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Abstract: We revisit the results of one loop string amplitude calculations for the Heterotic

string theory compactified on a torus with or without Wilson lines. We give the complete

elliptic genus and the harmonic part of the CP-even amplitude for the gauge groups SO(32),

E8 ×E8, SO(16) × SO(16) and SO(8)4.
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1 Introduction

The one loop string amplitude calculations with half-maximal supersymmetry provide very

important correction terms in the effective action of the corresponding supergravity theory.

Such one loop string amplitudes in case of heterotic string theories compactified on a torus

with or without Wilson lines are of profound interest in view of its duality with F-theory com-

pactified on a K3 surface. These one loop correction terms receive no further renormalization

because they serve the purpose of the anomaly cancelling term as discussed in [1]. Thus their

structure may be used to extract useful informations about non-trivial axio-dilaton coupling

of 7-branes in the context of the duality between heterotic on T 2 and F-theory on K3. The one

loop string amplitude results have been calculated in parts and to serve very specific purpose

in the string theory literature. In this paper, we recollect the existing results and complete

such calculations for the cases with gauge groups SO(32), E8 × E8, SO(16) × SO(16) and

SO(8)4. We provide the complete elliptic genus for these theories and present the harmonic

part of these amplitudes which will prove to be of immense importance for the case of dis-

crete SL(2,Z) anomaly cancellation in D=8, N=1 supergravity and put stringent consistency

condition upon further compactification down to six dimensional supergravity theories with

N = (1,0) supersymmetry which we have discussed in [1]. The present paper may serve as a

collection of the calculations which have been accomplished partially in the past with newer
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complements to make their results complete and their purpose more general. These calcula-

tions will be used to pave the way for the calculation of two or higher string loop calculations

with half-maximal supercharges.

2 Generalities

We start our discussion by noting the field content of the Heterotic theory with gauge group

G = SO(32) or E8 × E8 compactified on a torus T 2 without Wilson lines comprises of [2] a

gravity multiplet with 1 graviton, 1 anti-symmetric two-form, 2 graviphotons, 1 real scalar ,1

gravitino, 1 dilatino and a vector multiplet in the adjoint representation of the gauge group

G = SO(32) or E8 ×E8. If in addition, we switch on non-zero Wilson lines along the cycles

of the compact torus, then the gauge group G = SO(32) or E8 ×E8 is broken down to some

other gauge group like SO(16) × SO(16) or SO(8)4 keeping however the original rank fixed

that is 16. We denote by T and U respectively the Kähler and complex structure of the torus

T 2 such that

T = T1 + iT2 = B89 + iVT 2 , U = U1 + iU2. (2.1)

In this article, we shall be interested in calculating the one loop string amplitude result

involving 1 of the T and U moduli and either 4 gravitons or 4 gauge bosons or 2 gauge bosons

and 2 gravitons. The CP-even amplitude follows from [3–5, 7–9]

A = t8V8∫F
d2τ

τ2
2

Γ2,2A(q,R,F )∣8−forms, (2.2)

where Γ2,2 is the T 2 lattice sum

Γ2,2 =
T2

τ2
∑

B∈ML(2,Z)
exp [2πiTdet(B) −

πT2

τ2U2
∣(1 U)B (

τ

1
) ∣

2
] = ∑

m⃗,n⃗∈ZN
qP

2
L/2q̄P

2
R/2. (2.3)

and A(q,R,F )∣8−forms is the elliptic genus [5]. We emphasize from the very beginning that

amongst many a different elegant methods available for such a calculation of amplitude, we

shall be chiefly using the method of elliptic genus [5, 6] and the method of decomposition of the

Γ2,2 lattice sum into three orbits of PSL(2,Z) [7–9]. The elliptic genus A(q,R,F )∣8−forms is

an eight-form polynomial in trR4, (trR2)2, trF 4, (trF 2)2 and trR2trF 2 where the lower-case

“tr” denotes the group trace in fundamental or vector representation and with coefficients

some modular functions Φ(τ) of the complex structure τ of the world-sheet torus. Thus the

generic form of the elliptic genus is the following

A(q,R,F )∣8−forms = Φ1(τ)
trR4

(2π)4
+Φ2(τ)

(trR2)2

(2π)4
+Φ3(τ)

trF 4

(2π)4
+Φ4(τ)

(trF 2)2

(2π)4
+Φ5(τ)

trR2trF 2

(2π)4

(2.4)
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where as stated before, Φi, i = 1,⋯,5 are appropriate modular functions. The elliptic genus

can be conveniently seen to appear from the “gauging” of the lattice of the gauge group G.

We shall next q−expand the modular functions Φi by

Φi(q) =
∞
∑
n=−1

cinq
n, (2.5)

and decompose the 2 × 2 matrices B in the lattice sum into the orbits of PSL(2,Z) [7–9] :

Orbits Defining properties Canonical representative

Trivial B = 0 ( 0 0
0 0 )

Degenerate B ≠ 0; detB = 0 (
0 j
0 p ) ; j, p ≠ 0.

Non-degenerate B ≠ 0; detB ≠ 0 (
k j
0 p ) ; 0 ≤ j < k; p ≠ 0.

We note however that depending on the gauge group, one may need to use subsectors of the

above orbits [14, 15]. The modular integral will now look like

A = V8T2t8 × {∫F
d2τ

τ2
2

A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
trivial orbit

(2.6)

+∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)≠(0,0)

e
− πT2
τ2U2

∣j+pU ∣2
A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degenerate orbit

+2∫
C+
d2τ

τ2
2

∑
0≤j<k,p≠0

e−2πiTpke
− πT2
τ2U2

∣kτ+j+pU ∣2
A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-degenerate orbit

}.

In all the cases of amplitude calculation, we shall concentrate mostly on the harmonic part of

the CP-even amplitude which is found by taking into account only the constant part of the

expansion (2.5) that is the coefficient c0 for the different modular functions (which we have

summarized in (A.13) in appendix A). We shall also note that the sum of the coefficients c−1

of q−1 vanishes in all cases so that there are no poles in the calculation. There is however the

appearance of the infra-red divergence in these calculations for which we shall take appropriate

renormlization scheme though we shall not detail the process here (the technical details can

be found in [7–9]) but just mention the result coming from it. We are keen to highlight only

the non-volume suppressed harmonic part of the amplitude as the CP-odd partner of such a

term in the effective action would correspond to the counter-term for the SL(2,Z) anomaly

in the corresponding supergravity theories in 8-dimensions [1]. The non-harmonic, volume

suppressed terms are world-sheet instanton corrections which can also be interpreted in the

dual type I side as D-instanton corrections [9, 13].
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3 Outline of the string amplitude calculation for D=8, N=1 and G = SO(32)

and E8 ×E8

In the following we shall briefly outline the principle of the calculation following the lines of

[9] so that it will be easier to understand the calculation for the cases SO(16)2 and SO(8)4.

In all cases we shall evaluate the CP-even amplitude which contains the curvature tensor

contraction of the form t8trR
4. One can then easily derive the CP-odd sector containing

the curvature contraction of the form ε8trR
4 = trR∧4 and the harmonic part of the modular

functions of T and U appearing in the CP-even sector following the method of [10, 11].

The CP-even amplitude follows from

A = V8t8∫F
d2τ

τ2
2

Γ2,2A(q,R,F )∣8−forms, (3.1)

where Γ2,2 is the T 2 lattice sum

Γ2,2 =
T2

τ2
∑

B∈ML(2,Z)
exp [2πiTdet(B) −

πT2

τ2U2
∣(1 U)B (

τ

1
) ∣

2
] = ∑

m⃗,n⃗∈ZN
qP

2
L/2q̄P

2
R/2. (3.2)

and A(q,R,F )∣8−forms is the elliptic genus [5]

A(q,R,F )
SO(32)

=
E3

4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4
(3.3a)

+
trR2trF 2

2832(2π)4
(
Ê2E4E6

η24
−
Ê2

2E
2
4

η24
)

+
trF 4

(2π)4
+

(trF 2)2

2932(2π)4
(
E3

4

η24
−

2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
− 2732

) ,

A(q,R,F )
E8×E8 =

E3
4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4

+
trR2(trF 2

1 + trF
2
2 )

2832(2π)4
(
Ê2E4E6

η24
−
Ê2

2E
2
4

η24
)

+
trF 2

1 trF
2
2

2832(2π)4
(
Ê2

2E
2
4

η24
−

2Ê2E4E6

η24
+
E2

6

η24
) (3.3b)

+
(trF 2

2 )
2 + (trF 2

2 )
2

2832(2π)4
(
E3

4

η24
−

2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
) .

In the above, all group traces “tr” are in fundamental or vector representation.

In view of the above elliptic genus, the amplitude A can be viewed as the sum of integrals of

the type

I(T,U) = ∫F
d2τ

τ2
2

Γ2,2(T,U)Φ(q)

with Φ(q) being the modular form coefficient of each of the 8-form components trR4, (trR2)2,

trR2trF 2, trF 4 and (trF 2)2 .
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Next one uses the q-expansion (with q = e2πiτ ) of Φ(q)

Φ(q) =
∞
∑
n=−1

cnq
n, (3.4)

and decomposes the 2 × 2 matrices B in the lattice sum into the orbits of PSL(2,Z) (see

[7–9]) :

Orbits Defining properties Canonical representative

Trivial B = 0 ( 0 0
0 0 )

Degenerate B ≠ 0; detB = 0 (
0 j
0 p ) ; j, p ≠ 0.

Non-degenerate B ≠ 0; detB ≠ 0 (
k j
0 p ) ; 0 ≤ j < k; p ≠ 0.

The modular integration will now look like

A = V8T2t8 × {∫F
d2τ

τ2
2

A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
trivial orbit

(3.5)

+∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)≠(0,0)

e
− πT2
τ2U2

∣j+pU ∣2
A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degenerate orbit

+2∫
C+
d2τ

τ2
2

∑
0≤j<k,p≠0

e−2πiTpke
− πT2
τ2U2

∣kτ+j+pU ∣2
A(q,R,F )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-degenerate orbit

}.

To determine the leading part (non-volume suppressed part) of the amplitude coming from

the degenerate orbit, that is to evaluate the integral

∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)≠(0,0)

e
− πT2
τ2U2

∣j+pU ∣2
c0, (3.6)

where c0 is the coefficient of q0 of the q expansion of the elliptic genus A(q,R,F ), we use

result of [9] to obtain the following harmonic part

∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(j,p)≠(0,0)

e
− πT2
τ2U2

∣j+pU ∣2
c0 (3.7)

= [logU2∣η(U)∣
2
+
πU2

6
] c0 + terms with VT 2 in denominator

Note that the seemingly non-harmonic logU2 piece in (3.7) comes from taking the appropriate

renormalization scheme against the infra-red divergence of the above amplitude calculation.

To determine the non-volume suppressed part of the amplitude coming from the non-degenerate
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orbit, we use the integral [9], [15]

T2 ∑
0≤j<k,p≠0

e−2πiTpk
∫
C+
d2τ

τ2
2

e
− πT2
τ2U2

∣kτ+j+pU ∣2
c0 = (3.8)

∑
j
∑

k>0,p>0

e2πikpT

k∣p∣
c0 + cc. + volume suppressed terms.

We them sum up the leading order non-volume suppressed terms from all the three orbits

which gives us

I(T,U) = ∫F
d2τ

τ2
2

Γ2,2(T,U)Φ(q) (3.9)

=
πT2

3
[c0 − 24c−1] + [logU2∣η(U)∣

2
+
πU2

6
] c0 + [logT2∣η(T )∣

2
+
πT2

6
] c0

+non-harmonic terms with T s2 in denominator with s=1, 2.

Using the above plus the q−expansion of different modular functions which we have summa-

rized in (A.13) in A we find the CP-even amplitude for SO(32)

A
SO(32)
CP-even = V8T2N

π

24
t8 (trR

4
+

1

4
(trR2

)
2
+ trR2trF 2

+ 8trF 4
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Trivial orbit

(3.10)

+ V8N
1

48
[logU2∣η(U)∣

2]

× t8 (
31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2trF 2

+ 2(trF 2
)

2
+ 16trF 4

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Harmonic term from the degenerate orbit

+ V8N
1

48
[logT2∣η(T )∣

2
+
πT2

6
]

× t8 (
31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2trF 2

+ 2(trF 2
)

2
+ 16trF 4

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Harmonic term from the non-degenerate orbit

+ non-harmonic terms.
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Similarly, using the elliptic genus for E8 ×E8 we find

A
E8×E8
CP-even = V8T2N

π

24
t8 (trR

4
+

1

4
(trR2

)
2
+ trR2

(trF 2
1 + trF

2
2 ) − 2trF 2

1 trF
2
2 + 2(trF 2

1 )
2
+ 2(trF 2

2 )
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Trivial orbit

(3.11)

+ V8N
1

48
[logU2∣η(U)∣

2]

× t8 (
31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2

(trF 2
1 + trF

2
2 ) + 6((trF 2

1 )
2
+ (trF 2

2 )
2
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Harmonic term from the degenerate orbit

+ V8N
1

48
[logT2∣η(T )∣

2
+
πT2

6
]

× t8 (
31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2

(trF 2
1 + trF

2
2 ) + 6((trF 2

1 )
2
+ (trF 2

2 )
2
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Harmonic term from the non-degenerate orbit

+ non-harmonic terms.

In both the cases above, the contributions from the trivial orbit are in fact the T 2 compacti-

fications of the CP-even partner of the 10-dimensional Green-Schwarz terms [12]

S
SO(32)
GS =

1

192(2π)5α′ ∫
B2 (trR

4
+

1

4
(trR2

)
2
+ trR2trF∧2

+ 8trF 4
) (3.12)

and

SE8×E8
GS =

1

192(2π)5α′ ∫
B2 (3.13)

(trR4
+

1

4
(trR2

)
2
+ trR2

(trF 2
1 + trF

2
2 ) − 2trF 2

1 trF
2
2 + 2(trF 2

1 )
2
+ 2(trF 2

2 )
2
) .

The CP-odd partners of the non-volume suppressed harmonic terms from the degenerate and

non-degenerate orbits provide with the SL(2,Z) anomaly cancelling term in the corresponding

supergravity theory (that is D=8, N=1 SUGRA with G = SO(32) or E8 × E8) which have

been studied in [1].

3.1 A lift in 9 dimensions

As a digression, we study the decompactification limit of the CP-even amplitude (3.10) to

D=9 N=1 G=SO(32) theory. Suppose that the T 2 in the case above (section 3) have radii

R1 and R2 along the two cycles and the angle between them be ω. We can then write the T 2

metric and its volume and complex structure in terms of R1, R2 and ω as follows

Gij = (
g88 g89
g89 g99 ) = (

R2
1 R1R2cosω

R1R2cosω R2
2

) =
V

U2
(

1 U1

U1 ∣U ∣2 ) . (3.14)
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V = R1R2sinω, U1 =
R2

R1
cosω, U2 =

R2

R1
sinω. (3.15)

We use the above to decompactify the CP-even amplitude (3.10) by taking ω = π
2 and R2 = V1

such that V9 = V8R2 and V10 = V8R1R2 are the normalized world-volumes in D=9 and D=10

respectively. In this limit U1 = 0 , U2 = R2/R1, logU2∣η(U)∣2 = −πU2

6 and the limit of the

amplitude (3.10) gives

A
SO(32)
CP-even = V9R1Nt8

π

24
(trR4

+
1

4
(trR2

)
2
+ trR2trF 2

+ 8trF 4
) (3.16)

+V9N
1

48

1

R1
t8 (

31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2trF 2

+ 2(trF 2
)

2
+ 16trF 4

)

+non-harmonic terms.

We can compare the above with the direct calculation of the string amplitude in D=9 as is

calculated in [13]

A
SO(32)
CP-even = V10{Nt8 (trR

4
+

1

4
(trR2

)
2
+ trR2trF 2

+ 8trF 4
) (3.17)

+
N1

R2
1

t8 (
31

15
trR4

+
19

12
(trR2

)
2
+ 5trR2trF 2

+ 2(trF 2
)

2
+ 16trF 4

)

+
N2

R4
1

t8 (3(trF 2
)

2
+ 5trR2trF 2

+ 2(trR2
)

2) +
N3

R6
1

t8 (trR
2
+ TrF 2)

2
}

and we see that the first two lines match as they should. The polynomials in the 3rd line of

(3.17) are also present in the volume suppressed part of (3.10). In both (3.16) and (3.17) the

first line is the circle compactification of the CP-even Green-Schwarz term and the second

line contains the CP-even partner of the SL(2,Z) anomaly cancelling term in D=8 as we

have seen. However in D=9 this term is completely harmless as there is no chiral anomaly in

D=9. Nonetheless, it is interesting to see the presence of this term in D=9 amplitude result

which upon further compactification on S1 shall give rise to the anomaly cancelling term in

D=8.

4 String amplitude with G= SO(16) × SO(16)

Now we consider D=10 Heterotic string theory with gauge group E8 ×E8 compactified on a

T 2 with Kähler structure T = B89 + iVT 2 and complex structure U = U1 + iU2 and with the

following Wilson line on T 2

Y 1
i = (04,

1

2

4

,04,
1

2

4

), Y 2
i = (08,08

), i = 1,⋯,16, (4.1)

so that the gauge group is broken to SO(16) × SO(16) in D=8. One can of course rearrange

the 8 non-zero values of the Wilson lines so that one can start from SO(32) gauge group in

– 8 –



D=10 and again obtain SO(16) × SO(16) in D=8.

We now discuss the group decomposition E8 ×E8 ⊃ SO(16)×SO(16) which we shall find

extremely useful to understand the string amplitude part.

For the decomposition E8 ×E8 ⊃ SO(16) × SO(16) we have

248 ⊕ 248 = (120,1) ⊕ (1,120)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

adjoint rep. of SO(16)×SO(16)

⊕ (128,1) ⊕ (1,128)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

spinor rep. of SO(16)×SO(16)

. (4.2)

The rules for transcribing group trace “Tr” in the adjoint representation towards the group

trace “tr” in the fundamental representation for SO(N) groups [19, 20]

TrF 2
SO(N) = (N − 2) trF 2

SO(N) , (4.3)

TrF 4
SO(N) = (N − 8) trF 4

SO(N) + 3 (trF 2
SO(N))

2 . (4.4)

For the (128,1) ⊕ (1,128) representation, we write the traces formula

tr128F
2
1 + tr128F

2
2 = 16trF 2

1 + 16trF 2
2 , (4.5a)

tr128F
4
1 + tr128F

4
2 = 6(trF 2

1 )
2
+ 6(trF 2

2 )
2
− 8trF 4

1 − 8trF 4
2 . (4.5b)

For the sake of completeness, we also provide the branching rule for the decomposition

SO(32) ⊃ SO(16) × SO(16)

496 = (120,1) ⊕ (1,120)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

adjoint rep. of SO(16)×SO(16)

⊕ (16,16)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cospinor rep. of SO(16)×SO(16)

. (4.6)

For the (16,16) representation, we write the traces formula

tr(16,16)F 2
= 16trF 2

1 + 16trF 2
2 , (4.7a)

tr(16,16)F 4
= 16trF 4

1 + 16trF 4
2 + 6(trF 2

1 )(trF
2
2 ). (4.7b)

We now elaborate the process of the CP-even 5-point string amplitude for the SO(16) ×

SO(16) following the lines of [14] where the pieces of the calculation have been provided e.g.

the coefficient of trR4, trF 4 and (trF 2)2 for the non-degenerate orbit (3.5). We shall provide

the CP-even part of the amplitude in the leading order non-volume suppressed harmonic

forms in trivial, degenerate and non-degenerate orbits.

The amplitude will be derived from

A = V8t8∫F
d2τ

τ2
2

Γ2,2A(q,R,F )∣8−forms, (4.8)

where Γ2,2 is the T 2 lattice sum as before

Γ2,2 =
T2

τ2
∑

B∈ML(2,Z)
exp [2πiTdet(B) −

πT2

τ2U2
∣(1 U)B (

τ

1
) ∣

2
] = ∑

m⃗,n⃗∈ZN
qP

2
L/2q̄P

2
R/2 (4.9)
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with B being the 2 × 2 matrix

B = (
m1 n1

m2 n2
) . (4.10)

The form of the elliptic genus A(q,R,F ) shall depend on the spin structure as we shall describe

shortly and hence there are 3 different elliptic genus for trivial, degenerate and non-degenerate

orbits which we shall note by Atrivial(q,R,F ), Adegenerate(q,R,F ) and Anon-degenerate(q,R,F )

respectively. The general elliptic genus is obtained from the gauging of [5]

A(q,R,F ) =
1

η24
Exp(

trR2

(2π)2

Ê2

48
) ×Exp(

trR4

(2π)4

E4

27325
) ×

2

∑
a,b=1

θ8
[ab]

²
SO(16)1

× θ8 [
a+m1
b+n1

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SO(16)2

. (4.11)

We have summarised our convention of Jacobi theta functions in appendix A. The labels

SO(16)1 and SO(16)2 in (4.11) denote the gauging of the theta functions according to two

SO(16)s.

The trivial orbit is characterised by B = 0 so that the elliptic genus will be

Atrivial(q,R,F ) = (4.12)

E3
4

27325η24

trR4

(2π)4
+
Ê2

2E
2
4

2932η24

(trR2)2

(2π)4

+
trR2(trF 2

1 + trF
2
2 )

2832(2π)4
(
Ê2E4E6

η24
−
Ê2

2E
2
4

η24
)

+
trF 2

1 trF
2
2

2832(2π)4
(
Ê2

2E
2
4

η24
−

2Ê2E4E6

η24
+
E2

6

η24
)

+
(trF 2

1 )
2 + (trF 2

2 )
2

2832(2π)4
(
E3

4

η24
−

2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
) .

The degenerate orbit is characterised by B ≠ 0, det(B) = 0, for which choose the two

following sectors

B(1) = (
0 2j

0 p
) , B(2) = (

0 2j + 1

0 p
) , j, p ∈ Z. (4.13)

For the gauging, we use the identities (A.7) and the definitions of Eisenstein series given in

(A.6) plus the combinations f1, f2, f3 of theta functions

f1 = θ
4
3 + θ

4
4, f2 = θ

4
2 − θ

4
4, f3 = −θ

4
2 − θ

4
3. (4.14)
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The elliptic genus for degenerate orbit is then

Adegenerate(q,R,F ) = (4.15)

trR4

(2π)4

E4

27325η24
(B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4)

+
(trR2)2

(2π)4

Ê2
2

2932η24
(B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4)

−
trR2(trF 2

1 + trF
2
2 )

2832(2π)4η24
{2B(1)(Ê2E4E6 − Ê

2
2E

2
4) −B

(2)
(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)}

+
trF 4

1 + trF
4
2

273(2π)4η24
{B(1)(−θ16

2 θ
4
3θ

4
4 + θ

16
3 θ

4
2θ

4
4 − θ

16
4 θ

4
2θ

4
3) +B

(2)
(θ8

3θ
8
4(θ

4
2θ

4
4 − θ

4
2θ

4
3))}

+
(trF 2

1 )
2 + (trF 2

2 )
2

2932(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]}

+
(trF 2

1 )(trF
2
2 )

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2
− 9θ8

2]}.

In the above elliptic genus the B(1) and B(2) act as operators such that in the amplitude

integration (4.8) one should take into account the values of the matrix B as given in (4.13).

Finally we come to the non-degenerate orbit (B ≠ 0, det(B) ≠ 0) whose matrix representative

is

B = (
k j
0 p ) ; 0 ≤ j < k; p ≠ 0.

We have to use the following 4 sectors of this representative matrix because of the spin

structure (4.11)

B(1) = (
2k 2j

0 p
) , B(2) = (

2k 2j + 1

0 p
) , (4.16)

B(3) = (
2k + 1 2j

0 p
) , B(4) = (

2k + 1 2j + 1

0 p
) , 0 ≤ j < k, j, k, p ∈ Z.
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The elliptic genus for the non-degenerate orbit is then

Anon-degenerate(q,R,F ) = (4.17)

trR4

(2π)4

E4

27325η24
{B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B

(3)2θ8
2θ

8
3 +B

(4)2θ8
2θ

8
4}

+
(trR2)2

(2π)4

Ê2
2

2932η24
{B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B

(3)2θ8
2θ

8
3 +B

(4)2θ8
2θ

8
4}

−
trR2(trF 2

1 + trF
2
2 )

2832(2π)4η24
{(2B(1)(Ê2E4E6 − Ê

2
2E

2
4) −B

(2)
(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)

−B(3)(Ê2θ
8
2θ

8
3)(f1 + f2 + 2Ê2) −B

(4)
(Ê2θ

8
2θ

8
4)(f1 + f3 + 2Ê2)}

+
trF 4

1 + trF
4
2

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ

16
3 θ4

2θ
4
4 − θ

16
4 θ4

2θ
4
3) +B

(2)
(θ8

3θ
8
4(θ

4
2θ

4
4 − θ

4
2θ

4
3))

+B(3)(θ8
2θ

8
3(θ

4
2θ

4
4 − θ

4
3θ

4
4)) +B

(4)
(θ8

2θ
8
4(−θ

4
3θ

4
4 − θ

4
2θ

4
3))}

+
(trF 2

1 )
2 + (trF 2

2 )
2

2932(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

+B(3)θ8
2θ

8
3 [(f1 + Ê2)

2
+ (f2 + Ê2)

2] +B(4)θ8
2θ

8
4 [(f1 + Ê2)

2
+ (f3 + Ê2)

2]}

+
(trF 2

1 )(trF
2
2 )

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2
− 9θ8

2]

+B(3)θ8
2θ

8
3 [(f1 + Ê2)

2
+ (f2 + Ê2)

2
− 9θ8

4] +B
(4)θ8

2θ
8
4 [(f1 + Ê2)

2
+ (f3 + Ê2)

2
− 9θ8

3]}.

Once again in the above, the terms B(i) with i = 1,2,3,4 denote the sector operators so

that one takes into account correctly the values of the matrix elements B according to the

convention (4.16).

The complete amplitude is then

A = T2V8t8 × {∫F
d2τ

τ2
2

A(q,R,F )trivial (4.18)

+∫
strip-boundary of PSL(2,Z)

d2τ

τ2
2

∑
(n1,n2)≠(0,0)

e
− πT2
τ2U2

∣n1+n2U ∣2A(q,R,F )degenerate

+2∫
C+
d2τ

τ2
2

∑
0≤n1<m1,n2≠0

e−2πiTpke
− πT2
τ2U2

∣m1τ+n1+n2U ∣2A(q,R,F )non-degenerate},

= Atrivial +Adegenerate +Anon-degenerate (4.19)

The trivial orbit amplitude gives

Atrivial = T2V8t8
1

(2π)4
{trR4

+
1

4
(trR2

)
2
+ trR2

(trF 2
1 + trF

2
2 ) (4.20)

− 2trF 2
1 trF

2
2 + 2(trF 2

1 )
2
+ 2(trF 2

2 )
2
}
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To evaluate the degenerate amplitude, we q-expand the modular function in the elliptic genus

(4.15) and take the constant coefficients which we have noted in (A.13) which shall provide

the harmonic part of the amplitude. In this respect we also note that we can sum up the

contributions of B(1) and B(2) sectors in (4.13) so that the sum run in the complete set of

integers for n1 and n2 so that the CP-even modular coefficient will be logU2∣η(U)∣2 (the logU2

follows from the renormalization scheme). Also we note that the sum of the coefficients of 1/q

is zero so that there are no poles in q. Using (3.7) we find the harmonic part of the CP-even

amplitude coming from the degenerate orbit

Adegenerate =
1

(2π)4
logU2∣η(U)∣

2V8t8{
488

360
trR4

+
200

288
(trR2

)
2
+

7

3
trR2

(trF 2
1 + trF

2
2 ) (4.21)

+
16

3
(trF 4

1 + trF
4
2 ) + 2((trF 2

1 )
2
+ (trF 2

2 )
2
)}.

Finally for the non-degenerate amplitude we again q-expand the modular functions in the

elliptic genus (4.17) and check that there is no pole in q. Next we note that the leading term in

the harmonic part for B(1) and B(2) sectors are the same and is equal to [logT2∣η(2T )∣2 + πT2
3

].

We then sum the constant coefficients which shall provide the leading term (which are not

volume suppressed) in the harmonic part. The constant coefficients in B(3) and B(4) are

the same and hence the sum over m1, n1 and n2 can be extended to the complete Z with

the contribution [logT2∣η(2T )∣2 − logT2∣η(T )∣2 + πT2
6

]. Once again, we evaluate the CP-even

integral using (3.8) and the leading term (harmonic) in the non-degenerate amplitude will be

(we write only the non-volume suppressed harmonic part of the amplitude)

Anon-degenerate = (4.22)

1

(2π)4
[logT2∣η(2T )∣

2
+
πT2

3
]V8t8{

488

360
trR4

+
200

288
(trR2

)
2
+

7

3
trR2

(trF 2
1 + trF

2
2 )

+
16

3
(trF 4

1 + trF
4
2 ) + 2((trF 2

1 )
2
+ (trF 2

2 )
2
)}

+
1

2(2π)4
[logT2∣η(2T )∣

2
− logT2∣η(T )∣

2
+
πT2

6
] ×

V8t8{256(
trR4

360
+

(trR2)2

288
) +

8

3
trR2

(trF 2
1 + trF

2
2 )

−
16

3
(trF 4

1 + trF
4
2 ) + 4((trF 2

1 )
2
+ (trF 2

2 )
2
)}

We see again that the trivial orbit amplitude (4.20) is the compactification of the E8 × E8

Green-Schwarz term (3.13) such that E8 × E8 is broken down to SO(16) × SO(16). The

polynomial

Y8 =
488

360
trR4

+
200

288
(trR2

)
2
+

7

3
trR2

(trF 2
1 + trF

2
2 ) +

16

3
(trF 4

1 + trF
4
2 ) + 2((trF 2

1 )
2
+ (trF 2

2 )
2
)

(4.23)

is in fact the 8-form polynomial in the SL(2,Z) anomaly counter-term [1] and is due to

the fermions in the D=8, N=1 SUGRA which transform under the adjoint representation in
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SO(16) × SO(16). The other 8-form polynomial

Y ′
8 = 256(

trR4

360
+

(trR2)2

288
) +

8

3
trR2

(trF 2
1 + trF

2
2 ) −

16

3
(trF 4

1 + trF
4
2 ) + 4((trF 2

1 )
2
+ (trF 2

2 )
2
)

(4.24)

is due to the massive vector multiplet in (128,1) ⊕ (1,128) representation of SO(16) ×

SO(16).

5 String amplitude with G= SO(8)4

Finally we come to the case of the D=8, N=1 theory with gauge group SO(8)4 which can be

obtained from D=10, N=1 theory with gauge group either SO(32) or E8×E8 compactified on a

T 2 with appropriate Wilson lines along the two 1-cycles of the torus. Before plunging into the

details of the string loop calculation we first note the group traces originating from the group

decompositions SO(32) → SO(8)4 and E8 ×E8 → SO(8)4 which shall prove indispensable to

understand the string loop amplitude.

For the decomposition E8 ⊃ SO(8)2 we have

248 = (28,1) ⊕ (1,28)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

adjoint rep. of SO(8)×SO(8)

⊕ (8,8)
²

bifundamental rep. of SO(8)×SO(8)

(5.1)

⊕ (8,8)’
´¹¹¹¹¹¸¹¹¹¹¹¶

spinor rep. of SO(8)×SO(8)

⊕ (8,8)”
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

cospinor rep. of SO(8)×SO(8)

.

Thus the complete decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) plus E

(2)
8 → SO(8)(3) ×

SO(8)(4) gives

248⊕ 248 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (5.2)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,8,1,1)′ ⊕ (1,1,8,8)′

⊕ (8,8,1,1)′′ ⊕ (1,1,8,8)′′.

For the decomposition SO(32) → SO(8)(1) × SO(8)(2) × SO(8)(3) × SO(8)(4) we have

496 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (5.3)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,1,8,1)⊕ (1,8,1,8)

⊕ (1,8,8,1)⊕ (8,1,1,8).

From the decomposition (5.2) we see that E
(1)
8 → SO(8)(1)×SO(8)(2) plus E

(2)
8 → SO(8)(3)×

SO(8)(4) has a preferred trF 2
1 trF

2
2 and trF 2

3 trF
2
4 interaction. The T-duality exchanges the

spinor and co-spinor representation with the bi-fundamental representations and we shall see
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that this fact appears in the string 1-loop elliptic genus as orbifold shifts [18] which gives

the mixed interaction of the type trF 2
1 trF

2
3 and trF 2

1 trF
2
4 etc, even if one starts with the

decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) and E

(2)
8 → SO(8)(3) × SO(8)(4).

We finally summarize the trace formula for different states [19, 20]

Tr28F
2
= 6trF 2, T r28F

4
= 3(trF 2

)
2, (5.4a)

tr(8,8)F 2
= 8trF 2

1 + 8trF 2
2 , tr(8,8)F 4

= 8trF 4
1 + 8trF 4

2 + 6trF 2
1 trF

2
2 , (5.4b)

tr(8,8)′F 2
= tr(8,8)′′F 2

= 8trF 2
1 + 8trF 2

2 , (5.4c)

tr(8,8)′F 4
= tr(8,8)′′F 4

= 3(trF 2
1 )

2
+ 3(trF 2

2 )
2
+ 6trF 2

1 trF
2
2 − 4trF 4

1 − 4trF 4
2 . (5.4d)

With the above details behind we shall now describe the calculation of the CP-even amplitude

by the q-expansion method [15] as in the case of SO(16) × SO(16) (4).

As before, the amplitude has the generic form

A = V8t8∫F
d2τ

τ2
2

Γ2,2A(q,R,F )∣8−forms, (5.5)

where Γ2,2 is the T 2 lattice sum

Γ2,2 =
T2

τ2
∑

B∈ML(2,Z)
exp [2πiTdet(B) −

πT2

τ2U2
∣(1 U)B (

τ

1
) ∣

2
] = ∑

m⃗,n⃗∈ZN
qP

2
L/2q̄P

2
R/2 (5.6)

with B being the 2 × 2 matrix

B = (
m1 n1

m2 n2
) . (5.7)

To define the elliptic genus we shall start with the D=10 N=1 E8 × E8 Heterotic string

compactified on a T 2 with the Wilson line

Y 1
i = (04,

1

2

4

,04,
1

2

4

), Y 2
i = (04,

1

2

4

,04,
1

2

4

), i = 1,⋯,16, (5.8)

so that the gauge group decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) and E

(2)
8 → SO(8)(3) ×

SO(8)(4) applies. Thus the elliptic genus is obtained by gauging

A(q,R,F ) =
1

η24
Exp(

trR2

(2π)2

Ê2

48
) ×Exp(

trR4

(2π)4

E4

27325
) (5.9)

×
2

∑
a,b=1

θ4
[ab] θ

4 [
a+m2
b+n2

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SO(8)(1)×SO(8)(2)

× θ4 [
a+m1
b+n1

] θ4 [
a+m1+m2
b+n1+n2

]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SO(8)(3)×SO(8)(4)

.

In the above (5.9) we have labelled the theta functions by SO(8)(1)×SO(8)(2) and SO(8)(3)×
SO(8)(4) to denote that those functions are to be “gauged” accordingly by the 4 copies of
SO(8)s. We now decompose the integration by now familiar method of the decomposition to
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trivial, degenerate and non-degenerate orbit. The elliptic genus for the trivial orbit (B = 0)
shall be

Atrivial(q,R,F ) = (5.10)

E3
4

27325η24

trR4

(2π)4
+

Ê2
2E

2
4

2932η24

(trR2)2

(2π)4
+
trR2

∑
4
i=1 trF

2
i

2832(2π)4
(
Ê2E4E6

η24
−
Ê2

2E
2
4

η24
)

+
(trF 2

1 trF
2
3 + trF

2
2 trF

2
4 + trF

2
1 trF

2
4 + trF

2
2 trF

2
3 )

2832(2π)4
(
Ê2

2E
2
4

η24
−

2Ê2E4E6

η24
+
E2

6

η24
)

+
∑

4
i=1(trF

2
i )

2

2832(2π)4
(
E3

4

η24
−

2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
)

+
trF 2

1 trF
2
2 + trF

2
3 trF

2
4

2732(2π)4
(
E3

4

η24
−

2Ê2E4E6

η24
+
Ê2

2E
2
4

η24
) .

For the degenerate orbit (B ≠ 0 and det(B) = 0) we choose the following sectors

B(1) = (
0 2j

0 2p
) , B(2) = (

0 2j

0 2p + 1
) , (5.11)

B(3) = (
0 2j + 1

0 2p + 1
) , B(4) = (

0 2j + 1

0 2p
) , 0 ≤ j < k, j, k, p ∈ Z.

The sectors B(2), B(3) and B(4) in (5.11) generate the orbifold shifts which mix the SO(8)1

and SO(8)2 with SO(8)3 and SO(8)4 which arise from the decomposition of a different E8.
The elliptic genus for the degenerate orbit is

Adegenerate(q,R,F ) = (5.12)

trR4

(2π)4

E4

27325η24

⎛

⎝
B(1)

4

∑
a=2

θ16
a +

4

∑
j=2

B(j)2θ8
3θ

8
4

⎞

⎠
+

(trR2)2

(2π)4

Ê2
2

2932η24

⎛

⎝
B(1)

4

∑
a=2

θ16
a +

4

∑
j=2

B(j)2θ8
3θ

8
4

⎞

⎠

−
trR2

∑
4
i=1 trF

2
i

2832(2π)4η24
{2B(1)(Ê2E4E6 − Ê

2
2E

2
4) −

4

∑
j=2

B(j)(Ê2θ
8
3θ

8
4)(f2 + f3 + 2Ê2)}

+
∑

4
i=1 trF

4
i

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ

16
3 θ4

2θ
4
4 − θ

16
4 θ4

2θ
4
3) +

4

∑
j=2

B(j)(θ8
3θ

8
4(θ

4
2θ

4
4 − θ

4
2θ

4
3))}

+
∑

4
i=1(trF

2
i )

2

2932(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+

4

∑
j=2

B(j)θ8
3θ

8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]}

+
trF 2

1 trF
2
2 + trF

2
3 trF

2
4

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

+
4

∑
j=3

B(j) [(f2 + Ê2)
2
+ (f3 + Ê2)

2
− 9θ8

2]}

+
trF 2

1 trF
2
3 + trF

2
2 trF

2
4

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(3)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

+(B(2) +B(4)) [(f2 + Ê2)
2
+ (f3 + Ê2)

2
− 9θ8

2]}

+
trF 2

1 trF
2
4 + trF

2
2 trF

2
3

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(4)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

+(B(2) +B(3)) [(f2 + Ê2)
2
+ (f3 + Ê2)

2
− 9θ8

2]}.
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Once again in the above, the B(i)s remind one to take into account the different sectors as in
(5.11) while performing the final integration in (5.5).
Finally for the non-degenerate orbit (B ≠ 0, det(B) ≠ 0), we have to use the following sectors
[15]

B(1) = (
2k 2j

0 2p
) , (5.13)

B(2,1) = (
2k 2j

0 2p + 1
) , B(2,2) = (

2k 2j + 1

0 2p + 1
) , B(2,3) = (

2k 2j + 1

0 2p
)

B(3) = (
2k + 1 2j

0 2p
) , B(4) = (

2k + 1 2j + 1

0 2p
) , 0 ≤ j < k, j, k, p ∈ Z.

The sector B(2) has been divided in 3 subsectors B(2,1), B(2,2), B(2,3) because of the spin

structure in the elliptic genus (5.9). To shorten the notation we shall use

B(2) = B(2,1) +B(2,2) +B(2,3), (5.14)

in the elliptic genus for the non-degenerate orbit (below) whenever the modular coefficients
in front of B(2,k), k = 1,2,3 are same. We finally get the following elliptic genus for the
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non-degenerate orbit

Anon-degenerate(q,R,F ) =
trR4

(2π)4

E4

27325η24
{B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B

(3)2θ8
2θ

8
3 +B

(4)2θ8
2θ

8
4}(5.15)

+
(trR2)2

(2π)4

Ê2
2

2932η24
{B(1)

4

∑
a=2

θ16
a +B(2)2θ8

3θ
8
4 +B

(3)2θ8
2θ

8
3 +B

(4)2θ8
2θ

8
4}

−
trR2

∑
4
i=1 trF

2
i

2832(2π)4η24
{(2B(1)(Ê2E4E6 − Ê

2
2E

2
4) −B

(2)
(Ê2θ

8
3θ

8
4)(f2 + f3 + 2Ê2)

−B(3)(Ê2θ
8
2θ

8
3)(f1 + f2 + 2Ê2) −B

(4)
(Ê2θ

8
2θ

8
4)(f1 + f3 + 2Ê2)}

+
∑

4
i=1 trF

4
i

273(2π)4η24
{B(1)(−θ16

2 θ4
3θ

4
4 + θ

16
3 θ4

2θ
4
4 − θ

16
4 θ4

2θ
4
3) +B

(2)
(θ8

3θ
8
4(θ

4
2θ

4
4 − θ

4
2θ

4
3))

+B(3)(θ8
2θ

8
3(θ

4
2θ

4
4 − θ

4
3θ

4
4)) +B

(4)
(θ8

2θ
8
4(−θ

4
3θ

4
4 − θ

4
2θ

4
3))}

+
∑

4
i=1(trF

2
i )

2

2932(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

+B(3)θ8
2θ

8
3 [(f1 + Ê2)

2
+ (f2 + Ê2)

2] +B(4)θ8
2θ

8
4 [(f1 + Ê2)

2
+ (f3 + Ê2)

2]}

+
trF 2

1 trF
2
2 + trF

2
3 trF

2
4

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

−(B(2,2) +B(2,3))2832η24
+B(3)θ8

2θ
8
3 [(f1 + Ê2)

2
+ (f3 + Ê2)

2]

+B(4)θ8
2θ

8
4 [(f1 + Ê2)

2
+ (f3 + Ê2)

2]}

+
trF 2

1 trF
2
3 + trF

2
2 trF

2
4

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

−(B(2,1) +B(2,3))2832η24
+B(3)θ8

2θ
8
3 [2(f1 + Ê2)(f3 + Ê2)]

+B(4)θ8
2θ

8
4 [2(f1 + Ê2)(f3 + Ê2)]}

+
trF 2

1 trF
2
4 + trF

2
2 trF

2
3

2832(2π)4η24
{B(1)

4

∑
a=2

θ16
a (Ê2 + fa−1)

2
+B(2)θ8

3θ
8
4 [(f2 + Ê2)

2
+ (f3 + Ê2)

2]

−(B(2,1) +B(2,2))2832η24
+B(3)θ8

2θ
8
3 [2(f1 + Ê2)(f3 + Ê2)]

+B(4)θ8
2θ

8
4 [2(f1 + Ê2)(f3 + Ê2)]}.

The complete CP-even amplitude will be (see (3.5) for the integration domains)

A = Atrivial +Adegenerate +Anon-degenerate (5.16)

with

Atrivial = T2V8t8{trR
4
+

1

4
(trR2

)
2
+ trR2

4

∑
i=1
trF 2

i (5.17)

−2trF 2
1 trF

2
3 − 2trF 2

1 trF
2
4 − 2trF 2

2 trF
2
4 − 2trF 2

1 trF
2
3 + 4trF 2

1 trF
2
2 + 4trF 2

3 trF
2
4 + 2

4

∑
i=1

(trF 2
i )

2
}

being the trivial orbit amplitude. Note that by recombining the SO(8)1 with SO(8)2 and
SO(8)3 with SO(8)4 we find back the T 2 reduction of the E8×E8 Green-Schwarz term (3.13).
We now collect the constant parts of the q-expansion of the modular functions in the degen-
erate and non-degenerate elliptic genus from (A.13), verify that there are no poles and then
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use the integral (3.7) to evaluate the non-volume suppressed harmonic part of the degen-
erate amplitude and (3.8) to evaluate the non-volume suppressed harmonic part of the the
non-degenerate amplitude in the CP-even sector.

Adegenerate = (5.18)

1

4(2π)4
ln (U2∣η(U)∣

2)V8t8 [trR4
+

1

4
(trR2

)
2
+ trR2

4

∑
i

trF 2
i +

4

∑
i

2(trF 2
i )

2
]

+
1

4(2π)4
ln (U2∣η(U)∣

2) ×

V8t8 [2 × 64(
trR4

360
+

(trR2)2

288
) +

4

3
trR2

4

∑
i=1
trF 2

i + 2 ×
2

3
(4

4

∑
i=1
trF 4

i + 3trF 2
1 trF

2
2 + 3trF 2

3 trF
2
4 )]

+
1

8(2π)4
ln (U2∣η(U)∣

2) × V8t8{256(
trR4

360
+

(trR2)2

288
) +

8

3
trR2

4

∑
i=1
trF 2

i

+
8

3
(−4

4

∑
i=1
trF 4

i + 3
4

∑
i=1

(trF 2
i )

2
+ 6trF 2

1 trF
2
2 + 6trF 2

3 trF
2
4 )}

+
1

(2π)4
ln (U2∣η(U)∣

2)V8t8 [trF 2
1 trF

2
2 + trF

2
3 trF

2
4 + trF

2
1 trF

2
3 + trF

2
2 trF

2
4 + trF

2
1 trF

2
4 + trF

2
2 trF

2
3 ] .

Anon-degenerate = (5.19)

1

4(2π)4
[
πT2

3
+ ln (T2∣η(2T )∣

2)]V8t8 [trR4
+

1

4
(trR2

)
2
+ trR2

4

∑
i

trF 2
i +

4

∑
i

2(trF 2
i )

2
]

+
1

4(2π)4
[
πT2

3
+ ln (T2∣η(2T )∣

2)] ×

V8t8 [2 × 64(
trR4

360
+

(trR2)2

288
) +

4

3
trR2

4

∑
i=1
trF 2

i + 2 ×
2

3
(4

4

∑
i=1
trF 4

i + 3trF 2
1 trF

2
2 + 3trF 2

3 trF
2
4 )]

+
1

8(2π)4
[
πT2

3
+ ln (T2∣η(4T )∣

2) − ln (T2∣η(2T )∣
2)] × V8t8{256(

trR4

360
+

(trR2)2

288
) +

8

3
trR2

4

∑
i=1
trF 2

i

+
8

3
(−4

4

∑
i=1
trF 4

i + 3
4

∑
i=1

(trF 2
i )

2
+ 6trF 2

1 trF
2
2 + 6trF 2

3 trF
2
4 )}

+
1

(2π)4
[
πT2

3
+ ln (T2∣η(2T )∣

2)]V8t8 [trF 2
1 trF

2
2 + trF

2
3 trF

2
4 ]

+
1

(2π)4
[
πT2

3
+ ln (T2∣η(4T )∣

2) − ln (T2∣η(2T )∣
2)] × V8t8 [trF 2

1 trF
2
3 + trF

2
2 trF

2
4 ]

+
1

(2π)4
[ln (T2∣η(4T )∣

2) − 2ln (T2∣η(2T )∣
2)] × V8t8 [trF 2

1 trF
2
4 + trF

2
2 trF

2
3 ] .

We note that the 8-form polynomial

Y8 = [trR4
+

1

4
(trR2

)
2
+ trR2

4

∑
i

trF 2
i +

4

∑
i

2(trF 2
i )

2
] (5.20)

is due to the fermions transforming under the adjoint representation (28,1,1,1)⊕(1,28,1,1)⊕

(1,1,28,1) ⊕ (1,1,1,28) of the SO(8)4 and the CP-odd partner of the above provides with
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the discrete SL(2,Z) anomaly cancelling counter-term in D=8, N=1 supergravity with gauge

group G = SO(8)4 [1]. The other two 8-form polynomials

Y ′
8 = {2 × 64(

trR4

360
+

(trR2)2

288
) +

4

3
trR2

4

∑
i=1

trF 2
i (5.21)

+2 ×
2

3
(4

4

∑
i=1

trF 4
i + 3trF 2

1 trF
2
2 + 3trF 2

3 trF
2
4 )} (5.22)

Y ′′
8 = {256(

trR4

360
+

(trR2)2

288
) +

8

3
trR2

4

∑
i=1

trF 2
i (5.23)

+
8

3
(−4

4

∑
i=1

trF 4
i + 3

4

∑
i=1

(trF 2
i )

2
+ 6trF 2

1 trF
2
2 + 6trF 2

3 trF
2
4 )}

are respectively the contributions from the massive vector multiplet transforming under the bi-

fundamental representations (8,8,1,1)⊕(1,1,8,8) and (co)spinor representations (8,8,1,1)′⊕
(1,1,8,8)′ respectively. The last few pure gauge terms in (5.19) are due to the orbifold shifts

[16, 18].

5.1 Calculating string amplitude with Hecke operators

We now deploy the elegant method of Hecke operator to evaluate the degenerate plus non-

degenerate CP-even amplitude Adegenerate+Anon-degenerate which have been carried out in [18]

and in the guise of modular identities in [16]. We complement the calculation of [18] where

only the Γ−2 subgroup (of SL(2,Z)) invariant part has been computed using the Hecke image

HΓ−2 of the Γ−2 invariant part of Adegenerate +Anon-degenerate in (5.18) and (5.19). We compute

the Γ+2 and Γ0
2 invariant parts of (5.18) and (5.19) using the method of Hecke operators HΓ+2

and HΓ0
2
. We shall see that in the pure gravitational and in mixed gauge gravity part we can

separate the contribution from the adjoint representation (5.20) and the total contribution

from 6 sets of bi-fundamental states like (8,8,1,1) etc. but in the pure gauge part we cannot

separate these contributions: instead the sum from the 3 subgroups Γ−2 , Γ+2 and Γ0
2 of SL(2,Z)

we shall retrieve the total pure gauge contributions which have been investigated in detail in

[16].

We now describe the method in brief. For exclusive details we refer to [18]. We note that

subgroups Γ−2 , Γ+2 and Γ0
2 are the invariant subgroups of θ2, θ4 and θ3 modulo the phase and

weight factors. Now using the (A.10) and (A.11a), (A.11b), (A.11b), (A.11d) summation

identities we can decompose the B(1) part in both degenerate and non-degenerate elliptic

genus (5.12) and (5.15) into sum of the form

B(1)(⋯) = B(1)θ8
3θ

8
4(⋯) +B(1)θ8

2θ
8
3(⋯) +B(1)θ8

2θ
8
4(⋯). (5.24)

One can now combine the part B(1)θ8
3θ

8
4(⋯) with B(2), B(3) and B(4) sectors (5.11) in the de-

generate elliptic genus (5.12) and B(2,1), B(2,2) and B(2,3) sectors (5.13) in the non-degenerate

elliptic genus (5.15). The sum over θ8
3θ

8
4(⋯) is then of the form

∫F−
d2τ

τ2
2

Γ2,2(2T,U ; 2τ)Φ−(τ) (5.25)
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where Φ−(τ) is Γ−2 invariant modular function and we restrict the integral domain to F−
which is the fundamental domain of Γ−2 subgroup. One can now change the variable 2τ = ρ
and unfold the integral (5.25) to the fundamental domain F of SL(2,Z) by the following
unfolding

∫
F−

d2τ

τ2
2

Γ2,2(2T,U ; 2τ)Φ−(τ) = ∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ;ρ) (Φ−(
ρ

2
) +Φ−(−

1

2ρ
) +Φ−(

ρ + 1

2
)) (5.26)

= ∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ;ρ)HΓ−2
Φ−(ρ)

where in the last line we have used the definition of the Hecke operator for the Γ−2 subgroup.

We then combine the θ8
2θ

8
3(⋯) piece in (5.24) with the B(3) sector of the non-degenerate

elliptic genus to get the following combination of the partitions function

∫F+
d2τ

τ2
2

Γ2,2(2T,U ; τ/2)Φ+(τ) (5.27)

where Φ+(τ) is Γ+2 invariant modular function and we restrict the integral domain to F+
which is the fundamental domain of Γ+2 subgroup. We make the change of variable τ/2 = ρ
and unfold the integral to the fundamental domain F to make appear the Hecke operator
HΓ+2 for the Γ+2 subgroup

∫
F+

d2τ

τ2
2

Γ2,2(2T,U ; τ/2)Φ+(τ) = ∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ;ρ) (Φ+(2ρ) +Φ+(−
1

2ρ
) +Φ+(

1

2ρ + 1
))(5.28)

= ∫
F

d2ρ

ρ2
2

Γ2,2(2T,U ;ρ)HΓ+2
Φ+(ρ).

It now rests to combine the θ8
2θ

8
4(⋯) piece in (5.24) with the B(4) sector of the non-degenerate

elliptic genus to get the following combination of the partitions function

∫F0

d2τ

τ2
2

Γ2,2(T,U ; (τ + 1)/2)Φ0(τ) (5.29)

where Φ0(τ) is Γ0
2 invariant modular function and we restrict the integral domain to F0 which

is the fundamental domain of Γ0
2 subgroup. Making the change of variable (τ + 1)/2 = ρ and

unfold the integral to the fundamental domain F to make appear the Hecke operator HΓ0
2

for

the Γ0
2 subgroup

∫
F0

d2τ

τ2
2

Γ2,2(T,U ; (τ + 1)/2)Φ0(τ) = ∫
F

d2ρ

ρ2
2

Γ2,2(T,U ;ρ)HΓ0
2
Φ0(ρ) (5.30)

= ∫
F

d2ρ

ρ2
2

Γ2,2(T,U ;ρ) (Φ0(2ρ − 1) +Φ0(−
1

2ρ − 1
) +Φ0(−

1

2ρ
)) .

Now to get the harmonic part of the CP-even amplitude, we pick up the constant parts of
the Hecke images of the related modular functions which we have enlisted in (A.12), (A.14),
(A.15) and (A.16). Combining these we find the result for degenerate and non-degenerate
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amplitude

Adegenerate +Anon-degenerate = (5.31)

1

(2π)4
[
πT2

3
+ lnT2∣η(2T )∣

2
+ ln (U2∣η(U)∣

2)] t8 [
2 × 360

27325
trR4

+
2 × 72

2932
(trR2

)
2
+

288

2832
trR2

4

∑
i

trF 2
i ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
adjoint of SO(8)4

+
1

(2π)4
[
πT2

2
+ lnT2∣η(2T )∣

2
+ ln (T2∣η(T )∣

2) + ln (U2∣η(U)∣
2)]

×t8 [
2 × 384

27325
trR4

+
2 × 384

2932
(trR2

)
2
+

1152

2832
trR2

4

∑
i

trF 2
i ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
bi-fundamental and bi-spinor states

+
1

(2π)4
[lnT2∣η(2T )∣

2
− 2ln (T2∣η(T )∣

2) + ln (U2∣η(U)∣
2)] t8

4

∑
i=1

(trF 2
i )

2

+
1

(2π)4
[
πT2

3
+ lnT2∣η(4T )∣

2
− lnT2∣η(2T )∣

2
] t8

4

∑
i=1
trF 4

i

+
1

(2π)4
[
πT2

3
+ lnT2∣η(4T )∣

2
− lnT2∣η(2T )∣

2
+ ln (U2∣η(U)∣

2)] × t8{trF
2
1 trF

2
3 + trF

2
2 trF

2
4 } (5.32)

+
1

(2π)4
[lnT2∣η(4T )∣

2
− 2lnT2∣η(2T )∣

2
+ ln (U2∣η(U)∣

2)] × t8{trF
2
1 trF

2
4 + trF

2
2 trF

2
3 }. (5.33)

From the above, we recognise the composite anomaly cancelling polynomial (5.20) [1] in

pure gravity and gauge-gravity sector in part “adjoint of SO(8)4” (5.31) and the part “bi-

fundamental and bi-spinor states in” corresponds to the pure gravity and gauge-gravity cou-

pling of states in (8,8,1,1) ⊕ (1,1,8,8), (8,8,1,1)′ ⊕ (1,1,8,8)′ and (8,8,1,1)′′ ⊕ (1,1,8,8)′′

representations. However the pure gauge sector irons down the contributions from these

representations to give the last terms in (5.31). One can also check that there is a “local

conservation” of coefficients e.g. for trR4/(27325) terms in both methods with constant co-

efficients and Hecke operators the total numerical coefficients are same if one sums them in

the respective sectors

2 × 744 = 2 × 360 + 2 × 384
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hecke metheod

= 2 × 360 + 2 × 128 + 2 × 256
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

adjpoint + bi-fundamental + spinor reps.

. (5.34)

One can check the other numerical coefficients for the 8-forms (trR2)2, (trF 2)2, trR2trF 2 and

trF 4. There is a nice interpretation for the modular forms in front of the pure gauge sector

8-forms as discussed in [16] and they correspond to the C4 and C0 − C8 exchange between

four D4 branes in the dual F-theory on K3 description in Sen limit [21].

6 Conclusion

We have summarized the one loop amplitude results for Heterotic string on T 2 with gauge

groups SO(32), E8 ×E8, SO(16)×SO(16) and SO(8)4. We have emphasized the role played

by the harmonic part of these amplitudes which provide the discrete anomaly counter-term in
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the corresponding supergravity theory. We also discussed instances where these terms have an

uplift towards nine-dimensions thus providing a consistent description of both the amplitude

calculation for a circle compactification and for a torus compactification. For the case of

SO(8)4 we complemented the calculation of such amplitude using the Hecke operators which

may be seen to provide an interesting perspective towards such calculations from number

theory point of view. We shall, in future, address the calculation of two and higher loop

amplitudes for Heterotic string on T 2, the results of which provide higher derivative correction

terms to the corresponding supergravity actions and are still not extensively studied in the

string theory literature.
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A Modular functions

In this appendix we provide the definitions the the Jacobi θ functions, Dedekind eta function

and Eisenstein series along with useful identities relating them that we have used in the

calculations.

Our convention for the θ function is

θ [ab] (ν∣τ) = ∑
n∈Z

q(1/2)(n−a/2)
2

e2πi(ν−b/2)(n−a/2), (A.1)

where a,b are real and q = e2πiτ .

We note θ1 = θ [1
1], θ2 = θ [1

0], θ3 = θ [0
0] and θ4 = θ [0

1].

Next we list different periodicity properties and modular transformations of the θ functions

(a, b ∈ Z):

θ [a+2
b ] (ν∣τ) = θ [ab] (ν∣τ), (A.2)

θ [ a
b+2] (ν∣τ) = eiπaθ [ab] (ν∣τ),

θ [−a−b] (ν∣τ) = θ [ab] (−ν∣τ),

θ [ab] (−ν∣τ) = eiπabθ [ab] (ν∣τ),

θ [ab] (ν∣τ + 1) = e−(iπ/4)a(a−2)θ [ a
a+b−1] (ν∣τ),

θ [ab] (ν/τ ∣ − 1/τ) =
√
−iτe(iπ/2)ab+iπν

2/τθ [ b−a] (ν∣τ).

We are now in position to define the Dedekind η-function:

η(τ) = q1/24
∞
∏
n=1

(1 − qn), (A.3)

satisfying

η(−1/τ) =
√
−iτη(τ). (A.4)

Some useful relations between the Jacobi θ-functions and the η-function are

θ2(0∣τ)θ3(0∣τ)θ4(0∣τ) = 2η3, (A.5a)

θ12
3 − θ12

2 − θ12
4 = 48η12, (A.5b)

θ4
2 + θ

4
4 − θ

4
3 = 0. (A.5c)
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Now we summarise the definitions of the Eisenstein series and Leech j function

Ê2 = 1 −
3

πτ2
− 24

∞
∑
n=1

nqn

1 − qn
, (A.6a)

E4 =
1

2

4

∑
a=2

θ8
a = 1 + 240

∞
∑
n=1

n3qn

1 − qn
, (A.6b)

E8 = E
2
4 =

1

2

4

∑
a=2

θ16
a = 1 + 480

∞
∑
n=1

n7qn

1 − qn
, (A.6c)

E6 =
1

2
(θ4

2 + θ
4
3)(θ

4
3 + θ

4
4)(θ

4
4 − θ

4
2) = 1 − 504

∞
∑
n=1

n5qn

1 − qn
, (A.6d)

j =
E3

4

η24
=

1

q
+ 744 +⋯ (A.6e)

In the process of “gauging” the elliptic genus, we shall extensively use the following

identities

θ2(ν∣τ)

θ2(0∣τ)
= exp{

∞
∑
k=1

(2πi)2kB2kν
2k

(2k + 1)! − (2k)!
[E2k(q) − 22kE2k(q

2
)]} (A.7a)

θ3(ν∣τ)

θ3(0∣τ)
= exp{

∞
∑
k=1

(2πi)2kB2kν
2k

(2k + 1)! − (2k)!
[E2k(q) −E2k(−

√
q)]} (A.7b)

θ4(ν∣τ)

θ4(0∣τ)
= exp{

∞
∑
k=1

(2πi)2kB2kν
2k

(2k + 1)! − (2k)!
[E2k(q) −E2k(

√
q)]} (A.7c)

where Bk are the Bernoulli numbers: B2 = 1/6, B4 = −1/30, B6 = 1/42 and we shall use the

following combinations f1, f2, f3 in the elliptic genus

f1 = 4E2(q
2
) − 2E2(q) = θ

4
3 + θ

4
4, (A.8a)

f2 = E2(−
√
q) − 2E2(q) = θ

4
2 − θ

4
4, (A.8b)

f3 = E2(
√
q) − 2E2(q) = −θ

4
2 − θ

4
3. (A.8c)

E4(q) − 16E4(q
2
) = 5(E4(q)

2
− f2

1 ) = −15θ4
3θ

4
4, (A.9a)

E4(q) −E4(−
√
q) = 5(E4(q)

2
− f2

2 ) = 15θ4
2θ

4
4, (A.9b)

E4(q) −E4(
√
q) = 5(E4(q)

2
− f2

3 ) = −15θ4
2θ

4
3. (A.9c)

There are various summation identities involving the Eisenstein series and f1, f2, f3 which
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will be useful in the computation of the partition function

1

2

4

∑
a=2

θa(0∣τ)
16fa−1 = −E4E6, (A.10a)

1

2

4

∑
a=2

θa(0∣τ)
16f2

a−1 = E
3
4 − 2732η24

= 2E2
6 −E

3
4 , (A.10b)

1

2

4

∑
a=2

θa(0∣τ)
8fa−1 = −E6, (A.10c)

1

2

4

∑
a=2

θa(0∣τ)
8f2
a−1 = E

2
4 , (A.10d)

4

∑
a=2

θa(0∣τ)
16
= 2θ8

3θ
8
4 + 2θ8

2θ
8
4 + 2θ8

2θ
8
3, (A.11a)

4

∑
a=2

θa(0∣τ)
16
(Ê2 + fa−1) = θ

8
3θ

8
4(2Ê2 + f2 + f3) (A.11b)

+ θ8
2θ

8
4(2Ê2 + f1 + f3) + θ

8
2θ

8
3(2Ê2 + f1 + f2),

4

∑
a=2

θa(0∣τ)
16
(Ê2 + fa−1)

2
= 2θ8

3θ
8
4(Ê2 + f2)(Ê2 + f3) (A.11c)

+ 2θ8
2θ

8
4(Ê2 + f1)(Ê2 + f3)

+ 2θ8
2θ

8
3(Ê2 + f1)(Ê2 + f2) + 2832η24,

= θ8
3θ

8
4 ((Ê2 + f2)

2
+ (Ê2 + f3)

2) (A.11d)

+ θ8
2θ

8
4 ((Ê2 + f1)

2
+ (Ê2 + f3)

2)

+ θ8
2θ

8
3 ((Ê2 + f1)

2
+ (Ê2 + f2)

2) − 2932η24.

For the pure gauge part there are very remarkable trivial identities

1

283η24
(−θ16

2 θ
4
3θ

4
4 + θ

16
3 θ

4
2θ

4
4 − θ

16
4 θ

4
2θ

4
3) = 1, (A.12)

θ8
2θ

8
3

283η24
(−θ4

3θ
4
4 + θ

4
2θ

4
4) = −

1

3
,

θ8
3θ

8
4

283η24
(+θ4

2θ
4
4 − θ

4
2θ

4
3) = −

1

3
,

θ8
2θ

8
4

283η24
(−θ4

3θ
4
4 − θ

4
2θ

4
3) = −

1

3
.

Then we enlist the q-expansions of the different modular functions used in the elliptic
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genus

E4

η24

4

∑
a=2

θa(0∣τ)
16

=
2

q
+ 1488 +O(q),

E4

η24
θ8

3θ
8
4 =

1

q
+ 232 +O(q) (A.13)

E4

η24
θ8

2θ
8
3 = 256 +O(

√
q),

E4

η24
θ8

2θ
8
4 = 256 +O(

√
q),

E2
2

η24

4

∑
a=2

θa(0∣τ)
16

=
2

q
+ 912 +O(q),

E2
2

η24
θ8

3θ
8
4 =

1

q
− 56 +O(q)

E4

η24
θ8

2θ
8
3 = 256 +O(

√
q),

E4

η24
θ8

2θ
8
4 = 256 +O(

√
q),

1

η24

4

∑
a=2

θa(0∣τ)
16
(Ê2 + fa−1)

2
= 1152 +O(q),

θ8
3θ

8
4

η24
((Ê2 + f2)

2
+ (Ê2 + f3)

2) = 1152 +O(q),

θ8
2θ

8
4

η24
((Ê2 + f1)

2
+ (Ê2 + f3)

2) = 2304 +O(
√
q),

θ8
2θ

8
3

η24
((Ê2 + f1)

2
+ (Ê2 + f2)

2) = 2304 +O(
√
q),

E2

η24

4

∑
a=2

θa(0∣τ)
16
(E2 + fa−1) = 1440 +O(q),

E2

η24
θ8

3θ
8
4(2Ê2 + f2 + f3) = −96 +O(q),

E2

η24
θ8

2θ
8
3(2Ê2 + f1 + f2) = O(

√
q),

E2

η24
θ8

2θ
8
4(2Ê2 + f1 + f3) = O(

√
q).

Finally we enlist the constant parts of the images of the different modular functions in the
elliptic genus under suitable Hecke operators

HΓ−2
[
θ8

3θ
8
4E4

η24
] = 360, (A.14)

HΓ−2
[
E2

2

η24
θ8

3θ
8
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HΓ−2
[
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η24
θ8

3θ
8
4(2Ê2 + f2 + f3)] = 288,

HΓ−2
[
θ8

3θ
8
4

η24
((Ê2 + f2)(Ê2 + f3))] = −576

HΓ−2
[
θ8

3θ
8
4

η24
((Ê2 + f2)

2
+ (Ê2 + f3)

2)] = 2304

HΓ+2
[
θ8

2θ
8
3E4

η24
] = 384, (A.15)

HΓ+2
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E2

2

η24
θ8

2θ
8
3] = 384,

HΓ+2
[
E2

η24
θ8

2θ
8
3(2Ê2 + f1 + f2)] = 1152,

HΓ+2
[
θ8

2θ
8
3

η24
((Ê2 + f1)(Ê2 + f2))] = 3456
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HΓ0
2
[
θ8

2θ
8
4E4

η24
] = 384, (A.16)

HΓ0
2
[
E2

2

η24
θ8

2θ
8
4] = 384,

HΓ0
2
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η24
θ8

2θ
8
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2
[
θ8

2θ
8
4

η24
((Ê2 + f1)(Ê2 + f3))] = 3456
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