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Abstract:
Several robotic applications imply motion in complex and dynamic environments. Occupancy
Grids model the surrounding environment by a grid composed of a finite number of cells. The
probability whether a cell is occupied or empty is computed and updated iteratively based
on sensor measurements by considering their uncertainty through probabilistic models. Even if
Occupancy Grids have been widely used in the state-of-the-art, the relation between the cell
size, the sensor precision and the inverse sensor model is usually neglected. In this paper, we
propose a methodology to build the inverse probabilistic model for single-target sensors. The
proposed approach is then applied to a LiDAR in order to evaluate the impact of the variation
in the sensor precision and the grid resolution on the inverse sensor model. Based on this study,
we finally propose a procedure that allows to choose the suitable grid resolution for obtaining a
desired maximum occupancy probability in the inverse sensor model.

1. INTRODUCTION

Modern mobile robots evolve in complex a priori un-
known environments. In these scenarios, the surrounding
obstacles are perceived thanks to range sensors such as
LiDARs, sonars, radars, Time-of-Flight cameras, vision
sensors. However, external conditions, the nature of ob-
served obstacles or even imperfections in the sensor design
introduce noise in the measurements. Common approaches
translate this uncertainty into a probabilistic distribution
called the Sensor Model (SM).

The SM gives the likelihood of a specific sensor value know-
ing a property of the environment such as the distance to
the nearest object. Hence, it creates a link between the
physical world and the sensor output. The SM can be con-
structed with analytical approaches taking into account
the sensor precision given in its datasheet. Alternatively,
it can be experimentally built by analyzing the dispersion
of the sensor output subject to a set of predefined physical
situations. Sensor Models are consequently often called
generative models as they can be generated from real situ-
ations [Thrun et al. (2005)]. The sensor data interpretation
is based on the Bayes’ rule applied to the SM: from a prior
state and with the SM, the Bayes’ rule allows to predict
the posterior state.

These states are defined thanks to the utilization of a
model of the surrounding space. An environment model
can be seen as a computational representation of the
space where the robot is operating [Burgard and Hebert
(2008)]. Introduced in the mid-1980s by Moravec and
Elfes [Moravec and Elfes (1985)], Occupancy Grids (OGs)
constitute one of the most popular frameworks for en-
vironment model definition. They map a portion of the
surrounding space into a partition composed of cells. Each

cell of the OG can be either occupied by an obstacle or
empty. The objective of the perception task is then to
obtain the occupancy probability for each cell taking into
account the sensors readings.

The SM gives information on the position of the obsta-
cles rather than the occupancy of a specific region. To
deduce occupancy probabilities, OGs rely on a robust
mathematical approach presented by Elfes [Elfes (1989)].
It defines a formal methodology that produces an Inverse
Sensor Model (ISM) from a SM and a specific partition
of the space. This ISM relates the sensor measurements
to the occupancy probability for all cells. An appealing
property of this approach is that it naturally propagates
the sensing precision to the occupancy evaluation. Uncer-
tainty captured by the SM is converted into an equivalent
uncertainty for the ISM. Consequently, the state of the
environment is estimated with the same precision of the
sensor.

This theoretical approach relies on the enumeration of all
possible grid configurations whose number is exponentially
growing with the number of cells. The computation of OGs
with a large number of cells becomes therefore intractable
in practice. To overcome this limitation, approximations
in the ISM generation have been proposed [Konolige
(1997); Adarve et al. (2012)]. However, these methods
break the link between the generative model and the OG,
to offer computationally effective formulations. Moreover,
they are tuned for specific sensor and grid configurations
and cannot support the study of the influence of grid
parameters and sensor precision.

The contributions of this paper are threefold. Firstly, a
new methodology for the ISM construction is proposed. It
introduces no additional approximation compared to the



original OG formulation. This methodology can be applied
to sensors that exhibit a single-target behavior i.e. whose
output is caused by a unique obstacle, assumed to be the
nearest one, such as LiDARs and depth pixels of time-
of-flight cameras. For these sensors, the proposed method
has a computational cost proportional to the number of
cells in the grid. Since the new method naturally fits in
the original OG framework proposed in [Elfes (1989)], it
also propagates the original precision of the sensor to the
ISM. Secondly, by applying our methodology to a LiDAR,
we analyze the impact of the grid resolution and the
sensor precision on the occupancy estimation. And finally,
a novel method that allows to properly choose the grid
resolution is proposed. This method allows to achieve a
predefined maximum occupancy probability in the ISM
taking into account the sensor precision and its output.
It is therefore useful when modeling the ISM, because it
allows to propagate the variations in the sensor precision
and the cells size in the grid to the occupancy evaluation.

This paper is organized as follows. Section 2 introduces
background theory, related works and the present contri-
butions. Section 3 details the proposed methodology for
the computation of inverse models of single-target sensors.
The study of the impact of the grid resolution and of the
sensor precision on the ISM is presented in Section 4. Then,
the proposed methodology for choosing the appropriate
grid resolution is shown in Section 5. Finally, Section 6
concludes the paper.

2. MOTIVATION

2.1 Mathematical background

Ω refers to a continuous 1D, 2D or 3D spatial reference.
A grid G is a bounded continuous subset of Ω, partitioned
into a finite number of N disjoint cells. Let ci denotes a
cell identified by a unique index i, i ∈ {0, . . . , N − 1}. No
additional hypothesis is set on the size of cells and the way
the grid is arranged. A physical obstacle A is a continuous
and bounded subset of Ω. For i ∈ {0, . . . , N − 1} ci is
occupied by A if A∩ ci 6= ∅, whereas ci is not occupied by
A if A ∩ ci = ∅. The state si of cell ci is the outcome of a
binary random experiment. The value of si can be any of
the two outcomes: si ∈ {oi, ei}, where oi is the event “ci
is occupied” and ei = ¬oi is the event “ci is empty”. Since
oi and ei are complementary events:

P (oi) + P (ei) = 1 (1)

Let z be the sensor output caused by a measure toward
an obstacle located at position x, where x has the same
dimension as the considered spatial reference Ω. The
SM refers to the probability density function p(z|x). It
estimates the probability that the sensor response z will be
in a given interval, knowing that an obstacle is positioned
in x. Thus, this distribution encodes the precision of the
sensor [MacKinnon et al. (2006)].

The occupancy probability denotes the distribution P (oi|z)
which estimates the probability of the event oi given
the sensor measurement z. The ISM refers to the set
of P (oi|z), i ∈ {0, ..., N − 1}. The ISM allows to solve
the perception problem for a single sensor, giving all
occupancy probabilities from a sensor measurement. The

occupancy of different cells is assumed to be conditionally
independent with respect to z:

∀i 6= j, P (si ∧ sj |z) = P (si|z)P (sj |z) (2)

With these definitions, the methodology proposed by Elfes
for the computation of the ISM is now shortly introduced.
Applying the Bayes’ theorem on P (oi|z), it comes for all
i ∈ {0, ..., N − 1}:

P (oi|z) =
p(z|oi) · P (oi)

p(z)
(3)

From the decomposition on the two complementary events
oi and ei, (3) becomes:

P (oi|z) =
p(z|oi) · P (oi)

p(z|oi) · P (oi) + p(z|ei) · P (ei)
(4)

P (oi) and P (ei) evaluate the prior information about the
occupancy of cell ci. If prior information is not available,
the non-informative prior hypothesis P (oi) = P (ei) = 1/2
can be adopted. It comes:

P (oi|z) =
p(z|oi)

p(z|oi) + p(z|ei)
(5)

Equation (5) requires the computation of p(z|ei) and
p(z|oi). The idea is then to deduce the distribution p(z|si)
from the SM p(z|x) with si ∈ {oi, ei}. To this purpose,
the total probability law is applied over all possible grid
configurations as follows:

p(z|si) =
∑
G
si
k

p(z|Gsik ∧ si) · P (G
si
k ) (6)

G
si
k refers to a grid that has no state information for cell ci:

G
si
k = (s0, . . . , si−1, si+1, . . . , sN−1). Thereby, G

si
k ∧ si =

(s0, . . . , si−1, si, si+1, . . . , sN−1). Hence, G
si
k ∧si represents

the configuration of a grid where the state of cell ci is set
to si and the state of the other cells are enforced in G

si
k .

Equations (5) and (6) underline the strong relationship
between the occupancy probability and the SM. More-
over, they demonstrate that the occupancy probability is
influenced by the partition of the grid, and in particular
by the cell size. In (6), p(z|Gsik ∧ si) can be computed
thanks to the SM since the configuration of the grid is
known through G

si
k ∧ si. However, despite the knowledge

of the grid configuration, evaluating p(z|Gsik ∧si) for multi-
target sensors, i.e. whose output may be caused by one or
several obstacles, is not trivial since the measurement can
be issued from obstacles located on several occupied cells.
Furthermore, the number of grid configurations where the
state of a single cell is known is 2N−1. Thus, the number
of elements in the sum (6) grows exponentially with the
number of cells in the grid, preventing practical implemen-
tation of this approach.

2.2 Related work

To overcome the implementation burden, several solutions
can be found in the literature. For instance, [Elfes (1989)]
uses grids with a ”reasonable” number of cells. Since in
practice (6) is intractable for large grids, many works
proposed simplified methods for the construction of the
ISM. The first set of solutions consists in providing an
analytical form of p(z|si) and producing the ISM through
(3). In this case, p(z|si) is modeled as a function of



the distance to cell ci from the sensor, with additional
parameters that express the sensor uncertainty. Such a
model is based on Gaussian distribution in [Konolige
(1997)], and on power functions in [Yguel et al. (2006)].

Other authors avoid the calculation of p(z|si) by providing
an analytical form of the ISM P (oi|z) as a function of the
distance of cell ci. In [Payeur et al. (1998); Gartshore et al.
(2002); Einhorn et al. (2011); Adarve et al. (2012)], the
ISM is based on a Gaussian function where the standard
deviation is parametrized in order to reflect the sensor
uncertainty. Examples of such models applied to stereo
pairs can be found in [Li and Ruichek (2013)] and [Nguyen
et al. (2012)]. For laser scanners, a linear model is proposed
in [Weiss et al. (2007)].

Simpler inverse sensor models return only three possible
probabilities, namely, pocc for occupied, pemp for free
region and p0 = 1/2 for unknown, where pocc > p0 > pemp
[Thrun et al. (2005); Hornung et al. (2013)].

Finally, more recent works focussed on the direct formu-
lation of the ISM from the SM in order to reduce its
computational cost [Kaufman et al. (2016)].

2.3 Paper contribution

Previous works suffer from three limitations. Firstly, by
definition, the occupancy denotes the state of a region,
and not an obstacle position. To enable the computation
of the ISM, previous works provide analytical models
for p(z|si) or P (oi|z) as functions of the distance to
cell ci. Their formulation does not take the cell size or
shape into account. Hence, they do not allow the study
of the influence of the grid resolution on the occupancy
estimation. Moreover, these methods suggest that the cell
size can be chosen as narrow as possible [Homm et al.
(2010)], and that sensor measurement can be challenged
at any resolution.

Secondly, previous works do not allow to estimate the oc-
cupancy probability from the SM. Some are computation-
ally efficient but they poorly capture variations in the sen-
sor precision [Thrun et al. (2005); Hornung et al. (2013)].
The initial relation between the sensor precision and the
occupancy estimation proposed in the OG framework is
then broken. It becomes consequently nearly impossible
to study the uncertainty propagation, and to quantify the
confidence of the resulting environment state estimation.
Note that these methods are experimentally tuned to
match a known sensor configuration for a predefined grid
configuration.

Thirdly, focussing on the direct passage from the SM to the
ISM in [Kaufman et al. (2016)] led to a formulation that
requires a recursive computation at each sensor reading. In
fact, after each measurement, P (oi) and P (ei) in (4) take
the values that were computed at the previous reading.
As a consequence, their formulation has a more complex
form than the one proposed in the present paper. In
addition, their formulation is based on the fact that each
measurement coming from a specific ray in the field of
view of the sensor cannot pass through occupied regions.
However, this is not the case for all types of sensors, e.g.
multi-target sensors such as radars or sonars.

(a) G
oi
k

grid with k∗ < i.

(b) G
oi
k

grid with k∗ = i.

Fig. 1. Enumeration of grids knowing that si = oi.

(a) G
ei
k

grid with k∗ < i

(b) G
ei
k

grid with k∗ > i.

Fig. 2. Enumeration of grids knowing that si = ei.

The present paper proposes a new efficient method for
the computation of (6) that allows to build large OGs.
The proposed method applies to single-target sensors
and makes no additional approximation or hypothesis.
Consequently, it is used to study the influence of the
grid resolution and the sensor precision variation on the
occupancy estimation. Based on this study, it is shown
that the sensor precision captured in the SM imposes
a maximum resolution for the grid definition to verify
a maximum occupancy probability in the ISM. Thus, a
method for choosing the grid resolution that allows to
achieve a predefined maximum occupancy probability is
proposed.

3. SENSOR MODEL INVERSION

3.1 Single-target grid model

A new methodology for the computation of the ISM of
single-target sensors is now proposed. As a consequence,
Ω is supposed a 1D space. In fact, these sensors might be
easier to model with uni-dimensional distributions, and
to map the 1D model in the two-dimensional or three-
dimensional space as in [Rakotovao et al. (2015)].

By the definition of single-target sensors, for a given grid
configuration G

si
k ∧ si, i ∈ {0, ..., N − 1}, k ∈ {1, ..., 2N−1}

there exists k∗ ∈ {0, ..., N − 1} such that ck∗ is occupied
by an obstacle Ak∗ at position xk∗ , and:

p(z|Gsik ∧ si) = p(z|xk∗) (7)

The probability P (G
si
k ) is equal to 1/2N−1, since there exist

2N−1 possible configurations. Thus, the sum (6) becomes:

p(z|si) =
∑
G
si
k

p(z|xk∗)

2N−1
(8)

The single-target hypothesis allows to state that the num-
ber of possible xk∗ values is equal to the number of cells
in the grid N . Therefore, among the 2N−1 − 1 left config-
urations, there might be some configurations which share
the same value of xk∗ and p(z|xk∗) with G

si
k ∧ si.

Our approach consists in enumerating the number of
configurations which share the same value of p(z|xk∗).



These configurations can be grouped together in order to
factorize (8).

Suppose si = oi. Note k∗ the index of the first cell being
occupied, which is at the distance xk∗ . And then, let us
count the number of configurations such that the first
obstacle is seen at xk∗ , knowing that ci is occupied. Three
cases are then possible:

(1) k∗ < i: all cells cj such that j < k∗, are empty.
The cells ck∗ and ci are occupied. The remaining cells
might be in any state. Consequently, there are k∗+ 2
cells with a known state, which is equivalent to say
that there are N − k∗ − 2 cells whose state can be
chosen. Thus, 2N−k

∗−2 of such grid configurations
exist. Figure 1 (a) illustrates this: the white cells are
the empty cells, the black cells are occupied and the
grey cells are in unknown state;

(2) k∗ = i: cells cj such that j < i, are empty and the cell
ci is occupied. This leaves N−i−1 cells with unknown
state, and 2N−i−1 of such grid configurations exist.
Figure 1 (b) illustrates this case;

(3) k∗ > i: this configuration is not possible. If k∗ > i
then the closest object would be seen at distance
xi and not xk∗ . Thus, there is no grid configuration
satisfying si = oi with closest obstacle at xk∗ .

Equation (8) then becomes:

p(z|oi) =

i−1∑
k=0

2N−k−2 × p(z|xk)

2N−1
+ 2N−i−1 × p(z|xi)

2N−1

p(z|oi) =

i−1∑
k=0

p(z|xk)

2k+1
+
p(z|xi)

2i
(9)

Suppose now that si = ei. The first object is still supposed
to be seen at the distance xk∗ . Again, three cases are
possible:

(1) k∗ < i: all cells cj such that j < k∗, are empty.
The cell ck∗ is occupied and the cell ci is empty. The
remaining cells are in unknown state, which leaves
N − k∗ − 2 cells whose state is not fixed. More,
2N−k

∗−2 of such grids exist. Figure 2 (a) illustrates
this case;

(2) k∗ = i: is an impossible configuration. The cell at in-
dex i cannot be simultaneously empty and occupied;

(3) k∗ > i: cells cj , j < k∗ are empty and cell ck∗ is
occupied. The remaining cells are in unknown state,
which leaves N −k∗− 1 cells whose state is not fixed.
2N−k

∗−1 of such grids exist. Figure 2 (b) illustrates
this case.

As a consequence, equation (8) becomes:

p(z|ei) =

i−1∑
k=0

2N−k−2 × p(z|xk)

2N−1

+

N−1∑
k=i+1

2N−k−1 × p(z|xk)

2N−1

p(z|ei) =

i−1∑
k=0

p(z|xk)

2k+1
+

N−1∑
k=i+1

p(z|xk)

2k
(10)

Finally, summing (9) and (10) leads to:

p(z|oi) + p(z|ei) =

N−1∑
k=0

p(z|xk)

2k
(11)

3.2 Single-target inverse sensor model

The ISM of a single-target sensor can now be constructed.
Combining (9), (10) and (11) with (5) gives:

P (oi|z) =

∑i−1
k=0

p(z|xk)
2k+1 + p(z|xi)

2i∑N−1
k=0

p(z|xk)
2k

(12)

Using formula (12) it is now possible to evaluate the ISM
thanks the computation of a sum with N terms. Recall
that the complexity of the classical formulation is O(2N ),
while the complexity of the proposed one is linear with
respect to the size of the grid.

The single-target inverse sensor formula presented in (12)
gives a computationally effective way for OG construction.
The uncertainty captured in the SM p(z|x) is translated
into occupancy probability with no additional modeling or
parameter. Equation (12) links the spatial partition of the
grid with the ISM. Moreover, no additional hypothesis has
been made on the SM. Complex space-dependent sensor
models or even numerical experimental distribution might
be used as well, allowing to address a large variety of sensor
models.

4. IMPACT OF THE GRID RESOLUTION AND OF
THE SENSOR PRECISION ON THE OCCUPANCY

ESTIMATION

The proposed formulation is now used in order to show the
impact of the grid resolution and of the sensor precision
on the occupancy estimation.

Consider first a 1D sensor with a constant uncertainty,
modeled using a Gaussian distribution with a constant
standard deviation σ. Such a model is defined by the
following probability density function:

p(z|d) =
1

σ
√

2π
e
− (z−d)2

2σ2 (13)

Here, the sensor measurement z is supposed to be ex-
pressed in the same unit as distance d. This assumption
holds for instance, for common commercial range sensors
such as the RPLiDAR scanner [URL (2015)] which pro-
vides drivers to acquire and parse raw sensor outputs.

For this sensor, the manufacturer states that the worst case
distance resolution is equal to 1.2 cm in indoor conditions.
For the Gaussian distribution (13) it is known that there is
a 99% probability that z is in the interval [d− 3σ, d+ 3σ]
when the nearest obstacle is at distance d. This allows to
choose σ such that 6σ = 1.2 cm, yielding σ = 0.2 cm.

The influence of the grid resolution is now evaluated con-
sidering a uniform 1D grid of length 0.5m with different
cell sizes s.

Suppose the sensor senses an obstacle at z = 25 cm. Fig-
ure 3 presents the occupancy probability P (oi|z = 25),
∀i ∈ {0, ..., N − 1} for grids with different cell sizes. De-
pending on the value of s, this sensor measurement leads to
totally different occupancy probabilities. Intuitively, this



(a) Cell size 0.5 cm. (b) Cell size 0.25 cm. (c) Cell size 0.1 cm.

Fig. 3. Influence of the grid resolution on the ISM for s1 = 0.5 cm (a), s2 = 0.25 cm (b) and s3 = 0.1 cm (c). The
sensor has a constant precision σ = 0.2 cm and senses an obstacle at distance z = 25 cm.

can be interpreted in the following way. When the OG
challenges the SM at a high resolution, it is hard to derive
a strong opinion, whereas it is more easy to express strong
opinions on coarse grids. It clearly demonstrates the effect
of the grid resolution on the ISM.

On the other side, the impact of the sensor precision σ
on the ISM is studied. The same grid of 0.5 m, is used
and the obstacle is fixed at z = 25 cm. Three values of
σ are tested, namely: σ1 = 0.1 cm, σ2 = 0.2 cm and
σ3 = 0.3 cm, with different cell sizes in each case. The
results are presented in table 1. The used cell size and
the maximum occupancy probability in the ISM associated
to σl, l ∈ {1, 2, 3}, are respectively presented in columns
sl and Pl. The ratio of each cell size in column sl over
the associated sensor precision σl is presented in the first
column. Notice that if one uses for two sensor precisions
σj and σk, j, k ∈ {1, 2, 3}, an adequate cell size sj and

sj respectively, verifying
sj
σj

= sk
σk

, then the maximum

occupancy probability remains almost the same Pj ' Pk.
This means that for a given probability Pmax, an output z
and a standard deviation σ, there must be a relation that
gives the adequate cell size s to use in the grid to get a
maximum probability of occupancy Pmax in the ISM. This
relation is shown in the next section.

Table 1. Influence of the grid resolution and
different sensor precisions on the ISM.

sl/σl s1 (cm) P1 s2 (cm) P2 s3 (cm) P3

0.2 0.02 0.5 0.04 0.5 0.06 0.5
0.3 0.03 0.5 0.06 0.5 0.09 0.5
0.5 0.05 0.51 0.1 0.51 0.15 0.51

0.625 0.0625 0.53 0.125 0.53 0.18 0.53
0.8 0.08 0.56 0.16 0.56 0.24 0.56
1 0.1 0.6 0.2 0.6 0.3 0.6

1.25 0.125 0.66 0.25 0.66 0.37 0.66
1.5 0.15 0.72 0.3 0.73 0.45 0.72
2 0.2 0.85 0.4 0.84 0.6 0.84
2.5 0.25 0.94 0.5 0.94 0.75 0.94
3 0.3 0.98 0.6 0.98 0.9 0.98
3.4 0.34 1 0.67 1 1 0.99
3.8 0.38 1 0.75 1 1.13 1
4.2 0.42 1 0.83 1 1.25 1
5 0.5 1 1 1 1.47 1
6 0.6 1 1.19 1 1.78 1

5. CHOICE OF THE APPROPRIATE GRID
RESOLUTION

As mentioned above, many studies tend to model the ISM
without taking into consideration the influence of the grid
resolution and the sensor precision. In this section, a pro-
cedure for computing the numerical maximum resolution
that overcomes this drawback is proposed.

Consider a sensor output z, a constant standard deviation
σ, and a Gaussian SM defined as in (13), then the
maximum occupancy probability Pmax in the 1D grid takes
place in cell cm with:

m =


E(

z

s
) if z − xm < xm+1 − z

E(
z

s
) + 1 otherwise

(14)

where E(.) denotes the floor function, and s is a fixed cell
size.

In fact, from (12) and by denoting the denominator A, for
i ∈ {0, ..., N − 2}, it comes:

P (oi+1|z)− P (oi|z) =
1

A
[
p(z|xi+1)

2i+1
− p(z|xi)

2i+1
]

=
1

2i+1Aσ
√

2π
[e
− (z−is−s)2

2σ2 − e−
(z−is)2

2σ2 ] (15)

It can be noticed that ∀i < E( zs ), P (oi+1|z)−P (oi|z) > 0,
and ∀i ≥ E( zs ) + 1, P (oi+1|z)− P (oi|z) < 0. This implies
that Pmax is equal to P (om1 |z) or to P (om2 |z), with
m1 = E( zs ) and m2 = E( zs ) + 1.

However, it is clear that if z − xm1 < xm2 − z, then
P (om1 |z) > P (om2 |z), and P (om2 |z) ≥ P (om1 |z) oth-
erwise. Thus, we conclude that Pmax = P (om|z) for m
defined as in (14).

The maximum occupancy probability evaluated from a
sensor measurement can now be correlated to the cell size.
In fact, once the desired maximum occupancy probability
Pmax is choosen, one can automatically compute the mini–
mum compatible cell size for a given standard deviation σ
and a sensor output z. P (om|z) is just computed for m
defined as in (14) and for different values of s in a given



test set, using formula (12). Then, the smaller cell size that
gives Pmax is selected.

Notice that the maximum occupancy probability not only
depends on the grid resolution and the sensor precision
but also on its output z.

Generalization

The application of the previous method is not restricted to
sensors that possess a Gaussian SM. It can be generalized
to a wider type of sensors that have a SM represented in
the following theorem where the choice of m is also cov-
ered. Once m is chosen, the rest of the previous procedure
remains the same.

Theorem 1. For a distance d ∈ R+, consider a SM repre-
sented by p(z|d) that is:

• Increasing for z < d. (P1)
• Decreasing for z ≥ d. (P2)
• For c ∈ R+, p(z|d) = p(z+c|d+c). (P3)

In this case, for a fixed cell size s and a given sensor
measurement z, the maximum occupancy probability takes
place in cell cm where:

m =


E(

z

s
) if p(z|xm) > p(z|xm+1)

E(
z

s
) + 1 otherwise

(16)

with xk = k.s, for k ∈ {0, ..., N − 1}.

Proof.

For i ∈ {0, ..., N − 2}, (15) is valid:

P (oi+1|z)− P (oi|z) =
1

2i+1A
[p(z|xi+1)− p(z|xi)]

Using (P3) for c = s yields to:

P (oi+1|z)− P (oi|z) =
1

2i+1A
[p(z|xi+1)− p(z + s|xi + s)]

But xi + s = xi+1, then

P (oi+1|z)− P (oi|z) =
1

2i+1A
[p(z|xi+1)− p(z + s|xi+1)]

• If i < E( zs ), then

xi+1 ≤ sE(
z

s
) ≤ z

Using (P2), p(z|xi+1)−p(z+s|xi+1) ≥ 0 and therefore
P (oi+1|z)− P (oi|z) ≥ 0 in this case.

• If i ≥ E( zs )+1, a similar reasoning is applied to prove
that:

z < xi < xi+1

And then, using (P1), P (oi+1|z)− P (oi|z) ≤ 0.

Thus, the maximum occupancy probability is wether in
cell cm1 or in cell cm2 for m1 = E( zs ) and m2 = E( zs ) + 1.

But,

P (om2 |z)− P (om1 |z) =
1

2m2A
[p(z|xm1)− p(z|xm2)]

We can say, finally, that the maximum occupancy proba-
bility takes place in cell cm for m choosen as in (16). �

6. CONCLUSION

In this paper, a new methodology for the computation
of the inverse sensor model for single-target sensors is
proposed. Our method is consistent with the occupancy
grid framework and allows to estimate the occupancy
probabilities with a computational cost proportional to the
grid size.

Moreover, this paper demonstrates the strong influence of
the grid resolution and the sensor precision on the occu-
pancy estimation. A new procedure allowing to properly
choose the grid resolution is also proposed.

Since autonomous mobile robots require to use a wide type
of sensors, including multi-target sensors, additional work
remains to be done in this regard. We look forward to
extend our study in the future and encounter the treated
topics in the case of multi-target sensors.
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