. The modular integral will now look like

(2.6) + strip-boundary of P SL(2,Z)

Introduction

The one loop string amplitude calculations with half-maximal supersymmetry provide very important correction terms in the effective action of the corresponding supergravity theory. Such one loop string amplitudes in case of heterotic string theories compactified on a torus with or without Wilson lines are of profound interest in view of its duality with F-theory compactified on a K3 surface. These one loop correction terms receive no further renormalization because they serve the purpose of the anomaly cancelling term as discussed in [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF]. Thus their structure may be used to extract useful informations about non-trivial axio-dilaton coupling of 7-branes in the context of the duality between heterotic on T 2 and F-theory on K3. The one loop string amplitude results have been calculated in parts and to serve very specific purpose in the string theory literature. In this paper, we recollect the existing results and complete such calculations for the cases with gauge groups SO(32), E 8 × E 8 , SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] and SO(8) 4 . We provide the complete elliptic genus for these theories and present the harmonic part of these amplitudes which will prove to be of immense importance for the case of discrete SL(2, Z) anomaly cancellation in D=8, N=1 supergravity and put stringent consistency condition upon further compactification down to six dimensional supergravity theories with N = (1, 0) supersymmetry which we have discussed in [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF]. The present paper may serve as a collection of the calculations which have been accomplished partially in the past with newer complements to make their results complete and their purpose more general. These calculations will be used to pave the way for the calculation of two or higher string loop calculations with half-maximal supercharges.

Generalities

We start our discussion by noting the field content of the Heterotic theory with gauge group G = SO(32) or E 8 × E 8 compactified on a torus T 2 without Wilson lines comprises of [START_REF] Salam | d = 8 Supergravity: Matter Couplings, Gauging and Minkowski Compactification[END_REF] a gravity multiplet with 1 graviton, 1 anti-symmetric two-form, 2 graviphotons, 1 real scalar ,1 gravitino, 1 dilatino and a vector multiplet in the adjoint representation of the gauge group G = SO(32) or E 8 × E 8 . If in addition, we switch on non-zero Wilson lines along the cycles of the compact torus, then the gauge group G = SO(32) or E 8 × E 8 is broken down to some other gauge group like SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] or SO(8) 4 keeping however the original rank fixed that is 16. We denote by T and U respectively the Kähler and complex structure of the torus T 2 such that

T = T 1 + iT 2 = B 89 + iV T 2 , U = U 1 + iU 2 . (2.1) 
In this article, we shall be interested in calculating the one loop string amplitude result involving 1 of the T and U moduli and either 4 gravitons or 4 gauge bosons or 2 gauge bosons and 2 gravitons. The CP-even amplitude follows from [START_REF] Ellis | One Loop String Corrections to the Effective Field Theory[END_REF][START_REF] Abe | Loop Corrections to the E(8) X E(8) Heterotic String Effective Lagrangian[END_REF][START_REF] Lerche | Anomaly Cancelling Terms From the Elliptic Genus[END_REF][START_REF] Dixon | Moduli dependence of string loop corrections to gauge coupling constants[END_REF][START_REF] Harvey | Algebras, BPS states, and strings[END_REF][START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF]]

A = t 8 V 8 F d 2 τ τ 2 2 Γ 2,2 A(q, R, F ) 8-f orms , (2.2) 
where Γ 2,2 is the T 2 lattice sum

Γ 2,2 = T 2 τ 2 B∈M L(2,Z) exp 2πiT det(B) - πT 2 τ 2 U 2 (1 U )B τ 1 2 = ⃗ m,⃗ n∈Z N q P 2 L 2 qP 2 R 2 . (2.3)
and A(q, R, F ) 8-f orms is the elliptic genus [START_REF] Lerche | Anomaly Cancelling Terms From the Elliptic Genus[END_REF]. We emphasize from the very beginning that amongst many a different elegant methods available for such a calculation of amplitude, we shall be chiefly using the method of elliptic genus [START_REF] Lerche | Anomaly Cancelling Terms From the Elliptic Genus[END_REF][START_REF] Lerche | Lattices and Strings[END_REF] and the method of decomposition of the Γ 2,2 lattice sum into three orbits of P SL(2, Z) [START_REF] Dixon | Moduli dependence of string loop corrections to gauge coupling constants[END_REF][START_REF] Harvey | Algebras, BPS states, and strings[END_REF][START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF]. The elliptic genus A(q, R, F ) 8-f orms is an eight-form polynomial in trR 4 , (trR 2 ) 2 , trF 4 , (trF 2 ) 2 and trR 2 trF 2 where the lower-case "tr" denotes the group trace in fundamental or vector representation and with coefficients some modular functions Φ(τ ) of the complex structure τ of the world-sheet torus. Thus the generic form of the elliptic genus is the following

A(q, R, F ) 8-f orms = Φ 1 (τ ) trR 4 (2π) 4 +Φ 2 (τ ) (trR 2 ) 2 (2π) 4 +Φ 3 (τ ) trF 4 (2π) 4 +Φ 4 (τ ) (trF 2 ) 2 (2π) 4 +Φ 5 (τ ) trR 2 trF 2 (2π) 4 (2.4)
where as stated before, Φ i , i = 1, ⋯, 5 are appropriate modular functions. The elliptic genus can be conveniently seen to appear from the "gauging" of the lattice of the gauge group G. We shall next q-expand the modular functions Φ i by

Φ i (q) = ∞ n=-1 c i n q n , (2.5) 
and decompose the 2 × 2 matrices B in the lattice sum into the orbits of P SL(2, Z) [START_REF] Dixon | Moduli dependence of string loop corrections to gauge coupling constants[END_REF][START_REF] Harvey | Algebras, BPS states, and strings[END_REF][START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF] :

Orbits Defining properties Canonical representative Trivial B = 0 ( 0 0 0 0 ) Degenerate B ≠ 0; detB = 0 d 2 τ τ 2 2 (j,p)≠(0,0) e - πT 2 τ 2 U 2 j+pU 2 A(q, R, F ) degenerate orbit + 2 C + d 2 τ τ 2 2 0≤j<k,p≠0 e -2πiT pk e - πT 2 τ 2 U 2 kτ +j+pU 2 A(q, R, F ) non-degenerate orbit }.
In all the cases of amplitude calculation, we shall concentrate mostly on the harmonic part of the CP-even amplitude which is found by taking into account only the constant part of the expansion (2.5) that is the coefficient c 0 for the different modular functions (which we have summarized in (A.13) in appendix A). We shall also note that the sum of the coefficients c -1 of q -1 vanishes in all cases so that there are no poles in the calculation. There is however the appearance of the infra-red divergence in these calculations for which we shall take appropriate renormlization scheme though we shall not detail the process here (the technical details can be found in [START_REF] Dixon | Moduli dependence of string loop corrections to gauge coupling constants[END_REF][START_REF] Harvey | Algebras, BPS states, and strings[END_REF][START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF]) but just mention the result coming from it. We are keen to highlight only the non-volume suppressed harmonic part of the amplitude as the CP-odd partner of such a term in the effective action would correspond to the counter-term for the SL(2, Z) anomaly in the corresponding supergravity theories in 8-dimensions [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF]. The non-harmonic, volume suppressed terms are world-sheet instanton corrections which can also be interpreted in the dual type I side as D-instanton corrections [START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF][START_REF] Kiritsis | Duality and instantons in string theory[END_REF].

3 Outline of the string amplitude calculation for D=8, N=1 and G = SO(32) and E 8 × E 8

In the following we shall briefly outline the principle of the calculation following the lines of [START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF] so that it will be easier to understand the calculation for the cases SO(16) 2 and SO(8) 4 . In all cases we shall evaluate the CP-even amplitude which contains the curvature tensor contraction of the form t 8 trR 4 . One can then easily derive the CP-odd sector containing the curvature contraction of the form 8 trR 4 = trR ∧4 and the harmonic part of the modular functions of T and U appearing in the CP-even sector following the method of [START_REF] Antoniadis | Topological amplitudes in string theory[END_REF][START_REF] Gregori | R**2 corrections and nonperturbative dualities of N=4 string ground states[END_REF].

The CP-even amplitude follows from

A = V 8 t 8 F d 2 τ τ 2 2 Γ 2,2 A(q, R, F ) 8-f orms , (3.1) 
where Γ 2,2 is the T 2 lattice sum

Γ 2,2 = T 2 τ 2 B∈M L(2,Z) exp 2πiT det(B) - πT 2 τ 2 U 2 (1 U )B τ 1 2 = ⃗ m,⃗ n∈Z N q P 2 L 2 qP 2 R 2 . (3.2)
and A(q, R, F ) 8-f orms is the elliptic genus [START_REF] Lerche | Anomaly Cancelling Terms From the Elliptic Genus[END_REF] A(q, R, F

) SO(32) = E 3 4 2 7 3 2 5η 24 trR 4 (2π) 4 + Ê2 2 E 2 4 2 9 3 2 η 24 (trR 2 ) 2 (2π) 4 (3.3a) 
+ trR 2 trF 2 2 8 3 2 (2π) 4 Ê2 E 4 E 6 η 24 - Ê2 2 E 2 4 η 24 + trF 4 (2π) 4 + (trF 2 ) 2 2 9 3 2 (2π) 4 E 3 4 η 24 - 2 Ê2 E 4 E 6 η 24 + Ê2 2 E 2 4 η 24 -2 7 3 2 , A(q, R, F ) E8×E8 = E 3 4 2 7 3 2 5η 24 trR 4 (2π) 4 + Ê2 2 E 2 4 2 9 3 2 η 24 (trR 2 ) 2 (2π) 4 + trR 2 (trF 2 1 + trF 2 2 ) 2 8 3 2 (2π) 4 Ê2 E 4 E 6 η 24 - Ê2 2 E 2 4 η 24 + trF 2 1 trF 2 2 2 8 3 2 (2π) 4 Ê2 2 E 2 4 η 24 - 2 Ê2 E 4 E 6 η 24 + E 2 6 η 24 (3.3b) + (trF 2 2 ) 2 + (trF 2 2 ) 2 2 8 3 2 (2π) 4 E 3 4 η 24 - 2 Ê2 E 4 E 6 η 24 + Ê2 2 E 2 4 η 24 .
In the above, all group traces "tr" are in fundamental or vector representation.

In view of the above elliptic genus, the amplitude A can be viewed as the sum of integrals of the type

I(T, U ) = F d 2 τ τ 2 2 Γ 2,2 (T, U )Φ(q)
with Φ(q) being the modular form coefficient of each of the 8-form components trR 4 , (trR 2 ) 2 , trR 2 trF 2 , trF 4 and (trF 2 ) 2 .

Next one uses the q-expansion (with q = e 2πiτ ) of Φ(q)

Φ(q) = ∞ n=-1 c n q n , (3.4) 
and decomposes the 2 × 2 matrices B in the lattice sum into the orbits of P SL(2, Z) (see [START_REF] Dixon | Moduli dependence of string loop corrections to gauge coupling constants[END_REF][START_REF] Harvey | Algebras, BPS states, and strings[END_REF][START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF]) :

Orbits Defining properties Canonical representative Trivial B = 0

( 0 0 0 0 ) Degenerate B ≠ 0; detB = 0 0 j 0 p ; j, p ≠ 0. Non-degenerate B ≠ 0; detB ≠ 0 k j 0 p ; 0 ≤ j < k; p ≠ 0.
The modular integration will now look like

A = V 8 T 2 t 8 × { F d 2 τ τ 2 2 A(q, R, F ) trivial orbit (3.5) + strip-boundary of P SL(2,Z) d 2 τ τ 2 2 (j,p)≠(0,0) e - πT 2 τ 2 U 2 j+pU 2 A(q, R, F ) degenerate orbit + 2 C + d 2 τ τ 2 2 0≤j<k,p≠0 e -2πiT pk e - πT 2 τ 2 U 2 kτ +j+pU 2 A(q, R, F ) non-degenerate orbit }.
To determine the leading part (non-volume suppressed part) of the amplitude coming from the degenerate orbit, that is to evaluate the integral strip-boundary of P SL(2,Z)

d 2 τ τ 2 2 (j,p)≠(0,0) e - πT 2 τ 2 U 2 j+pU 2 c 0 , (3.6) 
where c 0 is the coefficient of q 0 of the q expansion of the elliptic genus A(q, R, F ), we use result of [START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF] to obtain the following harmonic part strip-boundary of P SL(2,Z)

d 2 τ τ 2 2 (j,p)≠(0,0) e - πT 2 τ 2 U 2 j+pU 2 c 0 (3.7) = logU 2 η(U ) 2 + πU 2 6 c 0 + terms with V T 2 in denominator
Note that the seemingly non-harmonic logU 2 piece in (3.7) comes from taking the appropriate renormalization scheme against the infra-red divergence of the above amplitude calculation.

To determine the non-volume suppressed part of the amplitude coming from the non-degenerate -5 -orbit, we use the integral [START_REF] Kiritsis | Heterotic type I duality in D ¡ 10-dimensions, threshold corrections and D instantons[END_REF], [START_REF] Gutperle | Heterotic / type I duality, D instantons and a N=2 AdS / CFT correspondence[END_REF] T 2 0≤j<k,p≠0

e -2πiT pk

C + d 2 τ τ 2 2 e - πT 2 τ 2 U 2 kτ +j+pU 2 c 0 = (3.8) j k>0,p>0
e 2πikpT k p c 0 + cc. + volume suppressed terms.

We them sum up the leading order non-volume suppressed terms from all the three orbits which gives us

I(T, U ) = F d 2 τ τ 2 2 Γ 2,2 (T, U )Φ(q) (3.9) = πT 2 3 [c 0 -24c -1 ] + logU 2 η(U ) 2 + πU 2 6 c 0 + logT 2 η(T ) 2 + πT 2 6 c 0
+non-harmonic terms with T s 2 in denominator with s=1, 2.

Using the above plus the q-expansion of different modular functions which we have summarized in (A.13) in A we find the CP-even amplitude for SO(32)

A SO(32) CP-even = V 8 T 2 N π 24 t 8 trR 4 + 1 4 (trR 2 ) 2 + trR 2 trF 2 + 8trF 4 Trivial orbit (3.10) 
+ V 8 N 1 48 logU 2 η(U ) 2 × t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 trF 2 + 2(trF 2 ) 2 + 16trF 4
Harmonic term from the degenerate orbit

+ V 8 N 1 48 logT 2 η(T ) 2 + πT 2 6 × t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 trF 2 + 2(trF 2 ) 2 + 16trF 4
Harmonic term from the non-degenerate orbit + non-harmonic terms.

-6 -Similarly, using the elliptic genus for E 8 × E 8 we find

A E 8 ×E 8 CP-even = V 8 T 2 N π 24 t 8 trR 4 + 1 4 (trR 2 ) 2 + trR 2 (trF 2 1 + trF 2 2 ) -2trF 2 1 trF 2 2 + 2(trF 2 1 ) 2 + 2(trF 2 2 ) 2
Trivial orbit

(3.11)

+ V 8 N 1 48 logU 2 η(U ) 2 × t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 (trF 2 1 + trF 2 2 ) + 6((trF 2 1 ) 2 + (trF 2 2 ) 2 )
Harmonic term from the degenerate orbit

+ V 8 N 1 48 logT 2 η(T ) 2 + πT 2 6 × t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 (trF 2 1 + trF 2 2 ) + 6((trF 2 1 ) 2 + (trF 2 2 ) 2 )
Harmonic term from the non-degenerate orbit + non-harmonic terms.

In both the cases above, the contributions from the trivial orbit are in fact the T 2 compactifications of the CP-even partner of the 10-dimensional Green-Schwarz terms [START_REF] Green | Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory[END_REF] S

SO(32) GS = 1 192(2π) 5 α ′ B 2 trR 4 + 1 4 (trR 2 ) 2 + trR 2 trF ∧2 + 8trF 4 (3.12) 
and

S E 8 ×E 8 GS = 1 192(2π) 5 α ′ B 2 (3.13) trR 4 + 1 4 (trR 2 ) 2 + trR 2 (trF 2 1 + trF 2 2 ) -2trF 2 1 trF 2 2 + 2(trF 2 1 ) 2 + 2(trF 2 2 ) 2 .
The CP-odd partners of the non-volume suppressed harmonic terms from the degenerate and non-degenerate orbits provide with the SL(2, Z) anomaly cancelling term in the corresponding supergravity theory (that is D=8, N=1 SUGRA with G = SO(32) or E 8 × E 8 ) which have been studied in [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF].

A lift in 9 dimensions

As a digression, we study the decompactification limit of the CP-even amplitude (3.10) to D=9 N=1 G=SO(32) theory. Suppose that the T 2 in the case above (section 3) have radii R 1 and R 2 along the two cycles and the angle between them be ω. We can then write the T 2 metric and its volume and complex structure in terms of R 1 , R 2 and ω as follows

G ij = ( g 88 g 89 g 89 g 99 ) = R 2 1 R 1 R 2 cosω R 1 R 2 cosω R 2 2 = V U 2 1 U 1 U 1 U 2 . (3.14) V = R 1 R 2 sinω, U 1 = R 2 R 1 cosω, U 2 = R 2 R 1 sinω. (3.15)
We use the above to decompactify the CP-even amplitude (3.10) by taking ω = π 2 and

R 2 = V 1 such that V 9 = V 8 R 2 and V 10 = V 8 R 1 R 2 are
the normalized world-volumes in D=9 and D=10 respectively. In this limit

U 1 = 0 , U 2 = R 2 R 1 , logU 2 η(U ) 2 = -πU 2
6 and the limit of the amplitude (3.10) gives

A SO(32) CP-even = V 9 R 1 N t 8 π 24 trR 4 + 1 4 (trR 2 ) 2 + trR 2 trF 2 + 8trF 4 (3.16) +V 9 N 1 48 1 R 1 t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 trF 2 + 2(trF 2 ) 2 + 16trF 4
+non-harmonic terms.

We can compare the above with the direct calculation of the string amplitude in D=9 as is calculated in [START_REF] Kiritsis | Duality and instantons in string theory[END_REF] A SO(32)

CP-even = V 10 {N t 8 trR 4 + 1 4 (trR 2 ) 2 + trR 2 trF 2 + 8trF 4 (3.17) + N 1 R 2 1 t 8 31 15 trR 4 + 19 12 (trR 2 ) 2 + 5trR 2 trF 2 + 2(trF 2 ) 2 + 16trF 4 + N 2 R 4 1 t 8 3(trF 2 ) 2 + 5trR 2 trF 2 + 2(trR 2 ) 2 + N 3 R 6 1 t 8 trR 2 + T rF 2 2 }
and we see that the first two lines match as they should. The polynomials in the 3rd line of (3.17) are also present in the volume suppressed part of (3.10). In both (3.16) and (3.17) the first line is the circle compactification of the CP-even Green-Schwarz term and the second line contains the CP-even partner of the SL(2, Z) anomaly cancelling term in D=8 as we have seen. However in D=9 this term is completely harmless as there is no chiral anomaly in D=9. Nonetheless, it is interesting to see the presence of this term in D=9 amplitude result which upon further compactification on S 1 shall give rise to the anomaly cancelling term in D=8.

4 String amplitude with G= SO(16) × SO( 16)

Now we consider D=10 Heterotic string theory with gauge group E 8 × E 8 compactified on a T 2 with Kähler structure T = B 89 + iV T 2 and complex structure U = U 1 + iU 2 and with the following Wilson line on T 2

Y 1 i = (0 4 , 1 2 
4 , 0 4 , 1 2 4 
), 16)×SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] ⊕ (128,1) ⊕ [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF]128) spinor rep. of SO( 16)×SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] .

Y 2 i = (0 8 , 0 8 ), i = 1, ⋯,
(4.

2)

The rules for transcribing group trace "Tr" in the adjoint representation towards the group trace "tr" in the fundamental representation for SO(N ) groups [START_REF] Van Nieuwenhuizen | Anomalies in quantum field theory: Cancellation of anomalies in d = 10 supergravity[END_REF][START_REF] Erler | Anomaly cancellation in six-dimensions[END_REF] T rF 2

SO(N ) = (N -2) trF 2 SO(N ) , (4.3) 
T rF 4 SO(N ) = (N -8) trF 4 SO(N ) + 3 (trF 2 SO(N ) ) 2 . (4.4)
For the (128,1) ⊕ (1,128) representation, we write the traces formula

tr 128 F 2 1 + tr 128 F 2 2 = 16trF 2 1 + 16trF 2 2 , (4.5a 
)

tr 128 F 4 1 + tr 128 F 4 2 = 6(trF 2 1 ) 2 + 6(trF 2 2 ) 2 -8trF 4 1 -8trF 4 2 . (4.5b) 
For the sake of completeness, we also provide the branching rule for the decomposition SO(32) ⊃ SO(16) × SO( 16) We now elaborate the process of the CP-even 5-point string amplitude for the SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] following the lines of [START_REF] Gutperle | A Note on heterotic / type I-prime duality and D0-brane quantum mechanics[END_REF] where the pieces of the calculation have been provided e.g. the coefficient of trR 4 , trF 4 and (trF 2 ) 2 for the non-degenerate orbit (3.5). We shall provide the CP-even part of the amplitude in the leading order non-volume suppressed harmonic forms in trivial, degenerate and non-degenerate orbits. The amplitude will be derived from

496 = (120,1) ⊕ (1,
A = V 8 t 8 F d 2 τ τ 2 2 Γ 2,2 A(q, R, F ) 8-f orms , (4.8) 
where Γ 2,2 is the T 2 lattice sum as before

Γ 2,2 = T 2 τ 2 B∈M L(2,Z) exp 2πiT det(B) - πT 2 τ 2 U 2 (1 U )B τ 1 2 = ⃗ m,⃗ n∈Z N q P 2 L 2 qP 2 R 2 (4.9)
with B being the 2 × 2 matrix

B = m 1 n 1 m 2 n 2 . (4.10)
The form of the elliptic genus A(q, R, F ) shall depend on the spin structure as we shall describe shortly and hence there are 3 different elliptic genus for trivial, degenerate and non-degenerate orbits which we shall note by A trivial (q, R, F ), A degenerate (q, R, F ) and A non-degenerate (q, R, F ) respectively. The general elliptic genus is obtained from the gauging of [START_REF] Lerche | Anomaly Cancelling Terms From the Elliptic Genus[END_REF] A(q, R, F ) =

1 η 24 Exp trR 2 (2π) 2 Ê2 48 × Exp trR 4 (2π) 4 E 4 2 7 3 2 5 × 2 a,b=1 θ 8 [ a b ] SO(16) 1 × θ 8 a+m 1 b+n 1 SO(16) 2 . (4.11)
We have summarised our convention of Jacobi theta functions in appendix A. The labels SO( 16) 1 and SO(16) 2 in (4.11) denote the gauging of the theta functions according to two SO( 16)s.

The trivial orbit is characterised by B = 0 so that the elliptic genus will be A trivial (q, R, F ) = (4.12)

E 3 4 2 7 3 2 5η 24 trR 4 (2π) 4 + Ê2 2 E 2 4 2 9 3 2 η 24 (trR 2 ) 2 (2π) 4 + trR 2 (trF 2 1 + trF 2 2 ) 2 8 3 2 (2π) 4 Ê2 E 4 E 6 η 24 - Ê2 2 E 2 4 η 24 + trF 2 1 trF 2 2 2 8 3 2 (2π) 4 Ê2 2 E 2 4 η 24 - 2 Ê2 E 4 E 6 η 24 + E 2 6 η 24 + (trF 2 1 ) 2 + (trF 2 2 ) 2 2 8 3 2 (2π) 4 E 3 4 η 24 - 2 Ê2 E 4 E 6 η 24 + Ê2 2 E 2 4 η 24 .
The degenerate orbit is characterised by B ≠ 0, det(B) = 0, for which choose the two following sectors

B (1) = 0 2j 0 p , B (2) 
= 0 2j + 1 0 p , j, p ∈ Z. (4.13) 
For the gauging, we use the identities (A.7) and the definitions of Eisenstein series given in (A.6) plus the combinations f 1 , f 2 , f 3 of theta functions

f 1 = θ 4 3 + θ 4 4 , f 2 = θ 4 2 -θ 4 4 , f 3 = -θ 4 2 -θ 4 3 . (4.14) 
-10 -

The elliptic genus for degenerate orbit is then

A degenerate (q, R, F ) = (4.15) trR 4 (2π) 4 E 4 2 7 3 2 5η 24 B (1) 4 a=2 θ 16 a + B (2) 2θ 8 3 θ 8 4 + (trR 2 ) 2 (2π) 4 Ê2 2 2 9 3 2 η 24 B (1) 4 a=2 θ 16 a + B (2) 2θ 8 3 θ 8 4 - trR 2 (trF 2 1 + trF 2 2 ) 2 8 3 2 (2π) 4 η 24 {2B (1) ( Ê2 E 4 E 6 -Ê2 2 E 2 4 ) -B (2) ( Ê2 θ 8 3 θ 8 4 )(f 2 + f 3 + 2 Ê2 )} + trF 4 1 + trF 4 2 2 7 3(2π) 4 η 24 {B (1) (-θ 16 2 θ 4 3 θ 4 4 + θ 16 3 θ 4 2 θ 4 4 -θ 16 4 θ 4 2 θ 4 3 ) + B (2) (θ 8 3 θ 8 4 (θ 4 2 θ 4 4 -θ 4 2 θ 4 3 ))} + (trF 2 1 ) 2 + (trF 2 2 ) 2 2 9 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (2) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 } + (trF 2 1 )(trF 2 2 ) 2 8 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (2) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 2 }.
In the above elliptic genus the B (1) and B (2) act as operators such that in the amplitude integration (4.8) one should take into account the values of the matrix B as given in (4.13).

Finally we come to the non-degenerate orbit (B ≠ 0, det(B) ≠ 0) whose matrix representative is B = k j 0 p ; 0 ≤ j < k; p ≠ 0.

We have to use the following 4 sectors of this representative matrix because of the spin structure (4.11)

B (1) = 2k 2j 0 p , B (2) 
= 2k 2j + 1 0 p , (4.16 
)

B (3) = 2k + 1 2j 0 p , B (4) 
= 2k + 1 2j + 1 0 p , 0 ≤ j < k, j, k, p ∈ Z.
-11 -

The elliptic genus for the non-degenerate orbit is then 4 η 24 {(2B (1) ( Ê2

A non-degenerate (q, R, F ) = (4.
E 4 E 6 -Ê2 2 E 2 4 ) -B (2) ( Ê2 θ 8 3 θ 8 4 )(f 2 + f 3 + 2 Ê2 ) -B (3) ( Ê2 θ 8 2 θ 8 3 )(f 1 + f 2 + 2 Ê2 ) -B (4) ( Ê2 θ 8 2 θ 8 4 )(f 1 + f 3 + 2 Ê2 )} + trF 4 1 + trF 4 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (2) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 + B (3) θ 8 2 θ 8 3 (f 1 + Ê2 ) 2 + (f 2 + Ê2 ) 2 + B (4) θ 8 2 θ 8 4 (f 1 + Ê2 ) 2 + (f 3 + Ê2 ) 2 } + (trF 2 1 )(trF 2 2 ) 2 8 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (2) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 2 + B (3) θ 8 2 θ 8 3 (f 1 + Ê2 ) 2 + (f 2 + Ê2 ) 2 -9θ 8 4 + B (4) θ 8 2 θ 8 4 (f 1 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 3 }.
Once again in the above, the terms B (i) with i = 1, 2, 3, 4 denote the sector operators so that one takes into account correctly the values of the matrix elements B according to the convention (4.16). The complete amplitude is then

A = T 2 V 8 t 8 × { F d 2 τ τ 2 2 A(q, R, F ) trivial (4.18) + strip-boundary of P SL(2,Z) d 2 τ τ 2 2 (n 1 ,n 2 )≠(0,0) e - πT 2 τ 2 U 2 n 1 +n 2 U 2 A(q, R, F ) degenerate +2 C + d 2 τ τ 2 2 0≤n 1 <m 1 ,n 2 ≠0 e -2πiT pk e - πT 2 τ 2 U 2 m 1 τ +n 1 +n 2 U 2 A(q, R, F ) non-degenerate }, = A trivial + A degenerate + A non-degenerate (4.19)
The trivial orbit amplitude gives

A trivial = T 2 V 8 t 8 1 (2π) 4 {trR 4 + 1 4 (trR 2 ) 2 + trR 2 (trF 2 1 + trF 2 2 ) (4.20) -2trF 2 1 trF 2 2 + 2(trF 2 1 ) 2 + 2(trF 2 2 ) 2 }
To evaluate the degenerate amplitude, we q-expand the modular function in the elliptic genus (4.15) and take the constant coefficients which we have noted in (A.13) which shall provide the harmonic part of the amplitude. In this respect we also note that we can sum up the contributions of B (1) and B (2) sectors in (4.13) so that the sum run in the complete set of integers for n 1 and n 2 so that the CP-even modular coefficient will be logU 2 η(U ) 2 (the logU 2 follows from the renormalization scheme). Also we note that the sum of the coefficients of 1 q is zero so that there are no poles in q. Using (3.7) we find the harmonic part of the CP-even amplitude coming from the degenerate orbit )}.

A degenerate = 1 (2π) 4 logU 2 η(U ) 2 V
Finally for the non-degenerate amplitude we again q-expand the modular functions in the elliptic genus (4.17) and check that there is no pole in q. Next we note that the leading term in the harmonic part for B (1) and B (2) sectors are the same and is equal to logT 2 η(2T ) 2 + πT 2 3 . We then sum the constant coefficients which shall provide the leading term (which are not volume suppressed) in the harmonic part. The constant coefficients in B (3) and B (4) are the same and hence the sum over m 1 , n 1 and n 2 can be extended to the complete Z with the contribution logT 2 η(2T ) 2 -logT 2 η(T ) 2 + πT 2 6 . Once again, we evaluate the CP-even integral using (3.8) and the leading term (harmonic) in the non-degenerate amplitude will be (we write only the non-volume suppressed harmonic part of the amplitude)

A non-degenerate = (4.22) 1 (2π) 4 logT 2 η(2T ) 2 + πT 2 3 V 8 t 8 { 488 360 trR 4 + 200 288 (trR 2 ) 2 + 7 3 trR 2 (trF 2 1 + trF 2 2 ) + 16 3 (trF 4 1 + trF 4 2 ) + 2((trF 2 1 ) 2 + (trF 2 2 ) 2 )} + 1 2(2π) 4 logT 2 η(2T ) 2 -logT 2 η(T ) 2 + πT 2 6 × V 8 t 8 {256 trR 4 360 + (trR 2 ) 2 288 + 8 3 trR 2 (trF 2 1 + trF 2 2 ) - 16 3 (trF 4 1 + trF 4 2 ) + 4((trF 2 1 ) 2 + (trF 2 2 ) 2 )}
We see again that the trivial orbit amplitude (4.20) is the compactification of the E 8 × E 8 Green-Schwarz term (3.13) such that E 8 × E 8 is broken down to SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF]. The polynomial

Y 8 = 488 360 trR 4 + 200 288 (trR 2 ) 2 + 7 3 trR 2 (trF 2 1 + trF 2 2 ) + 16 3 (trF 4 1 + trF 4 2 ) + 2((trF 2 1 ) 2 + (trF 2 2 ) 2 ) (4.23)
is in fact the 8-form polynomial in the SL(2, Z) anomaly counter-term [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF] and is due to the fermions in the D=8, N=1 SUGRA which transform under the adjoint representation in SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF]. The other 8-form polynomial

Y ′ 8 = 256 trR 4 360 + (trR 2 ) 2 288 + 8 3 trR 2 (trF 2 1 + trF 2 2 ) - 16 3 (trF 4 1 + trF 4 2 ) + 4((trF 2 1 ) 2 + (trF 2 2 )
2 ) (4.24) is due to the massive vector multiplet in (128,1) ⊕ (1,128) representation of SO( 16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF].

5 String amplitude with G= SO(8) 4 Finally we come to the case of the D=8, N=1 theory with gauge group SO(8) 4 which can be obtained from D=10, N=1 theory with gauge group either SO(32) or E 8 ×E 8 compactified on a T 2 with appropriate Wilson lines along the two 1-cycles of the torus. Before plunging into the details of the string loop calculation we first note the group traces originating from the group decompositions SO(32) → SO(8) 4 and E 8 × E 8 → SO(8) 4 which shall prove indispensable to understand the string loop amplitude. For the decomposition E 8 ⊃ SO(8) 2 we have 248 = (28,1) ⊕ (1,28)

adjoint rep. of SO(8)×SO(8) ⊕ (8,8) 
bifundamental rep. of SO( 8)×SO(

spinor rep. of SO( 8)×SO(

cospinor rep. of SO( 8)×SO [START_REF] Harvey | Algebras, BPS states, and strings[END_REF] .

Thus the complete decomposition E

(1) 8

→ SO(8

) (1) × SO(8) (2) plus E (2) 8 → SO(8) (3) × SO(8) (4) gives 248 ⊕ 248 =(28,1,1,1) ⊕ (1,28,1,1) ⊕ (1,1,28,1) ⊕ (1,1,1,28) (5.2) 
⊕ ( interaction. The T-duality exchanges the spinor and co-spinor representation with the bi-fundamental representations and we shall see -14 -that this fact appears in the string 1-loop elliptic genus as orbifold shifts [START_REF] Kiritsis | Heterotic / type II triality and instantons on K(3)[END_REF] which gives the mixed interaction of the type trF (5.4d)

With the above details behind we shall now describe the calculation of the CP-even amplitude by the q-expansion method [START_REF] Gutperle | Heterotic / type I duality, D instantons and a N=2 AdS / CFT correspondence[END_REF] as in the case of SO( 16) × SO( 16) (4).

As before, the amplitude has the generic form

A = V 8 t 8 F d 2 τ τ 2 2 Γ 2,2 A(q, R, F ) 8-f orms , (5.5) 
where Γ 2,2 is the T 2 lattice sum

Γ 2,2 = T 2 τ 2 B∈M L(2,Z) exp 2πiT det(B) - πT 2 τ 2 U 2 (1 U )B τ 1 2 = ⃗ m,⃗ n∈Z N q P 2 L 2 qP 2 R 2 (5.6) 
with B being the 2 × 2 matrix

B = m 1 n 1 m 2 n 2 .
(5.7)

To define the elliptic genus we shall start with the D=10 N=1 E 8 × E 8 Heterotic string compactified on a T 2 with the Wilson line

Y 1 i = (0 4 , 1 2 4 , 0 4 , 1 2 4 
),

Y 2 i = (0 4 , 1 2 4 , 0 4 , 1 2 4 
), i = 1, ⋯, 16, ( .

In the above (5.9) we have labelled the theta functions by SO(8) (1) ×SO(8) [START_REF] Salam | d = 8 Supergravity: Matter Couplings, Gauging and Minkowski Compactification[END_REF] and SO(8) (3) × SO(8) (4) to denote that those functions are to be "gauged" accordingly by the 4 copies of SO(8)s. We now decompose the integration by now familiar method of the decomposition to -15 -trivial, degenerate and non-degenerate orbit. The elliptic genus for the trivial orbit (B = 0) shall be A trivial (q, R, F ) = (5.10)

E 3 4 2 7 3 2 5η 24 trR 4 (2π) 4 + Ê2 2 E 2 4 2 9 3 2 η 24 (trR 2 ) 2 (2π) 4 + trR 2 ∑ 4 i=1 trF 2 i 2 8 3 2 (2π) 4 Ê2 E 4 E 6 η 24 - Ê2 2 E 2 4 η 24 + (trF 2 1 trF 2 3 + trF 2 2 trF 2 4 + trF 2 1 trF 2 4 + trF 2 2 trF 2 3 ) 2 8 3 2 (2π) 4 Ê2 2 E 2 4 η 24 - 2 Ê2 E 4 E 6 η 24 + E 2 6 η 24 + ∑ 4 i=1 (trF 2 i ) 2 2 8 3 2 (2π) 4 E 3 4 η 24 - 2 Ê2 E 4 E 6 η 24 + Ê2 2 E 2 4 η 24 + trF 2 1 trF 2 2 + trF 2 3 trF 2 4 2 7 3 2 (2π) 4 E 3 4 η 24 - 2 Ê2 E 4 E 6 η 24 + Ê2 2 E 2 4 η 24 .
For the degenerate orbit (B ≠ 0 and det(B) = 0) we choose the following sectors

B (1) = 0 2j 0 2p , B (2) 
= 0 2j 0 2p + 1 , (5.11) 
B (3) = 0 2j + 1 0 2p + 1 , B (4) 
= 0 2j + 1 0 2p , 0 ≤ j < k, j, k, p ∈ Z.
The sectors B (2) , B (3) and B (4) 

))} + ∑ 4 i=1 (trF 2 i ) 2 2 9 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + 4 j=2 B (j) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 } + trF 2 1 trF 2 2 + trF 2 3 trF 2 4 2 8 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (2) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 + 4 j=3 B (j) (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 2 } + trF 2 1 trF 2 3 + trF 2 2 trF 2 4 2 8 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (3) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 +(B (2) + B (4) ) (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 2 } + trF 2 1 trF 2 4 + trF 2 2 trF 2 3 2 8 3 2 (2π) 4 η 24 {B (1) 4 a=2 θ 16 a ( Ê2 + f a-1 ) 2 + B (4) θ 8 3 θ 8 4 (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 +(B (2) + B (3) ) (f 2 + Ê2 ) 2 + (f 3 + Ê2 ) 2 -9θ 8 2 }.
use the integral (3.7) to evaluate the non-volume suppressed harmonic part of the degenerate amplitude and (3.8) to evaluate the non-volume suppressed harmonic part of the the non-degenerate amplitude in the CP-even sector. is due to the fermions transforming under the adjoint representation (28, 1, 1, 1)⊕(1, 28, 1, 1)⊕

A degenerate = (5.18) 1 4(2π) 4 ln U 2 η(U ) 2 V 8 t 8 trR 4 + 1 4 (trR 2 ) 2 + trR 2 4 i trF 2 i + 4 i 2(trF 2 i ) 2 + 1 4(2π) 4 ln U 2 η(U ) 2 × V 8 t
(1, 1, 28, 1) ⊕ (1, 1, 1, 28) of the SO(8) 4 and the CP-odd partner of the above provides with the corresponding supergravity theory. We also discussed instances where these terms have an uplift towards nine-dimensions thus providing a consistent description of both the amplitude calculation for a circle compactification and for a torus compactification. For the case of SO(8) 4 we complemented the calculation of such amplitude using the Hecke operators which may be seen to provide an interesting perspective towards such calculations from number theory point of view. We shall, in future, address the calculation of two and higher loop amplitudes for Heterotic string on T 2 , the results of which provide higher derivative correction terms to the corresponding supergravity actions and are still not extensively studied in the string theory literature. 

  We now discuss the group decomposition E 8 × E 8 ⊃ SO(16) × SO(16) which we shall find extremely useful to understand the string amplitude part. For the decomposition E 8 × E 8 ⊃ SO(16) × SO[START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] we have 248 ⊕ 248 = (120,1) ⊕ (1,120) adjoint rep. of SO(

	16,	(4.1)

so that the gauge group is broken to SO(16) × SO

[START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] 

in D=8. One can of course rearrange the 8 non-zero values of the Wilson lines so that one can start from SO(32) gauge group in D=10 and again obtain SO(16) × SO(16) in D=8.

  120) 

		⊕	(16,16)	.	(4.6)
	adjoint rep. of SO(16)×SO(16)	cospinor rep. of SO(16)×SO(16)	
	For the (16,16) representation, we write the traces formula	
	tr (16,16) F 2	= 16trF 2 1 + 16trF 2 2 ,		(4.7a)
	tr (16,16) F 4	= 16trF 4 1 + 16trF 4 2 + 6(trF 2 1 )(trF 2 2 ).		(4.7b)

  SO(8) (3) × SO(8)[START_REF] Abe | Loop Corrections to the E(8) X E(8) Heterotic String Effective Lagrangian[END_REF] . We finally summarize the trace formula for different states[START_REF] Van Nieuwenhuizen | Anomalies in quantum field theory: Cancellation of anomalies in d = 10 supergravity[END_REF][START_REF] Erler | Anomaly cancellation in six-dimensions[END_REF] 

	2 1 trF 2 3 and trF 2 1 trF 2 4 etc, even if one starts with the 8 → SO(8) (1) × SO(8) (2) and E (1) (2) 8 → T r 28 F 2 decomposition E = 6trF 2 , T r 28 F 4 = 3(trF 2 ) 2 , (5.4a)
	tr (8,8) F 2	= 8trF 2 1 + 8trF 2 2 , tr (8,8) F 4	= 8trF 4 1 + 8trF 4 2 + 6trF 2 1 trF 2 2 ,	(5.4b)
	tr (8,8) ′ F 2	= tr (8,8) ′′ F 2	= 8trF 2 1 + 8trF 2 2 ,	(5.4c)
	tr (8,8) ′ F 4	= tr (8,8) ′′ F 4	= 3(trF 2 1 ) 2	+ 3(trF 2 2 ) 2	+ 6trF 2 1 trF 2 2 -4trF 4 1 -4trF 4 2 .

  in(5.11) generate the orbifold shifts which mix the SO(8) 1 and SO(8) 2 with SO(8) 3 and SO(8) 4 which arise from the decomposition of a different E 8 . The elliptic genus for the degenerate orbit is

	A degenerate (q, R, F ) =														(5.12)
	trR 4 (2π) 4	E 4 2 7 3 2 5η 24	⎛ ⎝	B (1)	4 a=2	θ 16 a +	4 j=2	B (j) 2θ 8 3 θ 8 4	⎞ ⎠	+	(trR 2 ) 2 (2π) 4	Ê2 2 2 9 3 2 η 24	⎛ ⎝	B (1)	4 a=2	θ 16 a +	4 j=2	B (j) 2θ 8 3 θ 8 4	⎞ ⎠
	-	trR 2 2 8 3 2 (2π) 4 η 24 {2B (1) ∑ 4 i=1 trF 2 i	( Ê2 E 4 E 6 -Ê2 2 E 2 4 ) -	j=2 4	B (j)	( Ê2 θ 8 3 θ 8 4 )(f 2 + f 3 + 2 Ê2 )}
	+	∑ 2 7 3(2π) 4 η 24 {B (1) 4 i=1 trF 4 i	(-θ 16 2 θ 4 3 θ 4 4 + θ 16 3 θ 4 2 θ 4 4 -θ 16 4 θ 4 2 θ 4 3 ) +	j=2 4	B (j)	(θ 8 3 θ 8 4 (θ 4 2 θ 4 4 -θ 4 2 θ 4 3

  + ln T 2 η(2T ) 2 V 8 t 8 trR 4 +

			8 2 × 64	trR 4 360	+	(trR 2 ) 2 288	+	4 3	trR 2	4 i=1	trF 2 i + 2 ×	2 3	4	i=1 4	trF 4 i + 3trF 2 1 trF 2 2 + 3trF 2 3 trF 2 4
	+	1 8(2π) 4 ln U 2 η(U ) 2	× V 8 t 8 {256			trR 4 360	+	(trR 2 ) 2 288	+	8 3	trR 2	i=1 4	trF 2 i
								+	8 3	-4	i=1 4	trF 4 i + 3	i=1 4	(trF 2 i ) 2	+ 6trF 2 1 trF 2 2 + 6trF 2 3 trF 2 4 }
	+	1 (2π) 4 ln U 2 η(U ) 2 V 8 t 8 trF 2 1 trF 2 2 + trF 2 3 trF 2 4 + trF 2 1 trF 2 3 + trF 2 2 trF 2 4 + trF 2 1 trF 2 4 + trF 2 2 trF 2 3 .
	A non-degenerate =									(5.19)
	1 4(2π) 4	πT 2 3											1 4	(trR 2	) 2	+ trR 2	i 4	trF 2 i +	i 4	2(trF 2 i ) 2
	+	1 4(2π) 4	πT 2 3	+ ln T 2 η(2T ) 2	×			
			V 8 t 8 2 × 64	trR 4 360	+	(trR 2 ) 2 288	+	4 3	trR 2	4 i=1	trF 2 i + 2 ×	2 3	4	i=1 4	trF 4 i + 3trF 2 1 trF 2 2 + 3trF 2 3 trF 2 4
	+	1 8(2π) 4	πT 2 3	+ ln T 2 η(4T ) 2	-ln T 2 η(2T ) 2	× V 8 t 8 {256	trR 4 360	+	(trR 2 ) 2 288	+	8 3	trR 2	i=1 4	trF 2 i
															+	8 3	-4	i=1 4	trF 4 i + 3	i=1 4 (trF 2 i ) 2	+ 6trF 2 1 trF 2 2 + 6trF 2 3 trF 2 4 }
	+	1 (2π) 4	πT 2 3	+ ln T 2 η(2T ) 2 V 8 t 8 trF 2 1 trF 2 2 + trF 2 3 trF 2 4
	+	1 (2π) 4	πT 2 3	+ ln T 2 η(4T ) 2	-ln T 2 η(2T ) 2	× V 8 t 8 trF 2 1 trF 2 3 + trF 2 2 trF 2 4
	+	1 (2π) 4 ln T 2 η(4T ) 2	-2ln T 2 η(2T ) 2	× V 8 t 8 trF 2 1 trF 2 4 + trF 2 2 trF 2 3 .
			We note that the 8-form polynomial
						Y 8 = trR 4	+	1 4	(trR 2	) 2	+ trR 2	i 4	trF 2 i +	i 4	2(trF 2 i ) 2	(5.20)

Acknowledgements

We would like to thank Pierre Vanhove and Boris Pioline for helpful discussions and valuable insights. We would also like to thank Ruben Minasian and Raffaele Savelli for their support and collaboration in course of this work.

Once again in the above, the B (i) s remind one to take into account the different sectors as in (5.11) while performing the final integration in (5.5). Finally for the non-degenerate orbit (B ≠ 0, det(B) ≠ 0), we have to use the following sectors [START_REF] Gutperle | Heterotic / type I duality, D instantons and a N=2 AdS / CFT correspondence[END_REF] B (1) = 2k 2j 0 2p , (

B (2,1) = 2k 2j 0 2p + 1 , B (2,2) = 2k 2j + 1 0 2p + 1 , B (2,3) = 2k 2j + 1 0 2p

The sector B (2) has been divided in 3 subsectors B (2,1) , B (2,2) , B (2,3) because of the spin structure in the elliptic genus (5.9). To shorten the notation we shall use

= B (2,1) + B (2,2) + B (2,3) , (5.14) in the elliptic genus for the non-degenerate orbit (below) whenever the modular coefficients in front of B (2,k) , k = 1, 2, 3 are same. We finally get the following elliptic genus for the -17 -

non-degenerate orbit

A non-degenerate (q, R, F ) = trR 4 (2π) 4 E 4 2 7 3 2 5η 24 {B (1) 4 a=2 θ 16 a + B (2) 2θ 

The complete CP-even amplitude will be (see (3.5) for the integration domains)

with

being the trivial orbit amplitude. Note that by recombining the SO(8) 1 with SO(8) 2 and SO(8) 3 with SO(8) 4 we find back the T 2 reduction of the E 8 ×E 8 Green-Schwarz term (3.13).

We now collect the constant parts of the q-expansion of the modular functions in the degenerate and non-degenerate elliptic genus from (A.13), verify that there are no poles and then the discrete SL(2, Z) anomaly cancelling counter-term in D=8, N=1 supergravity with gauge group G = SO(8) 4 [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF]. The other two 8-form polynomials

are respectively the contributions from the massive vector multiplet transforming under the bifundamental representations (8, 8, 1, 1)⊕(1, 1, 8, 8) and (co)spinor representations (8, 8, 1, 1) ′ ⊕

(1, 1, 8, 8) ′ respectively. The last few pure gauge terms in (5.19) are due to the orbifold shifts [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF][START_REF] Kiritsis | Heterotic / type II triality and instantons on K(3)[END_REF].

Calculating string amplitude with Hecke operators

We now deploy the elegant method of Hecke operator to evaluate the degenerate plus nondegenerate CP-even amplitude A degenerate + A non-degenerate which have been carried out in [START_REF] Kiritsis | Heterotic / type II triality and instantons on K(3)[END_REF] and in the guise of modular identities in [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF]. We complement the calculation of [START_REF] Kiritsis | Heterotic / type II triality and instantons on K(3)[END_REF] where only the Γ - 2 subgroup (of SL(2, Z)) invariant part has been computed using the Hecke image . We shall see that in the pure gravitational and in mixed gauge gravity part we can separate the contribution from the adjoint representation (5.20) and the total contribution from 6 sets of bi-fundamental states like (8, 8, 1, 1) etc. but in the pure gauge part we cannot separate these contributions: instead the sum from the 3 subgroups Γ - 2 , Γ + 2 and Γ 0 2 of SL(2, Z) we shall retrieve the total pure gauge contributions which have been investigated in detail in [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF]. We now describe the method in brief. For exclusive details we refer to [START_REF] Kiritsis | Heterotic / type II triality and instantons on K(3)[END_REF]. We note that subgroups Γ - 2 , Γ + 2 and Γ 0 2 are the invariant subgroups of θ 2 , θ 4 and θ 3 modulo the phase and weight factors. Now using the (A.10) and (A.11a), (A.11b), (A.11b), (A.11d) summation identities we can decompose the B (1) part in both degenerate and non-degenerate elliptic genus (5.12) and (5.15) into sum of the form

(5.24)

One can now combine the part B (1) θ 8 3 θ 8 4 (⋯) with B (2) , B (3) and B (4) sectors (5.11) in the degenerate elliptic genus (5.12) and B (2,1) , B (2,2) and B (2,3) sectors (5.13) in the non-degenerate elliptic genus (5.15). The sum over θ 8 3 θ 8 4 (⋯) is then of the form

where Φ -(τ ) is Γ - 2 invariant modular function and we restrict the integral domain to F - which is the fundamental domain of Γ - 2 subgroup. One can now change the variable 2τ = ρ and unfold the integral (5.25) to the fundamental domain F of SL(2, Z) by the following unfolding

where in the last line we have used the definition of the Hecke operator for the Γ - 2 subgroup. We then combine the θ 8 2 θ 8 3 (⋯) piece in (5.24) with the B (3) sector of the non-degenerate elliptic genus to get the following combination of the partitions function

where Φ + (τ ) is Γ + 2 invariant modular function and we restrict the integral domain to F + which is the fundamental domain of Γ + 2 subgroup. We make the change of variable τ 2 = ρ and unfold the integral to the fundamental domain F to make appear the Hecke operator

It now rests to combine the θ 8 2 θ 8 4 (⋯) piece in (5.24) with the B (4) sector of the non-degenerate elliptic genus to get the following combination of the partitions function

where Φ 0 (τ ) is Γ 0 2 invariant modular function and we restrict the integral domain to F 0 which is the fundamental domain of Γ 0 2 subgroup. Making the change of variable (τ + 1) 2 = ρ and unfold the integral to the fundamental domain F to make appear the Hecke operator

) .

Now to get the harmonic part of the CP-even amplitude, we pick up the constant parts of the Hecke images of the related modular functions which we have enlisted in (A.12), (A. 

From the above, we recognise the composite anomaly cancelling polynomial (5.20) [START_REF] Minasian | Discrete anomalies in supergravity and consistency of string backgrounds[END_REF] in pure gravity and gauge-gravity sector in part "adjoint of SO(8) 4 " (5.31) and the part "bifundamental and bi-spinor states in" corresponds to the pure gravity and gauge-gravity coupling of states in (8, 8, 1, 1) ⊕ (1, 1, 8, 8), (8, 8, 1, 1) ′ ⊕ (1, 1, 8, 8) ′ and (8, 8, 1, 1) ′′ ⊕ (1, 1, 8, 8) ′′ representations. However the pure gauge sector irons down the contributions from these representations to give the last terms in (5.31). One can also check that there is a "local conservation" of coefficients e.g. for trR 4 (2 7 3 2 5) terms in both methods with constant coefficients and Hecke operators the total numerical coefficients are same if one sums them in the respective sectors

adjpoint + bi-fundamental + spinor reps.

.

One can check the other numerical coefficients for the 8-forms (trR 2 ) 2 , (trF 2 ) 2 , trR 2 trF 2 and trF 4 . There is a nice interpretation for the modular forms in front of the pure gauge sector 8-forms as discussed in [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] and they correspond to the C 4 and C 0 -C 8 exchange between four D 4 branes in the dual F-theory on K3 description in Sen limit [START_REF] Sen | F theory and orientifolds[END_REF].

Conclusion

We have summarized the one loop amplitude results for Heterotic string on T 2 with gauge groups SO(32), E 8 × E 8 , SO(16) × SO [START_REF] Lerche | Prepotential, mirror map and F theory on K3[END_REF] and SO(8) 4 . We have emphasized the role played by the harmonic part of these amplitudes which provide the discrete anomaly counter-term in

A Modular functions

In this appendix we provide the definitions the the Jacobi θ functions, Dedekind eta function and Eisenstein series along with useful identities relating them that we have used in the calculations.

Our convention for the θ function is

where a,b are real and q = e 2πiτ . We note

]. Next we list different periodicity properties and modular transformations of the θ functions (a, b ∈ Z):

We are now in position to define the Dedekind η-function:

Some useful relations between the Jacobi θ-functions and the η-function are

Now we summarise the definitions of the Eisenstein series and Leech j function

In the process of "gauging" the elliptic genus, we shall extensively use the following identities

where B k are the Bernoulli numbers: B 2 = 1 6, B 4 = -1 30, B 6 = 1 42 and we shall use the following combinations f 1 , f 2 , f 3 in the elliptic genus

) -2E 2 (q) = θ 4 3 + θ 4 4 , (A.8a)

(A.8c) E 4 (q) -16E 4 (q 2 ) = 5(E 4 (q) 2 -f 2 1 ) = -15θ 4 3 θ 4 4 , (A.9a) E 4 (q) -E 4 (-√ q) = 5(E 4 (q) 2 -f 2 2 ) = 15θ 4 2 θ 4 4 , (A.9b)