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Abstract: In the context of energy consumption reduction, this paper focuses on the application
of Model Predictive Control to occupants’ thermal comfort together with indoor air quality
control while improving the whole building energy efficiency. First, an open-space office split in
three zones, located in Cork Institute of Technology, is modeled. A centralized MPC is designed
to control the temperature and CO2 concentration in the three zones. Then, a distributed version
of the MPC, with three separate local controllers, is considered. Finally, simulation results show
that the distributed MPC solution achieves control performance quite close to the centralized
version with less computing effort.
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1. INTRODUCTION

Buildings consume more than 40% of the total primary en-
ergy resources throughout the world [Shaikh et al. (2014),
Cigler (2013)]. Moreover, inefficiencies of the deployed
sensing and control strategies cause energy waste that
should be avoid by a better coordination among Build-
ing Automation Systems (BMS) and appropriate control
approaches. The minimization of the energy consumed by
buildings is essential for their sustainability. However, this
minimization may badly affect the occupants’ comfort,
e.g. by reducing (resp. increasing) the temperature in the
building when the outside temperature is low (resp. high).
Basically, a higher degree of indoor comfort is expected by
the occupants along with the increased time they spend
inside buildings. While performing their daily activities
in buildings, energy savings should not negatively impact
occupants’ health or decrease their welfare [Castilla and
et al. (2013)], thus leading to contradictory objectives
[Wang et al. (2014)] at control level. Energy and Com-
fort Management Systems try to fulfill occupants’ comfort
expectations while reducing energy consumption.

Indoor Environmental Quality (IEQ) is related to thermal
aspects [Sarbu and Sebarchievici (2013)], Indoor Air Qual-
ity (IAQ), acoustic and visual (lighting) levels [Castilla
and et al. (2013)], while humidity level also affects the
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comfort feeling. IEQ/IAQ is an active research area, from
clinical and medical viewpoints, to control, but also build-
ing construction and retrofit, communication, etc. These
research works are often related to energy efficiency and
HVAC control. IAQ regulations are regularly reinforced
(e.g. French statutory-orders n2011-1728 (air quality in
public buildings) and n2011-1727 (benzene, formaldehyde
and CO2 levels)) while building energy efficiency is en-
couraged via directives, e.g. [Union (2010)]. This situation
advocates for more multi-disciplinary researches to better
optimize buildings, taking into account occupants’ comfort
and advanced control of BMS [Shaikh et al. (2014)].

Air quality, either indoor or outdoor, is one of the major
health concerns [Gurjar and et al. (2010)]. Moreover, qual-
ity of the indoor environment has strong health impact
because of the close structure of the buildings. Indoor
air pollutants are mostly emitted from sources inside the
buildings but they can also enter from outside. CO2 is
usually considered the main IAQ indicator. Indoor CO2 is
mainly produced by the occupants exhalation. Poor indoor
air quality can lead for the occupants to suffer from Sick
Building Syndrome and building related illnesses. Ther-
mal comfort is defined as ”the condition of mind which
expresses satisfaction with the thermal environment” in
the international regulations ISO-7730 and ASHRAE-55
[ASHRAE (1992)]. Therefore, it is related to conscious in-
tellectual activity influenced by the physical, psychological
and physiological factors of the occupants.



Buildings have been equipped with BMS to manage the
various systems installed, from lighting, ventilation, heat-
ing, but also fire alarm, and security. When properly
tuned, they can offer better energy efficiency for the build-
ing, for instance by switching off the light when nobody
is in a given area. With the integration of actuator/sensor
networks, these systems can monitor and control the inte-
rior conditions so as to fulfill IEQ while keeping the energy
consumption at a minimum. Unfortunately, this ideal sit-
uation is seldom reality because of the contradictory influ-
ence of building energy efficiency and occupants’ comfort
on the energy bill. Thus, building controllers should take
into account multiple objectives, or at least, take a Multi-
Input Multi-Output (MIMO) viewpoint to deal with such
constrained systems.

The present paper presents an application of Model Pre-
dictive Control (MPC) to deal with thermal and CO2

concentration control in indoor environment. Temperature
T and CO2 concentration are contradictory by nature.
Basically, the CO2 concentration can be easily decreased
by the injection of fresh outdoor air inside the building
using for instance forced or natural ventilation. The side
effect of this injection is the decrease of the indoor tem-
perature when the outdoor one is colder, leading to more
heating. Both aspects are physically coupled and can be
modeled using a MIMO model. The proposed controller is
applied to an open-space office, split in three zones, and
located in Cork Institute of Technology (CIT), Ireland. A
centralized MPC approach is first designed. It requires all
data to be collected in a unique control point. For large
buildings, and in presence of communication issues, this
can lead to bad functioning of the control law. Thus, a
distributed version of the controller, with loosely coupled
areas, might be of interest to overcome these situations.
Such a distributed approach is therefore proposed. This
Distributed MPC implements a separate local controller
for each zone.

The rest of the paper is organized as follows. Section 2
recalls basics and notations for MPC. Section 3 presents
the control-oriented thermal model developed here for
the setup considered. Sections 4 and 5 are dedicated
to the design of the centralized and distributed MPC
approaches. Section 6 shows some simulation results and
discusses implementation cost. A conclusion gives future
work directions.

2. BASICS ON MODEL PREDICTIVE CONTROL

As a control methodology, Model Predictive Control
(MPC) can naturally deal with MIMO systems subject
to physical constraints. The control law is computed in
real-time and on-line via the solution of an optimization
problem. Contradictory objectives, e.g. building energy
efficiency and occupants’ comfort, can be simultaneously
considered.

2.1 Summary of MPC for Building Management

MPC has gained popularity among researchers and indus-
try in various engineering fields as an effective approach
to deal with multi-variable constrained control problems.
In the building sector, MPC is used for building climate

control, cooling, heating, ventilation, etc. The main aim of
MPC when applied to building management is to reduce
the energy consumption, taking into account occupants’
comfort expectation [Cigler (2013)]. MPC design is tradi-
tionally a three-step process [Camacho and Alba (2013)]:

(1) Modeling of the system. The efficiency and ac-
curacy of the control actions highly depend on the
system model. This latter is expressed with a state-
space representation, which for a Linear Time Invari-
ant (LTI) model is given by:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(1)

where y(k) ∈ IRm is the measurement (output),
x(k) ∈ IRn is the system state and the control (input)
vector is u. Matrices A,B,C are real of appropriate
dimension.

(2) Cost objective function. Here, the cost function
is chosen to minimize the energy consumption and
ensure IEQ. Energy consumption and IEQ must be
satisfied under constraints on the system outputs
and inputs. In the present context, the square of the
control vector u is related to energy flow. Therefore,
minimizing u2 is equivalent to the energy consump-
tion minimization. This can be achieved through the
minimization of the cost function:

J =

N∑
j=1

{‖(y − yref )(k + j)‖2Q︸ ︷︷ ︸
Comfort

+ ‖∆u(k + j)‖2R︸ ︷︷ ︸
Energy

} (2)

under the constraints{
Eq.(1)
ymin ≤ y ≤ ymax, umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

where ∆u(k) = u(k) − u(k − 1). yref is the com-
fort level (temperature and CO2 concentration) that
should be maintained. Q > 0 and R > 0 are weighting
matrices. The first part of the cost function is related
to the comfort objective while the second part deals
with the energy consumption. Note that the ∆ for-
mulation implies the usage of an integrator.

(3) Prediction horizon N and weighting matrices
Q, R. These tuning parameters influence the closed
loop response time, and the relative weight of both
objectives, namely comfort and energy efficiency.

2.2 MPC architectures

Three main Model Predictive Control architectures can be
found in the literature, namely Centralized MPC, Decen-
tralized MPC and Distributed MPC [Christofides et al.
(2013), Scattolini (2009)]. Here, the centralized version is
used as reference while the distributed one is considered so
as to reduce the computational and communication bur-
dens of the centralized version. Basically, the distributed
MPC implements local controllers with smaller size op-
timization problems to be solved. The centralized and
distributed versions are sum up as follows:

• Centralized MPC (CMPC). MPC is classically
implemented in a centralized scheme where all the
control signals are computed using a single objective
function. When the system becomes more complex



Fig. 1. Selected space of the building divided into 3 zones

and spatially distributed, CMPC requires a signifi-
cant amount of computing time and data transfer,
leading to communication overhead. In case of com-
munication breakdown, the controller is no more able
to compute the control signals. As a consequence, for
large (scale) systems, as buildings may be, it is highly
advisable to divide the system into several (possibly
loosely coupled) subsystems.
• Distributed MPC (DMPC). In this control archi-

tecture, the system is divided into subsystems. Each
one has its own local controller that optimizes its own
objective function. Information from other subsys-
tems is exchanged between local controllers to achieve
better performances. Here, partially connected sub-
systems are considered. Information about the state
in each local system is transmitted to the neighboring
local controllers, once in every sampling period [Rawl-
ings and Stewart (2008), Farina and Scattolini (2012),
Farina and Scattolini (2011)].

3. BUILDING MODELING FOR MPC

MPC requires a model of the controlled system to predict
the system behavior, as briefly recalled in section 2. In this
paper, the building thermal behavior is described using
an equivalent Resistance-Capacitance (RC) network. The
RC parameters are calculated using basic knowledge of
the building geometry and construction materials. Mass
balance for the CO2 concentration is used to model air
quality. Both models are merged in a state-space model
that will be used in the MPC formulation.

3.1 Description of the Experimental Building

The practical study is conducted on a two-storey building
from CIT, Ireland. Figure 1 shows the area under study,
located at the first floor. This area is divided into three
zones that are not separated by walls. Moreover, the
BMS installed controls the space under study with three
separate units. Hereafter, only the model for zone z1 is
presented, the models for the other zones being deduced
straightforwardly.

3.2 Thermal Model

From the heat transfer and heat storage equations, and
applying the equivalent thermal Resistance-Capacitance
(RC) model, zone z1 is modeled for temperature control.
Beside these equations, there is also an effect of the
ventilation and of the occupants on the temperature rate

Fig. 2. Equivalent RC model for zone z1

of change inside the space. Here, only natural ventilation
is used. All these aspects are included in the RC model.
The resulting equivalent RC model is given in figure 2
[Širokỳ et al. (2011), Nagy and Sauter (2015)]. The thermal
model z1 is obtained via nodal analysis of the equivalent
RC circuit, following the approach in [Maasoumy Haghighi
(2011)]. Consider the assumptions hereafter:

• the air in each zone has a unique temperature across
its whole volume (lumped model);

• the specific heat of the air cp is constant and equal to
1.005KJ/kg.K;

• the radiative coupling between the inner walls of the
building is ignored since the temperature differences
between the walls are negligible;

• the metabolic heat gain per occupant is 100W .

The rate of change of temperature Tz1 in z1 is given by:

Cz1
dTz1

dt
=
Tww,z1 − Tz1

Rww,z1/2
Aww,z1 +

Tsw,z1 − Tz1

Rsw,z1/2
Asw,z1

+
Tf,z1 − Tz1

Rf,z1/2
Af,z1 +

Tc,z1 − Tz1

Rc,z1/2
Ac,z1

+ ϕ+
Tr,z1 − Tz1

Rr,z1
Ar,z1

+ εσAr,z1(T
4
r,z1 − T 4

z1) +Qz1 · cp · (Tout − Tz1)

(3)

where ϕ is the heat flux. Cz1 is the thermal capacitance.
ww is the west wall, sw the south wall, f the floor, and
c the ceiling. Ra,z1, Ta,z1 and Aa,z1 are respectively the
thermal resistance, temperature and area related to the
zone limit a ∈ {r, c, f, sw,ww}. Qz1 is the ventilation rate
in z1. In the sequel, denote f1 = dTz1/dt. Similarly to (3),
fa = dTa,z1/dt, a ∈ {r, c, f, sw,ww} are defined. Due to
lack of space, they are not reported here. Define:

fz1 = [f1, fr, fc, ff , fsw, fww]T (4)

Moreover, the dynamic thermal equations reflect the ab-
sence of wall between zones by adding a natural convective
heat transfer term (not reported here).

3.3 Air Quality Model

The mass balance for the CO2 concentration in z1 is:

g1 =
dC02,z1(t)

dt
= (G(t) ∗ no,z1 + Qz1{C02,out(t)− C02,z1(t)})/Vz1

(5)

where G(t) represents the CO2 generated per person
[Emmerich and Persily (2003)] in z1, no,z1 is the number
of occupants in z1 and Vz1 is the total volume of z1. Note
that the diffusion between zones that are not separated



by walls is added using the Fick’s law to obtain a more
realistic mass balance equation (not reported here).

3.4 Model Linearization

The state-space representation is obtained via the lin-
earization of the non linear dynamic equations using the
Jacobian linearization around an equilibrium point.

Thermal Model Linearization Define the state vector for
the thermal model in z1 as:

xT,z1 = [Tz1 Tr,z1 Tc,z1 Tf,z1 Tsw,z1 Tww,z1]T (6)

From (4), the state matrix for z1 is given by:

AT,z1 =

[
∂fz1

∂xT,z1

]
(7)

The experimental building uses natural ventilation only.
The control variable is

uT,z1 = [Nz1 Pz1]T (8)

where Nz1 corresponds to the windows opened. For sim-
plicity, Nz1 =

∑no

w=1 Nz1,j where no is the number of
windows opened. Nz1,j ∈]0, 1] is the window j position
where 0 (resp. 1) means “window j is closed (resp. fully
open)”. Pz1 ∈ [0, Pz1,max] is the power consumption of
the heaters. The natural ventilation rate for a single sided
ventilation system can be computed with:

Q = 0.025 ·WS ·Aw ·Nw1 (9)

where Aw is the effective area of a window, Nw1 is the
number of windows in z1 and WS is the wind speed. Then:

BT,Z1 =

[
∂fz1

∂uT,z1

]
(10)

Air Quality Model Linearization Define the state and
control vectors for the air quality model:

xCO2,z1 = [CO2,z1] uCO2,z1 = [Nz1] (11)

From (5), it comes:

ACO2,z1 =

[
∂g1

∂xCO2,z1

]
BCO2,z1 =

[
∂g1

∂uCO2,z1

]
(12)

3.5 Linearized model for z1

From (6), (8) and (11), it comes:

xz1 = [xT
T,z1 xCO2,z1]T uz1 = [Nz1 Pz1]T (13)

The state and control matrices are derived from (7), (10)
and (12):

Az1 =

[
AT,z1 0

0 ACO2,z1

]
Bz1 =

[
AT,z1

BCO2,z1 0

]
(14)

4. CENTRALISED MPC

The whole system under study is modeled with a state
space representation derived from section 3:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(15)

where

x = [xT
z1 xT

z2 xT
z3]T u = [uT

z1 uT
z2 uT

z3]T (16)

and

A =

[
Az1 A12 A13

A21 Az2 A23

A31 A32 Az3

]
B =

[
Bz1 0 0

0 Bz2 0
0 0 Bz3

]
(17)

Aij , i 6= j, accounts for the coupling between zones i and
j. Matrix C is defined according to the measured outputs:

y = [Tz1 CO2,z1 Tz2 CO2,z2 Tz3 CO2,z3]T (18)

Since the state vector x cannot be fully measured, a Lu-
enberger observer has been designed in order to estimate
the different temperatures in the three zones.

First, a centralized Model Predictive Controller is de-
signed. The three zones are controlled thanks to the min-
imization of a unique cost function:

min
∆u(k)

J = min
∆u(k)

N∑
j=1

{‖y − yref‖2Q︸ ︷︷ ︸
Comfort

+ ‖∆u(k)‖2R︸ ︷︷ ︸
Energy

} (19)

subject to

{
Eq.(15)
ymin ≤ y ≤ ymax, umin ≤ u ≤ umax

∆umin ≤ ∆u ≤ ∆umax

(20)

where ∆u(k) = u(k)− u(k− 1). yref contains the comfort
references that should be maintained, with thermal and
CO2 parts for each zone:

yT,ref = 20◦C, yCO2,ref = 800ppm (21)

Q > 0 and R > 0 are weighting diagonal matrices.
Depending on the numerical value of their elements, one
can emphasize more on the energy consumption minimiza-
tion or on the thermal comfort and/or on the air quality
comfort. Their choice is not discussed in the paper.

5. DISTRIBUTED MPC

An independent, non-iterative partially connected topo–
logy is considered for the distributed control scheme.
Therefore, only neighboring controllers communicate. For
each zone i, i = 1 : 3, a separate controller is designed.
The state-space model is defined by:

xi(k + 1) = Aiixi(k) + Biiui(k) +
∑
j 6=i

Aijxj(k) (22)

yi = Cxi(k) (23)

where xi = xzi is the state vector defined similarly to (13).
The output vector is given by:

yi = [Tzi CO2,zi]
T (24)

from which matrix C can be derived straightforwardly. The
state and control matrices are given by:

Ai = Azi Bi = Bzi (25)

Aij in 22 models the coupling of neighboring zones i and
j. As a consequence, all the zones in the considered space
do not (necessarily) appear in (22). Each zone is controlled
thanks to the minimization of a dedicated cost function:

min
∆ui(k)

Ji = min
∆ui(k)

N∑
j=1

{‖yi − yi,ref‖2Qi︸ ︷︷ ︸
Comfort

+ ‖∆ui(k)‖2Ri︸ ︷︷ ︸
Energy

} (26)

subject to

{
Eq. (22, 23)
yi,min ≤ yi ≤ yi,max, ui,min ≤ u ≤ ui,max

∆ui,min ≤ ∆ui ≤ ∆ui,max



Fig. 3. Simulation setup

Fig. 4. Outdoor temperature variation

where ∆ui(k) = ui(k) − ui(k − 1). As in the centralized
version, the reference yi,ref is given by:

yi,ref = [20◦C 800ppm]T (27)

Qi > 0 and Ri > 0 are defined per zone, in a similar way
as for the centralized version of section 4.

6. SIMULATION RESULTS

Both MPC strategies are now validated. The first valida-
tion step is performed in simulation using Matlab 2015b.
Figure 3 illustrates the simulation environment. Here, the
control of the ventilation system relies on the monitoring
of CO2 concentration in each zone. This latter is estimated
from occupancy count during the time period [6am, 9pm],
see Figure 6 where it appears in orange. The numeri-
cal values have been extracted from real-life occupancy
count in the open-space office considered. The comfort
level for CO2 concentration is fixed at 800 ppm. Thermal
comfort is evaluated with the comparison of the indoor
temperature in each zone with a reference one equal to
20◦C. Only heating of the zones is considered along with
natural ventilation. The outdoor temperature variation is
also considered (see Fig. 4). It is extracted from real-life
measurements. The wind speed is supposed constant at 5
m/s, which is the average wind speed in Cork area, Ireland,
where the experimental building is located.

6.1 Centralized MPC for thermal and CO2 comfort regulation

Figure 5 shows simulation results for the temperature
variation in the three zones with the centralized MPC
approach from section 4. The indoor temperature is con-
trolled nearly as expected, with a maximum error of 2◦C.
Note that the temperature constraints in (20)have been set
to ±1◦C around the reference temperature. When more
people enter the controlled space, temperature exceed-
ing appears because of extra heating provided by these
people, and that cannot be not anticipated. Moreover,
outdoor temperature also provides extra heating. This
phenomenon can be decreased at the cost of extra energy
consumption for the ventilation that will help extract this
extra heat.

Figure 6 shows the CO2 concentration in the 3 zones
together with the occupancy count and C02 concentration

Fig. 5. Indoor temperature in the three zones, Centralized
MPC

Fig. 6. Indoor CO2 concentration in the three zones,
Centralized MPC

reference. As can be seen, the controller performs as ex-
pected, with the CO2 concentration following the reference
despite disturbances introduced by the occupants. Note
that the constraints on CO2 are set to ±100ppm around
the reference CO2 concentration.

6.2 Distributed MPC for thermal and CO2 concentration
regulation and comparison with the centralized scheme

The same scenario (i.e. external temperature and wind
speed, occupancy count, references) is considered for Dis-
tributed MPC evaluation. Figures 7 and 8 show the evo-
lution of the temperature and CO2 concentration in the
three zones.

Results of both control schemes are reported on these
graphs for comparison purpose. As can be seen, they
provide close results, with slight under performance for the
distributed version. However, this latter presents some nice
features. First, it does not require the collection of all the
information in a unique controller, decreasing therefore the
communication burden, especially when large buildings
are considered. Moreover, the distributed scheme is less
sensitive to communication breakdown as it processes
information locally (the coupling with neighboring zones
can be temporarily neglected). Second, the distributed
version obviously requires less computational capabilities
for each individual controller.

6.3 Comparison of energy consumption and computational
effort for centralized and distributed schemes

The total energy consumption for the conventional control
(i.e. on/off switch of the actuators) and for both MPC
strategies is reported in table 6.3. As expected, the energy
gain, when compared to the conventional control is slightly
smaller for the distributed scheme.



Fig. 7. Indoor temperature in the three zones, centralized
(black) and distributed (red) control schemes

Fig. 8. Indoor CO2 concentration in the three zones, cen-
tralized (black) and distributed (red) control schemes

Table 1. Energy consump. vs. control strategy

Energy (kWh) Conventional Centralised Distributed

Total 181 127.83 138.59

Gain 0 % 30 % 23.5 %

Table 2. Computational cost comparison

Pb. size Nb. constraints Computational time
(normalized)

Centralised 21 660 4.7

Distributed 7 220 1

Table 6.3 gives an estimate of the computing effort. There
results have been obtained using Matlab 2015b. The dis-
tributed MPC is taken as reference. Even if these results
might be optimized, the computation involved by the cen-
tralized controller, when compared to one controller of the
distributed scheme, is clearly more demanding, both in
terms of memory and computational burden.

7. CONCLUSION

This paper presents the application of Model Predictive
Control to cope with energy efficiency and occupants’
thermal and C02 concentration comfort in buildings. An
open-space office split in three zones, located in Cork Insti-
tute of Technology, Ireland, is considered as experimental
setup. This space is first modeled. Then, Centralized and
Distributed Model Predictive Controllers are designed.
Simulation results show that the distributed MPC solu-
tion achieves control performance close to the centralized
version with less computing effort and communication bur-
den. Both approaches are currently under implementation
on the real testbed in the context of the H2020 TOPAs
project. Real-life results will be reported during the oral
presentation.
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