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Abstract—This paper introduces a new theoretical framework,
akin to the use of imprecise message storage in Low Density
Parity Check (LDPC) decoders, which is seen as an enabler
for cost-effective hardware designs. The proposed framework
is the one of Non-Surjective Finite Alphabet Iterative Decoders
(NS-FAIDs), and it is shown to provide a unified approach for
several designs previously proposed in the literature. NS-FAIDs
are optimized by density evolution for WiMAX irregular LDPC
codes and we show they provide different trade-offs between
hardware complexity and decoding performance. In particular,
we derive a set of 27 NS-FAIDs that provide decoding gains up
to 0.36 dB, while yielding a memory / interconnect reduction up
to 25% / 30% compared to the Min-Sum decoder.

I. INTRODUCTION

This paper targets the design of cost-effective Low Density

Parity Check (LDPC) decoders, suitable for the new generation

of communication systems, requiring increased data rates

and reduced energy footprint. One important characteristic of

LDPC decoders is that the memory and interconnect blocks

dominate the overall area/delay/power performance of the

hardware design. To address this issue, we build upon the con-

cept of Finite Alphabet Iterative Decoders (FAIDs), introduced

in [1]–[3]. While FAIDs have been previously investigated for

variable-node regular LDPC codes over the binary symmetric

channel, this paper extends their use to any channel model,

and to both regular and irregular LDPC codes.

The approach considered in this paper is to allow storing the

exchanged messages using a lower precision (smaller number

of bits) than that used by the processing units. The basic idea

is to reduce the size of the exchanged messages, once they

have been updated by the processing units. Hence, to some

extent, the proposed approach is akin to the use of imprecise

storage, which is seen as an enabler for cost-effective, high-

throughput, and/or low-power decoder designs.

The proposed approach, referred to as Non-Surjective FAIDs

(NS-FAIDs), is shown to provide a unified framework for

several designs previously proposed in the literature, including

the Normalized and Offset Min-Sum (MS) decoders [4], [5],

the Partially Offset MS decoder [6], the MS-based decoders

proposed in [7], [8], or the recently introduced double-

quantization domain MS decoder [9].

We show that NS-FAIDs can be optimized by using the

Density Evolution (DE) technique, such as to obtain the best

possible decoding performance for given hardware constraints,

expressed in terms of memory/interconnect reduction. The DE

optimization is illustrated for the WiMAX irregular LDPC

codes [10], for which we propose a set of 27 irregular NS-

FAIDs, with different trade-offs between hardware complexity

and decoding performance. The DE analysis is further corrob-

orated by Monte-Carlo simulations. We show that NS-FAIDs

may provide decoding gains up to 0.36 dB, while yielding a

memory / interconnect reduction up to 25% / 30% compared to

the MS decoder.

The paper is organized as follows. NS-FAIDs are intro-

duced in Section II, which also discusses their implementation

benefits and the DE analysis. The optimization of irregular

NS-FAIDs is presented in Section III. Numerical results are

provided in Section IV, and Section V concludes the paper.

II. NON-SURJECTIVE FINITE ALPHABET ITERATIVE

DECODERS

A. Preliminaries

LDPC codes are defined by sparse bipartite graphs, com-

prising a set of variable-nodes (VNs), corresponding to coded

bits, and a set of check-nodes (CNs), corresponding to parity-

check equations. Finite Alphabet Iterative Decoders (FAIDs)

have been introduced in [1]–[3]. We state below the definition

of FAIDs, in a slightly less general form than the one in [3].

Let Q be a positive integer. A (2Q+1)-level FAID is a 4-tuple

(M, I,Φv,Φc), where:

• M = {−Q, . . . ,−1, 0,+1, . . . ,+Q} is the alphabet of

the exchanged messages, and is also referred to as the

decoder alphabet,

• I ⊆ M is the input alphabet of the decoder, i.e., the set

of all possible values of the quantized soft information

supplied to the decoder,

• Φv and Φc denote the update rules for VNs and CNs,

respectively.

The CN-update function Φc is the same for any FAID

decoder, and is equal to the update function used by the MS

decoder. Precisely, for a CN of degree dc, the update function

Φc : M
dc−1 → M is given by:

Φc (m1, . . . ,mdc−1) =

(

dc−1
∏

i=1

sgn(mi)

)

min
i=1,...,dc−1

|mi| (1)

The VN-update function Φv : I ×Mdv−1 → M, for a VN

of degree dv , is defined in closed form as:

Φv (γ,m1, . . . ,mdv−1) = F



γ +

dv−1
∑

j=1

mj



 (2)



where the function F : Z → M is defined based on a set of

threshold values T = {T0, T1, . . . , TQ+1} ⊂ R̄+, with T0 = 0,

TQ+1 = +∞, and Ti < Tj for any i < j:

F (x) = sgn(x)m, where m is s.t. Tm ≤ |x| < Tm+1 (3)

In the following, F will be referred to as the framing function.

Definition 1: A q-bit FAID is a (2Q+1)-level FAID, with

Q = 2q−1 − 1. It follows that messages exchanged within the

FAID decoder are q-bit messages (including 1 bit for the sign).

We also note that the following proposition holds.

Proposition 2: For any function F : Z → M, there exists

a threshold set T such that F is given by Eq. (3), if and only

if F satisfies the following properties:

(i) F (−x) = −F (x), ∀x ∈ Z

(ii) F is a non-decreasing function, that is F (x) ≤ F (y) for

any x < y.

Note that the above proposition also implies that F (0) = 0
and F (x) ≥ 0, ∀x > 0.

B. Non-Surjective FAIDs

Definition 3: A non-surjective FAID (NS-FAID) is a FAID

such that the framing function F : Z → M is non surjective.

Hence, the image set of F , denoted by Im(F ) ⊂ M is a strict

subset of M.

The reason behind NS-FAIDs is that it allows reducing the

size of the memory required to store the exchanged messages,

as well as the size of the interconnect network that carries the

messages from the memory to the processing units. This will

be explained in Section II-C.

Assumption: As the focus of this work is on practical imple-

mentations, we will further assume that the sum γ+
∑dv−1

j=1 mj

in Eq. (2) is saturated to M, prior to applying F on it.

Consequently, in the sequel we shall only consider framing

functions F : M → M, and the VN-update function Φv from

Eq. (2) is redefined as:

Φv (γ,m1, . . . ,mdv−1) = F



sM



γ +

dv−1
∑

j=1

mj







 (4)

where sM : Z → M, sM(x) = sgn(x)min(|x|, Q), is the

saturation function. Since F (−x) = −F (x), ∀x ∈ M, F is

completely determined by the vector [F (0), F (1), ..., F (Q)],
further referred to as the Look-Up Table (LUT) of F , which

satisfies the following inequalities (Proposition 2):

0 = F (0) ≤ F (1) ≤ · · · ≤ F (Q) ≤ Q (5)

Definition 4: The weight of F , denoted by W , is the

number of distinct entries in the vector [F (0), F (1), ..., F (Q)].
It follows that 1 ≤ W ≤ Q + 1. By a slight abuse of

terminology, we shall also refer to W as the weight of the

NS-FAID.

As an example, the framing function in Table I has Q = 7,

image set Im(F ) = {0,±1,±3,±7}, and weight W = 4.

Table I
FRAMING FUNCTION F WITH LUT = [0, 1, 1, 3, 3, 7, 7, 7]

m 0 1 2 3 4 5 6 7

F (m) 0 1 1 3 3 7 7 7

Proposition 5: The number of (2Q+1)-level NS-FAIDs of

weight W is given by:

NNS-FAID(Q,W ) =

(

Q

W − 1

)2

(6)

For the sake of simplicity, we only consider transmission

over binary-input memoryless noisy channels. We assume

that the channel input alphabet is X = {−1,+1}, with the

usual convention that +1 corresponds to the 0-bit and −1
corresponds to the 1-bit, and denote by Y the output alphabet

of the channel. We denote by x = (x1, . . . , xN ) ∈ {−1,+1}N

the transmitted codeword, and by y = (y1, . . . , yN ) ∈ YN the

received word.

We further consider a function ϕ : Y → I that maps the

output alphabet of the channel to the input alphabet of the

decoder. Hence, ϕ encompasses both the computation of the

soft (unquantized) log-likelihood ratio (LLR) value and its

quantization. By a slight abuse of terminology, we shall refer

to ϕ as quantization map.

Assumption: For transmission over the binary-input Additive

White Gaussian Noise (AWGN) channel, we shall consider

that the decoder’s input information and exchanged messages

are quantized on the same number of bits; therefore I = M
unless otherwise stated. In this case, yn = xn + zn, where

zn is the white Gaussian noise with variance σ2, and the

quantization map ϕ : Y → M is defined by:

ϕ(y) = [µ · y]M (7)

where µ > 0 is a constant referred to as gain factor, and [x]M
denotes the closest integer to x that belongs to M (see also

[11] and the gain factor quantizer defined therein).

C. Implementation benefits

Since F is a non-decreasing function, it can be shown that

the framing function F can alternatively be applied at the CN-

processing step (instead of VN-processing), while resulting

in an equivalent decoding algorithm. Whether F is applied

at the VN-processing or the CN-processing step is rather a

matter of implementation. When F is applied at the VN-

processing step, both VN- and CN-messages belong to a strict

subset of the alphabet M, namely M′ = Im(F ) ⊂ M.

This may result in significant memory savings for storing the

exchanged messages. It is worth noting that many hardware

implementations of Quasi-Cyclic (QC) LDPC decoders rely on

a layered architecture, which only requires storing the check-

node messages [12].

Proposition 6: Consider a particular implementation of the

MS decoder, with exchanged messages of size q-bits. By

applying a framing function with weight W (which turns the

MS decoder into a NS-FAID), exchanged messages can be



represented using only w = ⌈log2(W )⌉ + 1 bits (including 1
bit for the sign).

We shall refer to the above w value as the framing bit-

length. As an example, the framing function from Table I

has bit-length w = ⌈log2 4⌉ + 1 = 3 bits. As a consequence

of the message size reduction, the size of the memory and

the interconnect network that carries the messages from the

memory to the processing units are also reduced.

A different benefit is the possible simplification of the CN

processing unit. Since incoming messages span only a subset

M′ = Im(F ) ⊂ M, depending on M′, it may simplify

the min computation within the CN-processing. Let us give

a particular example to illustrate this phenomenon. Assume

that Q = 7 and F is such that M′ = {0,±1,±3,±7}
(e.g., framing function from Table I). In this case, it can be

easily seen that the min
i=1,...,dc−1

|mi| computation required by

the CN-processing (Eq. (1)) is equal to the bit-wise AND of

the absolute values |mi|, i = 1, . . . , dc − 1. Hence, the CN-

processing can be implemented using AND logic gates only,

thus avoiding the use of comparator trees as in [9], [13].

D. Examples of NS-FAIDs

If the framing function F is the identity function, then

the corresponding FAID is just the MS decoder with finite

alphabet M. Some examples of NS-FAIDs are provided below.

Example 1. Let F : M → M be defined by:

F (x) = sgn(x)max(|x| − λ, 0) (8)

where 0 < λ < Q. Then, the corresponding NS-FAID decoder

is the Offset Min-Sum (OMS) decoder with offset factor λ.

Example 2. Let F : M → M be defined by:

F (x) =

{

x, if |x| is even

sgn(x)(|x| − 1), if |x| is odd
(9)

Then, the corresponding NS-FAID decoder is the Partially

OMS (POMS) decoder from [6].

Moreover, it can be seen that the MS-based decoders

proposed in [7], [8] and the dual-quantization domain decoder

proposed in [9] are particular realizations of NS-FAIDs.

While the main reason behind the NS-FAIDs definition

consists in their ability to reduce memory and interconnect

requirements, we can also argue that they may allow improving

the error correction performance (with respect to MS). This is

the case of both OMS and POMS decoders mentioned above.

Given a target message bit-length w (e.g., corresponding to

some specific memory constraint), one may try to find the

framing function F of corresponding weight W , which yields

the best error correction performance. The optimization of the

framing function can be done by using the DE technique,

which will be discussed in Section II-F.

E. Irregular NS-FAIDs

In case of irregular LDPC codes, irregular NS-FAIDs are

NS-FAIDs using different framing functions Fdv
for VNs of

different degrees dv . Framing functions Fdv
may have different

weights Wdv
. In this case, messages outgoing from degree-dv

VNs can be represented by using only wdv
= ⌈log2(Wdv

)⌉+1
bits. However, the message size reduction does not necessarily

apply to CN-messages, due to the fact that a CN may be

connected to VNs of different degrees. Let M′
dv

= Im(Fdv
).

Then, messages outgoing from a CN c can be represented by

using:
⌈

log2
(∣

∣∪dv∈Dc
M′

dv

∣

∣

)⌉

bits, (10)

where Dc is the set of degrees of VNs connected to c, and | · |
is used to denote the number of elements of a set.

One advantage of irregular NS-FAIDs is that they allow dif-

ferent protection levels for VNs of different degrees (through

the use of framing functions Fdv
with different weights).

Alternatively, it is also possible to define CN-irregular NS-

FAIDs in a similar manner. However, in this work we only

deal with VN-irregular NS-FAIDs, since most of the practical

irregular LDPC codes are irregular on VNs, while almost

regular (or semi-regular) on CNs. In order to reduce the size

of the CN-messages, in Section III we will further impose

certain conditions on the framing functions Fdv
, by requiring

their images being included in one another.

F. Density Evolution Analysis

The objective of the DE technique is to recursively com-

pute the probability mass function (pmf) of the exchanged

messages, through the iterative decoding process. This is done

under the assumption that exchanged messages are indepen-

dent, which holds in the asymptotic limit of the code length. In

this case, the decoding performance converges to the cycle free

case. DE equations for the NS-FAID decoder can be derived

in a similar way as for the finite-alphabet MS decoder [11,

Appendix B]. The only modification required is to take into

account the framing function F applied at the VN-processing

step, which can be easily done using the following:

Proposition 7: Let A
(ℓ)
MS denote the pmf of VN-messages

αMS
def
= sM

(

γ +
∑dv−1

j=1 mj

)

computed by the MS decoder

at iteration ℓ, and F : M → M be a framing function. Then

the pmf of αNS-FAID = F (αMS), denoted by A
(ℓ)
NS-FAID, is given

by:

A
(ℓ)
NS-FAID(m) =

∑

x∈M:F (x)=m

A
(ℓ)
MS(x)

Similar to [11], the DE is used to compute the asymptotic

error probability, defined as:

p(+∞)
e = lim

ℓ→+∞
p(ℓ)e (11)

where p
(ℓ)
e is the bit error probability at iteration ℓ.

For a target bit error probability η > 0, the η-threshold

is defined as the worst channel condition for which decoding

error probability is less than η. Assuming the binary-input

AWGN channel model, the η-threshold corresponds to the

maximum noise variance σ2 (or equivalently minimum SNR),

such that the asymptotic error probability is less than η:

σ2
thres(η) = sup

{

σ2 | p(+∞)
e ≤ η

}

(12)



In case that η = 0, the η-threshold is simply referred to as DE

threshold [14]. However, the asymptotic decoding performance

of finite-precision MS-based decoders is known to exhibit an

error floor phenomenon at high SNR [11]. This makes the η-

threshold definition more appropriate in practical cases, when

the target bit error rate can be fixed to a practical non-zero

value.

Finally, it is worth noting that the above threshold value

depends on: (i) the irregularity of the LDPC codes, defined

as usual by the degree distribution polynomials λ and ρ [14],

(ii) the FAID decoder, i.e., the size of the decoder alphabet

and the framing function F , (iii) the channel quantizer, i.e.,

the gain factor µ used in Eq. (7). Therefore, assuming that

the degree distribution polynomials λ and ρ and the size of

the decoder alphabet are fixed, we use the DE technique to

jointly optimize the framing function and channel quantizer.

III. OPTIMIZATION OF IRREGULAR NS-FAIDS

A. Optimization procedure

Throughout this section, we consider q = 4-bit NS-FAIDs

(hence, Q = 7). To illustrate the trade-off between hardware

complexity and decoding performance, we consider the op-

timization of irregular NS-FAIDs for the WiMAX irregular

LDPC codes with rate 1/2 [10] (of course, the proposed

method can be applied to any other irregular codes in the

same manner). The edge-perspective degree distribution poly-

nomials are given by λ (x) = 0.2895x+0.3158x2+0.3947x5

and ρ (x) = 0.6316x5 + 0.3684x6. Hence, VNs are of degree

dv ∈ {2, 3, 6}. For each VN-degree dv , we consider that the

corresponding framing function Fdv
may be of any weight

Wdv
∈ {2, 4, 8}, corresponding to a message bit-length wdv

∈
{2, 3, 4}. Hence, the total number of framing functions is given

by NNS-FAID(7, 2) + NNS-FAID(7, 4) + NNS-FAID(7, 8) = 1275
(see Proposition 5). It follows that the total number of irregular

NS-FAIDs is equal to 12753 = 2072671875, since a different

framing function may be applied for each VN-degree.

Clearly, even though we rely on DE, it is practically impos-

sible to evaluate the decoding performance of all the irregular

NS-FAIDs. To overcome this problem, we proceed as follows.

First, we denote by NS-FAID-w2w3w6 the ensemble of NS-

FAIDs defined by a triplet of framing functions F2, F3, F6,

corresponding to variable node-degrees dv = 2, 3, 6, with

message bit-lengths w2, w3, w6. Since w2, w3, w6 ∈ {2, 3, 4},

there are 27 such ensembles. The number of NS-FAIDs in the

ensemble NS-FAID-w2w3w6 is given by Nw2
Nw3

Nw6
, where

Nw
def
= NFAID(Q,W ). Note that N2 = 49, N3 = 1225, and

N4 = 1. These 27 ensembles are further divided into 2 groups,

as follows:

Group-1: is composed of NS-FAID-w2w3w6 ensembles, such

that there is at least one wdv
= 4 and at most one wdv

= 3. In

total, there are 16 NS-FAID-w2w3w6 ensembles in this group

(example: NS-FAID-443, NS-FAID-224, NS-FAID-432,...). It

can be easily seen that the total number of NS-FAIDs in

Group-1 (all 16 ensembles included) is equal to NGroup-1
NS-FAIDs =

371176. This number is small enough, so that the decoding

performance of all the decoders in Group-1 can be evaluated

by DE. It is worth noting that for NS-FAIDs in Group-1, the

size of CN-messages cannot be reduced below q = 4: this

follows from Eq. (10), since Dc = {2, 3, 6}, for any CN c,
and at least one wdv

= 4. Therefore, these decoders present no

advantages in terms of the memory size required for storing the

CN-messages, or complexity of the interconnection network to

carry CN-messages from CNU to VNU and/or memory.

Group-2: the remaining 11 NS-FAID-w2w3w6 ensembles that

do not belong to Group-1 (example: NS-FAID-333, NS-FAID-

332, NS-FAID-433,...). Since the number of NS-FAIDs in

Group-2 is still very large, we only evaluate part of them,

by further imposing a number of constraints on the framing

functions’ images M′
dv

= Im(Fdv
).

Decoding performance constraint: Using results from the

exhaustive evaluation of NS-FAIDs in Group-1, we observed

that good framing functions with wdv
= 3 have as image set

one of {0,±1,±2,±6}, {0,±1,±2,±7}, {0,±1,±3,±6}, or

{0,±1,±3,±7} (note that different framing functions may

have the same image set). Hence, we only consider the NS-

FAIDs in Group-2 such that Im(Fdv
) is one of the above 4

image sets, for any dv such that wdv
= 3.

Memory size reduction constraint: We further impose the fol-

lowing inclusion constraint between the image sets of framing

functions used for different VN-degrees: Let d′v, d
′′
v , d

′′′
v denote

the VN-degrees, ordered according to increasing framing bit-

length, that is wd′

v

≤ wd′′

v

≤ wd′′′

v

. Then we require that

Im
(

Fd′

v

)

∪ Im
(

Fd′′

v

)

⊆ Im
(

Fd′′′

v

)

. According to Eq. (10),

this constraint ensures that CN-messages can be represented by

using only wd′′′

v

bits, which is particularly suitable for layered

architectures (in which case only CN-messages are stored).

It can be seen that the number of irregular NS-FAIDs in

Group-2 that satisfy the above two constraints (and hence are

evaluated by DE) is given by NGroup-2
NS-FAIDs = 726621.

B. Density Evolution evaluation

For each of the above NGroup-1
NS-FAIDs + NGroup-2

NS-FAIDs = 1097797
irregular NS-FAIDs, we compute its decoding threshold for a

target bit error rate η = 10−6, using the DE technique from

Section II-F. The threshold computation also encompasses the

optimization of the channel gain factor µ. Hence, for each NS-

FAID, we first determine the gain factor µ that maximizes the

η-threshold defined in Eq. (12). The corresponding η-threshold

value is then reported as the η-threshold of the NS-FAID.

IV. NUMERICAL RESULTS

This section provides the numerical results for the irregular

NS-FAID optimization from the previous section. Table II

show the NS-FAID decoder with the best η-threshold for each

ensemble NS-FAID-w2w3w6: the framing functions used for

VN-degrees dv = 2, 3, 6 are shown in columns 3, 4, and 5,

while the η-threshold value (in dB) and the corresponding gain

factor µ are shown in column 6. The framing functions’ LUTs

are reported in Table III (Lx in Table III corresponds to LUTx

in Table II).



Table II
HARDWARE COMPLEXITY VS. DECODING PERFORMANCE TRADE-OFF FOR OPTIMIZED NS-FAIDS

Decoder
Index

NS-FAIDs
Ensemble

Framing functions applied to SNR-thres (dB)
#Connects
VNs-CNs

Memory size (bits) Perform Connects Memory reduction (%)

dv = 2 dv = 3 dv = 6
& gain factor µ store all min1,min2 gain/loss reduction store all min1,min2

@BER= 10−6 messages index,signs (dB) (%) messages index,signs

Group 1

1 MS-444 LUT0 LUT0 LUT0 1.38-µ3.2 58368 29184 17664 0 0 0 0

2 NS-FAID-443 LUT0 LUT0 LUT6 1.07-µ2.9 55488 29184 17664 +0.31 -4.93 0 0
3 NS-FAID-434 LUT0 LUT5 LUT0 1.08-µ2.7 56064 29184 17664 +0.30 -3.95 0 0
4 NS-FAID-344 LUT8 LUT0 LUT0 1.21-µ2.5 56256 29184 17664 +0.17 -3.62 0 0
5 NS-FAID-442 LUT0 LUT0 LUT19 1.48-µ3.2 52608 29184 17664 -0.10 -9.87 0 0
6 NS-FAID-424 LUT0 LUT15 LUT0 1.77-µ2.6 53760 29184 17664 -0.39 -7.89 0 0
7 NS-FAID-244 LUT16 LUT0 LUT0 2.93-µ3.2 54144 29184 17664 -1.55 -7.24 0 0
8 NS-FAID-432 LUT0 LUT11 LUT16 1.35-µ2.6 50304 29184 17664 +0.03 -13.82 0 0
9 NS-FAID-423 LUT0 LUT16 LUT12 1.60-µ2.9 50880 29184 17666 -0.22 -12.83 0 0

10 NS-FAID-324 LUT2 LUT15 LUT0 1.91-µ2.4 51648 29184 17664 -0.53 -11.5 0 0
11 NS-FAID-342 LUT8 LUT0 LUT16 1.53-µ2.4 50496 29184 17664 -0.15 -13.49 0 0
12 NS-FAID-234 LUT16 LUT8 LUT0 2.94-µ3.2 51840 29184 17664 -1.56 -11.18 0 0
13 NS-FAID-243 LUT15 LUT0 LUT1 2.98-µ2.5 51264 29184 17664 -1.60 -12.17 0 0
14 NS-FAID-422 LUT0 LUT19 LUT20 2.06-µ4.1 48000 29184 17664 -0.68 -17.76 0 0
15 NS-FAID-242 LUT16 LUT0 LUT17 2.93-µ3.3 48384 29184 17664 -1.55 -17.11 0 0
16 NS-FAID-224 LUT13 LUT15 LUT0 3.16-µ2.5 49536 29184 17664 -1.78 -15.13 0 0

Group 2

17 NS-FAID-433 LUT0 LUT9 LUT5 1.02-µ2.8 53184 29184 17664 +0.36 -8.88 0 0
18 NS-FAID-343 LUT8 LUT0 LUT5 1.09-µ2.3 53376 29184 17664 +0.29 -8.55 0 0
19 NS-FAID-334 LUT8 LUT5 LUT0 1.11-µ2.3 53952 29184 17664 +0.27 -7.57 0 0
20 NS-FAID-233 LUT16 LUT7 LUT7 3.03-µ3.2 41664 21888 15360 -1.65 -28.62 -25.00 -13.04
21 NS-FAID-323 LUT7 LUT16 LUT10 1.78-µ2.6 41472 21888 15360 -0.40 -28.95 -25.00 -13.04
22 NS-FAID-332 LUT8 LUT11 LUT17 1.43-µ2.8 40896 21888 15360 -0.05 -29.93 -25.00 -13.04

23 NS-FAID-333 LUT8 LUT8 LUT8 1.13-µ2.4 43776 21888 15360 +0.25 -25.00 -25.00 -13.04
24 NS-FAID-223 LUT16 LUT18 LUT3 3.14-µ3.4 39360 21888 15360 -1.76 -32.57 -25.00 -13.04
25 NS-FAID-232 LUT16 LUT7 LUT16 3.03-µ3.2 38784 21888 15360 -1.65 -33.55 -25.00 -13.04
26 NS-FAID-322 LUT4 LUT18 LUT18 2.29-µ3.5 38592 21888 15360 -0.91 -33.88 -25.00 -13.04
27 NS-FAID-222 LUT13 LUT14 LUT14 3.27-µ2.5 29184 14592 13056 -1.89 -50.00 -50.00 -26.09

Table III
LUTS USED BY NS-FAIDS IN TABLE II

m L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 2 2 2 2 3 1 1 1 1 1 1 1 1 4 0 0 0 0 0 0 0
3 3 7 2 2 3 2 2 3 3 3 3 3 1 4 4 5 6 7 0 0 0
4 4 7 6 2 3 2 2 3 3 3 3 3 3 4 4 5 6 7 6 7 0
5 5 7 6 2 6 7 2 6 7 3 3 3 3 4 4 5 6 7 6 7 7
6 6 7 6 6 6 7 7 6 7 7 3 3 3 4 4 5 6 7 6 7 7
7 7 7 6 6 6 7 7 6 7 7 6 7 7 4 4 5 6 7 6 7 7

w 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2

The number of interconnects (wires) reported in column 7

corresponds to the number of wires required to carry both VN-

and CN-messages, and is computed by the formula:

#Wires =
∑

dv

Ndv
dvwdv

+ (max
dv

wdv
)
∑

dc

Ndc
dc (13)

where Ndv
and Ndc

denote the number of VNs and CNs of

degree dv and dc, respectively. This formula accounts for the

fact that there are dv outgoing messages of bit-length wdv

from each VN of degree dv , and dc outgoing messages from

each CN of degree dc, each CN-message being of bit-length

maxdv
wdv

.

Columns 8 and 9 show the size of the memory required to

store CN-messages (we only take into account CN-messages,

because most of the practical hardware implementations do

not store VN-messages). In column 8 all CN-messages are

assumed to be stored, while column 9 assumes a compressed

format, which only requires the storage of the signs, first and

second minima, and the index of the first minimum [15].

Finally, the last 4 columns show the relative performance

gain/loss (in dB) and the percentage of interconnect and

memory reduction with respect to the MS decoder (which

corresponds to the NS-FAID-444 decoder).

The trade-off between decoding performance and intercon-

nect reduction is further illustrated in Figure 1 (the decoder

index on the abscissa is the one from Table II). It can be seen

that the NS-FAID-332 decoder (index 22) allows a significant

reduction of the interconnection network (by 29.93%), with

negligible performance degradation (0.05 dB) with respect to

the MS decoder. It is also worth noting that it also provides up

to 25% memory size reduction compared to MS. In addition,

it can be observed that the amplitude of any VN-message

belongs to {0, 1, 3, 7}. With these values, the min computation

required by the CN-processing unit can be implemented by
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Figure 1. Interconnect reduction vs. decoding performance

using AND-gates only, as explained in Section II-C.

The NS-FAID-433 decoder (index 17) is also a very good

candidate for applications requiring increased decoding perfor-

mance: it achieves the best decoding gain (0.36 dB), while still

providing an interconnect reduction by 8.88% with respect to

the MS decoder.

To corroborate the analytic results obtained by DE, we

have conducted Monte Carlo simulations for the WiMAX code

with rate 0.5, and codeword length 2304 bits. The maximum

number of decoding iterations is set to 100. The bit error

rate (BER) performance of some of the optimized NS-FAIDs

is shown in Figure 2. For comparison purposes, we have

also included the BER performance of the infinite-precision

(floating point) MS and Offset-MS decoders. It can be seen

that simulation results corroborate the asymptotic analysis:

at BER = 10−6, the NS-FAID-433 decoder outperform the

MS decoder by ≈ 0.31 dB, while the NS-FAID-332 decoder

presents virtually the same decoding performance as the MS.

V. CONCLUSIONS

In this paper, we introduced the new framework of Non-

Surjective FAIDs, which allows trading off decoding perfor-

mance for hardware complexity reductions. NS-FAIDs have

been optimized by density evolution and we showed that

they exhibit better or similar decoding performance compared

to the MS decoder, while providing significant savings in

memory and/or interconnects. While this paper focused on

the theoretical aspects of NS-FAIDs, hardware implementation

results will be reported in future works.
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