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Abstract. We investigate the operator content of the Q-state Potts model in arbitrary
dimension, using the representation theory of the symmetric group. In particular we
construct all possible tensors acting on N spins, corresponding to given symmetries under
SQ and SN , in terms of representations involving any Young diagram. These operators
transform non-trivially under the group of spatial rotations, with a definite conformal spin.
The two-point correlation functions are then computed, and their physical interpretation
is given in terms of Fortuin-Kasteleyn clusters propagating between two neighbourhoods of
each N spins. In two dimensions, we obtain analytically the critical exponent corresponding
to each operator. In the simplest and physically most relevant cases, we confirm the values
of the critical exponent and the conformal spin by numerical measurements, using both
Monte Carlo simulations and transfer matrix diagonalisations. Our classification partially
provides the structure of Jordan cells of the dilatation operator in arbitrary dimensions,
which in turn gives rise to logarithmic correlation functions.

1. Introduction

Critical systems are well known for having correlation functions with power-law behavior.

Conformal field theory (CFT) has been very successful in two dimensions, where a large

class of scale invariant theories—the minimal models—have been classified [1, 2, 3]. The

most widely used minimal models share a very important constraint: unitarity. In many

interesting systems that come from statistical physics, unitarity is not verified. Geometrical

models, such as percolation and the self-avoiding walk [4], or disordered systems, such as

the plateau transition in the quantum Hall effect(s), are non unitary. These non-unitary

conformal field theories contain another class of theories corresponding to the Logarithmic
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Conformal Field Theories (LCFT). They are special in the sense that the scale invariant

correlation functions may contain logarithmic factors [5, 6] as well as power laws. LCFTs

appear in an extended version of minimal models where some operators describe non-local

geometrical correlations [7, 8].

LCFTs are characterised by having a non-diagonalisable dilatation operator L0. This

structure leads to logarithms in the correlations of the fields that transform inside a Jordan

cell of L0. Since the above pioneering works it has become a very active subject, where

much progress was made thanks to the study of indecomposable algebras. However it was

realised only later that some features of the LCFTs can be understood by taking a limiting

procedure [9, 10, 11] through a continuous family of ordinary (i.e., not indecomposable, but

still non-unitary) CFT. If the model is subject to additional discrete symmetries, insight

on these logarithmic correlation functions is obtained by studying operators that transform

irreducibly under this symmetry. In contradistinction to most of usual techniques in CFT,

this approach is not limited to two dimensions.

The Q-state Potts model is an interesting statistical physics system, since it contains

several important special cases, such as the Ising model (Q = 2), percolation (Q → 1),

or spanning trees and forests (Q → 0 limits) [12, 13, 14, 15, 16]. This model is invariant

under the action of the discrete symmetric group SQ. Even though the original definition

supposes Q to be a positive integer, the partition function can be reformulated in terms of

non-local geometrical objects and analytically continued to Q real [17]. More details can

be found in section 2 below. In two dimensions, the Potts model can be solved exactly

thanks to a mapping to a 6-vertex model [18] or an associated loop model [19]. Very little is

known about the field theory in higher dimensions. A first approach to the logarithmic scale

invariant theory for the Potts model has been proposed in [11], and subsequently investigated

more systematically by two of the present authors [20]. It successfully predicts Jordan cells

in the dilatation operator, independently of the dimension. Recently, progress has been

made to determine the general form of correlation functions and conformal blocks in any

dimension [21].

In this paper we generalise the construction of [20] to classify local operators acting

on N spins that transform irreducibly under the action of the symmetric group, taking

into account the SQ symmetry and also the SN symmetry that describes the behaviour

of the operators under an exchange of the spins. Only operators symmetric under such

exchange were previously considered in [20], corresponding to a trivial action by SN and

a zero conformal spin. Here we consider arbitrary irreducible operators, including those

with non-zero conformal spin, in a more transparent group theoretical setup. The structure

and the correlation functions of this new class of observables is discussed. In particular,

we underline the consequences for bulk LCFT and identify the critical exponents in two

dimensions.
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2. Operators of the Q-state Potts model

The Q-state Potts model is a quite simple model of statistical physics with SQ symmetry,

which nevertheless conceals deep algebraic structures and a rich variety of critical behaviour.

It can be written in different representations, some of which are specific to two dimensions,

and others which hold in arbitrary dimensions. Among the latter, a very appealing choice

amounts to rewriting the partition function and correlation functions in terms of non-local

objects known as Fortuin-Kasteleyn clusters [17]. Each such cluster carries a Boltzmann

weight of Q, which immediately allows us to extend the definition of the model to non-

integer Q. This is particularly useful in the LCFT context, because we can then access

particular indecomposable values of Q through a limiting procedure.

In the following, we first provide a brief review of the definition of the Potts model. We

then explain the construction of local operators within a particular representation of SQ and

discuss the structure relevant to LCFT. The previous results for scalar (spinless) operators

[20] are recovered within our new framework.

2.1. Potts model and Fortuin-Kasteleyn clusters

The Q-state Potts model is a lattice model of interacting spins. Considering a graph

G = (V,E) with vertex set V and edge set E. To each vertex i ∈ V we associate a spin

σi that can take Q possible states, σi = 1, 2, . . . , Q. The interaction between two spins, σi

and σj , linked by an edge (ij) ∈ E, adds a contribution −Kδσi,σj
to the total energy of the

system, where δ is the Kronecker symbol. Hence the partition function is

Z =
∑

{σ}

∏

(i,j)∈E

eKδσi,σj , (2.1)

where {σ} ≡ {σi}i∈V denotes all the possible spin configurations of the system. Let us

emphasise the fact that for now we do not make any particular assumptions about the graph

G, neither about the regularity of the lattice, nor about the number of dimensions d into

which it can be embedded.

The above partition function can be expanded in terms of the Fortuin-Kasteleyn

(FK) clusters. Since the interaction energy between two spins has only two possible values,

we use the identity eKδσi,σj = 1 + vδσi,σj
, with v = eK − 1, to transform the product over

the edges into a sum over subsets A ⊆ E of edges. A connected component of the subgraph

(V,A) is called an FK cluster. Then, by performing the sum over {σ}, we arrive at

Z =
∑

A⊆E

Qk(A)v|A| , (2.2)

where k(A) denotes the number of connected components in the subgraph (V,A) with |A|

edges.
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We notice that all the spins within the same FK cluster take the same spin state. However,

the spins of two different clusters are independent; in particular they may take the same value

even if the two clusters are adjacent.

Thanks to the formulation (2.2) of the Q-state Potts model, the definition of the partition

function can now be extended to real values of Q. This makes it possible to approach physical

situations (for which Q is a non-negative integer) via a limiting procedure. As mentioned in

the introduction, the models of main interest stand at Q = 0 (spanning trees and forests),

Q = 1 (percolation) and Q = 2 (Ising model). For Q < 2 they have non-trivial critical points

for 2 ≤ d ≤ 6 [15, 22]. In d = 2, the model on a regular square lattice can be mapped to a

6-vertex model [18] and is critical for 0 ≤ Q ≤ 4 [23].

We are going to study the so-called N -cluster operators.‡ Consider a small neighbourhood

Di containing N spins that belong to N distinct FK clusters. We are interested in the

probability that these N clusters extend to another similar neighbourhood Dj . A cluster-

operator Oi—which will be defined precisely below in a more appropriate notation—acts on

the N spins in Di so as to impose that they belong to distinct FK clusters. The clusters

thus inserted at Di are therefore obliged to propagate until they terminate at another cluster

operator.§ The probability of having N distinct clusters extending from Di to Dj can thus

be related to the two-point function 〈OiOj〉.

We shall see below that the N -cluster operator Oi acts as a linear operator on the N

Potts spins in Di. It can therefore be represented explicitly as an N -component tensor (e.g.,

a vector for N = 1 and a matrix for N = 2) of coefficients that are algebraic functions of

Q. For that reason we shall often use the words operator and tensor interchangingly in the

sequel.

The correlation functions in the Potts model at criticality involve power laws of the

distance between the small neighbourhoods considered. If Q takes the particular values

Q = 4 cos2(π/p) with p = 2, 3, . . . integer (these values are known as Beraha numbers) in

d = 2, or Q ∈ N in higher dimensions, we will find that these power laws are multiplied by

logarithms. In two dimensions, these logarithmic contributions have been fixed [6]. In [20],

two of the present authors have constructed all the tensors acting on an arbitrary number of

spins and transforming according to a class of irreducible representations of the symmetric

group. More precisely, they have computed the form of all possible tensors t(σ1, . . . , σN),

acting on N spins, which are irreducible under SQ and invariant under arbitrary permutations

of the N spins σi.

‡ In d = 2, the N -cluster operators coincide with the 2N -leg watermelon (or fuseau) operators in the loop
model representation. However, this latter representation makes crucial use of planarity and duality, and
hence is not available in higher dimensions.
§ The use of words such as “insert”, “propagate” and “terminate” does not imply that these clusters have
been equipped with a direction of any kind.
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2.2. Definitions and representation theory of SQ

The symmetric group Sn is the group of permutations of n integers. We would like to

classify the operator content of the Potts model in terms of representation of SQ. We need

to construct an operator acting on N spins, t(σ1, . . . , σN). Let us denote by L
(N)
Q the space

of Q× ...×Q︸ ︷︷ ︸
N

tensors. We decompose it in terms of the basis elements Oa1,a2,...,aN defined

by

Oa1,a2,...,aN (σ1, σ2, . . . , σN) = δa1,σ1δa2,σ2 . . . δaN ,σN
, (2.3)

where {ai} and {σi} are sets of integers between 1 and Q. A permutation p ∈ SQ has a

natural action on this basis:

p Oa1,a2,...,aN = Op(a1),p(a2),...,p(aN ) . (2.4)

We can also define the action of p̃, a permutation in SN , by

p̃ Oa1,a2,...,aN = Oa
p̃−1(1),ap̃−1(2),...,ap̃−1(N)

, (2.5)

which implies:

p̃ Oa1,a2,...,aN (σ1, . . . , σN ) = Oa1,a2,...,aN (σp̃(1), . . . , σp̃(N)) . (2.6)

It is straightforward to show that if we act with p ∈ SQ and p̃ ∈ SN on a tensor, the

order does not matter because the transformations commute.

To make the presentation self-contained, we start by briefly recalling all the necessary

definitions and properties. We refer to [24] for more details. In the following, a permutation

is always represented by its decomposition in terms of cycles. A very convenient way to

study the representations of Sn is to use the bijection between irreducible representations and

Young diagrams. Let us consider a partition of the integer n, with k integers λi (
∑k

i=1 λi = n)

that we reorder such that λ1 ≥ λ2 ≥ · · · ≥ λk. We use the standard notation for Young

diagrams, where [λ1, λ2, . . .] denotes the diagram with λi boxes in the i’th row (counted from

the top). The normal Young tableau corresponding to a Young diagram is obtained by filling

the n boxes with the integers {1, 2, . . . , n}, so that the order is increasing in each row (read

from left to right) and in each column (read from top to bottom). We henceforth refer to

rows also as horizontal lines, and to columns as vertical lines. An arbitrary Young tableau is

obtained by acting with a permutation q on the numbers in the boxes of the normal tableau.

Therefore the quantities that refer to a particular Young tableau of shape λ will be denoted

with a superscript (q).

We now define a linear operator which will project a tensor in a certain irreducible

representation of the symmetric group. Given a Young tableau λ of size n boxes, let h
(q)
λ

(resp. v
(q)
λ ) be the subset of permutations that leave invariant the set of numbers in each

horizontal (resp. vertical) line of the Young tableaux of shape λ and filled thanks to the
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permutation q. We then define the symmetriser s
(q)
λ , the anti-symmetriser a

(q)
λ and the

irreducible symmetriser e
(q)
λ by

s
(q)
λ =

∑

h∈h
(q)
λ

h , a
(q)
λ =

∑

v∈v
(q)
λ

ǫ(v)v , e
(q)
λ = s

(q)
λ a

(q)
λ , (2.7)

where ǫ(v) is the signature of the permutation v. The idea is the following: when we act

with the operator e
(q)
λ on a set of indices, first all the indices in the same column are anti-

symmetrised, and then we symmetrise all the indices in the same row. Notice that the

quantity that we obtain is a priori not anti-symmetric in the indices that belong to the same

column, since s
(q)
λ and a

(q)
λ do not commute. Examples of irreducible symmetrisers will be

given when we will construct the tensors. Finally, notice that

e
(q)
λ = qeλq

−1 , (2.8)

which is a relation that relates the irreducible symmetriser of any Young tableau of shape λ

to the irreducible symmetriser of the normal Young tableau of the same shape. The operator

e
(q)
λ is a projector (if normalised correctly). In order to get an invariant subset of a vector

space (which will be our operator space) that generates an irreducible representation, we

act with e
(q)
λ on an arbitrary vector. All the other generators are obtained by acting with

permutations on this first generator. A very important fact is that if one changes the order

of the numbers appearing in the boxes of the diagram λ, we end up with an equivalent

representation. Later we will choose those numbers conveniently.

Let us finally recall the hook formula that gives the dimension dλ of an irreducible

representation λ of SQ:

dλ =
n!∏

(i,j)∈λ hλ(i, j)
, (2.9)

where the hook length hλ(i, j) of the box labelled (i, j) in the Young diagram λ is the number

of boxes to its right, plus the number of boxes below it, plus the box itself.

We are now ready to act with an irreducible symmetriser on this vector space to obtain a

family of tensors in an arbitrary representation of SQ. Let us summarise the “recipe”. First

we choose a Young diagram λQ of size Q. We consider a realisation of a Young tableau filled

with the permutation q and compute the irreducible symmetriser e
(q)
λQ

. The action of this

operator on a tensor t gives us a generator e
(q)
λQ
t of an invariant subspace VλQ

. We get all the

generators of VλQ
that transform with the SQ irreducible representation associated to λQ by

acting with some permutations:

VλQ
=
{
p
(
e
(q)
λQ
t
)

: p ∈ SQ

}
. (2.10)

In the following, we review the simplest examples of this procedure, recovering some of

the results of [20], before generalising the method.
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2.3. Operators acting on one spin

First we consider the vector space L
(1)
Q = {Oa : a = 1, . . . , Q} of operators acting on one

spin σ. In [11, 20], the authors decomposed this space in two operators, namely the identity

and the magnetisation. In their notation, these operators read

t(0,1)(σ) =

Q∑

a=1

δa,σ = 1 , (2.11)

t(1,1)a (σ) = δa,σ −
1
Q
t(0,1) = δa,σ −

1
Q
. (2.12)

These expressions were found in [11, 20] by imposing the constraint

∑

a

t(1,1)a = 0 . (2.13)

Below we shall rederive them (in our own notation), using a procedure that allows us to

consider more complicated cases later. To this end, we consider the irreducible symmetriser

e
(q)
λ for a given Young tableau λ. It is easy to see that only two Young diagrams give a

non-zero action: [Q] and [Q− 1, 1]. These diagrams are respectively associated to the trivial

and standard representations. Their respective dimensions (1 and Q − 1), as found from

(2.9), justifies the constraint (2.13).

2.3.1. Invariant tensor. The irreducible symmetriser for [Q] is

e[Q] =
∑

h∈SQ

h . (2.14)

Its action on any tensor Oa gives the invariant tensor t[Q]:

t[Q] ≡ 1
(Q−1)!

e[Q]Oa =

Q∑

i=1

Oi . (2.15)

The tensor acting on a spin σ is explicitly

t[Q](σ) = 1 , (2.16)

and so we have recovered (2.11).

2.3.2. Standard representation. Let us now move to a more interesting case with the Young

diagram [Q− 1, 1] and consider the following Young tableau

i1 i2 . . . iQ−1

a
(2.17)
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with a a specific index (with a = 1, . . . , Q) and i1, . . . , iQ−1 arbitrary indices in order to fill

the Young tableau. The particular choice {ik} = {1, 2, . . . , a − 1, a + 1, . . . , Q} gives the

normal Young tableau for the given value of a. We will also denote by a the permutation

that produces the particular tableau (2.17) from the corresponding normal Young tableau.

The corresponding irreducible symmetriser e
(a)
λQ

is

e
(a)
λQ

=



∑

h∈h̃
(a)
λ

h


 (1− (i1, a)) , (2.18)

where h̃
(a)
λ is the subset of permutations within SQ that leave invariant the first line of the

Young tableau or, in other words, the permutations leaving a invariant. Also, (i1, a) denotes

the transposition of the indices i1 and a. Acting on the basis element Oa we get

e
(a)
λQ
Oa =



∑

h∈h̃
(a)
λ

h


 (Oa −Oi1)

= (Q− 1)!Oa − (Q− 2)!

Q∑

i=1
i 6=a

Oi

= Q(Q− 2)!Oa − (Q− 2)!

Q∑

i=1

Oi . (2.19)

We define the normalised tensor t
[Q−1,1]
a by

t[Q−1,1]
a = 1

Q(Q−2)!
e
(a)
λQ
Oa = Oa −

1
Q

Q∑

i=1

Oi = Oa −
1
Q
t[Q] . (2.20)

We can generate the whole family of tensors by acting with a permutation p ∈ SQ, but we

find that this family is just given by the previous formula for any a, because of (2.8). We

can verify that it has dimension Q− 1, because of the following identity

Q∑

a=1

t[Q−1,1]
a = 0 , (2.21)

which of course is nothing but (2.13) in our notation. The tensor acting on a spin σ is

explicitly

t[Q−1,1]
a (σ) = δa,σ −

1
Q
, (2.22)

so we have recovered also the magnetisation operator (2.12).

Summarising, the space L
(1)
Q has be decomposed as a direct sum of two irreducible

representations of SQ:

L
(1)
Q = [Q]⊕ [Q− 1, 1] . (2.23)
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2.4. Operators acting on 2 spins

We next consider the space L
(2)
Q of operators acting on 2 spins, σ1 and σ2. The subspace

of L
(2)
Q of operators for which σ1 = σ2 reads {Oa,a : a = 1, . . . , Q} and is stable under the

action of SQ. It is isomorphic to L
(1)
Q and can therefore be decomposed as the direct sum

[Q]⊕ [Q− 1, 1], as we have just seen. We thus consider henceforth only operators for which

σ1 6= σ2.

In [20] the authors studied only the case of symmetric tensors, i.e., those satisfying

t(σ1, σ2) = t(σ2, σ1). They enforced constraints on the sum of coefficients to find three

irreducible tensors, which we first discuss using the notation of [20]. The first one, t(0,2), can

be identified with the energy operator. The second one, t
(1,2)
a , has the same SQ symmetry

as the magnetisation operator. And the last tensor, t
(2,2)
a,b , is the two-cluster operator. The

three tensors are found to have the following expressions [11, 20]:

t(0,2)(σ1, σ2) = 1− δσ1,σ2 , (2.24)

t(1,2)a (σ1, σ2) = t(1,1)a (σ1) + t(1,1)a (σ2) = δa,σ1 + δa,σ2 −
2
Q
, (2.25)

t
(2,2)
a,b (σ1, σ2) = δa,σ1δb,σ2 + δa,σ2δb,σ1

− 1
Q−2

(
t(1,2)a (σ1, σ2) + t

(1,2)
b (σ1, σ2)

)
− 2

Q(Q−1)
t(0,2) , (2.26)

where we have omitted writing an overall factor (1 − δσ1,σ2) multiplying the last two

expressions.

As in the previous section we now show how to recover these expression using

Young projectors. We also extend the set of operators by considering tensors which are

antisymmetric under the permutation of the two spins, i.e., those satisfying t(σ1, σ2) =

−t(σ2, σ1). To this end, we first notice that any projector on a representation associated

with a Young diagram with more than two boxes below the first line is the null operator.

We thus have to consider the following diagrams: [Q], [Q− 1, 1], [Q− 2, 2] and [Q− 2, 1, 1].

2.4.1. Invariant tensor. Let us again first consider the case of [Q]. The space L
(2)
Q contains

an additional invariant operator. When acting with e[Q] on the tensor Oa,b with a 6= b we

find:

t[Q] ≡ 1
(Q−2)!

e[Q]Oa,b =

Q∑

i,j=1
i 6=j

Oi,j . (2.27)

In terms of the spins, σ1 and σ2, we have the expression

t[Q](σ1, σ2) = 1− δσ1,σ2 , (2.28)

and so we have recovered (2.24) in our own notation.
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2.4.2. Representation [Q − 1, 1]. We now turn to the more interesting case of the Young

diagram [Q− 1, 1]. We consider once again the following Young tableau:

i1 i2 . . . iQ−1

a
(2.29)

One could act with the same e
(a)
λQ

as before on an element of the type Oa,b:

e
(a)
λQ
Oa,iQ−1

=



∑

h∈h̃
(a)
λ

h



(
Oa,iQ−1

−Oi1,iQ−1

)

= (Q− 2)!

Q∑

i=1
i 6=a

Oa,i − (Q− 3)!

Q∑

i,j=1
i 6=j 6=a

Oi,j

= (Q− 1)(Q− 3)!

Q∑

i=1
i 6=a

Oa,i + (Q− 3)!

Q∑

i=1
i 6=a

Oi,a − (Q− 3)!

Q∑

i,j=1
i 6=j

Oi,j .

We define the corresponding tensor t
[Q−1,1],1
a :

t[Q−1,1],1
a ≡ 1

(Q−1)(Q−3)!
e
(a)
λQ
Oa,iQ−1

(2.30)

=

Q∑

i=1
i 6=a

Oa,i +
1

Q−1

Q∑

i=1
i 6=a

Oi,a −
1

Q−1

Q∑

i,j=1
i 6=j

Oi,j .

However, we could also consider the following non-equivalent operation and define t
[Q−1,1],2
a :

t[Q−1,1],2
a ≡ 1

(Q−1)(Q−3)!
e
(a)
λQ
OiQ−1,a (2.31)

=

Q∑

i=1
i 6=a

Oi,a +
1

Q−1

Q∑

i=1
i 6=a

Oa,i −
1

Q−1

Q∑

i,j=1
i 6=j

Oi,j .

A problematic feature in the definitions (2.31)–(2.31) is that there is no manifest

symmetry upon exchanging the two spins, σ1 and σ2. It thus appears natural to classify

the operators acting also in terms of the group SN permuting the N spins. In the present

case, with N = 2, one possibility is to choose the symmetric representation [2] of S2 and

define the operator t
[Q−1,1],[2]
a :

t[Q−1,1],[2]
a ≡ Q−1

Q

(
t[Q−1,1],1
a + t[Q−1,1],2

a

)
(2.32)

=

Q∑

i=1
i 6=a

(Oi,a +Oa,i)−
2
Q

Q∑

i,j=1
i 6=j

Oi,j
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When expressed explicitly in terms of the spins, this operator reads

t[Q−1,1],[2]
a (σ1, σ2) =

{
δσ1,a + δσ2,a −

2
Q

for σ1 6= σ2 ,

0 for σ1 = σ2 .
(2.33)

This precisely coincides with (2.25), which was obtained in [11, 20] by imposing the symmetry

between σ1 and σ2.

The other possibility is to choose the representation [1, 1] of S2 in which the two spins,

σ1 and σ2, are antisymmetric. We therefore define the corresponding normalised tensor

t
[Q−1,1],[1,1]
a :

t[Q−1,1],[1,1]
a ≡ Q−1

Q−2

(
t[Q−1,1],1
a − t[Q−1,1],2

a

)
(2.34)

=

Q∑

i=1
i 6=a

(Oi,a −Oa,i) .

In terms of the spins this operator reads simply:

t[Q−1,1],[1,1]
a (σ1, σ2) =

{
δσ1,a − δσ2,a for σ1 6= σ2 ,

0 for σ1 = σ2 .
(2.35)

This is our first example of a non-scalar operator that was not considered in the previous

work [20].

It is straightforward to verify that the subsets
{
t
[Q−1,1],[2]
a : a = 1, . . . , Q

}
and

{
t
[Q−1,1],[1,1]
a : a = 1, . . . , Q

}
are indeed stable under the action of SQ, and of dimension

Q − 1. We can rewrite the definition of both operators using an irreducible symmetriser of

SN (here with N = 2) as

t[Q−1,1],λN
a = 1

N e
(a)
λQ
ẽ
(a)
λN

Oa,iQ−1
, (2.36)

where N is a normalisation constant. The operator ẽ
(a)
λN

acts according to (2.5) and is

the irreducible symmetriser of the following Young tableau (depending on the two possible

choices of λN ):

1 2 or
1

2
(2.37)

2.4.3. Representation [Q − 2, 2]. We now construct the tensors with 2 symmetric indices

acting on 2 spins. This corresponds to the Young diagram λQ = [Q− 2, 2]. Let us consider

the following tableau

i1 i2 . . . iQ−2

a1 a2
(2.38)
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where we again denote the permutation associated with this configuration by a. The

irreducible symmetriser is

e
(a)
[Q−2,2] =



∑

h∈h̃
(a)
λ

h


 (1 + (a1, a2)) (1− (i1, a1)) (1− (i2, a2)) , (2.39)

where h̃
(a)
λ now denotes the subset of SQ consisting of all the permutations that leave a1 and

a2 invariant. To generate the tensor we act with the irreducible symmetriser on Oa1,a2 :

e
(a)
[Q−2,2]Oa1,a2 =



∑

h∈h
(a)
λ

h


 (Oa1,a2 +Oa2,a1 −Oa1,i2 −Oa2,i2 −Oi1,a2 −Oi1,a1 + 2Oi1,i2)

= (Q− 2)! (Oa1,a2 +Oa2,a1)− (Q− 3)!

Q∑

i=1
i6=a1,a2

(Oa1,i +Oa2,i +Oi,a2 +Oi,a1)

+ 2(Q− 4)!

Q∑

i,j=1
i6=j

i,j 6=a1,a2

Oi,j .

To get a nice expression we need to complete each sum with the missing terms, leading us

to different prefactors. We normalise the resulting operator and define the corresponding

tensor t
[Q−2,2]
a1,a2 . The end result is:

t[Q−2,2]
a1,a2 = Oa1,a2 +Oa2,a1 −

1
Q−2




Q∑

i=1
i 6=a1

(Oa1,i +Oi,a1) +

Q∑

i=1
i 6=a2

(Oa2,i +Oi,a2)




+ 2
(Q−1)(Q−2)

Q∑

i,j=1
i 6=j

Oi,j . (2.40)

Note that despite of (2.38), this expression can be extended to any values a1, a2, provided

that a1 6= a2, by permuting the indices as required. The explicit expression of this tensor,

omitting an overall factor of (1− δσ1,σ2), is

t[Q−2,2]
a1,a2

(σ1, σ2) = δa1,σ1δa2,σ2 + δa2,σ1δa1,σ2

− 1
Q−2

(δa1,σ1 + δa1,σ2 + δa2,σ1 + δa2,σ2) +
2

(Q−1)(Q−2)
. (2.41)

This coincides with (2.26), as first found in [11, 20]. It is readily checked that the subspace{
t
[Q−2,2]
a1,a2 : 1 ≤ a1 6= a2 ≤ Q

}
has the correct dimension Q(Q − 3)/2, as given by the hook

formula (2.9) applied to the Young tableau [Q− 2, 2].

It should be stressed that to obtain (2.41) we did not specify any representation of S2

for the spins σ1 and σ2. Indeed, for this tensor the chosen representations of SQ and SN

are not independent: we cannot find operators with symmetric indices a1, a2 which are not
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symmetric for the spins σ1, σ2 as well. In fact, the symmetry of the spins σ is partially or

totally dictated by the Young diagram λQ with the first line removed. The general result

about the relation between the SQ and SN symmetries will be stated below.

2.4.4. Operators with anti-symmetric indices. To complete the discussion of operators

acting on N = 2 spins, we finally consider the tensors with two anti-symmetric indices.

They correspond to the irreducible representation [Q− 2, 1, 1]. Let us consider the following

Young tableau

i1 i2 . . . iQ−2

a1

a2

(2.42)

with its corresponding irreducible symmetriser:

e
(a)
[Q−2,1,1] =



∑

h∈h̃
(a)
λ

h


 (1− (i1, a1)− (i1, a2)− (a1, a2) + (i1, a1, a2) + (i1, a2, a1)) , (2.43)

where h̃
(a)
λ denotes the subset of SQ consisting of all permutations that leave a1 and a2

invariant. Acting on Oa1,a2 yields

e
(a)
[Q−2,1,1]Oa1,a2 = (Q− 2)! (Oa1,a2 −Oa2,a1)− (Q− 3)!

Q∑

i=1
i6=a1,a2

(Oa1,i−Oi,a1+Oi,a2−Oa2,i)

= Q(Q− 3)! (Oa1,a2 −Oa2,a1)

− (Q− 3)!

Q∑

i=1
i6=a1

(Oa1,i−Oi,a1)− (Q − 3)!

Q∑

i=1
i6=a2

(Oi,a2−Oa2,i) .

We define the corresponding normalised operator t
[Q−2,1,1]
a1,a2 :

t[Q−2,1,1]
a1,a2

= 1
Q(Q−3)!

e
(a)
[Q−2,1,1]Oa1,a2 (2.44)

= Oa1,a2 −Oa2,a1 −
1
Q




Q∑

i=1
i 6=a1

(Oa1,i−Oi,a1) +

Q∑

i=1
i 6=a2

(Oi,a2−Oa2,i)


 .

Omitting again the factor (1− δσ1,σ2), the explicit expression corresponding to (2.44) is

t[Q−2,1,1]
a1,a2

(σ1, σ2) = δσ1,a1δσ2,a2 − δσ1,a2δσ2,a1 −
1
Q
(δσ1,a1 − δσ1,a2 + δσ2,a2 − δσ2,a1) . (2.45)

Also in this case the representation of SQ here fully enforces the symmetry between the

spins. This is a consequence of the fact that the number of boxes under the first line of

[Q− 2, 1, 1] is 2 and equal to the number of spins.
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2.4.5. Decomposition of L
(2)
Q . In the end we have the following decomposition of operators

acting on 2 spins:

L
(2)
Q = [Q]⊕ [Q− 1, 1]︸ ︷︷ ︸

L
(1)
Q

⊕[Q]⊕ [Q− 1, 1]︸ ︷︷ ︸
[2]

⊕ [Q− 1, 1]︸ ︷︷ ︸
[1,1]

⊕[Q− 2, 2]⊕ [Q− 2, 1, 1] . (2.46)

The total dimension is seen to be Q2, as it should. Two new operators were constructed,

namely t
[Q−2,1,1]
a1,a2 and t

[Q1,1],[1,1]
a . These operators were not discussed in [11, 20], and omitting

their contribution to (2.46) would give the dimension Q(Q + 1)/2, corresponding to the

number of generators of symmetric Q × Q matrices. Similarly, the contribution of the two

new operators to the dimension is Q(Q − 1)/2, that is, the number of generators of anti-

symmetric Q×Q matrices.

2.5. Procedure for general representations

The corresponding treatment of operators acting on N = 3 spins can be found in

Appendix A, together with a general result on the dimension of the space L
(N)
Q . From this,

and the remarks given above, the procedure to build a tensor in an arbitrary representation

of the group SQ becomes clear.

The case of operators acting on 2 spins in the representation [Q − 1, 1] highlighted the

need of taking into account the representation of the group SN that dictates the symmetries

of the N spins. We need to be careful when choosing a representation of SN because the

representation λQ already imposes symmetry constraints. We recall in particular the case

[Q − 2, 2] involving 2 spins, where the constructed tensor (2.41) automatically came out as

being symmetric in σ1 and σ2, whereas the tensor of representation [Q − 1, 1] acting on 2

spins did not impose any S2 symmetry, which therefore needed to be subsequently imposed.

Let us consider now a Young diagram λQ containing Q− n boxes in the first row and a

total of n boxes in the remaining rows. From this diagram we are going to define a tensor

with n indices a1, . . . , an. We would like to define an operator acting on N spins. This is

obviously only possible if N ≥ n, since we need a sufficient number of spins to act upon.

2.5.1. Primal operator. If the condition n = N is satisfied, the symmetry of the spins σi

is entirely dictated by the Young diagram of shape λQ with the first row removed. In this

case we do not need to specify any λN representation. We shall call such an operator primal.

We consider the Young tableau of shape λQ where we insert all of the indices a1, . . . , aN in

the boxes under the first row of λQ. This define a Young operator (irreducible symmetriser)

via (2.7). We impose that a1 6= a2 6= . . . 6= aN in order to avoid redundancy with other

representations, but we can relax this constraint in principle.

We now define the tensor t
λQ
a1,...,aN such that

tλQ
a1,...,aN

=
1

N
e
(a)
λQ
Oa1,...,aN , (2.47)
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where N is an overall normalisation factor. Of course the normalisation is not fixed by

representation theory and must be conveniently chosen (see later).

2.5.2. Secondary operator. If N > n, we need to specify as well the Young diagram λN that

fixes the SN representation. The corresponding operator will be referred to as secondary.

In order to obtain a non-zero tensor, λN must obey a rule of consistency. Let us denote

by λ̃Q the Young diagram built from λQ by removing its first row. We need to have the

inclusion λ̃Q ⊆ λN , or, in other words, λ̃Q must be obtained by removing some boxes of

λN . We fix the representation of SN by acting with the corresponding projector ẽ
(a)
λN

, as in

(2.36). In order to be coherent with the SQ representation we need to change the definition

of the latter projector with respect to (2.7). We take, only for the SN representation, the

following definition: ẽ
(a)
λN

= a
(a)
λN

s
(a)
λN

, where we note that the order of symmetrisation and anti-

symmetrisation is now the opposite of that used in (2.7) (whence the tilde). The operator

t
λQ,λN
a1,...,an is then defined by

tλQ,λN
a1,...,an

=
1

N
e
(a)
λQ
ẽ
(a)
λN

Oa1,...,an,b1,...,bN−n
, (2.48)

where N is an overall normalisation factor and b1, . . . , bN−n is a set of unspecified indices.

Once again, the normalisation is not fixed by representation theory, but is conveniently

chosen so that the operator stays finite when Q goes to infinity. We impose that a1 6= a2 6=

. . . 6= an 6= b1 6= . . . 6= bN−n in order to avoid redundancy with other representations, but

again we can relax this constraint in principle.

We still need to specify the Young tableaux corresponding to the shapes λQ and λN .

First for λQ, we order a1, . . . , aN in the boxes strictly below the first row and place all the

remaining values (including the b’s) in the first row. The exact values of the b’s are not

important, since we symmetrise the indices which do not appear in the set {a1, . . . , an}.

Let us give an example with λQ = [Q− 3, 2, 1]. The tensors have 3 indices, a1, a2 and a3,

and the Young tableau has the form

. . .

a1 a2

a3

(2.49)

The tableau of shape λN must respect the inner symmetry between σ1, . . . , σn induced by

λQ. As previously discussed, the n first spins (among the N defining the tensor) have already

acquired a given symmetry, due to the action of λQ. To construct the tableau λN , we thus

place the n first indices as if we were considering the previous tableau of SQ with its first

row removed, and we choose an arbitrary index for each of the remaining N − n boxes. For

instance, if we want to act on N = 5 spins with symmetry [3, 2] of SN with a tensor belonging

to the SQ representation [Q − 3, 2, 1], we would have to choose a tableau of the following
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type

1 2

3
(2.50)

and put arbitrarily the indices 4 and 5 in the blank boxes.

2.5.3. Consistency between SQ and SN representations. Even though the symmetries SN

and SQ are different, they interact with each other and the two Young diagrams that we use

to define a tensor must somehow be compatible. Consider a tensor acting on N spins with a

given symmetry SN associated to a Young tableau λN . We take λQ to be a Young diagram

with Q boxes and define λ̃Q as the diagram obtained by removing the boxes in the first line

of λQ. A representation of SQ leads to a non-trivial result if λ̃Q can be obtained from λN by

removing at most one box in each column.

For instance consider the Young diagram λN = [2, 1]. The only possible representations

λQ ∈ SQ that are compatible with λN are [Q− 3, 2, 1], [Q− 2, 2], [Q− 2, 1, 1] and [Q− 1, 1].

There are no tensors in the representation [Q] since to obtain the corresponding λ̃Q = ∅ from

λN we would have to remove 2 boxes from its the first column.

This consistency criterion can be understood from the following observation. Consider

a pair of representations λN and λQ where λQ is not compatible with λN according to the

previous rule. We construct a tensor tλN ,λQ from the following definition:

tλQ,λN = eλQ
ẽλN

Oa1,a2,...,aN . (2.51)

In general, ẽ is given by its definition in terms of the action of permutations of SN but if we

act first with ẽ we can write this operator in terms of permutations of SQ. We can interpret

ẽλN
a sort of Young operator with a tableau of N boxes filled with the indices a1, . . . , aN

instead of the indices 1, . . . , N .

For the sake of illustration, we consider λN = [2, 2] and λQ = [Q − 2, 1, 1]. The tensor

reads

tλQ,λN = eλQ
ẽλN

Oa1,a2,iQ−3,iQ−4
(2.52)

and we use the following tableaux

i1 i2 . . . iQ−2

a1

a2

1 3

2 4
(2.53)

for SQ and SN respectively. We can write ẽ as permutations of SQ with the operator

associated to

a1 iQ−3

a2 iQ−2

(2.54)
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Of couse this tableau is not a Young tableaux corresponding to a representation of SQ, but

it defines an operator with permutations in a subgroup of SQ equivalent to S4.

Since λQ is not compatible with λN , there are 2 indices ai and aj that are anti-symmetrised

by ẽ but belong to the first line of the tableau defining eλQ
(here iQ−3 and iQ−2). We consider

Q large enough, so that those indices are pushed by definition somewhere in the first row of

the tableau of shape λQ. This means that they are first antisymmetrised by ẽλN
and then

symmetrised by eλQ
. The result of these operations is exactly the null tensor, and hence

justifies the consistency rule.

It is obvious that the argument carries over to the general case. If λN contains a

column having at least two more boxes than λ̃Q, then the corresponding indices will be

antisymmetrised by ẽλN
and symmetrised by eλQ

, so that tλQ,λN = 0 in (2.51).

2.6. Internal structure and LCFT

The structure of operators acting symmetrically on all their spins was initiated in [11] and

fully discussed in [20]. The logarithmic features of the LCFT that arises in the continuum

limit were studied by analysing how the divergences in the definition of the operators could

be removed by mixing operators of the same scaling limit into Jordan cells.

For instance, the 2-cluster operator with Young tableau [Q− 2, 2] acting on N = 2 spins

is ill-defined for particular values of Q, as witnessed by the poles on the right-hand side

of (2.41). The mechanism explaining the logarithmic nature of correlation functions cures

those divergences by mixing two operators [11, 20]. For instance, (2.41) can be put into the

form

t
[Q−2,2]
a,b = Oa1,a2 +Oa2,a1 −

1
Q−2

(
t[Q−1,1],[2]
a + t

[Q−1,1],[2]
b

)
− 2

Q(Q−1)
t[Q] , (2.55)

in which the operator is obtained from the basis elements (2.3) by subtracting off components

that belong to tensors with another symmetry. The equation (2.55) is ill-defined for

percolation (Q = 1) and this observation leads to the prediction that t
[Q−2,2]
a,b is mixed with the

energy operator t[Q] (2.27) in a Jordan cell of the dilatation operator for the CFT describing

percolation.

In order to make further progress on the LCFT structure of the Potts model we need

to decompose all operators in a similar way. Consider a primal operator corresponding to a

Young diagram λQ. All the tensors that are subtracted are called in the following subtensors

and obey a simple rule. To be a subtensor (associated with a primal), its Young diagram

λ′
Q must be obtained by removing boxes of λQ from the rows 2, 3, . . . and adding them to

the first row. In particular, the subtensors are secondary to the primal from which they are

subtracted. For example, in the case of λQ = [Q−3, 2, 1] all the Young diagram verifying this

condition are [Q−2, 2], [Q−2, 1, 1] , [Q−1, 1] and [Q]. Moreover, if a subtensor corresponds

to a diagram where two or more boxes were removed in the same column of λQ it would not

appear in the structure of the primal. In the example of λQ = [Q− 3, 2, 1], there is thus no

subtensor with the symmetry of λ′
Q = [Q] because in order to go from λQ to λ′

Q two boxes
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must be removed from the first column. This requirement can be understood in term of

anti-symmetrisation/symmetrisation in the associated Young operator, using an argument

similar to the one given in section 2.5.3.

The subtensors have the same λN symmetry as the primal from which they are subtracted.

Recall that we do not always need to express the λN symmetry explicitly; see (2.55) for an

example. In particular, for a primal operator, λN is simply obtained by removing the first

row of λQ.

The internal structure that generalises (2.55) can thus be written in the symbolic form

tλQ = (O)−
∑

λ′

Q

1

AλQ,λ′

Q
(Q)

tλ
′

Q (2.56)

where the sum is over all the Young diagram verifying the subtensor condition given above,

AλQ,λ′

Q
(Q) is a ratio of polynomials in Q, and (O) is a combination of basis elements (2.3)

that does not depend on Q and whose exact form dictated by the Young tableau λQ of the

primal operator.

The exact form of (O) and tλ
′

Q can be computed in term of Young operators, but it is

actually not necessary to do those explicit computations in order to make LCFT predictions.

Rather, only the zeros of the functions AλQ,λ′

Q
(Q) are needed in order to understand the

mixing between operators.

For two Young diagrams λ1 = [λ1
0, λ

1
1, . . . , λ

1
N ] and λ2 = [λ2

0, λ
2
1, . . . , λ

2
N ], where λi

j denotes

the number of boxes‖ in the (j +1)-th row of λi, we conjecture that—up to a multiplicative

constant—the polynomial function Aλ1,λ2(Q) is

Aλ1,λ2(Q) ∝
N∏

i=1

(Q− n+ i− 1− λ2
i )!

(Q− n+ i− 1− λ1
i )!

(2.57)

The multiplicative constant depends on the normalisation convention that we use in our

definition (2.48).

The amount of evidence supporting the conjecture (2.57) will be discussed in section 3.4

below.

3. Correlation functions

We now compute the two-point functions of the operators that we constructed in section 2

from symmetry considerations. The dependence of the correlation functions on the tensorial

indices is fully determined by the irreducible representations of the group SQ. All the results

will be related to the probability that two groups of spins, each comprising N spins, are

connected together by FK clusters in a particular way.

‖ We use the convention of padding with zeros. More precisely, if λi has n + 1 rows with n < N , we set
λi
j = 0 for j > n+ 1.
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For the purpose of taking the continuum limit, and for the physical interpretation as

a two-point function to make sense, we imagine that each group of spins is confined to a

small neighbourhood on the lattice. It should nevertheless be stressed that this constraint

is completely irrelevant for the applicability of the representation theory. For simplicity, we

consider only operators that vanish if two spins are equal, and so an FK cluster can at most

contain one spin from each group.

Let us introduce the notation used all along this section. Consider a correlation function

of two operators, each of which acts on a group of N spins situated in a small neighbourhood,

centered at two points in space, that we denote r1 and r2 respectively. The correlations

will involve the geometrical probability that some pairs of spins—always one from each

neighbourhood—are connected in an FK cluster. In order to represent such a probability

we draw two groups of N dots, the first group representing the spins σ
(r1)
1 , . . . , σ

(r1)
N near r1,

and the other σ
(r2)
1 , . . . , σ

(r2)
N near r2. We draw a line between one spin at r1 and one spin at

r2 if they belong to the same FK cluster. Of course two spins in the same neighbourhood

cannot be connected, since we consider exclusively operators that vanish if anyone of the N

spins acted upon coincide.

For instance, let us illustrate this with an operator t(σ1, σ2, σ3) acting on N = 3 spins and

its two-point correlation function 〈t(r1)t(r2)〉. The symbol P

( )
denotes the probability of

the following situation: the spin σ
(r1)
1 and the spin σ

(r2)
2 are not connected to the four others

through an FK cluster, whereas σ
(r1)
2 (resp. σ

(r1)
3 ) and σ

(r2)
1 (resp. σ

(r2)
3 ) are in the same

FK cluster. This geometrical dependence, of major importance for the physical system, will

depend on all the information concerning the lattice, in particular the number of dimensions

d in which it lives. Unfortunately, computing such a quantity exactly for very general cases

is out of reach,¶ but thanks to representation theory, and later scale invariance, we are still

able to understand some features.

In order to compute the correlation function between two operators, we list all possible

connectivities and compute their respective amplitudes. The average is taken by summing

the explicit expressions of the product of operators over independent groups of spins. In

other words, if two spins are connected by an FK cluster, we set them equal, and the average

is taken by independently summing over the resulting set of FK clusters.

Our results comprise the two-point correlation functions found in [20], except that we now

extend the procedure to our new, non-scalar operators. We will find interesting properties

that do not appear when one considers only symmetric operators. On the other hand, [20]

discussed also some cases of three-point correlation functions—although this can also be

done in the present context, we have chosen to focus on two-point functions only.

¶ Exact expressions exist for simple cases in two dimensions, such as for the Ising model. But even this
is often restricted to specific regular lattices (such as the square lattice) with specific boundary conditions
(free, cylindrical, toroidal, etc). However, in d = 2, CFT can often predict the power-law asymptotic form
of such correlation functions, and this turns out to be universal (i.e., independent of lattice details). The
appearance of logarithms will be discussed below.
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Let us first investigate the simplest new case corresponding to an anti-symmetric tensor

acting on 2 spins. This example will also serve to illustrate the way in which correlation

functions are computed. We will then comment briefly on the case of tensors with mixed

symmetry (i.e., neither fully symmetric, nor fully anti-symmetric).

3.1. Symmetric operator acting on 2 spins

The two-point function of the 2-cluster operator was computed in [11, 20]. We compute it

again here in order to illustrate the method and emphasise a particular feature. Let us thus

consider the average 〈
t[Q−2,2]
a1,a2

(σ1, σ2)t
[Q−2,2]
b1,b2

(σ3, σ4)
〉
. (3.1)

We first compute the amplitude over the probability that σ1 and σ3 are in the same cluster,

but that σ2 and σ4 are in distinct independent clusters. This probability is represented by

P

( )
. Its amplitude is

1
Q3

∑

σ1,σ2,σ4

t[Q−2,2]
a1,a2 (σ1, σ2)t

[Q−2,2]
b1,b2

(σ1, σ4) = 0 (3.2)

The computation is straightforward; one only needs to insert the expression (2.41) and

remember that t[Q−2,2](σ1, σ2) = 0 when σ1 = σ2.
+ Computing in the same way the amplitude

of each possible probability of having the 4 spins connected in any specific way, we see that

only two amplitude are non-zero. They correspond to the probabilities P

( )
and P

( )
.

They have the same amplitude, which is

1
Q2

∑

σ1,σ2

t[Q−2,2]
a1,a2

(σ1, σ2)t
[Q−2,2]
b1,b2

(σ1, σ2) =

2
Q2

(
δa1,b1δa2,b2 + δa1,b2δa2,b1 −

1
Q−2

(
δa1,b1 + δa2,b2 + δa1,b2 + δa2,b1

)
+ 2

(Q−2)(Q−1)

)
.

In the end the correlation function is
〈
t[Q−2,2],[2]
a1,a2 (r1)t

[Q−2,2],[2]
b1,b2

(r2)
〉
= 2

Q2

(
δa1,b1δa2,b2 + δa1,b2δa2,b1

− 1
Q−2

(
δa1,b1 + δa2,b2 + δa1,b2 + δa2,b1

)
+ 2

(Q−2)(Q−1)

)(
P

( )
+ P

( ))
, (3.3)

where r1 and r2 are respectively the position of the neighbourhood of (σ1, σ2) and (σ3, σ4).

3.2. Anti-symmetric operator acting on 2 spins

Next consider the correlation function for a tensor with N = 2 spins in the symmetry
corresponding to the representation of SN given by the anti-symmetric Young tableau [1, 1].
It can be computed using the same procedure as above. Note that in the decomposition

+ Alternatively, one simply notices that
∑

σ2
t
[Q−2,2]
a1,a2 (σ1, σ2) = 0.
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of t
[Q−2,1,1],[1,1]
a,b given by (2.45) appears the subtensor t

[Q−1,1],[1,1]
a given by (2.35); the latter

corresponds to a tensor in the standard representation, but acting on two anti-symmetric
spins.∗ We also compute its correlation function for completeness. We find

〈
t[Q−1,1],[1,1]
a (r1)t

[Q−1,1],[1,1]
b (r2)

〉
= (3.4)

1
Q

(
δa,b −

1
Q

)(
2P

( )
− 2P

( )
+

(
P

( )
+ P

( )
− P

( )
− P

( )))
,

〈
t[Q−2,1,1],[1,1]
a1,a2

(r1)t
[Q−2,1,1],[1,1]
b1,b2

(r2)
〉
= (3.5)

8
Q2

(
δa1,b1δa2,b2 − δa1,b2δa2,b1 −

1
Q

(
δa1,b1 + δa2,b2 − δa1,b2 − δa2,b1

))(
P

( )
− P

( ))
,

〈
t[Q−2,1,1],[1,1]
a1,a2

(r1)t
[Q−1,1],[1,1]
b (r2)

〉
= 0 . (3.6)

Before commenting on this result, let us again explain carefully how we can compute these

quantities. Consider the two-point function
〈
t
[Q−2,1,1],[1,1]
a1,a2 (r1)t

[Q−2,1,1],[1,1]
b1,b2

(r2)
〉

of operators

whose expression was computed previously in (2.45):

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) = δa1,σ1δa2,σ2 − δa1,σ2δa2,σ1 −
1
Q
(δa1,σ1 + δa2,σ2 − δa1,σ2 − δa2,σ1) .

When we compute the correlation function, three cases appear. First, supposing that

the spins around r1 are not connected to the spins around r2, the two-point function is

proportional to the probability P

( )
. The amplitude of this probability is obtained after

averaging the product of the two tensors summed independently over all the spins:♯

1
Q2

∑

σ1,σ2

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2)
1
Q2

∑

σ3,σ4

t
[Q−2,1,1],[1,1]
b1,b2

(σ3, σ4) = 0 . (3.7)

The second case involves situations where a unique spin around r1 is connected to another

spin around r2. There are four such situations, related to P

( )
, P

( )
, P

( )
and P

( )
.

Let us illustrate the first case. In order to compute the amplitude of this

probability appearing in the correlation function, we need to consider the product

t
[Q−2,1,1],[1,1]
a1,a2 (σ1, σ2)t

[Q−2,1,1],[1,1]
b1,b2

(σ3, σ4), average independently over σ2 and σ4, and average

over σ1 and σ3 with the constraint that they are in the same FK cluster (whence σ1 = σ3).

It follows that
1
Q3

∑

σ1,σ2,σ4

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) t
[Q−2,1,1],[1,1]
b1,b2

(σ1, σ4) = 0 . (3.8)

The corresponding amplitude in (3.5) is thus zero. However, if we consider the two-point

correlation function involving two tensors t
[Q−2,1],[1,1]
a as in (3.4), we find a non-trivial result

∗ In this section we have set t[Q−2,1,1],[1,1]
a,b ≡ t

[Q−2,1,1]
a,b , adding a superfluous [1, 1] to the general notation for

extra clarity.

♯ Alternatively, one simply notices that
∑

σ2
t
[Q−2,1,1],[1,1]
a1,a2 (σ1, σ2) = 0.
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for that same amplitude:

1
Q3

∑

σ1,σ2,σ4

t[Q−1,1],[1,1]
a (σ1, σ2) t

[Q−1,1],[1,1]
b (σ1, σ4) =

1
Q

(
δa,b −

1
Q

)
. (3.9)

Finally, consider the case with two pairwise connections by FK clusters: P

( )
, P

( )
.

Averaging the tensor product over the spins with these constraints, we get

1
Q2

∑

σ1,σ2

t[Q−2,1,1],[1,1]
a1,a2

(σ1, σ2) t
[Q−2,1,1],[1,1]
b1,b2

(σ1, σ2) =

8
Q2

(
δa1,b1δa2,b2 − δa1,b2δa2,b1 −

1
Q

(
δa1,b1 + δa2,b2 − δa1,b2 − δa2,b1

))
, (3.10)

or the same expression with the opposite sign if we permute σ1 and σ2 in one of the two

tensors. Performing a similar computation for the two-point function of t
[Q−2,1],[1,1]
a completes

the proof of (3.4)–(3.5). The crossed correlator (3.6) of the two different tensors with [1, 1]

symmetry turns out to vanish identically.

We notice that an operator that corresponds to a representation of SQ having n tensorial

indices, involves only probabilities that have at least n FK clusters. This result is generally

true for any representation of SQ and SN (and was already noticed for the symmetric case in

[20]). In particular, when a tensor acts on the minimum number of spins (i.e., when n = N),

such as in (3.5), the result involves only probabilities with all the spins connected in a certain

FK configuration. In other words, primal tensors of rank N (i.e., with N tensor indices) are

precisely the N -cluster operators discussed in section 2.1, having a symmetry given by the

corresponding Young diagram λQ ∈ SQ.

The major difference between (3.5) and the correlation function (3.3) found for the

symmetric tensor with N = 2 [11, 20], is that the dominant term is not the probability

to get a cluster that expands from 0 to r, but a sub-leading contribution to that probability.

Indeed, the minus sign between the two FK diagrams cancels out the dominant power law

decay of the two-cluster operator, leaving only a much smaller correction term. A similar

situation will appear in the next section when we consider a mixed symmetry.

3.3. Operator with mixed symmetry : [Q− 3, 2, 1]

Briefly, and without giving the details of the computations, we present here the simplest

case of mixed symmetry, namely the representation of SQ [Q−3, 2, 1] with λN = [2, 1]. After

computation we find
〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,2,1],[2,1]
b1,b2,b3

(r2)
〉
=

9
Q3

(
δ3 + 1

2(Q−1)
δ2s −

3
2(Q−3)

δ2a +
1

(Q−1)(Q−3)
δ1
))

(3.11)

×

(
2 P

( )
+ P

( )
+ P

( )
− 2 P

( )
− P

( )
− P

( ))
,
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where δni is a short-hand notation for a sum of products of n Kronecker functions. The terms

δ3, δ2s , δ
2
a and δ1 involve respectively 6, 18, 8 and 9 terms.

Let us clarify the important features of this result. First, there is an overall (and rather

unimportant) constant which is not fixed by symmetry considerations. This multiplies a

factor containing an appropriate function of the tensor indices, and another factor which

is an appropriate linear combination of FK probabilities. These two factors are entirely

determined by the representation in which the tensor being considered lives. These factors

are seen to be more complicated than in the fully symmetric case (3.3) or the anti-symmetric

case (3.5). We notice that, as we have discussed before, since the considered tensor has an

SQ representation that is fully redundant with its SN representation (n = N), we only get

probabilities where all the spins at r1 are connected through FK clusters to another spin at

r2. In other words, there are no terms such as P

( )
or P

( )
, etc.

Again the mixed correlation functions of two operators, living in the same SN

representation but with a different SQ symmetry, are exactly vanishing:

〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−2,2],[2,1]
b1,b2

(r2)
〉
= 0 ,

〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−2,1,1],[2,1]
b1,b2

(r2)
〉
= 0 ,

〈
t[Q−3,2,1],[2,1]
a1,a2,a3 (r1)t

[Q−1,1],[2,1]
b (r2)

〉
= 0 .

We can also compute the correlation functions involving the two other operators

corresponding to the SQ representations [Q− 3, 3] and [Q− 3, 1, 1, 1]. They again vanish:

〈
t[Q−3,2,1],[2,1]
a1,a2,a3 (r1)t

[Q−3,3],[3]
b1,b2,b3

(r2)
〉
= 0 ,

〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,1,1,1],[1,1,1]
b1,b2,b3

(r2)
〉
= 0 . (3.12)

Let us mention that in general the correlation function between two operators in

the same SQ representation but with a different λN Young tableaux is non-vanishing.

When we compute
〈
t
[Q−2,2],[2,1]
a1,a2 (r1)t

[Q−2,2],[3]
b1,b2

〉
we find a result with probabilities involving 2

propagating FK clusters. On the other hand, the vanishing of correlation functions between

field in different SQ representations is consistent with general representation theoretical

expectations.

3.4. Generic case

Considering the fact that (3.11) is the easiest two-point function of tensors with a mixed

symmetry, it is clear that other cases cannot easily be computed by hand. We have therefore

used exact symbolic computations in Mathematica extensively in order to construct the

tensors in higher representations and their corresponding two-point functions. In this way, we

have computed all tensor acting on up to N = 5 spins. We give in the appendix Appendix A



Non-scalar operators for the Potts model in arbitrary dimension 24

the expressions for the operators acting on N = 3 spins and their two-point functions. We

have extensive evidence for the conjecture (2.57) since we are able to compute numerically

the exact decomposition to obtain the poles. Numerical evidence and construction of the

operators are available in electronic form as supplementary material to this paper.††

For tensors corresponding to primal operators, the correlation function of two identical

fields is generically found to be composed of two factors, apart from the overall normalisation.

The first factor depends on the tensor indices and is entirely fixed by the chosen SQ

representation. The second factor is a linear combination of probabilities that N distinct

FK clusters propagate from one neighbourhood to the other, and where the order of the

cluster end points depends also on the representation. This latter part depends on the

specific lattice, and the dimension d. Computing the decay of this linear combination of

probabilities determines the corresponding critical exponent, and is amenable to numerical

work (see below). The required linear combination can be obtained for generic λN very easily

by acting with the irreducible symmetriser ẽλN
on cluster end points.

4. Physical interpretation

4.1. Primal and secondary operators

In d = 2 dimensions, operators in conformal field theories can be classified as primaries, quasi-

primaries and descendants, according to their covariance properties under (local) conformal

transformations. In d > 2, the conformal algebra is finite-dimensional and strictly speaking

operators are at most quasi-primaries. The operators that we labelled primal are believed to

correspond to primaries in d = 2 or quasi-primaries in d > 2. This interpretation is supported

by the vanishing two-point functions between two different primal operators. The operators

labelled as secondary will in general correspond to descendants or sub-leading operators in

d > 2.

There appears to be at least one exception to this general correspondence. The energy

operator corresponds [20] to the secondary tensor discussed in section 2.4.1, with λQ = [Q]

and λN = [2], which is a well-known to be a primary operator in d = 2 CFT.

4.2. Critical exponents on a cylinder

In this section we discuss the identification of the tensors constructed in section 2 with

conformal fields in d = 2 dimensions. The operators with n = N that we have dubbed primal

will be shown to correspond to primary fields in the sense of CFT. All the corresponding

scaling dimensions will be identified exactly. We shall also see that the d = 2 case conceals

a subtlety with respect to the case of arbitrary dimension, d > 2. Namely, depending on

the precise lattice regularisation used to define the FK probabilities, that enter into the

†† In the form of a file TensorsPotts.nb that can be processed by Mathematica.
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two-point correlators, it is in some cases possible to obtain different results for the critical

exponents.

The key remark is that in d = 2, some configurations of connectivities between clusters

are not possible. Consider the usual situation with two small neighbourhoods, D1 and D2,

each containing N spins. We shall suppose each neighbourhood D to be a simply connected

domain, and the N marked points to reside at its boundary ∂D. On a given lattice, if the N

marked points cover the boundary of D sufficiently tightly, the FK cluster emanating from

some particular marked point i ∈ ∂D will be unable to enter the interior of D and exit it

in-between two other marked points, j and k. Thus, since clusters cannot cross each other

in d = 2, this implies that the N marked FK clusters will only be able to permute cyclically

in the space outside D. In particular, the clusters cannot undergo arbitrary permutations.

To appreciate this remark, consider the specific example shown below, on the triangular

lattice. We take each of D1 and D2 to consist of the 3 vertices around an elementary triangle.

Consider now a pair of 3-cluster operators, O1 and O2:

O1

1

2 3

O2

1

2 3

(4.1)

It is clear that in this setup the probabilities P

( )
, P

( )
and P

( )
are exactly 0.

This would not be the case in higher dimensions, since the clusters could cross freely to

realise arbitrary permutations, by “entering the third dimension”.

While this setup is relevant for numerical simulations of the Monte Carlo type, the

same conclusion applies to transfer matrix diagonalisations. Indeed, in the latter, the two

boundaries, ∂D1 and ∂D2 are pushed to opposite extremites of an infinite cylinder, by means

of a conformal mapping. So also in this geometry, only cyclic permutations of the marked

clusters can be realised, because the clusters propagate from one cylinder extremity to the

other and can only interchange by winding around the periodic boundary condition.

In other words, the permutation group is not fully relevant in d = 2 dimensions.

Therefore, if we consider for instance the mixed Young diagram [Q−3, 2, 1], the corresponding

two-point function will only involve the following linear combination of probabilities:

〈
t[Q−3,2,1],[2,1]
a1,a2,a3

(r1)t
[Q−3,2,1],[2,1]
b1,b2,b3

(r2)
〉
∝

(
2 P

( )
− P

( )
− P

( ))
(4.2)

as opposed to (3.11) in the general case.
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Following these observations, consider now an irreducible representation of SN . Within

the subgroup ZN , this is reducible and can be decomposed into a direct sum of irreducible

representations of ZN . The operators corresponding to each term in this decomposition

are well known, so we will obtain in particular an identification of the critical exponents of

our operators within d = 2 CFT. We recall that irreducible representations of ZN are all

of dimension 1 and labelled by an integer p, with 0 ≤ p ≤ N − 1, where the first cyclic

permutation is represented by exp
(
i2πp

N

)
.

A procedure for decomposing an irreducible representation of SN into representations of

ZN is given for a more general case in [25]. Given a Young diagram λN ∈ SN the procedure

in our case is the following:

• List all the D standard Young tableaux corresponding to the Young diagram λN . Here,

D denotes the dimension of the irreducible representation corresponding to λN , which

can be computed from (2.9).

• Compute the index of each standard Young tableau. It is defined as the sum of the

descents of the Young tableau. A number i is a descent, if i+1 appears in a row strictly

below i in the tableau.

• Let p denote the index modulo N , so that it obeys −N
2

< p ≤ N
2
.

• Repeating this for all D standard Young tableaux, we obtain D such integers:

p1, p2, . . . , pD. An irreducible representation of SN restricted to the cyclic group ZN

can then be decomposed as follows:

λN = exp

(
i
2πp1
N

)
⊕ exp

(
i
2πp2
N

)
⊕ . . .⊕ exp

(
i
2πpD
N

)
. (4.3)

We call p/N the pseudo-momentum. The critical exponents of the operator within this

representation of ZN are known [26, 27].

They can be written in terms of an extended Kac table [2] of conformal weights

hr,s =
(r(x+ 1)− sx)2 − 1

4x(x+ 1)
, (4.4)

with Kac labels (r, s) of the form (r, s) = (± p
N
, N), as follows:

∆p,N = h p
N
,N + h− p

N
,N =

N2(N2x2 − 1) + p2(x+ 1)2

2N2x(x+ 1)
, (4.5)

ℓ = h− p
N
,N − h p

N
,N = p . (4.6)

Here ∆p,N denotes the scaling dimension, and ℓ is the conformal spin. The number of states

in the Potts model corresponds to the parameter x via

Q = 4 cos2
(

π

x+ 1

)
. (4.7)
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In the end, the operator corresponding to the irreducible representation λN will have

a dominant scaling dimension corresponding to the smallest exponent in the set {∆|pi|,N},

where the pi correspond to the decomposition of λN restricted to the cyclic group ZN . Since

p → ∆p,N is an increasing function for p positive, we find that the leading contribution comes

from the smallest absolute value of the p’s.

For instance, the representation of S2 with Young diagram [1, 1] is of dimension 1 and

has only one standard Young tableau:

1

2
(4.8)

We find that p = 1, so the scaling dimension is ∆1,2 and its spin is ℓ = 1.

Let us give a slightly more complicated example, from S4, with the Young diagram [2, 2].

There are two standard tableaux:

1 2

3 4

1 3

2 4
(4.9)

We find p = 2 for the first tableau and p = 0 for the second. The dominant contribution to

the two-point function of the operator associated with this representation, in d = 2 CFT,

will have scaling dimension ∆0,4 and spin ℓ = 0. The scaling dimension ∆2,4, corresponding

to the first tableau, is a sub-leading exponent.

The only exception to this rule is for the case N = 1 where the magnetisation operator

is given by (r, s) = (1
2
, 0) instead of (r, s) = (0, 1) [20]. Indeed, the N -cluster operator

corresponds generically (i.e., for N > 1) to a 2N -leg watermelon operator in d = 2, but this

is not true for N = 1.

4.3. Numerics

Numerical checks of the analytically predicted critical exponents can be performed by using

several methods.

We first investigate the case of percolation, corresponding to Q = 1. Using Monte Carlo

simulations, we have studied the scaling behavior of the N = 2 two-points function of the

tensors t[Q−2,2] and t[Q−2,1,1]. The scaling dimensions of the associated fields are predicted

by (4.5) to be ∆s = 2h0,2 = 5/4 and ∆a = h1/2,2 + h−1/2,2 = 23/16 for the symmetric and

anti-symmetric tensor, respectively. The averaging was done over 108 configurations. The

results, shown in Figure 1, are in good agreement with the exact values.

In order to measure the exponents for tensors of higher order, the transfer matrix

formalism is helpful. By exact diagonalisation of transfer matrices on a cylinder, we are

able to extract the conformal data from finite-size scaling corrections to the free energies

[28, 29]. We use the Fortuin-Kasteleyn cluster representation. The state for a row of L spins

within a time slice is encoded by specifying the way in which the spins are connected through
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Figure 1. Linear combination P = P1 ± P2, where P1 = P

( )
and P2 = P

( )
, of

probabilities for the propagation of N = 2 clusters in percolation (Q = 1, or x = 2) obtained
in Monte Carlo simulations. The quantity r is the distance between the two operators in
lattice spacing. The red plot corresponds to (3.3) and the blue plot to (3.5). The critical
exponents correspond to slopes 2∆0,2 = 5

2 = 2.5 and 2∆1,2 = 23
8 = 2.875. Numerically we

find 2∆0,2 = 2.54(8) and 2∆1,2 = 2.9(1).

the (parts of) FK clusters constructed at previous times [29]. The transfer matrix adds a

row to the system. In order to take into account the non-local weight Q for each cluster, the

transfer matrix multiplies by the Boltzmann weight Q whenever it acts on the last (in the

time direction) spin of a cluster.

To compute interesting quantities, we place ourselves in sectors where N ≥ 1 clusters

are marked. The marked clusters are constrained to propagate at every step of the action

of the transfer matrix, so they cannot be left behind by the time evolution. This means

that N distinct clusters propagate from one end to the other of the cylinder. The case

N = 1 corresponds to the magnetisation, and the finite-size scaling of the free energy in this

sector provides an estimate of the magnetisation exponent. In general, we extract estimates

of critical exponents from the finite-size scaling of the largest eigenvalues in each sector,

following [28]. We have only considered the critical exponents of primaries (i.e., N = n)

where each marked spin is connected to a propagating cluster.

For a state with N marked clusters, the Young symmetriser acts on the labeling of the

clusters. This provides a state in the N -cluster sector of the transfer matrix with a well-

defined SQ symmetry. Since the Young symmetriser is idempotent and commutes with the

transfer matrix, we can avoid numerical instabilities by letting it act every time a row has
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been added by the transfer matrix.

For instance, consider a state with N = 2 marked clusters, A and B, that we denote

symbolically as v = |X,X,A,B,X,X〉. The vector v corresponds to a state of width L = 6

sites, where the third and fourth spins belong respectively to the clusters marked A and B,

and the others are not specified in our notation (X). They can be initialised, for instance, so

that each X corresponds to a different unmarked cluster. The action of the anti-symmetriser

(2.44) gives the vector v = |X,X,A,B,X,X〉 − |X,X,B,A,X,X〉 that generates a sector

of the transfer matrix.

The largest eigenvalue of each sector is then computed from a standard iterative scheme,

and we can extract the scaling dimension of the associated operator. We are able to extract

very precise numerical data using this formalism. The numerical extrapolation for the critical

exponents, as function of Q, is shown in Figure 2.
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Figure 2. Critical exponents for the propagation of two anti-symmetric clusters, as a
function of Q. We computed all conformal dimensions corresponding to the propagation
of N = 1, 2, 3 FK-clusters. The lines are the theoretical values ∆p,N = hp/N,N + h−p/N,N

for N > 1 and ∆0,1 = 2h1/2,0 for the magnetisation operator. The points are the data
extrapolated from a numerical diagonalisation of the transfer matrix using finite-size scaling
on a cylinder. We observe a very good agreement, as long as we do not take Q too close
to 4. In the latter case the convergence is impeded by logarithmic terms appearing in the
finite-size corrections [30].

4.4. Spin

It is also possible to verify the predictions for the conformal spin in numerical simulations.
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θ

θ

Figure 3. Rotations performed on the lattice to measure the spin of an operator acting
on N = 2 sites. Left panel : One operator acts on the two red sites. We measure the
correlation function with another operator (corresponding to the two blue sites) with Monte
Carlo simulations. We can move the right red dot around the other one to measure the spin
of the operator through the correlation function but this is very restricted by the lattice
discretisation (the usable positions are marked with a cross). A first solution to this issue is
to increase the distance between the two red sites (this is allowed if the two red points are
close enough compared to the distance with the blue sites). Right panel : A simpler solution
is to keep the relative orientation of each pair of sites fixed and move globally the blue sites
around the red ones. This rotation defines the angle θ. Those correlations are easier to
measure, since we are less affected by the lattice discretisation.

Let us consider, for instance, the two-point function corresponding to the tensor (2.44).

From the previous section, we expect that t
[Q−2,1,1],[1,1]
a1,a2 corresponds, in d = 2 CFT, to a field

of spin 1. It acts on two sites in the same neighbourhood, whose relative orientation defines

a unit vector uµ, which corresponds to the direction of the vector going from the first to the

second site. The general correlation function of a vector field Oµ is predicted by conformal

invariance to be [31, 32]

〈Oµ(x)Oν(y)〉 =
δµ,ν − 2 (x−y)µ(x−y)ν

(x−y)2

|x− y|2∆
. (4.10)

We define also Ou = uµOµ. Thus, the correlation function evaluated at the points x = 0 and

y = (r, 0) reads

〈Ou1(x)Ou2(y)〉 = −
cos(θ1 + θ2)

r2∆
, (4.11)

where u1 = (cos θ1, sin θ1) and u2 = (cos θ2, sin θ2).

It is readily shown that if we keep u1 and u2 fixed, and rotate x around y through an

angle θ, the above expression is multiplied by an angular factor cos 2θ. This last property is

amenable to numerical verification. Because of the lattice discretisation, it is in fact easier

to move one of the points, take the orientation fixed (Figure 3), rather than to apply a local

rotation. Figure 4 shows that we can measure this rotation effect on the lattice using Monte

Carlo simulations.
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Figure 4. Linear combination P = P1 ± P2, where P1 = P

( )
and P2 = P

( )
, of

renormalised probabilities for the propagation of N = 2 clusters in percolation (Q = 1, or
x = 2). A rotations corresponding to the one described on the right panel of Figure 3 is
performed and parametrized by θ. The red plot corresponds to (3.3) and the blue plot to
(3.5), whose angular dependence is proportional to 1 and cos 2θ, respectively.

5. Conclusion

In this paper, following the work of two of the authors [20], we have generalised the

classification of operators in the Potts model, by using its underlying SQ symmetry. The

initial inspiration to this seris of works was Cardy’s ideas [9] to use discrete symmetries and

a limiting procedure to study LCFTs. Here we obtained a large set of non-scalar operators,

completing the scalar ones found in [20].

We computed their correlation functions and, using this, we identified observables on the

lattice that behave non-trivially under rotations. The analysis in the two-dimensional case

revealed that the corresponding critical exponents take known values [26]. We were able

to verify their conformal dimensions using transfer-matrix diagonalisation and Monte Carlo

methods. In addition, we discussed the meaning of the conformal spin for lattice observables.

Our techniques are independent of the dimension d, and we believe that our classification

defines a family of operators corresponding to quasi-primaries for d > 2. Those operators are

supposed to mix into Jordan cells for the dilatation operator in any dimension, for certain

(integer) values of Q that can be inferred from our conjecture (2.57).
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Appendix A. Operators acting on 3 spins

Appendix A.1. Derivations of all tensors

In this section we consider the case of operators acting on N = 3 spins within all possible

representations of SN . We call M
(3,3)
Q the space of operators acting on 3 different spins. The

next subsections define and discuss the spaces M
(N,k)
Q of operators that act on more spins.

For N = 3 we have to consider 3 different diagrams: [3], [2, 1] and [1, 1, 1].

Appendix A.1.1. Case of λN = [3]. In the case of the fully symmetric representation [3],

there are 4 corresponding tensors with respectively SQ representations λQ = [Q], [Q− 1, 1],

[Q − 2, 2] and [Q − 3, 3]. We do not compute them here, since they have already been

explicitly written in [20]. In the space M
(3,3)
Q they contribute to 4 different subspaces in the

decomposition (A.27) below.

Appendix A.1.2. Case of λN = [2, 1]. We thus start with the SN representation [2, 1]. To

this end, we consider the following normal tableau

1 2

3
(A.1)

The second normal tableau (with 2 and 3 permuted) gives another tensor that is

equivalent (but independent). We now compute the operators in all the different possible

representations of SQ that are compatible. We start with the diagram λQ = [Q− 1, 1] since

[Q] does not satisfy the consistency rule. We take the following tableau

i1 i2 . . . iQ−1

a
(A.2)
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and define t
[Q−1,1],[2,1]
a using (2.48):

t[Q−1,1],[2,1]
a = e

(a)
λQ
ẽ
(a)
λN

Oa,iQ−2,iQ−1

= e
(a)
λQ

(
Oa,iQ−2,iQ−1

+OiQ−2,a,iQ−1
−OiQ−1,a,iQ−2

−OiQ−1,iQ−2,a

)

=



∑

h∈h̃
(a)
λQ

h



(
Oa,iQ−2,iQ−1

+OiQ−2,a,iQ−1
−OiQ−1,a,iQ−2

−OiQ−1,iQ−2,a

−Oi1,iQ−2,iQ−1
−OiQ−2,i1,iQ−1

+OiQ−1,i1,iQ−2
+OiQ−1,iQ−2,i1

)
(A.3)

where again h̃
λ
(a)
Q

is the set of permutations acting only on the first row of λQ. After the

symmetrisation a lot of terms are cancelled and we obtain (after a normalisation) :

t[Q−1,1],[2,1]
a =

Q∑

i,j=1
i 6=j
i,j 6=a

(Oa,i,j −Oi,j,a) . (A.4)

If we choose the other possible Young tableau for λN = [2, 1], which is

1 3

2
(A.5)

we obtain the following tensor

t[Q−1,1],[2,1]′

a =

Q∑

i,j=1
i 6=j
i,j 6=a

(Oa,i,j −Oi,a,j) . (A.6)

Those two possible tensors are independent and each contribute to a representation [Q−1, 1]

in the decomposition of M
(N,3)
Q . In the rest of this section we only consider (A.1); the

operators for the second normal tableau are computed similarly.

The next diagram to consider, and which is consistent with the mixed [2, 1] representation,

is λQ = [Q− 2, 2]. We follow our general construction and define the tableau

i1 i2 . . . iQ−2

a1 a2
(A.7)

and the tensor t
[Q−2,2],[2,1]
a1,a2 is:

t[Q−2,2],λN
a1,a2 = e

(a)
λQ
ẽ
(a)
λN

Oa1,a2,iQ−2

= e
(a)
λQ

(
Oa1,a2,iQ−2

+Oa2,a1,iQ−2
−OiQ−2,a1,a2 −OiQ−2,a2,a1

)
(A.8)
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A direct computation gives

t[Q−2,2],λN
a1,a2 = (Q− 3)!

Q∑

i=1
i 6=a1,a2

(Oa1,a2,i +Oa2,a1,i −Oi,a1,a2 −Oi,a2,a1)

+ (Q− 4)!

Q∑

i,j=1
i 6=j

i,j 6=a1,a2

(Oi,j,a2 +Oi,j,a1 −Oa1,i,j −Oa2,i,j) , (A.9)

which can be written in the following form (after normalisation):

t[Q−2,2],λN
a1,a2

=

Q∑

i=1
i 6=a1,a2

(Oa1,a2,i +Oa2,a1,i −Oi,a1,a2 −Oi,a2,a1)

− 1
Q−2

(
t[Q−1,1],[2,1]
a1 + t[Q−1,1],[2,1]

a2

)
. (A.10)

The tensor is indeed invariant under the permutation of its two indices a1 and a2.

The case of the representation with Young diagram λQ = [Q− 2, 1, 1] is very similar. We

start from the Young tableau

i1 i2 . . . iQ−2

a1

a2

(A.11)

and define t
[Q−2,1,1],[2,1]
a1,a2 as previously. We find that it takes the following form in terms of

t
[Q−1,1],[2,1]
a :

t[Q−2,1,1],λN
a1,a2

=

Q∑

i=1
i 6=a1,a2

(Oa1,a2,i −Oa2,a1,i + 2Oa1,i,a2 − 2Oa2,i,a1 +Oi,a1,a2 −Oi,a2,a1)

− 3
Q

(
t[Q−1,1]
a1

− t[Q−1,1]
a2

)
. (A.12)

The tensor obtained is obviously anti-symmetric under the permutation of a1 and a2.

Last, but not least, we define the primal operator corresponding to [Q − 3, 2, 1]. The

computation is tedious but straightforward, and we find

t[Q−3,2,1]
a1,a2,a3 = Oa1,a2,a3 +Oa2,a1,a3 −Oa3,a1,a2 −Oa3,a2,a1

− 1
2(Q−1)

(
2t[Q−2,2],λN

a1,a2
− t[Q−2,2],λN

a1,a3
− t[Q−2,2],λN

a2,a3

)

− 1
2(Q−3)

(
t[Q−2,1,1],λN
a1,a3

+ t[Q−2,1,1],λN
a2,a3

)

− 1
Q(Q−2)

(
t[Q−1,1],λN
a1

+ t[Q−1,1],λN
a2

− 2t[Q−1,1],λN
a3

)
. (A.13)

We emphasise again the fact that another tensor exists with this symmetry (corresponding

to the other normal Young tableau of SN) and explains the factor 2 in the decomposition

(A.27).
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Appendix A.1.3. Case of λN = [1, 1, 1]. In order to be complete for N = 3 spins, we

discuss now the case of tensors with SN symmetry λN = [1, 1, 1]. The first adequate SQ

representation that we have to consider is λQ = [Q− 2, 1, 1]. We consider the tableau

i1 i2 . . . iQ−2

a1

a2

(A.14)

and compute t
[Q−2,1,1],[1,1,1]
a1,a2 such that:

t[Q−2,1,1],[1,1,1]
a1,a2 = e

(a)
λQ

(
Oa1,a2,iQ−2

+Oa2,iQ−2,a1 +OiQ−2,a1,a1 −Oa2,a1,iQ−2

−Oa1,iQ−2,a2 −OiQ−2,a2,a1

)

=

Q∑

i=1
i 6=a1,a2

(
Oa1,a2,i −Oa2,a1,i +Oi,a1,a2 −Oi,a2,a1

+Oa2,i,a1 −Oa1,i,a2

)
, (A.15)

where we normalised the tensor so as to remove the factor (Q− 3)!.

Finally, the last tensor that we have to consider is the primal with SQ symmetry

λQ = [Q− 3, 1, 1, 1]. A computation shows that

t[Q−3,1,1,1]
a1,a2,a3 = Oa1,a2,a3 +Oa2,a3,a1 +Oa3,a1,a2 −Oa1,a3,a2 −Oa3,a2,a1 −Oa2,a1,a3

− 1
Q

(
t[Q−2,1,1],[1,1,1]
a1,a2

+ t[Q−2,1,1],[1,1,1]
a2,a3

+ t[Q−2,1,1],[1,1,1]
a3,a1

)
. (A.16)

Appendix A.2. Space of tensors acting on 3 spins

We sum up here the results of last section concerning the space of operators acting on

N = 3 different spins. We denote this space by M
(3,3)
Q (see Appendix A.4 for more general

definitions). It corresponds to {Oi,j,k : i, j, k = 1, . . . , Q and i 6= j 6= k}. The dimension of

this space is obviously Q(Q− 1)(Q− 2).

We can decompose this space in terms of the different tensors that we have defined. First

let us consider the case of tensors with SN symmetry corresponding to λN = [3]. There are

four different tensors respectively corresponding to the SQ diagrams [Q − 3, 3], [Q − 2, 2],

[Q − 1, 1] and [Q]. Next, for the tensors with symmetry λN = [2, 1] there are 4 compatible

SQ symmetries: [Q− 3, 2, 1], [Q− 2, 2], [Q− 2, 1, 1] and [Q− 1, 1]. Since there is 2 different

ways to define the tableau of shape [2, 1] we can define 2 independent tensors from each SQ

tableaux. The last Sn tableau, λN = [1, 1, 1], is compatible with only 2 Young diagrams

[Q− 3, 1, 1, 1] and [Q− 2, 1, 1].
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In the end, we obtain the following decomposition

M
(3,3)
Q = ([Q]⊕ [Q− 1, 1]⊕ [Q− 2, 2]⊕ [Q− 3, 3])

⊕ 2 ([Q− 1, 1]⊕ [Q− 2, 2]⊕ [Q− 2, 1, 1]⊕ [Q− 3, 2, 1])

⊕ ([Q− 2, 1, 1]⊕ [Q− 3, 1, 1, 1]) (A.17)

We can check that the result is consistent with the dimensions given by the hook formula

(2.9)

dimM
(3,3)
Q =

(
1 + (Q− 1) + Q(Q−3)

2
+ Q(Q−1)(Q−5)

6

)

+ 2
(
(Q− 1) + Q(Q−3)

2
+ (Q−1)(Q−2)

2
+ Q(Q−2)(Q−4)

3

)

+
(

(Q−1)(Q−2)
2

+ (Q−1)(Q−2)(Q−3)
6

)

= Q(Q− 1)(Q− 2). (A.18)

Appendix A.3. Correlation functions

We now give the explicit form of the two-point functions for the N = 3 operators described

previously. We use the method detailed in section 3 to write the correlation functions in terms

of the probabilities describing the propagation of FK-clusters. We start with t
[Q−1,1],[2,1]
a ; its

two-point function reads

〈
t[Q−1,1],[2,1]
a t

[Q−1,1],[2,1]
b

〉
= Q−2

Q2

(
δa,b −

1
Q

)(
Q−2
Q

(
P

( )
+ P

( )
− P

( )
− P

( ))

+ Q−2
Q

(
2P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )

− 2P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( ))

Q−1
Q

(
P

( )
+ P

( )
+ P

( )
+ P

( )
− P

( )
− P

( )
− P

( )
− P

( ))

+ 2P

( )
+ P

( )
+ P

( )
− 2P

( )
− P

( )
− P

( )
. (A.19)

As expected there are two different parts in this correlation. The symmetric group fixes

the pre-factor that involves Kronecker symbols of tensorial indices. The most interesting

part is the linear combination of probabilities that a certain number of clusters propagate.

In the following we omit the pre-factor. The two-point function of the secondary operator

t
[Q−2,2],[2,1]
a,b is

〈
t[Q−2,2],[2,1]
a1,a2

t
[Q−2,2],[2,1]
b1,b2

〉
∝

(
Q−1
Q

(
P

( )
+ P

( )
+ P

( )
+ P

( )
− P

( )
− P

( )
− P

( )
− P

( ))

+ 2P

( )
+ P

( )
+ P

( )
− 2P

( )
− P

( )
− P

( ))
. (A.20)
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We continue with the operator t[Q−2,1,1],[2,1]:
〈
t[Q−2,1,1],[2,1]
a1,a2 t

[Q−2,1,1],[2,1]
b1,b2

〉
∝

(
6

(
2P

( )
+ P

( )
+ P

( )
− 2P

( )
− P

( )
− P

( ))

+Q−3
Q

(
4P

( )
+ 2P

( )
+ 2P

( )
+ 2P

( )
+ 2P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )

−4P

( )
− 2P

( )
− 2P

( )
− 2P

( )
− 2P

( )
− P

( )
− P

( )
− P

( )
− P

( )
))

.

. (A.21)

The last operator with symmetry [2, 1] on the 3 spins has a two-point function involving only

probabilities where 3 clusters propagate (because it is primal):

〈
t[Q−3,2,1],[2,1]
a1,a2,a3 t

[Q−3,2,1],[2,1]
b1,b2,b3

〉
∝

(
2P

( )
+ P

( )
+ P

( )
− 2P

( )
− P

( )
− P

( ))
.

(A.22)

And finally we give the expression in the case where the 3 spins are antisymmetric [1, 1, 1].

The secondary operator t[Q−2,1,1],[1,1,1] has the following two-point function:
〈
t[Q−2,1,1],[1,1,1]
a1,a2

t
[Q−2,1,1],[1,1,1]
b1,b2

〉
∝

(
3P

( )
+ 3P

( )
+ 3P

( )
− 3P

( )
− 3P

( )
− 3P

( )

+P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )
+ P

( )

−P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( )
− P

( ))

. (A.23)

The primal t[Q−3,1,1,1],[1,1,1] inserts 3 anti-symmetric clusters:
〈
t[Q−3,1,1,1],[1,1,1]
a1,a2,a3

t
[Q−3,1,1,1],[1,1,1]
b1,b2,b3

〉
∝

(
P

( )
+ P

( )
+ P

( )
− P

( )
− P

( )
− P

( ))
.

(A.24)

Appendix A.4. General results for the dimensions

Let us denote by L
(N)
Q the space of operators acting on N spins taking any values. Similarly,

we denote by M
(N,k)
Q the space of operators acting on N spins constrained to take precisely

k distinct values. We have seen that

M
(N,1)
Q = [Q]⊕ [Q− 1, 1] (A.25)

M
(N,2)
Q = [Q]⊕ 2[Q− 1, 1]⊕ [Q− 2, 2]⊕ [Q− 2, 1, 1] (A.26)

M
(N,3)
Q = [Q]⊕ 3[Q− 1, 1]⊕ 3[Q− 2, 2]⊕ 3[Q− 2, 1, 1]

⊕ [Q− 3, 3]⊕ 2[Q− 3, 2, 1]⊕ [Q− 3, 1, 1, 1] . (A.27)

There are two different sources for the multiplicities in front of each SQ representation: the

number of compatible Sk representations, and the dimension of the corresponding Sk Young
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tableau. An Sk representation is compatible if its Young diagram contains the corresponding

SQ Young diagram stripped of its first row, in such a way that at most one extra box is added

to each column.

The sum of dimensions on the right-hand sides of (A.25)–(A.27) is consistent with the

general result

dimM
(N,k)
Q = Q(Q− 1) · · · (Q− k + 1) ≡ (Q)k , (A.28)

where (Q)k is the falling factorial. We have checked that (A.28) is verified also for k = 4 by

explicit construction of the decomposition of M
(N,4)
Q .

The relation of M
(N,k)
Q with the full space L

(N)
Q is that it can be obtained by partitioning

the N -element set into k non-empty sets (called set blocks). Within each block the

corresponding spins are constrained to take identical values. The number of such set

partitions is given by the Stirling number of the second kind

S(N, k) =
1

k!

k∑

i=0

(−1)i
(
k

i

)
(k − i)N . (A.29)

The total dimension therefore correctly comes out as

dimL
(N)
Q =

N∑

k=1

S(N, k) · dimM
(N,k)
Q = QN . (A.30)
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