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Abstract—Classically, the quantization of the soft information
supplied to a finite-precision decoder is chosen to optimize a
certain criterion which does not depend on the characteristics
of the existing code. This work studies code-aware quantizers,
for finite-precision min-sum decoders, which optimize the noise
threshold of the existing family of Low-Density Parity-Check
(LDPC) codes. We propose a code-aware quantizer with lower
complexity than that obtained by optimizing all decision levels
and approaching its performance, for few quantization bits. We
show that code-aware quantizers outperform code-independent
quantizers in terms of noise threshold for both regular and
irregular LDPC codes. To overcome the error floor behavior of
LDPC codes, we propose the design of the quantizer for a target
error probability at the decoder output. The results show that
the quantizer optimized to get a zero error probability could lead
to a very bad performance for practical range of signal to noise
ratios. Finally, we propose to design jointly irregular LDPC codes
and code-aware quantizers for finite-precision min-sum decoders.
We show that they achieve significant decoding gains with respect
to LDPC codes designed for infinite-precision belief propagation
decoding, but decoded by finite-precision min-sum.

I. INTRODUCTION

LDPC codes are linear forward error-correction codes, first
proposed by Gallager in his PhD thesis [1]. Irregular LDPC
codes proposed later in [2], easily outperform the best turbo
codes when the block length of the code is large. This paper
focuses on LDPC codes with min-sum decoder, which is more
practical to implement than the sum-product decoder at the cost
of a slight degradation in performance. The min-sum algorithm
uses simple arithmetic (additions) and logical (comparisons)
operations; hence it is suitable for hardware implementation.
Nowadays, using few bits of precision to represent channel
output and the soft information propagating during the iterative
decoding process is crucial for high speed applications and for
reducing hardware complexity. However, the performance of
the decoder will decrease when the number of quantization bits
decreases. Therefore, a good design of quantizer at the input
of the decoder is necessary to achieve the best performance
under a constrained low-precision hardware. Recently, many
works are focusing on the field of FPGA implementation of
LDPC decoders, see, e.g., [3] and references therein. On the
other hand, most of works in literature, consider the design
of the quantizer at the channel output independently of the
channel code used by the communication system [4], [5].

To evaluate the asymptotic performance of a family of
LDPC codes, an iterative process called density evolution (DE)
is used, assuming that the Tanner graph of this family is cycle-
free. DE can be used to find the maximum level of channel

noise, called noise threshold, which can be corrected by a
family of LDPC codes using the message passing algorithm.
In this work, DE is used as a tool to search for the quantizer
that can achieve the best noise threshold for a specific family
of LDPC codes. There are few works in literature that analyze
the dependency of optimal quantizers on the channel code.
In [6], the authors consider the code-dependent quantizers for
BI-AWGN channel when regular LDPC codes are used and
evaluate the quantizer performance by density evolution. They
demonstrate that quantizers that maximize the noise threshold
are superior to Lloyd quantizers. Although the authors con-
sider quantized decoder inputs, a belief-propagation decoding
was considered with infinite-precision messages exchanged
between variable and check nodes in density evolution.

The contributions of this paper are the following. First,
we propose a low complexity code-aware quantizer, whose
performance approaches that of the code-aware quantizer with
decision levels optimized through exhaustive search. We fur-
ther show that finite-precision min-sum decoders exhibit an
asymptotic error-floor phenomenon, which limits the perfor-
mance of the LDPC code family. Therefore, the code-aware
quantizer that maximizes the DE threshold (to get zero error
probability at the decoder output), may not be suitable for
lower bit error rate. Thus we propose the design of code-
aware quantizer for a target bit error rate and we show that
the quantizer optimality is highly dependent on the target bit
error rate. Finally, we propose to design jointly irregular LDPC
codes and code-aware quantizers for finite-precision min-sum.

II. SYSTEM MODEL

This paper deals with the point to point communication
system as shown in Figure 1. The study could be extended
to other channel models. We assume that the coded bits are
modulated using a BPSK constellation, X ∈ X = {+1,−1},
and are transmitted over a Gaussian channel with noise vari-
ance σ2. The choice of low-order BPSK modulation is to
simplify the analysis of density evolution. At the receiver side,
a metric denoted by L is calculated from the channel output
Y and then quantized to L̄ , q(L) using a quantizer q to be
used as input for the finite-precision min-sum decoder [7] (By
abuse of notation, the quantizer is denoted by its associated
quantization map q). Usually, L represents the log-likelihood
ratio (LLR). However, in this work, it could be not the LLR.
A n-bit quantizer q quantifies its input L on n bits. Since the
performance of the quantizer will be evaluated according to its
resulting noise threshold using density evolution, a symmetric-
output quantizer will be considered for convenience. Thus



the n-bit quantizer has 2n − 1 output values belonging to
Qn = {−N, ...,−1, 0,+1, ...,+N}, where N , 2n−1 − 1.
The cardinality of the set Qn is denoted by |Qn| = 2 ·N + 1.
For convenience, the non-negative elements elements of the
set Qn are denoted by L̄i such that L̄i = i, ∀i ≥ 0. In the
following, the reconstruction levels of the n-bit quantizer are
constrained to the values of Qn and only the decision levels
can be optimized for practical purpose. Since a symmetric
quantizer is used, the quantizer can be fully characterized by
the non-negative decision levels denoted by Ti, i ∈ {1, .., N},
such that Ti ≤ Ti+1. By convention TN+1 = +∞. The
quantizer quantifies its input value L into q(L) such that q(L) = L̄i if L ∈ Ii , [Ti, Ti+1[,

q(L) = −L̄i if L ∈ I−i ,]− Ti+1,−Ti],
q(L) = L̄0 if L ∈ I0 ,]− T1,+T1[

(1)

where L̄i = i ∈ {1, .., N}. Note that if Ti = Ti+1 the values
L̄i and −L̄i are never taken by the quantizer ∀i ≥ 1. Besides,
if T1 = 0, then the value L̄0 is never taken by the quantizer.

X Channel Y L Quantizer L̄ Decoder X̂

Fig. 1. Point to point communication system with quantized-input decoder

Equation (1) gives the general definition of a quantizer. By
a slight abuse of language, we shall use the same terminology
to refer to both the optimization criterion and the resulting
quantizer.

III. CODE-AWARE QUANTIZERS

A. Decision levels quantizer (DL)

This section investigates code-aware quantizer design for
BI-AWGN channel when LDPC codes are used along with
min-sum decoding. Our study differs from [6] by the use of
finite-precision LDPC decoders where the messages exchanged
using density evolution are also quantized on a fixed number of
bits as well as the decoder input. Moreover, our study includes
both regular and irregular LDPC codes. We refer the reader to
[7] for the density evolution equations for finite-precision min-
sum decoding. The density evolution equations allow to obtain
the error probability P

(`)
e at each iteration ` of the iterative

message-passing algorithm. The criterion used to optimize the
quantizer is the noise threshold σ2

th defined by

σ2
th = sup{σ2 : lim

`→∞
P (`)
e = 0} (2)

The finite-precision min-sum decoder is known to have high
error floors. Thus a quantizer q1 which is better than another
quantizer q2 for a target bit error rate may be worse than q2 for
a different target bit error rate. Moreover, in practice the target
bit error rate is usually fixed to a practical value (eg. 10−5)
because a very low target error probability requires higher
SNR in general. Hence, we investigate the optimal quantization
which maximizes the noise threshold for zero error probability
using density evolution as well as the optimal quantization
which maximizes the noise threshold for a target bit error rate.
The η-threshold [8] for a target bit error rate η is defined by

σ2
th(η) = sup{σ2 : lim

`→∞
P (`)
e ≤ η} (3)

When η = 0, the η−threshold will be called “DE threshold”
and is equivalent to the threshold defined in (2). The code-
aware quantizer design for a target bit error rate η requires to
solve the following optimization problem

max
Ti,i=1,..,N

σ2
th(T1, .., TN ; η) (4)

This problem is solved using an exhaustive search method.

B. Gain factor quantizer (GF)

Since the complexity of exhaustive search methods in-
creases with the number of quantization bits, we provide a
code-aware quantizer design with lower complexity based on a
uni-parametric optimization. The idea is to relax the constraint
on the value of g , 2

σ2 in the expression of the LLR given
by L = g · Y and optimize g. This case uses the symmetric
quantizer such that the non-negative decision levels are given
by Ti = L̄i−1+L̄i

2 for i = 1, ..., N , however the channel output
Y is scaled by the gain factor g. In other terms, L is quantized
to the nearest integer in Qn. To obtain the optimal gain factor
for a target bit error rate η we should solve the following
optimization problem

max
g

σ2
th(g; η) (5)

Problem (5) is a uni-dimensional optimization problem and is
solved using an exhaustive search method.

Remark 1: For GF quantizer, we optimize g such that L =

g · Y but the decision levels are fixed to be Ti = L̄i−1+L̄i

2 for
i = 1, ..., N . The GF quantizer gives the same performance of
the quantizer with L = Y and Ti = 1

g ·
L̄i−1+L̄i

2 or the quantizer

with L = 2
σ2 · Y and Ti = 2

gσ2 · L̄i−1+L̄i

2 for i = 1, ..., N .

IV. PERFORMANCE EVALUATION

Throughout this section, we assume that the a posteri-
ori information of the finite-precision min-sum decoder is
quantized on ñ = n + 1 bits, where n is the number of
quantization bits for the a priori information and exchanged
messages [7]. The performance of the code-aware quantizers
will be compared to that of two code-independent quantizers.
The first, denoted by MIXL̄, is the quantizer which maximizes
the mutual information between the channel input X and the
quantizer output L̄ [4]. The second, denoted by MILL̄, is the
quantizer which maximizes the mutual information between
the quantizer input L and its output L̄ [5].

A. (Semi-) Regular LDPC codes

TABLE I. DE THRESHOLD OF SOME QUANTIZERS FOR THE FAMILY OF
(SEMI-)REGULAR LDPC CODES OF RATE R AND VARIABLE NODE DEGREE

dv = 3, WHEN n = 3 BITS.

R GF DL MIXL̄ MILL̄ Opt. g
for GF

1/3 1.0234 1.0234 1.0116 0.9898 2.2592
1/2 0.6625 0.6625 0.6591 0.6266 2.7726
2/3 0.4399 0.4399 0.4389 0.3934 3.1871
3/4 0.3554 0.3554 0.3544 0.2885 3.4510
5/6 0.2799 0.2799 0.2785 - 3.8480



Table I shows the noise thresholds (σ2
th) for some LDPC

codes of rate R and variable node degree dv when the a priori
information and the exchanged messages of the finite-precision
min-sum decoder are quantized on n = 3 bits. Since we have
fixed R and dv , the check nodes can be all of the same degree
(regular code) or not (semi-regular code). The thresholds are
given in Table I for η = 0 (zero error rate on the decoder
output). The precision on the threshold value is fixed to 10−4.
The results show that the GF quantizer gives the same perfor-
mance of the DL quantizer of high computational complexity.
The quantizer maximizing the mutual information between the
channel input and the quantizer output (MIXL̄) gives good
performance which coincides with the performance of DL for
some codes. The quantizer MIXL̄ gives better performance
than the quantizer maximizing the mutual information between
the input of the quantizer and its output MILL̄ for regular
codes. It can be observed that the quantizer MILL̄ does not
achieve a target zero error probability when the code rate is
higher than a certain value (eg. when R = 5

6 in Table I).

B. Irregular LDPC codes

In this section, we study the performance of irregular
LDPC codes in terms of noise threshold using code-aware and
code-independent quantizers. Consider the family of irregular
LDPC codes of rate one-half, variable node degree distribution
λ(x) = 0.23882x+0.29515x2 +0.03261x3 +0.43342x10 and
check node degree distribution ρ(x) = 0.43011x6+0.56989x7.
This code was shown to be powerful for belief-propagation
decoding and has a noise DE threshold of σ2

th = 0.9162
[2]. However, for the finite-precision min-sum decoder, the
performance of this code seems to be worse than the regular
code of rate one half in the previous section, especially when
the number of quantization bits is small as shown in Table
II, due to the error floor. The DL quantizer is not considered
when n > 3 due to the complexity of the exhaustive search
in this case. Tables III and IV show the η−threshold for the
same irregular code when the number of quantization bits is
n = 2 and 3 respectively and η ∈ {10−3, 10−4, 10−5, 10−10}.
We observe also that the quantizer MILL̄ is better than MIXL̄
in most cases contrarily to the case of regular codes in the
previous section. In general, we can see that any of the two
quantizers ( MIXL̄ and MILL̄) can be better than the other
depending on the values of η and n because these quantizers
are not code-aware. The code aware quantizer GF can achieve
noticeable gains comparing to the best quantizer among the
independent-code quantizers depending on η and n. For n = 2,
GF quantizer has the same performance as the DL quantizer.
This may be obvious because there is one variable to optimize
in both cases.

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

DL quantizer GF quantizer

Fig. 2. Decision levels of DL and GF quantizers obtained when η = 10−5,
n = 3 and using the irregular LDPC code of rate one-half in section IV-B

For n = 3, the performance of GF quantizer is very close
to that of DL quantizer. The decision levels obtained for both
code-aware quantizers are very close as shown in Fig. 2 when

η = 10−5. It is worth to note that in Fig. 2, the decisions
levels are given when L = 2

σ2
th(DL)

· Y , where σ2
th(DL) is

the η−threshold for DL quantizer with η = 10−5, for both
quantizers in order to compare them for the same L. Then, the
decision levels for GF quantizer are given by Ti = 2

g·σ2
th(DL)

·
L̄i−1+L̄i

2 for i = 1, ..., N (cf. Remark 1) where g is the optimal
gain factor for η = 10−5 which is given in Table IV.

TABLE II. DE THRESHOLD OF SOME QUANTIZERS FOR THE FAMILY OF
IRREGULAR LDPC CODES OF RATE 1

2
, λ(x) = 0.23882x+ 0.29515x2+

0.03261x3+ 0.43342x10 AND ρ(x) = 0.43011x6 + 0.56989x7 .

n GF DL MIXL̄ MILL̄ Opt. g
for GF

2 0.0560 0.0570 0.0156 0.0525 0.5092
3 0.1179 0.1179 0.0359 0.0557 0.5135
4 0.2932 Not given 0.0759 0.0570 0.5322

TABLE III. η-THRESHOLD OF SOME QUANTIZERS FOR THE FAMILY OF
IRREGULAR LDPC CODES OF RATE 1

2
, λ(x) = 0.23882x +0.29515x2

+0.03261x3 +0.43342x10 AND ρ(x) = 0.43011x6+ 0.56989x7 . n = 2.

η GF DL MIXL̄ MILL̄ Opt. g
for GF

10−3 0.5362 0.5362 0.4330 0.5107 0.7952
10−4 0.4536 0.4536 0.2825 0.4351 0.6146
10−5 0.3760 0.3760 0.1947 0.3490 0.5592
10−10 0.1868 0.1868 0.0667 0.1704 0.5179

TABLE IV. η-THRESHOLD OF SOME QUANTIZERS FOR THE FAMILY OF
IRREGULAR LDPC CODES OF RATE 1

2
, λ(x) = 0.23882x+ 0.29515x2+

0.03261x3+ 0.43342x10 AND ρ(x) = 0.43011x6 + 0.56989x7 . n = 3.

η GF DL MIXL̄ MILL̄ Opt. g
for GF

10−3 0.6733 0.6798 0.6668 0.6620 2.3247
10−4 0.6600 0.6650 0.4792 0.6590 1.5193
10−5 0.6350 0.6384 0.3373 0.5432 1.3183
10−10 0.4869 0.4870 0.1182 0.2716 0.6536

0 2 4 6 8 10 12 14
10−48

10−36

10−24

10−12

100

SNR [dB]

P
e

g = 0.5135 (η = 0)

g = 0.6536 (η = 10−10)

g = 1.5193 (η = 10−4)

Fig. 3. Error probability Pe obtained via DE using the GF quantizer with
parameter g as a function of the channel SNR when n = 3 bits. The value
of η for which the quantizer is optimal is given between parentheses.

Figure 3 shows the asymptotic error probability (i.e. Pe =

lim`→∞ P
(`)
e ) at the decoder output obtained via density evolu-

tion as a function of the channel SNR for the GF quantizer and



for different values of the gain factor g. It can be observed that
the optimal value of g which maximizes the noise threshold
(equivalently minimizes the SNR threshold) for a zero target
bit error rate has a bad performance for the SNR values smaller
than 9 dB. This is due to the error floor in the curve of error
probability when the slope changes from a certain value of
SNR. Thus, it is necessary to optimize the quantizer for a target
error probability to avoid having an error floor behavior in the
curve or bad performance at this target value. To the best of
our knowledge, this is the first time it is shown that for finite-
precision decoders the error floor is not solely due to specific
topologies in the finite-length graph, but also to the “noise”
(impreciseness) introduced by the finite precision operations,
which manifests itself even for infinite length codes.

C. Finite length performance of GF quantizer

In this section, we study the performance of GF quantizer
for finite length irregular LDPC codes, with node-degree
distribution polynomials λ and ρ from Section IV-B. Figure
4 shows the bit error rate (BER) curves, with n = 4, for
infinite length code based on density evolution and for finite
length codes with a codeword length V , when η = 10−4.
Two methods for constructing finite length codes are under
consideration. The first method is when the code is constructed
randomly (RAND). The second is when the code is constructed
using the “progressive edge growth” (PEG) algorithm [9] in
order to avoid undesirables graph topologies (such as short
cycles, small trapping sets,...). For the infinite length code,
one can see that the BER curve is subject to a fall at the
η−threshold SNR for η = 10−4 in figure 4. Then the curve
experiences an error floor starting from a value of BER equal
(in general less or equal) to the target value η for which the
GF quantizer is optimized. Consequently, one can conclude
that optimizing the quantizer is crucial to avoid error floor at
the target BER. For the finite length code, the curves exhibit a
similar behavior to the infinite length performance; however,
the curve for the finite length code presents a smooth fall
rather than an infinite-slope fall as in the asymptotic case. We
observe that the error probability of the finite length code,
which is constructed randomly, is lower bounded by the error
probability obtained via density evolution during the error floor
part and the curves are not exactly matching. This is due
to the topology of the finite length code, which makes its
performance affected by other factors (eg. trapping sets [10],
absorbing sets [11], · · · ). Moreover, we have observed that the
minimum distance of the randomly constructed code is very
small, such that in the error floor region the decoder converges
quite often to a wrong codeword (different from the one
actually sent over the channel). Both codes constructed by the
PEG algorithm (V = 4000 and V = 20000) have girth equal
to 8 and good minimum distance properties. For these codes,
in all the simulations that we ran, the decoder never converged
to a wrong codeword. Surprisingly, the error probability of the
PEG constructed codes in the error floor region is smaller than
the one predicted by density evolution. To explain this, we have
investigated the edge-perspective joint degree distribution of
the constructed codes. If (λ, ρ) is the degree distribution pair
of the irregular LDPC code ensemble, an implicit assumption
made in the classical density evolution is that the fraction of
edges connected to a variable-node of degree i and check-
nodes of degree j is given by fij = λi · ρj . However, for

0 1 2 3 4 5

10−9

10−7

10−5

10−3

10−1

SNR [dB]

B
E

R

infinite length code
Finite, PEG, V = 4000

Finite, PEG, V = 20000

Finite, RAND, V = 20000

Fig. 4. BER curves for the GF quantizer with finite and infinite length codes
when n = 4, η = 10−4 (g = 3.8010) and using the irregular LDPC code of
rate one-half in section IV-B

the PEG constructed codes, we observed a mismatch between
the constructed fij distribution and the theoretical one (even
if the constructed λ and ρ distributions are very close to the
theoretical ones). To overcome this issue, future works should
consider the density evolution for multi-edge type LDPC [12].

D. Irregular LDPC code design for finite-precision decoders

It was shown in section IV-B that irregular codes designed
for infinite-precision decoders based on belief propagation
decoding may lead to very bad thresholds when used for finite-
precision min-sum decoders (see Table II). In this section, we
propose to design irregular LDPC codes for finite-precision
min-sum decoders operating with a certain (small) number of
quantization bits n (for the a priori information and exchanged
messages) and ñ (for the a posteriori information). The design
of a code for a fixed rate, consists in finding the optimal
degree distribution pairs, usually for some fixed maximum
variable node and check node degrees (dv and dc) to simplify
the optimization. In our simulations, we have chosen to fix
the maximum variable node degree dv = 11. Ideally, we
should consider a variable-node degree distribution of the form
λ(x) =

∑11
i=2 λix

i−1 and optimize all λi. However, this will
make the optimization very complex due to the large number
of variables. Thus, we have considered a variable-node degree
distribution of the form λ(x) = λ2x+ λ3x

2 + λ4x
3 + λ11x

10

which has the same form of the irregular code in section
IV-B. The code rate R is fixed to one half. The check-node
degree distribution ρ is chosen to be semi-regular, according
to the value of λ and the coding rate R. We consider a GF
quantizer, with a gain factor g optimized jointly with the
degree distribution pair to maximize the η-threshold for a target
error probability equal to η. The optimization problem under
consideration, for fixed n and R, is the following:

max
λ(x),g

σ2
th(λ(x), ρ(x), g; η)

subject to:
∑
i

λi = 1, 0 ≤ λi ≤ 1 ∀i, g > 0 (6)



where ρ is the unique (semi-)regular polynomial such that∫ 1

0

ρ(x)dx = (1−R) ·
∫ 1

0

λ(x)dx (7)

Optimization techniques to solve such problems were de-
scribed in [2]. In our simulations, we have used “differential
evolution” method to solve this problem. Table V gives some
good codes found by solving problem (6) for n = 2, 3, 4 and
η = 10−10. Figure 5 shows the asymptotic error probability
as function of the channel SNR for the three codes optimized
for the finite-precision min-sum decoding with n ∈ {2, 3, 4}
(Table V) and the code optimized for belief propagation
decoding from Section IV-B, but decoded by finite precision
min-sum with n ∈ {2, 3, 4}. We observe that noticeable gains
of 4.63 dB, 1.36 dB, and 0.46 dB in SNR thresholds are
obtained with respect to optimized code for belief propagation
decoding, when n = 2, 3 and 4 respectively. Thus, it is crucial
to consider the “finite-precision” property of the decoder to
design irregular LDPC codes for finite-precision min-sum de-
coders. We observe in table V that when n = 2, the optimized
code is very similar to a semi-regular code with R = 1

2 and
dv = 3, since λ3 ≈ 1. The η-threshold obtained for n = 2
(σ2
th = 0.5423889) is also close to that of the (semi-)regular

code of rate one-half with dv = 3. In table V, we observe that
the optimized codes exhibit higher irregularity with increasing
n. Thus, we conclude that (semi-)regular LDPC codes achieve
good thresholds for finite-precision decoders with a very few
number of quantization bits.

TABLE V. GOOD DEGREE DISTRIBUTION PAIRS OF RATE 1/2 WHEN
n ∈ {2, 3, 4}, AND η = 10−10 .

n 2 3 4
λ2 0 0.000276893 0.24805492
λ3 0.95587734 0.876706068 0.49037245
λ4 0.00015006 0.000000024 0.00000559
λ11 0.04397260 0.123017015 0.26156704
ρ6 0.775877 0.37470064 0.53656845
ρ7 0.224123 0.62529936 0.46343155
g 1.51 2.776 1.4

σ2
th 0.5423889 0.6660461 0.717987

SNRth [dB] 2.656892 1.764957 1.438834

V. CONCLUSION

In this paper we investigated the design of code-aware
quantizers for finite-precision min-sum decoders which maxi-
mize the noise threshold of the existing family of LDPC code.
We proposed a low complexity code-aware quantizer based on
scaling a linear quantizer. Besides the quantizer itself, one of
the main contributions of the paper was to show that we can
use a low complexity quantizer, instead of the quantizer whose
all decision levels are optimized exhaustively, with a very small
loss in performance. Moreover, we proposed to design the
code-aware quantizer for a target BER and it was shown that
this can prevent error floor phenomenon at the target BER.
Finally, we proposed the joint design of good irregular LDPC
code and code-aware quantizer for a min-sum decoder with
finite precision resulting into important gain in threshold with
respect to irregular LDPC codes designed for infinite-precision
belief propagation, but decoded by finite-precision min-sum.

0 2 4 6 8
10−13

10−10

10−7

10−4

10−1

SNR [dB]

P
e

CBP (n = 2) CMS (n = 2)
CBP (n = 3) CMS (n = 3)
CBP (n = 4) CMS (n = 4)

Fig. 5. Error probability Pe obtained via density evolution using the GF
quantizer as a function of the channel SNR for η = 10−10 and n ∈ {2, 3, 4}.
For each n, the error probability is plotted for CMS, the optimized code for
the fixed-point min sum decoder given in table V and CBP, the optimized code
for belief propagation decoding given in section IV-B

This paper can be considered as a benchmark for practical
implementation of LDPC codes on a finite precision hardware.
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