
HAL Id: cea-01566283
https://cea.hal.science/cea-01566283

Submitted on 20 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flexible, Cost-Efficient, High-Throughput Architecture
for Layered LDPC Decoders with Fully-Parallel

Processing Units
Thien T. Nguyen-Ly, Tushar Gupta, Manuel Pezzin, Valentin Savin, David

Declercq, Sorin Cotofana

To cite this version:
Thien T. Nguyen-Ly, Tushar Gupta, Manuel Pezzin, Valentin Savin, David Declercq, et al.. Flex-
ible, Cost-Efficient, High-Throughput Architecture for Layered LDPC Decoders with Fully-Parallel
Processing Units. 2016 Euromicro Conference on Digital System Design (DSD), IEEE, Aug 2016,
Limassol, Cyprus. �10.1109/DSD.2016.33�. �cea-01566283�

https://cea.hal.science/cea-01566283
https://hal.archives-ouvertes.fr


Flexible, Cost-Efficient, High-Throughput
Architecture for Layered LDPC Decoders with

Fully-Parallel Processing Units

Abstract—In this paper, we propose a layered LDPC decoder
architecture targeting flexibility, high-throughput, low cost, and
efficient use of the hardware resources. The proposed architecture
provides full design time flexibility, i.e., it can accommodate
any Quasi-Cyclic (QC) LDPC code, and also allows redefining
a number of parameters of the QC-LDPC code at the run
time. The main novelty of the paper consists of: (1) a new
low-cost processing unit that merges in an efficient way the
logical functionalities of the Variable-Node Unit (VNU) and the
A Posteriori Log-Likelihood Ratio (AP-LLR) unit, (2) a high
speed, low-cost Check-Node Unit (CNU) architecture, which is
executed twice in order to complete the computation of the
check-node messages at each iteration, (3) a splitting of the
iteration processing in two perfectly symmetric stages, executed
in two consecutive clock cycles, each one using exactly the same
processing resources; the processing load is perfectly balanced
between the two clock cycles, thus yielding an optimal clock fre-
quency. Synthesis results targeting a 65nm CMOS technology for
a (3, 6)-regular (648, 1296) Quasi-Cyclic LDPC code and for the
WiMax (1152, 2304) irregular QC-LDPC code show significant
improvements in terms of area and throughput compared to the
baseline architecture discussed in this paper, as well as several
state of the art implementations.

I. INTRODUCTION

Low Density Parity Check (LDPC) codes are a class of
error correction codes known to closely approach to the
Shannon limit under iterative message-passing (MP) decoding
algorithms. MP architectures are composed of processing units
that perform the desired computation by passing messages
to each other. The way such architecture applies to LDPC
decoding is closely related to the bipartite graph representation
of LDPC codes [1]. It comprises two types of nodes, known as
variable-nodes and check-nodes, corresponding respectively to
coded bits and parity-check equations. Accordingly, an LDPC
decoder comprises two types of processing units, namely
Variable-Node Units (VNUs) and Check-Node Units (CNUs),
which exchange messages according to the structure of the
bipartite graph.

MP decoders may deal with different scheduling strategies,
according to the order in which variable and check-node mes-
sages are updated during the message passing iterative process.
The classical convention is that, at each iteration, all check-
nodes and subsequently all variable-nodes pass new messages
to their neighbors. This message-passing schedule is usually
referred to as flooding scheduling [2]. A different approach is
to split the parity check matrix in several horizontal layers,
then process horizontal layer sequentially, while check-nodes
(rows) within the same layer are processed by using a flooding

schedule strategy. Each time a layer is processed the decoder
updates the neighbor variable-nodes, so as to profit from the
propagated messages, and then proceeds to the next layer.
This message scheduling, known as layered scheduling [3],
propagates information faster and converges in about half the
number of iterations compared to the fully parallel scheduling
[4], thus yielding a lower decoding latency. Layered schedul-
ing advantageously applies to Quasi-Cyclic (QC) LDPC codes
[5], which are naturally equipped with a layered structure,
and also known to significantly reduce the complexity of the
interconnection network. Due to their benefits in terms of
area/throughput/flexibility, layered QC-LDPC decoders have
been widely adopted, and can be considered as a de facto
standard solution in most applications [6]. Additional consid-
erations may address different optimizations at the processing
unit level, e.g., implementing different decoding algorithms
or processing the input data in either a serial or a parallel
manner [7]. Regarding the MP decoding algorithm, hardware
implementations of LDPC decoders mostly rely on the Min-
Sum (MS) algorithm [8], since the corresponding VNUs
and CNUs can be implemented by very simple arithmetic
operations (additions and comparisons).

In this work, we propose a layered MS decoder architecture
targeting (i) flexibility, (ii) high-throughput, and (ii) low cost
and efficient use of the hardware resources. Highest flexibility
can be achieved by using serial processing units: VNUs and
CNUs process incoming messages in a serial manner, which
makes their implementation independent of the variable or
check-node degree. However, this comes at the cost of a
reduced throughput. Thus, in this paper we focus on layered
LDPC decoder architectures with fully parallel processing
units. Such architecture has some inherent limitations in terms
of flexibility, mainly concerning the number of incoming
messages into VNUs and CNUs, corresponding to the degrees
(i.e., number of connections) of the corresponding variable and
check nodes in the Tanner graph. To ensure the highest pos-
sible flexibility, the proposed architecture can accommodate
any QC-LDPC code, and also allows redefining a number of
parameters at the run time, e.g., number of rows of the QC
base matrix, as well as the positions and values of the non-
negative entries within each row.

The classical solution to increase throughput and to also
ensure an efficient use of hardware resources in layered
architectures is to pipeline the datapath. However, the number
of stages in the datapath may impose specific constraints on



the base matrix of the QC-LDPC code, in order to ensure
that no memory conflicts occur during the read/write oper-
ations from/to the memory storing the exchanged messages
or the a posteriori logarithmic likelihood ratios (AP-LLR)
values. Moreover, pipelined architectures violate the layered
scheduling principle, in the sense that each layer processing
starts before completing processing the previous layer, thus
reducing the convergence speed. To avoid such limitations,
the proposed architecture does not use pipeline. Instead, we
propose a specific design of the datapath processing units
(VNUs, CNUs, and AP-LLR units) that allow an efficient
reuse of the hardware resources, thus yielding significant cost
reduction. Accordingly, the main novelty of the paper consists
of: (1) A low-cost VNU/AP-LLR processing unit that merges
in an efficient way the logical functionalities of the VNU
and AP-LLR units, and can be executed by selecting either
the VNU or the AP-LLR mode. (2) A high-speed, low-cost
CNU architecture, which only computes the first minimum
(min1) and index of the first minimum (indx min1), instead
of first two minima and indx min1 as required by the MS
decoding algorithm. To compute the second minimum (min2),
the CNU is executed a second time with indx min1 input
set to the maximum value (according to the bit-length of the
exchanged messages). Due to a specific organization of the
datapath, the second execution of the CNU does not induce
any penalty in terms of throughput, as explained below. (3) We
split the iteration processing in two perfectly symmetric stages,
executed in two consecutive clock cycles, each one using the
same processing resources. In the first clock cycle we perform
read operations, then execute the VNU/AP-LLR unit in VNU
mode, and the CNU to compute min1 and indx min1. In
the second clock cycle we execute the CNU to compute min2,
the VNU/AP-LLR unit in AP-LLR mode, and perform write
back operations. The processing load is perfectly balanced
between the two clock cycles, thus yielding an optimal clock
frequency. In particular, the second execution of the CNU
during the second clock cycle does not impose any penalty
on the operating clock frequency.

The paper is organized as follows. In Section II we briefly
review QC-LDPC codes and the MS decoding algorithm.
Section III details the proposed low-cost, high-throughput
flexible architecture for the layered MS decoder. We discuss
first the baseline architecture, and then the main enhancements
that we are incorporating into this architecture. Implementation
results are provided in Section IV, and Section V concludes
the paper.

II. LAYERED MS DECODING FOR QC-LDPC CODES

We consider a QC-LDPC code defined by a base matrix B
of size R × C, with integer entries bi,j ≥ −1. The parity-
check matrix H is obtained by expanding the base-matrix B
by an expansion factor Z; thus, each entry of B is replaced
by a square matrix of size Z × Z, defined as follows: −1
entries are replaced by the all-zero matrix, while bi,j ≥ 0
entries are replaced by a circulant matrix, obtained by right-
shifting the identity matrix by bi,j positions. Hence, H has

Algorithm 1 Layered MS decoding algorithm

Input: (γ1, . . . , γN ) . input LLRs
Output: (x̂1, . . . , x̂N ) . estimated codeword
[Initialization]
for all n = 1, . . . , N do γ̃n = γn;
for all m = 1, . . . ,M and n ∈ N (m) do βm,n = 0;

[Decoding Iterations]
for all iter = 1, . . . , iter max do . Iteration loop

for all r = 1, . . . , R do . Loop over horizontal layers
for all m ∈Mr and n ∈ N (m) do . VNU

αm,n = γ̃n − βm,n;
for all m ∈Mr and n ∈ N (m) do . CNU

βm,n =
∏

n′∈H(m)\n
sign(αm,n′) · min

n′∈H(m)\n

(
|αSAT

m,n′ |
)

;

// where αSAT
m,n is the value of αm,n saturated to q bits

for all m ∈Mr and n ∈ N (m) do . AP-LLR
γ̃n = αm,n + βm,n;

end (horizontal layers loop)
for all n = 1, . . . , N do x̂n = sign bit(γ̃n); . hard decision

if H · x̂N1 = 0 then exit iteration loop; . syndrome check

end (iteration loop)

M = R× Z rows and N = C × Z columns. We also denote
by Mr the set of Z consecutive rows of H corresponding to
the r-th row in B. Mr is further referred to as a (decoding)
layer of H . Finally, we denote by N (m) the set of columns
of H having a non-zero (’1’) entry in the m-th row, for
any m = 1, . . . ,M . In the bipartite graph, representation,
check and variable nodes correspond respectively to rows and
columns of H , and they are connected by edges according the
the non-zero entries of H . The number of edges incident to
each check or variable node (or equivalently, the weight of the
corresponding row/column) is referred to as the node degree.

Let (x1, · · · , xN ) denote a codeword that is sent over
a binary input channel, and (y1, · · · , yN ) be the received
word. The following notation for MP decoders will be used
throughout the paper:
• γn = log (Pr(xn = 0|yn)/Pr(xn = 1|yn)), the LLR value
of xn according to the received yn value; it is also referred to
as the a priori LLR of variable node n;
• γ̃n: the a posteriori (AP) LLR of variable node n;
• αm,n: message sent from variable-node n to check-node m;
• βm,n: message sent from check-node m to variable-node n;

The layered MS decoding algorithm is described in Algo-
rithm 1. To match to the hardware implementation that will be
discussed in the next section, we assume that input LLRs γn
and check-to-variable node messages βm,n are quantized on
q bits, while AP-LLR values γ̃n are quantized on q̃ bits, with
q < q̃. Subtractions and additions used in the VNU and AP-
LLR steps are implemented through the use of q̃-bit saturated
adders. Hence, variable-to-check messages αm,n computed at
the VNU step are quantized on q̃ bits, and they are saturated
to q bits just before entering the CNU. The αm,n values used
at the AP-LLR step are the unsaturated q̃-bit values.



  

  

BS_0_R 

  
VNU_0 

  

BS_1_R 

  

BS_𝑑𝑐𝑚𝑎𝑥 − 1_R 

  

BS_0_W 

  

BS_1_W 

  
VNU_1 

  
AP-LLR_ d

cmax
-1 

  
AP-LLR_0 

  
AP-LLR_1 

● 
● 

  
SAT_0   

SAT_1 

From channel 

1 0 data_sel 

count_layer shift factor 
shift factor 

Controller 
Clk 

En_Decoder 
write_en to RAMs 

count_layer 

data_sel 

⋯ ⋯ ⋯ ⋯ 

𝜷_memory (RAM) 

  𝐴𝑃0 … 𝐴𝑃1 𝐴𝑃𝐶−1 𝐴𝑃2 

… 

… 

… … 

… … 

… 

… 

… 

… 

𝜸 _memory 

  

  
VNU_ d

cmax
-1 

  
SAT_ d

cmax
-1   D E C O M P R E S S 

CNU 

D
E
C
O
M
P 
R
E
S
S 

PER_R PER_W 

AP-LLR 

BS_𝑑𝑐𝑚𝑎𝑥 − 1_W 

count_layer 

shift factor 
0 1 𝑑𝑐𝑚𝑎𝑥-1 0 1 𝑑𝑐𝑚𝑎𝑥-1 

0 1 C-2 C-1 0 1 C-2 C-1 

0 
1 

R-2 
R-1 

⋮ 

0 
1 

⋮ 

R-2 
R-1 

count_layer 

 

   

 

  

 
  

0 1 𝑑𝑐𝑚𝑎𝑥-1 

  

signs, min1, min2, indx_min1 

0 1 𝑑𝑐𝑚𝑎𝑥-1 

𝑍 × �̃� 

𝑍 × �̃� 𝑍 × 𝑞 

𝑍 × �̃� 

𝑍 × 𝑞 

𝑍 × (𝑑𝑐𝑚𝑎𝑥 + 2 ∙ (𝑞 − 1) + ⌈log2(𝑑𝑐𝑚𝑎𝑥)⌉) 

𝑍 × 𝑞 

𝑍 × �̃� 
𝑍 × 𝑞 

𝑍 × �̃� 

𝑍 × �̃� 

𝐴𝑃𝑖 (𝑖 = 0, ⋯ , 𝐶 − 1):  𝒁 × 𝒒  (bits) 
𝐶: the number of rows of base matrix 

𝑑𝑐𝑚𝑎𝑥: maximum check node degree 
signs min1 indx_min1 min2 

𝑍. (𝑑𝑐𝑚𝑎𝑥  + (𝑞 − 1) + (𝑞− 1) +⌈log2(𝑑𝑐𝑚𝑎𝑥)⌉) 

signs, min1, min2, indx_min1 

signs min1 min2 indx_min1 𝑍 × 

signs min1 min2 indx_min1 𝑍 × 

signs min1 min2 indx_min1 𝑍 × 

signs min1 min2 indx_min1 𝑍 × 

… 

… 

… 

… 

… 

… 

Figure 1. Block diagram of the baseline layered MS decoder architecture

 

 

 

signs min1 min2  

𝑑𝑐𝑚𝑎𝑥 𝑞 − 1 𝑞 − 1 ⌈log2(𝑑𝑐𝑚𝑎𝑥)⌉ Number of bits: 

Compressed format: indx_min1 

Figure 2. Compressed β-message

It is worth noting that for a given m, the absolute values
of the βm,n messages computed at the CNU step are equal
to either the first or the second minimum of the input mes-
sages’ absolute values |αSAT

m,n|. Moreover, there is only one
βm,n message whose absolute value is equal to the second
minimum, with the variable-node index corresponding to the
first minimum. In the sequel, we shall denote by min1 and
min2 the first and second minimum, and by indx min1 the
index of the first minimum. Thus, βm,n messages can be stored
in a compressed format [9] to reduce memory requirements,
by storing only their signs, min1, min2, and indx min1
values, as shown in Figure 2.

III. LAYERED MS DECODER ARCHITECTURE

For the sake of simplicity, we shall first assume that all
the check-nodes have the same degree, which will be denoted
in the sequel by dcmax. No further assumptions are made
regarding the base matrix B. The case of check-node irregular
codes will be discussed in Section III-C. We start by discussing
the baseline architecture, then the proposed enhancements are
discussed in Section III-B.

A. Baseline Architecture

Figure 1 illustrates the baseline architecture of the layered
MS decoder, whose main blocks are further discussed below.
Each decoding iteration takes two clock cycles. All data are
read and processed at the first rising edge clock, then written
at the second rising edge clock.
Memory blocks. Two memory blocks are used, one for
the γ̃n values (γ̃ memory) and one for the βm,n messages
(β memory). γ̃n values are quantized on q̃ bits, and βm,n

messages on q bits. γ̃ memory is implemented by registers,
in order to allow massively parallel read or write operations.
The memory is organized in C blocks, denoted by APi

(i = 0, . . . , C−1) corresponding to the number of columns of
base matrix, each one consisting of Z × q̃ bits. Data are read
from/write to blocks corresponding to non-negative entries in
the row of B (layer) being processed. β memory is imple-
mented as a Random Access Memory (RAM). Each memory
word consists of Z compressed β-messages, corresponding to
one row of B.
Permutations for Reading and Writing (PER R, PER W).
PER R permutation is used to rearrange the data read from
γ̃ memory, according to the processed layer, so as to ensure
processing by the proper VNU/CNU. PER W block operates
oppositely to PER R.
Barrel Shifter for Reading and Writing (BS R, BS W).



Barrel shifters are used to implement the cyclic (shift) permu-
tations corresponding to the non-negative entries of the base
matrix B. We use dcmax BS R and dcmax BS W blocks,
corresponding to the check-node degree, each of them having
Z q̃-bit inputs and Z q̃-bit outputs.
Decompress. This block is used to convert βm,n messages
from the compressed format to the uncompressed one.
Variable Node Units (VNUs). These processing units com-
pute the αm,n messages. The inputs of the VNUs are read
from γ̃ memory and β memory. Each VNU i block (i =
0, . . . , dcmax − 1) in Figure 1 consists of Z q̃-bit saturated
subtractors for the parallel execution of Z variable-nodes (one
column of B).
Saturators (SATs). Prior to CNU processing, αm,n values are
saturated to q bits.
Check Node Units (CNUs). These processing units compute
the βm,n messages. For simplicity, Figure 1 shows one CNU
block with dcmax inputs, each one of size Z×q bits. Thus, this
block actually includes Z computing units, used to process
in parallel the Z check-nodes within one layer. The check-
node processing consists of computing the signs of the β-
messages, as well as min1, min2 and indx min1 value,
and is implemented by using the high-speed low-cost (tree-
structure) TS approach proposed in [10].
AP-LLR Units. These units compute the γ̃n values. Each
AP LLR i block (i = 0, . . . , dcmax − 1) in Figure 1 consists
of Z q̃-bit saturated adders, for the parallel execution of Z
variable-nodes (one column of B).
Controller. This block generates control signals such as
count layer for indicating which layer is being processed,
En read and En write for reading and writing data, etc. It
also controls the synchronous execution of the other blocks.

B. Enhanced Architecture

In this Section we discuss the main enhancements that we
are incorporating into the baseline architecture, which consist
of (1) a low-cost VNU/AP-LLR processing unit that merges
in an efficient way the logical functionalities of the VNU
and AP-LLR units, (2) a low-cost CNU architecture, which
is executed twice in order to complete computation of the
check-node messages, (3) a splitting of the iteration processing
in two perfectly symmetric stages, yielding an optimal clock
frequency. VNU/AP-LLR unit and the new CNU substitute to
the VNU, AP-LLR, and the old CNU units in the baseline
architecture, as shown in Figure 3 (where VNU/AP-LLR is
shortened to VN/AP). All the other blocks of the architecture
remain the same.

1) VNU/AP-LLR Unit: The main difference between VNU
and AP-LLR processing units is that subtractors are used
within the first, while adders are used within the second. We
propose a new VNU/AP-LLR processing unit that merges their
logical functionalities, controlled by a specific signal (sel)
to allow selecting between the VNU or AP-LLR mode. The
control signal is generated by the controller, such that VNU
mode is selected during the first clock, and AP-LLR mode
during the second.

 

  

BS_0_R 

  
VN/AP_0 

  

BS_1_R 

  

BS_𝑑𝑐𝑚𝑎𝑥 − 1_R 

  

BS_0_W 

  

BS_1_W 

  
VN/AP_1 

  
SAT_0   

SAT_1 

… … 

… 
… 

… 

… 

… 

  

  
VN/AP_d

cmax
-1 

  
SAT_d

cmax
-1 

NEW CNU 

D
E
C
O
M
P
R
E
S
S 

BS_𝑑𝑐𝑚𝑎𝑥 − 1_W 

shift factor 
   

  

0 1 𝑑𝑐𝑚𝑎𝑥-1 
signs, min,  indx_min 

  
𝑍 × 𝑞  𝑍 × 𝑞 

𝑍 × 𝑞  

𝑍 × 𝑞 

𝑍 ×  𝑑𝑐𝑚𝑎𝑥 + 2 ∙  𝑞 − 1 +  log2 𝑑𝑐𝑚𝑎𝑥    

𝑍 × 𝑞  

𝑍 × 𝑞  

D
E
C
O
M
P
R
E
S
S  

   
 

sel 
clk 

… 

… 

𝑍 × 𝑞 

Figure 3. New processing units for the layered MS decoder architecture

 

 

1 

0 
s 

𝛾 𝑛
𝑜𝑙𝑑 

-/+ 

𝐶 0 

𝛼𝑚,𝑛
𝑛𝑒𝑤 

𝛾 𝑛
𝑛𝑒𝑤 

 

0 

1 
s 

𝛽𝑚,𝑛
𝑜𝑙𝑑  

𝛽𝑚,𝑛
𝑛𝑒𝑤 

sel 

𝑀 

𝑁 

0 

1 s 

 

 

Figure 4. VNU/AP-LLR processing unit

 

Figure 5. Adder/subtractor block used within the VNU/AP-LLR unit

The block diagram of the VNU/AP-LLR unit is detailed
in Figure 4. At the input, two multiplexers are used to select
the input data according to either the VNU or AP-LLR mode.
Similarly, at the output, a de-multiplexer is used to choose the
value of either αm,n or γ̃n, depending on the sel signal. The
block in the middle, which may acts as either a subtractor or
an adder is detailed in Figure 5 (by the sake of simplicity,
we illustrate this block for q̃ = 4 bits). It consist of a
modified Ripple Carry Adder (RCA) with carry in given by
the complement of the sel signal (C0 = sel), and which
is further XORed to all the bits of the second input. It can
be easily seen that the VNU/AP-LLR unit operate in VNU
mode if sel = 0 (C0 = 1), or in AP-LLR mode if sel = 1
(C0 = 0).



 

clk 

sel 

Time 

min1 
indx_min1 min2 

min1 
indx_min1 min2 

 

  m1A 

IDA 

  m1B 

IDB 

2𝑘 + 2𝑟 

2𝑘 

2𝑟 

𝑘 
𝑟 IG 

𝑧𝐴 

𝑐𝑝
𝐴
 

min1 

min2 

indx _min1 

𝑘 + 1 

𝟐𝒌-FMIG 

𝟐𝒓-FMIG 

  
en 

1 

 

 
 

 Compare 

& select 

inputs 

max 

sel 

sel 

clk 

 

  
𝑒𝑛    

  
en 

𝑠  

𝟐-FMIG 

0 

Figure 6. Block diagram of the proposed CNU architecture

 

𝑥 

𝑦 

 

 
comparator 

0 

1 

 

𝑚 

𝑐𝑝 

2-FMIG 
𝑥 

𝑦 

𝑚 

𝑐𝑝 

Figure 7. 2-FMIG architecture

 
0 

2-FMIG 
𝑥 

𝑦 

m1a 

𝑐𝑝𝑎  

2-FMIG 
𝑧 

𝑤 

m1b 

𝑐𝑝𝑏  

2-FMIG 
𝑚 

𝑐𝑝 
indx(msb) 

1 

 

indx(lsb) 

Figure 8. 4-FMIG architecture

2) CNU Unit: We focus only on the computation of min1,
min2, and indx min1, as the signs of the output messages
can be simply computed by XORing the adequate signs of
input messages. We propose a high-speed low-cost CNU
architecture inspired by the TS architecture proposed in [10],
which is further simplified so as to compute only the value
and the index of the first minimum. As shown in Figure 6, our
CNU is executed during the first clock cycle to compute min1
and indx min1, then it is re-executed during the second
clock cycle with indx min1 input set to the maximum value,
so that to compute min2. The sel control signal is used to
indicate whether the CNU is in first or second minimum mode
(first or second clock cycle). The compare and select block is
used to set the indx min1 input to the maximum value, in
case that the sel signal indicates that the second minimum
is being computed (second clock cycle).

The proposed CNU architecture is detailed in Figure 6 for
a number of inputs (2k +2r) equal to the sum of two powers
of 2. The general case can be worked out by decomposing the
number of inputs as a sum of powers of 2, then combining
corresponding blocks similarly to the technique used in [10].
The 2k-FMIG (First Minimum and Index Generator) block
computes the value and the index of the first minimum among
the 2k input values. The 2-FMIG block includes one compara-
tor and one multiplexer, as shown in Figure 7. The 4-FMIG

 
1 

IDB 

𝑘 0 

1 

𝑠𝑖 

0 𝑖 = 𝑘 − 1, 𝑘 − 2,⋯ , 𝑟 

𝑞
𝑖
 

𝑐𝑝𝐴 

0 

1 

𝑠𝑗 

𝑡𝑗 𝑗 = 𝑟 − 1, 𝑟 − 2,⋯ ,0 

𝑞
𝑗
 

𝑐𝑝𝐴 

index 
generator 

(IG) 

IDA 

𝑐𝑝𝐴 

𝑞𝑘 , 𝑞𝑘−1, ⋯ , 𝑞1,𝑞0 

IDA =  𝑠𝑘−1, ⋯ , 𝑠1, 𝑠0  

IDB =  𝑡𝑟−1, ⋯ , 𝑡1, 𝑡0  
𝑞𝑘 = 𝑐𝑝𝐴 

𝑟 
𝑘 + 1 

Figure 9. IG (Index Generator) architecture

consists of three 2-FMIG blocks for finding the minimum
value and one multiplexer for indicating its index, as shown in
Figure 8. Similarly, the 2k+1-FMIG block can be constructed
from three 2k-FMIG blocks and one multiplexer. The IG
(Index Generator) block in Figure 6 is used to determine the
index of the minimum value, and is further detailed in Figure 9

3) Iteration Processing Split: As shown in Figure 3, in
the new architecture the clock signal is fed to the CNU.
This allows splitting the iteration processing in two perfectly
symmetric stages, executed in two consecutive clock cycles,
each one using the same processing units, but in different
mode. In the first clock cycle we perform read operations, then
execute the VNU/AP-LLR unit in VNU mode, and the CNU to
compute min1 and indx min1. In the second clock cycle
we execute the CNU to compute min2, the VNU/AP-LLR
unit in AP-LLR mode, and perform write back operations.
The processing load is perfectly balanced between the two
clock cycles, thus yielding an optimal clock frequency. In
particular, the second execution of the CNU during the second
clock cycle does not impose any penalty on the operating
clock frequency. The baseline CNU (i.e. computing min1,
min2, and indx min1) executed in one of the two clock
cycles would lead to an increased critical path, and therefore a
reduced clock frequency, while splitting its execution between
the two clock cycles would have resulted in an inefficient use
of the hardware resources.

C. Case of Check-Node Irregular Codes

To accommodate QC-LDPC codes with variable check-
node degree dc ∈ [dcmin, dcmax], some extra control logic is



 

  
VN/AP_0 

  
VN/AP_1   

VN/AP_d
cmax

-2 

  
𝑍 × 𝑞  𝑍 × 𝑞 

𝑍 × 𝑞  

  
VN/AP_d

cmax
-1 

 
 

⋯ 

0 1 0 1 ⋯ 

⋯ 

 

zero 

𝛾 𝑛
𝑜𝑙𝑑 𝛾 𝑛

𝑛𝑒𝑤 

𝛼𝑚,𝑛
𝑛𝑒𝑤 

𝛽𝑚,𝑛
𝑜𝑙𝑑  

𝛽𝑚,𝑛
𝑛𝑒𝑤 

set 

sel 

𝑍 × 𝑞 

 𝑍 × 𝑞  

zero 
  

  

Figure 10. Modified VNU to accommodate variable check-node degree
(example for dcmin = dcmax − 1)

required in order to “inactivate” the last dcmax−dc VNU/AP-
LLR units, as well as the last dcmax − dc inputs of the CNU,
for check-nodes of degree dc. If the check node degree dc
varies between dcmin and dcmax. A VNU/AP-LLR unit is
inactivated by setting the corresponding β-inputs to 0, while an
input of the CNU is inactivated by setting it to the maximum
value (2q−1 − 1, where q is the number of quantization bits
of input αSAT

m,n values, including the sign bit). The modified
VNU/AP-LLR and CNU architectures are shown in Figure 10
and Figure 11, respectively, for dcmin = dcmax − 1.

D. Design and Run Time Flexibility

Figure 12 details the flowchart of the QC-LDPC decoder
generation. The VHDL inputs consist of two configuration
files, for the base-matrix related parameters and the user-
defined parameters. Base-matrix parameters relate to either the
matrix size (number of rows and columns, expand factor) or
to the number, position and values of the non-negative entries
(dcmin, dcmax, positions and values on non-negative entries
per row). While some of these parameters are fixed, meaning
that they cannot be overwritten at run time, the number of
rows of the base matrix as well as the positions and values on
non-negative entries per row can be overwritten at run time,
while still ensuring proper operation of the decoder using the
redefined base-matrix. This property is particularly useful to
achieve flexibility of the implemented decoder with respect
to the coding rate. Note also that it would also be possible
to achieve flexibility with respect to the expansion factor
(Z) value, by including some extra control logic. However,
such control logic has not been included in our current
implementation, so we report this parameter as being fixed.

The RPL parameter shown in Figure 12 allows defining
the number of base matrix Rows Per Layer. For the sake of
simplicity, we have assumed so far that one decoding layer
corresponds to one row of the base matrix B. However, in
general it is also possible to define a decoding layer as RPL
consecutive rows of the base matrix, as long as each column
of B has at most one non-negative entry in each layer. This
feature has been integrated to our design. If RPL > 1, the
number of decoding layers is equal to R/RPL, with RPL×Z
check nodes per each layer.

Finally, the user-defined parameter allows specifying the

 

NEW CNU 
0 1 𝑑𝑐𝑚𝑎𝑥-1 

signs, min, indx_min 

𝑍 × 𝑞 

𝑍 ×  𝑑𝑐𝑚𝑎𝑥 + 2 ∙  𝑞 − 1 +  log2 𝑑𝑐𝑚𝑎𝑥    

sel 

0 1 set 

𝑑𝑐𝑚𝑎𝑥-2 

⋯ 

⋯ 

max 

 𝛼𝑚,𝑛
𝑆𝐴𝑇  

 from saturator  

clk 

𝛽𝑚,𝑛
𝑛𝑒𝑤  

(compressed format) 

Figure 11. Modified CNU to accommodate variable check-node degree
(example for dcmin = dcmax − 1)

quantization parameters (q, q̃), and the number of decoding
iterations.

IV. IMPLEMENTATION RESULTS

We have implemented the baseline and enhanced layered
MS decoder architectures for a regular QC-LDPC code with
variable-nodes of degree dv = 3, and for the irregular WiMAX
QC-LDPC code with rate 1/2 [11]. For both codes, the size
of the base is equal to R×C = 12×24. For the regular code,
the base matrix B is shown in Figure 13. It can be divided in
3 horizontal layers, with each layer corresponding to RPL = 4
consecutive rows of B. For the WiMAX code, the RPL value
is set to 1, thus the number of decoding layers is equal to
12. Configuration parameters of the two decoders are further
detailed in Table I.

ASIC synthesis results targeting a 65nm CMOS technology
are shown in Table II. The top part of the table reports the
maximum operating frequency, the corresponding throughput,
and the area. The reported throughput is given by the formula:

Throughput =
N × fmax

iter number× cyc iter
,

where N = C × Z is the codeword length, and cyc iter =
2 × (R/RPL) is the number of clock cycles to complete
one iteration (2 clock cycles per layer, times the number of
layers). First, we note that the enhanced architecture provides
a significant increase in the maximum operating frequency
compared to the baseline architecture, by a factor of ×2.25 and
×3, for the (3, 6)-regular and the WiMAX code, respectively.
This is due to the proposed increased-speed CNU together with
the proposed split of the iteration processing. Regarding the
area, it can be seen that the enhanced architecture provides
a significant area reduction for the (3, 6)-regular code, by
24.2% compared to the baseline architecture. However, the
area reduction is of only 2.27% for the WiMAX code. In oder
to keep the area comparison on an equal basis with respect
to synthesis timing constraints, in the bottom part of Table II
we report area figures when the same timing constraints are
applied to both the baseline and the enhanced architecture.
We consider timing constrains corresponding to the maximum
operating frequency for the baseline architecture. In this case,
it can be seen that the proposed cost-efficient VNU/AP-LLR



 

QC Base matrix parameters 

Fixed parameters 

(cannot be rewritten at run time) 

• 𝐶: number of columns  of B 

• 𝑍: expansion factor 

• 𝑑𝑐𝑚𝑖𝑛 : minimum check node degree 

• 𝑑𝑐𝑚𝑎𝑥 : maximum check node degree  

Flexible parameters 

(can be rewritten at run time) 

• 𝑅: number of rows of B 

• positions of non-negative entries for each 

row of B 

• values of non-negative entries (shift 

factors)  for each row of B 

• RPL: number of rows of B per layer 

 

User parameters 

• 𝑞 -bit: quantization bits for AP-LLR information  

• 𝑞-bit: quantization bits for exchanged messages 

• iter_number: number of decoding iterations 

Compare   iden-

tical? 

VHDL 

inputs 

Generate 

VHDL code 

automatically 

Simulation results 

from VHDL 

Simulation results 

from C 

N 

Y OK 

Figure 12. Flowchart for QC-LDPC decoder generation

49 -1 -1 -1 -1 43 -1 -1 -1 -1 50 -1 -1 -1 -1 2 -1 27 -1 -1 -1 -1 -1 49

-1 -1 -1 10 41 -1 -1 -1 -1 52 -1 -1 32 -1 -1 -1 -1 -1 50 -1 50 -1 -1 -1

-1 -1 20 -1 -1 -1 -1 20 -1 -1 -1 51 -1 10 -1 -1 47 -1 -1 -1 -1 -1 33 -1

-1 24 -1 -1 -1 -1 22 -1 53 -1 -1 -1 -1 -1 31 -1 -1 -1 -1 18 -1 47 -1 -1

10 -1 -1 -1 15 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 50 -1 13 -1 -1 -1 -1 -1 53

-1 -1 44 -1 -1 6 -1 -1 -1 -1 -1 29 -1 40 -1 -1 16 -1 -1 -1 13 -1 -1 -1

-1 2 -1 -1 -1 -1 -1 13 41 -1 -1 -1 -1 -1 42 -1 -1 -1 -1 48 -1 49 -1 -1

-1 -1 -1 36 -1 -1 24 -1 -1 50 -1 -1 12 -1 -1 -1 -1 -1 10 -1 -1 -1 48 -1

-1 -1 47 -1 50 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 9 -1 7 -1 -1 -1 -1 -1 28

-1 24 -1 -1 -1 -1 -1 51 -1 38 -1 -1 -1 -1 6 -1 -1 -1 -1 23 -1 16 -1 -1

6 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 13 -1 3 -1 -1 29 -1 -1 -1 16 -1 -1 -1

-1 -1 -1 35 -1 16 -1 -1 37 -1 -1 -1 4 -1 -1 -1 -1 -1 24 -1 -1 -1 29 -1

Figure 13. Base matrix of the (3, 6)-regular QC-LDPC code

Table I
PARAMETERS OF THE QC-LDPC CODES

R C Z RPL dcmin dcmax q̃ q iter number

(3,6)-regular 12 24 54 4 6 6 6 4 20

WiMAX 12 24 96 1 6 7 6 4 20

and CNU processing units yield an area reduction by 25.26%
for the (3, 6)-regular code, and by 13.64% for the WiMAX
code.

For the WiMAX QC-LDPC code, the proposed enhanced
architecture is further compared with other state of the art
implementations in Table III. We also report throughput and
area figures scaled to 65nm [12], as well as the Throughput to
Area Ratio (TAR) and the Normalized TAR (NTAR) metrics
[13], so as to keep the throughput comparison on an equal
basis with respect to technology, area, and number of itera-
tions. To scale throughput and area to 65nm, we use scale
factors (technology size/65) and (65/technology size)2, as
suggested in [12]. The computation of the TAR and NTAR
metrics is detailed in the footnote to Table III. Note that for
all the reported implementations, the achieved throughput is
inversely proportional to the number of iterations, hence the
NTAR metric corresponds to the TAR value assuming that
only one decoding iteration is performed. We mention that the
decoder proposed in [13] is a reconfigurable decoder that sup-
ports the IEEE 802.16e (WiMAX) and and the IEEE 802.11n
(WiFi) wireless standards. The reported throughput is the

Table II
COMPARISON BETWEEN ENHANCED AND BASELINE ARCHITECTURES FOR

(3, 6)-REGULAR AND WIMAX QC-LDPC CODES

(3, 6)-regular QC-LDPC WiMAX QC-LDPC

Baseline Enhanced Baseline Enhanced

Max. Freq. (MHz) 111 250 83 250

Throughput (Mbps) 1198 2700 398 1200

Area (mm2) 0.95 0.72 0.88 0.86

Frequency (MHz) 111 83

Area (mm2) 0.95 0.71 0.88 0.76

maximum achievable coded throughput for the (1152, 2304)
WiMAX code with 5 decoding iterations. From Table III it
can be seen that the proposed enhanced architecture compares
favorably with state of the art implementations, yielding a
NTAR value of 27.9 Gbps/mm2/iteration.

Finally, we mention that for the (3, 6)-regular QC-LDPC
code, the proposed enhanced architecture achieves an NTAR
value of 75 Gbps/mm2/iteration.

V. CONCLUSION

In this paper we proposed a low-cost and flexible ar-
chitecture for high-throughput layered LDPC decoders with
fully-parallel processing units. To do so, we proposed new
processing unit architectures that allow a more efficient hard-
ware usage, thus yielding a significant cost reduction. The
proposed CNU further allows splitting the iteration processing
in two perfectly symmetric stages, resulting in a significant
increase in the maximum operating frequency. The proposed
enhanced architecture allows full design time flexibility, and
also provides good run time flexibility, by allowing the same
architecture being executed with different base matrices shar-
ing a number of common characteristics. Finally, the benefits
of the proposed architecture have been demonstrated through
comparison with a baseline layered architecture with fully-
parallel processing units, as well as several state of the art
implementations of layered LDPC decoders.



Table III
COMPARISON BETWEEN THE PROPOSED ENHANCED ARCHITECTURE AND STATE OF THE ART IMPLEMENTATIONS FOR THE WIMAX QC-LDPC CODE

Y. Ueng (2008) [14] K. Zhang (2009) [15] T. Heidari (2013) [16] K. Kanchetla (2016) [13] Proposed decoder

Code length 2304 2304 2304 576-2304 2304

Technology (nm) 180 90 130 90 65

Frequency (MHz) 200 950 100 149 250

Iterations 4.6 (average) 10 10 5 20

Throughput (Mbps) 106 2200 183 955 1200

Tput. scaled to 65nm (Mbps) 294 3036 366 1318 1200

Area (mm2) - 2.90 (∗) 6.90 (∗∗) 11.42 (∗) 0.86 (∗)

Area scaled to 65nm (mm2) - 1.51 (∗) 1.73 (∗∗) 5.94 (∗) 0.86 (∗)

TAR (Mbps/mm2) - 2010.60 211.56 221.89 1395.35

NTAR (Mbps/mm2/iter) - 20106 2115.6 1109.45 27907
(∗) only core area is reported
(∗∗) total chip area is reported

TAR = (Throughput scaled to 65nm) / (Area scaled to 65nm)

NTAR = TAR × Iterations

REFERENCES

[1] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
on Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[2] F. R. Kschischang and B. J. Frey, “Iterative decoding of compound
codes by probability propagation in graphical models,” IEEE Journal on
Selected Areas in Communications, vol. 16, no. 2, pp. 219–230, 1998.

[3] D. Hocevar, “A reduced complexity decoder architecture via layered
decoding of LDPC codes,” in IEEE Workshop on Signal Processing
Systems (SIPS), 2004, pp. 107–112.

[4] J. Zhang, Y. Wang, M. P. Fossorier, and J. S. Yedidia, “Iterative decoding
with replicas,” IEEE Transactions on Information Theory, vol. 53, no. 5,
pp. 1644–1663, 2007.

[5] M. P. Fossorier, “Quasicyclic low-density parity-check codes from circu-
lant permutation matrices,” IEEE Transactions on Information Theory,
vol. 50, no. 8, pp. 1788–1793, 2004.

[6] E. Boutillon and G. Masera, “Hardware design and realization for iter-
atively decodable codes,” in Channel Coding: Theory, Algorithms, and
Applications, D. Declercq, M. Fossorier, and E. Biglieri, Eds. Academic
Press Library in Mobile and Wireless Communications, Elsevier, June
2014.

[7] O. Boncalo, A. Amaricai, A. Hera, and V. Savin, “Cost efficient FPGA
layered LDPC decoder with serial AP-LLR processing,” in IEEE In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Munich, Germany, September 2014, pp. 1–6.

[8] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low-density parity check codes based on belief propagation,”
IEEE Trans. on Communications, vol. 47, no. 5, pp. 673–680, 1999.

[9] Z. Wang and Z. Cui, “A memory efficient partially parallel decoder
architecture for quasi-cyclic LDPC codes,” IEEE Trans. on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 4, pp. 483–488, 2007.

[10] C.-L. Wey, M.-D. Shieh, and S.-Y. Lin, “Algorithms of finding the
first two minimum values and their hardware implementation,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 11,
pp. 3430–3437, 2008.

[11] IEEE-802.16e, “Physical and medium access control layers for com-
bined fixed and mobile operation in licensed bands,” 2005, amendment
to Air Interface for Fixed Broadband Wireless Access Systems.

[12] J. R. Hauser, “MOSFET device scaling,” in Handbook of Semiconductor
Manufacturing Technology. Boca Raton, FL: CRC Press, 2008, pp. 8–
21.

[13] V. K. Kanchetla, R. Shrestha, and R. Paily, “Multi-standard high-
throughput and low-power quasi-cyclic low density parity check decoder
for worldwide interoperability for microwave access and wireless fidelity
standards,” IET Circuits, Devices & Systems, vol. 10, no. 2, pp. 111–120,
2016.

[14] Y.-L. Ueng, C.-J. Yang, Z.-C. Wu, C.-E. Wu, and Y.-L. Wang, “VLSI
decoding architecture with improved convergence speed and reduced
decoding latency for irregular LDPC codes in WiMAX,” in IEEE
International Symposium on Circuits and Systems, ISCAS 2008., 2008,
pp. 520–523.

[15] K. Zhang, X. Huang, and Z. Wang, “High-throughput layered decoder
implementation for quasi-cyclic ldpc codes,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 6, pp. 985–994, 2009.

[16] T. Heidari and A. Jannesari, “Design of high-throughput qc-ldpc decoder
for wimax standard,” in 2013 21st Iranian Conference on Electrical
Engineering (ICEE), 2013, pp. 1–4.


