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The in-medium property of the axial-vector coupling constant gA in nuclei and dense baryonic
matter is reformulated in terms of the recently constructed scale-invariant hidden local symmetric
(bsHLS) Lagrangian. It is shown that unlike the pion decay constant that slides with the vacuum
change induced by density, the axial-current constant gA remains unmodified up to high density
relevant to compact stars in nuclear Gamow-Teller transitions (involving the space component of
the axial current) whereas it gets strongly enhanced in axial-charge transitions (involving the time
component of the axial current) as density nears nuclear matter density n0 and stays more or less
constant up to ∼ 6n0. The implications of these predictions on giant Gamow-Teller resonances
in nuclei and on first-forbidden beta transitions (relevant to nuclear astrophysical processes) are
discussed.

I. INTRODUCTION

How the weak axial-vector coupling constant gA be-
haves in nuclei has a very long history. A fundamental
quantity, it has impacts on nuclear structure as well as
nuclear astrophysical processes. The basic issue raised
is associated with how chiral symmetry, a fundamental
property of QCD, is manifested in nuclei where the pres-
ence of strongly interacting nucleons is expected to mod-
ify the vacuum and hence the modified vacuum will affect
the quark condensate Σ ≡ |〈q̄q〉| as density is increased.
It is now well established that the pion decay constant
fπ decreases, reflecting the decrease of the condensate Σ
at increasing density, which is an intrinsic property of
QCD. It seems natural then to expect that the axial cou-
pling constant will undergo a similar intrinsic decrease
in nuclear matter.

There has been a suggestion since 1970’s [1] that the
axial coupling constant, gA ≈ 1.27 determined in the
matter-free space, quenches to gA ≈ 1 in nuclei [2], which
has invited an interpretation that it, in consistency with
the dropping of fπ, signals a precursor to chiral restora-
tion. This has led to extensive studies accompanied by
controversies in nuclear Gamow-Teller transitions, most
notably giant Gamow-Teller resonances [3]. The key
question asked is whether giant GT resonances signal a
quenched axial coupling constant.

In this paper, I revisit this problem and give an ex-
tremely simple and unambiguous answer with an effective
field theory in which scale symmetry and chiral symmetry
of QCD are incorporated. I predict that gA for Gamow-
Teller transitions remains unaffected by the quark con-
densate that slides with density whereas it gets strongly
enhanced in axial-charge (first-forbidden) transitions.

II. SCALE-INVARIANT HLS LAGRANGIAN

My reasoning exploits the recently formulated effective
field theory Lagrangian that purports to be valid for phe-
nomena at low density as well as for high density ∼ 6n0

where n0 is the normal nuclear matter density. This for-
mulation probes nuclear matter as well as dense matter
relevant to the recently discovered ∼ 2-solar mass com-
pact stars.

It is constructed by implementing scale symmetry
and hidden local symmetry (HLS) to baryonic chiral
Lagrangian consisting of the pseudo-Nambu-Goldstone
bosons, pions (π), and baryons, focusing specifically on
nucleons N . The basic assumption that underlies the
construction of the effective Lagrangian, dubbed bsHLS,
with b standing for baryons and s standing for the scalar
meson, is that there are two hidden symmetries in QCD:
one, scale symmetry broken both explicitly by the QCD
trace anomaly and spontaneously with the excitation of
a scalar pseudo-Nambu-Goldstone boson, i.e., “dilaton”
σ; two, a local flavor symmetry higgsed to give massive
ρ and ω. Neither is visible in QCD in the matter-free
vacuum, but the possibility, argued in [4], is that both
can appear as emergent symmetries in dense matter and
control the equation of state (EoS) relevant to compact
stars. I will use the same Lagrangian for calculating nu-
clear responses to the electro-weak current. There are no
unknown parameters in the calculation.

Since the arguments are quite involved and given in
great detail elsewhere, I summarize as concisely as pos-
sible the essential points that figure in the formulation.
In addition to the nucleon and the pion, the Nambu-
Goldstone boson of chiral symmetry, there are two ad-
ditional – massive – degrees of freedom essential for the
bsHLS Lagrangian: The vector mesons V = (ρ, ω) and
the scalar meson denoted χ. By now very well-known
procedure, the vectors V are incorporated by hidden
gauge symmetry (HLS) [5], which is gauge-equivalent to
non-linear sigma model, that elevates the energy scale to
the scale of vector mass ∼ 770 MeV. The scalar χ is in-
corporated by using the “conformal compensator field”
transforming under scale transformation with scale di-
mension 1, χ = fχe

σ/fχ . Here σ is the dilaton field, a
pseudo NG boson of scale symmetry,

The underlying approach to nuclear EFT with bsHLS
is the Landau Fermi-liquid theory based on Wilsonian
renromalization group (RG). For this, the “bare” pa-
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rameters of the EFT Lagrangian are determined at a
“matching scale” ΛM from which the RG decimation is
to be made for quantum theory. The matching is per-
formed with the current correlators between the EFT
and QCD, the former at the tree-order and the latter in
OPE. The QCD correlators contain, in addition to per-
turbative quantities, the nonperturbative ones, i.e., the
quark condensate 〈q̄q〉, the dilaton condensate 〈χ〉, the
gluon condensate 〈G2

µν〉 and mixed condensates. The
matching renders the “bare” parameters of the EFT La-
grangian dependent on those condensates. Since the con-
densates are characteristic of the vacuum, as the vacuum
changes, the condensates slide with the change. Here we
are concerned with density, so those condensates must
depend on density. This density dependence, inherited
from QCD, is an “intrinsic” quantity to be distinguished
from mundane density dependence coming from baryonic
interactions. It is referred to as “intrinsic density depen-
dence” or IDD for short.

There are two scales to consider in determining how
the IDDs enter in the EFT Lagrangian.

One is the energy scale. The initial energy scale is
the matching scale from which the initial (or first) RG
decimation is performed. In principle it could be the
chiral scale Λχ ∼ 4πfπ ∼ 1 GeV. In practice it could be
lower, say, slightly above the vector meson mass. The
scale to which the first decimation is to be made could
be taken typically to be the top of the Fermi sea.

The other scale is the baryon density. The density rel-
evant for massive compact stars can reach up to as high
as ∼ 6n0. To be able to describe reliably the proper-
ties of both normal nuclear matter and massive stars, a
changeover from the known hadronic matter to a differ-
ent form of matter at a density ∼ 2n0 is required. In
[4], it is a topology change from a skyrmion matter to a
half-skyrmion matter. Being topological this property is
most likely robust. In quark-model approaches, it could
be the hadron-quark continuity that implements contin-
uous transitions from hadrons to strongly-coupled quark
matter or quarkyonic matter [6]. I believe, as conjec-
tured in [4], that the two approaches are in some sense
equivalent.

The changeover is not a bona-fide phase transition.
However it impacts importantly on the EoS, making, for
instance, the nuclear symmetry energy transform from
soft to hard at that density, accommodating the observed
∼ 2-solar mass star. Of crucial importance for the pro-
cess being considered is that when the matter is treated
in terms of skyrmions, complementary to the bsHLS ap-
proach, the topology change at n1/2 ∼ 2n0 makes the
IDDs differ drastically from below to above that density.

It turns out that up to n ∼ n1/2, the IDD is entirely
given by the dilaton condensate 〈χ〉 . The χ field is a
chiral scalar whereas q̄q is the fourth component of the
chiral four vector. Therefore the dilaton condensate is
not directly connected to the quark condensate, but as
mentioned below, this dilaton condensate gets locked to
the pion decay constant which is related to the quark

condensate. While the quark condensate does not figure
explicitly in the IDD at low densities, it controls the be-
havior of vector-meson masses at compact-star densities,
n ∼> n1/2 [4].

III. AXIAL CURRENT WITH IDD

That the IDD could be entirely given by the dilaton
condensate was conjectured in 1991 [7], and it is con-
firmed to hold up to the density n ∼< n1/2 [4]. What
is new in the new development is that in the Wilso-
nian renormalization-group formulation of nuclear effec-
tive field theory adopted [4], this IDD-scaling is all that
figures up to n1/2. However it undergoes a drastic change
at n ∼> n1/2 [4]. This change is important for compact-
star matter but does not affect the axial-current problem.

The effect of the scale-symmetry explicit breaking at
the leading order is embedded entirely in the dilaton po-
tential, so it does not enter explicitly in the axial response
functions in nuclei and nuclear matter that we are inter-
ested in. This makes the calculation of the “intrinsically
modified” g∗A in nuclear medium extremely simple. All
we need is the part of the bsHLS Lagrangian, scale in-
variant and hidden local symmetric, that describes the
coupling of the nucleon to the external axial field Aµ.
Writing out explicitly the covariant derivatives involving
vector fields, hidden local and external, and keeping only
the external axial vector field Aµ, and to the leading or-
der in the explicit scale symmetry breaking, the relevant
Lagrangian takes the form

L = iNγµ∂µN − χ

fχ
mNNN + gANγ

µγ5NAµ + · · ·(1)

Note that the kinetic energy term and the nucleon cou-
pling to the axial field are scale-invariant by themselves
and hence do not couple to the conformal compensator
field. Put in the nuclear matter background, the bare
parameters of the Lagrangian will pick up the medium
VeV and scale as

m∗N/mN = 〈χ〉∗/fχ ≡ Φ, g∗A/gA = 1 (2)

where fχ is the medium-free VeV 〈χ〉0 and the ∗ rep-
resents the medium quantities. The first is one of the
scaling relations given in [7]. The second is new and
says that the Lorentz-invariant axial coupling constant
does not scale in density. Now in medium, Lorentz in-
variance is spontaneously broken, which means that the
space component, gs

A, could be different from the time
component gt

A. Writing out the space and time compo-
nents of the nuclear axial current operators, one obtains

~J±A (~x) = gs
A

∑
i

τ±i ~σiδ(~x− ~xi), (3)

J0±
5 (~x) = −gt

A

∑
i

τ±i ~σi · (~pi − ~k/2)/mNδ(~x− ~xi) (4)

where ~p is the initial momentum of the nucleon making

the transition and ~k is the momentum carried by the ax-
ial current. In writing (3) and (4), the nonrelativistic
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approximation is made for the nucleon. This approxi-
mation is valid not only near n0 but also in the density
regime n ∼> n1/2 ∼ 2n0. This is because the nucleon mass
never decreases much after the parity-doubling sets in at
n ∼ n1/2 at which m∗N → m0 ≈ (0.6− 0.9)mN [4].

A simple calculation gives

gs
A = gA, gt

A = gA/Φ (5)

with Φ given by (2). This is the unequivocal prediction
of the IDD with bsHLS.

IV. GAMOW-TELLER TRANSITIONS

One can now look at what IDD scaling (5) gives for nu-
clear axial transitions. First consider the Gamow-Teller
transition which is dominated by the Gamow-Teller op-
erator (3).

Following the RG procedure, one performs the double
decimations as in [4]. Although the IDD does not af-
fect the gsA, one has to consider what other degrees of
freedom can contribute in the RG decimations. The first
energy scale one encounters in the Gamow-Teller channel
as one makes the first decimation from the matching scale
is the ∆-hole excitation E∆−h lying ∼ 300 MeV above
the Fermi sea. Other channels could be safely ignored.
This ∆-hole effect has to be taken into account in cal-
culating the Gamow-Teller response functions. Since the
weak current acts only once, this effect can be included in
the modification of the Gamow-Teller coupling constant
gsA. This was worked out a long time ago, which could
be phrased in terms of Landau-Migdal’s g′0 parameter in
the ∆-N channel [8, 9] when treated in Landau’s Fermi
liquid theory in the space of N and ∆. This can also be
phrased in terms of the Ericson-Ericson-Lorenz-Lorentz
(EELL) effect in the pion-nuclear interaction [10]. If one
takes g′0 equal in the NN , N∆ and ∆-∆ channels, that
is, universal, then one finds that g∗A for Gamow-Teller
transitions in nuclear matter is renormalized to g∗A ≈ 1.
There is also a QCD sum-rule result arriving at the same
result [11]. This seems to indicate that this effective gA
is consistent with what was arrived at in light nuclei [2].

In order to understand what this “renormalization”
means, imagine doing a large-scale, or preferably full-
scale, shell-model calculation within the nucleon configu-
ration space only. This corresponds to doing the RG dec-
imation from the energy scale E∆−h ≈ 300 MeV. Hence
using this renormalized g?A ≈ 1 in calculating the GT
matrix element, one would find (g∗A/gA)2 ≈ 0.6 quench-
ing in the strength. Indeed an observation of the famous
∼ 40% quenching in Gamow-Teller strength has baffled
experimentalists for many years. However, more recent
experiments on giant Gamow-Teller resonances find that
this quenching has more or less disappeared [3]. In terms
of g′0, this means that g′0|∆N � g′0|NN .

This result raises several questions: First, it is a well-
known fact that g′0|NN is by far the strongest quasiparti-
cle interaction controlling spin-isospin excitations in nu-

clei. So why the ∆N channel is so suppressed compared
with the NN channel is difficult to understand; second,
at least a part of the Landau parameters can be asso-
ciated with an IDD. Take for example the in-medium ρ
mass with its IDD given by the dialton condensate Φ. In
the mean-field treatment of the anomalous orbital gyro-
magnetic ratio of the proton δgl in heavy nuclei [12], it
has been shown that the Landau parameter F ′1 is also
related to Φ when treated in the single-decimation RG
using the bsHLS Lagrangian. Thus at least a part of the
Landau parameters can be associated with IDD. Which
part of the Landau parameters is concerned depends on
the precise way the RG decimations are defined.

The message from what we have learned is this: It is
a fundamental task to pin down what the ∆-hole modi-
fication of gA is by doing a precision calculation of giant
Gamow-Teller resonances in heavy nuclei and determine
the deviation of gA, if any, from the free-space value.
There is no known reason why the deviation should be
zero even though as shown in this paper there is no intrin-
sic QCD correction directly associated with the vacuum
change in the chiral condensate.

V. AXIAL-CHARGE TRANSITIONS

The first forbidden β-decay process 0− ↔ 0+ with
∆I = 1 is governed by the axial charge operator (4). This
process has an axial-vector coupling constant enhanced
by 1/Φ (for Φ < 1) and furthermore, more importantly,
receives very important one-pion exchange-current con-
tribution with a vertex A0πNN . See Fig. 1. This ver-
tex is of the form of current algebra with two soft pions
and gives an O(1) correction to the single-particle oper-
ator [13]. The two-body operator is an exactly known
pionic-ranged two-body operator, so it can be calculated
very accurately if the accurate wave function is known.
In fact the ratio R of the two-body matrix element over
the one-body matrix element, surprisingly large as a me-
son exchange-current effect, is highly insensitive to nu-
clear density. It ranges R = 0.5 ± 0.1 over the wide
range of nuclei from light to heavy or in terms of den-
sity, n ∼ (0.5 − 1.0)n0 [14]. With the two-body effect

FIG. 1. Two-body exchange current. The upper vertex in-
volves two soft pions for the axial charge transition.

taken into account, the effective axial-charge operator is
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obtained by making the replacement in (4) by

gtA → gs∗A = εgA (6)

with

ε = Φ−1(1 +R/Φ). (7)

To make an estimate of ε, we need the scaling factor Φ. It
is an easy calculation to find that in medium, the dilaton
condensate is locked to the quark condensate, leading
to [4]

Φ = f∗χ/fχ ≈ f∗π/fπ. (8)

The pion decay constant f∗π is measured from deeply
bound pionic nuclear systems [15]. It can be parame-
terized in density (up to n0) as

Φ ≈ 1/(1 + 0.25n/n0). (9)

The prediction (7) has been well confirmed in experi-
ments ranging from A = 12 to A = 205 − 212 [16, 17].
Here for illustrative purpose, let me quote the result in
Pb nuclei. Taking the density to be near the nuclear
matter density, one has Φ(n0) ≈ 0.8 in accordance with
Eq. (9) – which is fit to the experiment [15]. Substituting
R = 0.5± 0.1, one prediocts the enhancement factor

ε(n0) ≈ 2.0± 0.2. (10)

This factor compares well with Warburton’s result in Pb
region [17]

εexp = 2.01± 0.05. (11)

This is an old story. And there is nothing new as
far as the numerical result is concerned. However it
should be noted that given that nuclear structure tech-
niques are vastly improved in the two decades and half
since 1991, the ratio R could now be calculable ex-
tremely accurately for the ranges of nuclei involved, in
particular in the A = 12 − 16 region. Furthermore the

extraction of εexp that requires certain theoretical in-
puts, e.g., single-particle first-forbidden decay matrix ele-
ments, could be improved tremendously over the result of
1991 [17]. Given that the axial charge exchange-current
operator is unambiguously calculable in the EFT frame-
work, with higher-order corrections strongly suppressed,
this enhanced process would constitute the most spectac-
ular and pristine evidence for meson-exchange currents in
nuclei.

What is perhaps a lot more notable is the role played
by soft pions in the process. Considering the soft probe,
A0, as pionic, one can think of the upper vertex of Fig. 1
as involving two soft pions. This is the core of the current
algebras of 1960, which is now fully captured in nonlinear
sigma model with derivative coupling, and hence in cur-
rently successful effective quantum field theory. This can
be considered as a striking case of Weinberg’s “folk the-
orem” on effective quantum field theory “proven” in nu-
clear physics [18]. In fact this matter, dating from 1970’s,
illustrates that “what nuclear physicists have been doing
all along is the correct first step in a consistent approxi-
mate scheme.”

Now when the energy scale probed in nuclear processes
is much less than the pion mass ∼ 140 MeV, the pion can
also be integrated out in the spirit of the “folk theorem”
and one obtains “pionless effective field theory” for nu-
clear physics, which is eminently a respectable effective
field theory. With no pions present, however, there is no
explicit footmark of chiral symmetry, i.e., no smoking gun
for the spontaneously breaking of chiral symmetry. Yet
the theory seems to work fairly well in various low-energy
processes involving light nuclei including the solar proton
fusion process that is dominated by the Gamow-Teller
operator. The question is: What about the double-soft
process that makes such a big effect in the axial-charge
transitions? Could it be hidden in the pionless effective
field theory, somewhat like the hidden symmetries dis-
cussed above?
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