problems, the result for wDE(z) is uniquely fixed, since it
goes to an asymptotic value for large ∆N .

2 Cosmological evolution and initial conditions

As discussed in [13] (see also Sect. 7.1.1 of the review [32]), the equations of motion of the
RT model can be put into local form by introducing two auxiliary fields U and Y (which,
at the quantum level, do not correspond to physical degrees of freedom, in the sense that
there are no creation and annihilation operators associated to them). Then, looking for
background FRW solutions with scale factor a(t), we get a Friedman equation of the form

h2(x) = ΩMe
−3x + ΩRe

−4x + γY (x) , (2.1)

where x ≡ log a(t) is used as the time-evolution variable, h(x) = H(x)/H0 is the Hubble
parameter normalized to the present value, ΩM and ΩR are the present density fractions of
matter and radiation, respectively, and γ ≡ m2/(9H2

0 ) is the free parameter of the model
in dimensionless form. The two auxiliary fields U and Y satisfy the coupled system of
equations

Y ′′ + (3− ζ)Y ′ − 3(1 + ζ)Y = 3U ′ − 3(1 + ζ)U , (2.2)

U ′′ + (3 + ζ)U ′ = 6(2 + ζ) , (2.3)

where ζ(x) ≡ h′/h and the prime denotes d/dx. We see from eq. (2.1) that there is an
effective DE density ρDE(x) = ρ0γY (x), where ρ0 = 3H2

0/(8πG).

1By comparison, in f(R) gravity and in the Deser-Woodard nonlocal model one tunes a whole function,
while in bigravity the cosmological constant is replaced by a set of 5 parameters βn and there is also a new
Planck mass associated to the second metric.

2See [21] and app. A of [29] for a discussion of a potential issue of the RR model in comparison with
Lunar Laser Ranging experiments. This issue in any case does not even arise for the RT model.
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Given the initial conditions on the auxiliary fields, the numerical integration of eqs. (2.2)
and (2.3) is straightforward. Useful analytic understanding can however be obtained ob-
serving that, in any given epoch, the parameter ζ has an approximately constant value ζ0,
with ζ0 = {0,−2,−3/2} in deSitter (dS), RD and MD, respectively. In the approximation
of constant ζ eq. (2.3) can be integrated analytically, and has the solution [13]

U(x) =
6(2 + ζ0)

3 + ζ0
x+ u0 + u1e

−(3+ζ0)x , (2.4)

where the coefficients u0, u1 parametrize the general solution of the homogeneous equation
U ′′ + (3 + ζ0)U = 0. Plugging eq. (2.4) into eq. (2.2) and solving for Y (x) we get

Y (x) = − 2(2 + ζ0)ζ0

(3 + ζ0)(1 + ζ0)
+

6(2 + ζ0)

3 + ζ0
x+ u0

− 6(2 + ζ0)u1

2ζ2
0 + 3ζ0 − 3

e−(3+ζ0)x + a1e
α+x + a2e

α−x , (2.5)

where

2α± = −3 + ζ0 ±
√

21 + 6ζ0 + ζ2
0 . (2.6)

During RD and MD both α+ and α− are negative. This is important, since a positive
value would have led to a mode growing exponentially in x (i.e., as a power in the scale
factor). Any small perturbation would then unavoidably excite this growing mode, and
this would have quickly led to an unacceptable background evolution during RD or MD.
In contrast, during dS there is a growing mode, with α+ = αdS

+ = (−3 +
√

21)/2 ' 0.79.
In our previous works on the RT model the cosmological evolution was started deep
in the RD phase, with initial values U(xin) = U ′(xin) = Y (xin) = Y ′(xin) = 0. The
initial conditions {U(xin), U ′(xin), Y (xin), Y ′(xin)} are in one-to-one correspondence with
the parameters {u0, u1, a1, a2} in eqs. (2.4) and (2.5). From the fact that, in RD, α± < 0, it
follows that u1, a1, a2 corresponds to stable directions, i.e. the solution obtained starting
in RD with generic non-vanishing values of u1, a1, a2 approaches exponentially fast the
solution obtained starting with u1 = a1 = a2 = 0. In contrast, u0 is associated to
a marginally-stable direction, and setting a non-vanishing initial value for u0 effectively
amounts to reintroducing a cosmological constant [13,16]. As stressed in particular in [32],
the evolution obtained setting U(xin) = U ′(xin) = Y (xin) = Y ′(xin) = 0 at a value x = xin

in RD must be understood as defining a ‘minimal model’, which is useful to get a first
understanding of the kind of predictions that can be obtained from the RT model. Here
we rather explore the non-minimal model that can be obtained by taking into account the
existence of an inflationary phase in the primordial Universe, as well as the subsequent
reheating phase. In RD and MD any solution approaches exponentially the one obtained
setting u1 = a1 = a2 = 0. Nevertheless, the fact that during a previous inflationary
era Y grows exponentially means that, in practice, given the finite duration of the RD
and MD eras, when we reach the recent epoch and DE becomes important, the solution
for Y (x) is still sensibly different from that obtained in the minimal model. As we will
see, the resulting background evolution is still viable, but its prediction for the recent
DE phase will be different from that of the minimal model, and will carry an imprint of
the inflationary epoch. Observe that in the RR model all solutions of the homogeneous
equations for its auxiliary fields are decaying in dS, RD and MD [14]. Therefore in the
RR model there is no such effect.
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3 Evolution during inflation

In order to illustrate the above behavior, we consider a specific model of inflation and of the
subsequent reheating phase. Similarly to ΛCDM, the nonlocal models can in principle be
supplemented by any desired inflationary dynamics in the primordial epoch, by introducing
an inflationary sector. In the following we will consider the Starobinsky model of inflation,
so that during the inflationary epoch the dynamics is effectively governed by the action

S =
M2

Pl

16π

∫
d4x
√
−g

[
R+

R2

6M2

]
, (3.1)

where M2
Pl = 1/G and M is the Starobinsky mass scale. This choice is first of all motivated

by the fact that, when combined with ΛCDM, the predictions of the Starobinsky model
for the tensor-to-scalar ratio r and the tilt ns of scalar perturbations are the ones that fit
better the data, among a large class of inflationary models [34]. As we will see below, the
inflationary epoch is not affected by addition of the nonlocal term, so the same predictions
for r and ns hold in our case.3 Furthermore, as first discussed in [26], Starobinsky inflation
is very natural in the context of the nonlocal models. Indeed, the action (1.2) already
contains a nonlocal term quadratic in the Ricci scalar. Once we admit nonlocal terms
involving R2, it is also natural to admit a local R2 term, as in eq. (3.1).4 We will defer
to a future work a detailed study of the dependence of our results from the choice of the
inflationary sector.

We start from generic initial values for Y at the beginning of inflation, i.e. we do not
fine-tune Y to zero at the initial time. We denote by ain the value of the scale factor when
inflations begins, and by aend the value when inflation ends and reheating starts. We will
further denote by areh the value of a when reheating ends and RD begins, by aeq the
value at RD-MD equilibrium, and by a0 the present value (that we will eventually fix to
a0 = 1). We write xend−xin = log aend/ain ≡ ∆N , i.e. ∆N is the number of e-folds during
a quasi-deSitter phase of inflation. Thus, if Y (xin) has a generic value of order one (i.e., is
not fine-tuned to zero), by the end of inflation Y (xend) ' exp{αdS

+ ∆N} ' exp{0.79∆N}.
Note that, despite this exponential growth, even for very large values of ∆N the corre-

sponding DE density ρDE(x) = ρ0γY (x) has no effect on the inflationary dynamics. This
is due to the fact that ρ0 = 3H2

0/(8πG) ∼ (10−3eV)4 is extremely small compared to the
energy density during inflation. For instance, if Y (xin) = O(1) and we take ∆N = 60,
at the end of inflation we get Y (xend) = O(1020). Even with such a large value of Y ,
[ρ0Y (xend)]1/4 ∼ 10−3eV × Y 1/4(xend) = O(102) eV (furthermore, we will see below that
γ � 1, and decreases with ∆N so to keep γY (x = 0) fixed). This is totally negligible
compared to the inflationary scale M , which has typical values, say, of order 1013 GeV.
Thus, during the inflationary phase the evolution of the scale factor is the same as in
standard GR without the nonlocal term; the auxiliary fields U and Y are at this stage

3Of course, in order to assess how well these predictions fit the data within the nonlocal model, we
need to perform the corresponding Bayesian parameter estimation. For the minimal RT model with initial
condition in the RD era this has been done in [29]. We will present elsewhere the result of Bayesian
parameter estimation for the RT model, with initial conditions in the inflationary era.

4The action of the RT model is not explicitly known but, when one linearizes the model over flat space,
it turns out to be equivalent to the RR model, so its full action is expected to be a nonlinear extension of
eq. (1.2).
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‘spectator fields’, that do not influence the evolution of the scale factor, and whose evo-
lution can be computed inserting in eqs. (2.2) and (2.3) the solution for H(t) computed
from the inflationary solution, neglecting the nonlocal term. Observe that eqs. (2.2) and
(2.3) are not affected by the inclusion of the inflationary sector, since they just express
the definition of the auxiliary fields (e.g U = −2−1R), needed to put the original nonlocal
equations in local form.

The mass scale M in eq. (3.1) is fixed by requiring that the inflationary model repro-
duces the observed value of the amplitude of the scalar perturbations at a pivot scale k∗
used by CMB experiments (with k∗ = 0.05 Mpc−1 being a typical choice by Planck). This
gives

M ' 2.9× 1013 GeV (60/N∗) , (3.2)

where N∗ is defined as the number of e-folds to the end of inflation when the scale k∗
leaves the horizon. Its value is observationally determined by comparing the prediction
for (ns, r) to the data. For the Starobinsky model this gives 53 < N∗ < 64 at 95% c.l. [34].
Finally, we will also need a model for reheating. For Starobinsky inflation a simple model
of reheating has been discussed in [35] (see also the review [1]). For t > tend, it leads to
the solution

H(t) =

[
3

M
+

3

4
(t− tend) +

3

4M
sin[M(t− tend)]

]−1

cos2

[
M

2
(t− tend)

]
. (3.3)

In the regime M(t− tend)� 1, averaging over the oscillations one finds

〈H(t)〉 =
2

3

1

(t− tend)
, (3.4)

just as in MD. The total duration of the reheating phase is [1, 35]

treh − tend '
400M2

Pl

g∗M3
, (3.5)

where g∗ is the number of relativistic degrees of freedom at time of reheating (with g∗ '
106.75 in the Standard Model). Thus, at the time t = treh corresponding to end of
reheating, we have H(treh) ' (M/3)(g∗/200)(M/MPl)

2 while, from eq. (3.3), H(tend) =
M/3. Since during reheating 〈H〉 ∝ a−3/2, as in MD, we get

aend

areh
'
( g∗

200

)2/3
(
M

MPl

)4/3

≡ e−2C . (3.6)

Using eq. (3.2) and taking g∗ = 106.75 we get

C ' 8.84− (2/3) log(60/N∗) . (3.7)

The reheating temperature can be estimated as Treh ' 3× 1017g
1/4
∗ (M/MPl)

3/2 GeV [1].
Using eq. (3.2) gives

Treh ' 3.5× 109 (60/N∗)
3/2 GeV . (3.8)

The value of Y (xend) at the end of inflation depends on the total number of e-folds ∆N
from the beginning of inflation. In principle, ∆N is not a directly observable quantity.
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However, a first obvious bound that we have on it is ∆N ≥ N∗. Another bound comes from
the condition that the inflationary expansion should be long enough to solve the flatness
problem. Since the precise numbers will be relevant for us, let us repeat this standard
computation (see e.g. [36]), including the effect of the above reheating phase. Defining as
usual the energy fraction associated to the curvature as ΩK(t) = −K/[a2(t)H2(t)], one
sees that ΩK ∝ a2 during RD, ΩK ∝ a during MD, and ΩK ∝ a−2 during a quasi-deSitter
epoch of inflation. Observing that during the reheating phase discussed above the scale
factor basically behaves as in MD, the value of the curvature today, ΩK(t0), is related to
the value at the beginning of inflation, ΩK(tin), by

ΩK(t0) = ΩK(tin)

(
ain

aend

)2 ( areh

aend

) (
aeq

areh

)2( a0

aeq

)
. (3.9)

We now require that the initial value of the curvature is not fine-tuned to zero, ΩK(tin) =
O(1), and we impose the observational constraint ΩK(t0) < 0.005 [37]. We use a0/aeq =
(1+zeq) ' 3500 and we determine a0/areh by requiring entropy conservation, g∗a

3
rehT

3
reh =

g∗,0a
3
0T

3
0 , where g∗,0 ' 3.909 is the present value of the effective number of relativistic

species, T0 ' 2.7 K, and Treh is given by eq. (3.8). Plugging the numerical values we get
∆N >∼ 60. A similar, but slightly weaker bound, is obtained requiring the solution of the
horizon problem. In conclusion

∆N >∼max(60, N∗) , (3.10)

with N∗ bounded observationally in the range 53 < N∗ < 64. We now have all the
elements for following the evolution of the auxiliary fields Y and U through inflation and
reheating. At the end of inflation, Y (xend) ' exp{0.79∆N}. During reheating the scale
factor evolves basically as in MD, so Y (x) will decrease as exp{αMD

+ (x − xend)}, where
αMD

+ = (−9 +
√

57)/4 ' −0.36. Thus, at the end of reheating and beginning of RD,

Y (xreh) ' e0.79∆N−0.72C , (3.11)

with C given in eq. (3.7). Observe that the dependence on N∗ that enters through C only
affects the prefactor in Y (xreh), with a variation at most of order one, given that N∗ is
constrained in the range 53 < N∗ < 64. This dependence is therefore irrelevant and can be
reabsorbed in the initial value Y (xin) = O(1). Therefore, in the factor C, we can simply
set N∗ = 60.

The evolution of U can be computed similarly, using eq. (2.4). During a quasi-deSitter
phase of inflation, starting from a value of order one, we get U(xend) ' 4∆N . It continues
to grow during reheating, where ζ0 = −3/2, as U(x) ∝ 2x. Thus, during reheating

U(x) ' 4∆N + 2(x− xend) , (3.12)

and in particular U(xreh) ' 4∆N+4C. We now freeze the inflaton, and use eqs. (2.1)–(2.3)
to further evolve numerically the system through RD, MD and the present DE-dominated
epoch, using Y (xreh) and U(xreh) as initial values for the subsequent evolution, together
with Y ′(xreh) = αMD

+ Y (xreh) ' −0.36Y (xreh), and U ′(xreh) = 2, from eq. (3.12).
In Fig. 1 we show the result for the DE density ρDE(x) as a function of x = log a,

for ∆N = 50 and ∆N = 60, compared to the ‘minimal scenario’ where the evolution
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Figure 1: Evolution of the dark energy density for ∆N = 50 and ∆N = 60, compared
to the “minimal” scenario where the evolution is started in RD with vanishing initial
conditions on the auxiliary fields.

Figure 2: The prediction for wDE(z) for ∆N >∼60. The shaded region is excluded by the
Planck data [38].

is started in RD with vanishing initial conditions. Observe that RD-MD equilibrium is
at xeq ' −8.1, while x = 0 corresponds to the present epoch, and we extended the
plot into the cosmological future. We see that, in the curve for ∆N = 50, during the
evolution from the last stages of RD up to the present epoch, ρDE is basically constant,
and therefore indistinguishable from ΛCDM. However, we have seen that such a value
of ∆N is too small to solve the flatness and horizon problem. Once we consider values
of ∆N that satisfies the bound (3.10), we rather get a behavior for ρDE(x) markedly
different from the constant DE density of ΛCDM, as well as from the minimal model, such
as the line marked ∆N = 60 in the figure. A remarkable result is that, if we increase
further ∆N , the result for ρDE(x) basically does not change, so the curve for ∆N = 60 is
already essentially equal to the asymptotic limit for large ∆N . For instance, the curves
for ∆N = 70 or ∆N = 100 are indistinguishable from that for ∆N = 60, on the scale of
the figure. This happens because, each time we change ∆N , we must also readjust γ so
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to obtain the desired value of ρDE(x = 0)/ρ0, that here we have fixed to 0.7 (of course,
in a full analysis including the cosmological perturbations, this value will be determined
self-consistently by Bayesian parameter estimation). For sufficiently large ∆N , an increase
in the initial values of Y at the beginning of RD is exactly compensated by a decrease in
γ, and we end up on the same solution. This is due to the fact that, for large ∆N , after
inflation U � Y and we can set to zero the right-hand side in eq. (2.2). Then we get a
homogeneous equation for Y and, for the subsequent evolution, an increase in the values
Y (xreh) and Y ′(xreh) ' −0.36Y (xreh) can be exactly compensated by a decrease in γ, such
that ρDE ≡ ρ0γY is unchanged. For instance, we find γ ' {0.05, 0.005, 3× 10−4, 10−7} for
the minimal model and ∆N = 50, 60, 70, respectively.

The function wDE(x) is defined as usual from the conservation equation

ρ̇DE + 3(1 + wDE)HρDE = 0 , (3.13)

i.e.

wDE = −1−
ρ′DE

3ρDE
. (3.14)

In Fig. 2 we plot the prediction of the model, valid in the asymptotic regime ∆N ≥ 60,
as a function of redshift. The results qualitatively agree with that obtained in Sect. 7.4.1
of [32], where however reheating was treated as instantaneous. We see that our prediction
for wDE(z) has quite distinctive features: for large z, wDE(z) is above −1. It then crosses
the phantom divide at z ' 0.315, and in the more recent epoch it becomes phantom,
wDE(z) < −1. This behavior is very specific, and its observation would be a smoking-gun
signature of the RT nonlocal model. At the same time, the observation of an equation of
state of this form would be a signature of inflation.

The fact that the result saturates and reaches an asymptotic regime for ∆N >∼60 is
quite satisfying because it means that the prediction for wDE(z) is robust, and does not
really depend on the value of ∆N (once the observational bound (3.10) is respected).
It also means that even the value of Y (xin), which here has been chosen equal to one,
is irrelevant, and we can change it by several orders of magnitudes without essentially
affecting the prediction.

Another natural question is how the result depends on the choice of inflationary sector
and on the details of reheating. Actually, the growth of Y (x) ∝ e0.79∆N will be the same
for any quasi-deSitter inflationary phase. We see from eq. (3.11) that the effect of reheating
is to reduce the value of Y (xreh), thought the constant C. With ∆N sufficiently large,
we will always be in the asymptotic regime studied in this paper. The issue is whether,
for some inflationary model (in particular, models with a low-energy inflationary scale),
one could solve the flatness and horizon problems with a minimum number of e-folds
(∆N)min sufficiently small (or one could have reheating mechanisms producing a constant
C sufficiently large) such that, choosing ∆N close to its minimum possible value (∆N)min,
we will not be in the asymptotic regime discussed above. In that case, the prediction for
ρDE(x) will rather be intermediate between the curve shown in Fig. 1 for ∆N = 60, and
the curve for the ‘minimal model’, and possibly quite close to ΛCDM, just as the curve
∆N = 50. Even for such models, however, for ∆N sufficiently larger than (∆N)min, we
will be in the asymptotic regime described above, which is therefore quite generic. A more
systematic study on the dependence on the inflationary model and reheating mechanism
will be presented elsewhere.
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A noteworthy aspect of the prediction shown in Fig. 2 is that it is already very close to
the region excluded by the Planck 2015 data. Indeed, by performing a principal component
analysis, one can get upper and lower limits on the deviation of w(z) from −1, see Fig. 5 of
the Planck dark energy paper [38]. The upper limit is shown as the shaded area in Fig. 2
(while the lower limit is below the scale of our figure). We see that the Planck sensitivity
is already very close to that needed for testing our prediction. It is worth stressing that,
within the model considered, no parameter was tuned to obtain a result so close to the
Planck exclusion limit. The prediction shown in the figure follows unavoidably, within
the RT model supplemented by Starobinsky inflation, once we start the evolution in the
inflationary phase with generic, non fine-tuned initial conditions, and we let the system
evolve for a number of e-folds larger or equal than the minimum required for solving the
flatness and horizon problems. With Euclid a further significant improvement in sensi-
tivity to wDE(z) is expected, by about one order of magnitude compared to Planck [39].
Thus, Euclid should be able to clearly confirm or disprove the above prediction.
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