https://cea.hal.science/cea-01562873Rho, MannqueMannqueRhoIPHT - Institut de Physique Théorique - UMR CNRS 3681 - CEA - Commissariat à l'énergie atomique et aux énergies alternatives - Université Paris-Saclay - CNRS - Centre National de la Recherche ScientifiqueAxial-Vector Coupling Constant in Nuclei and Dense MatterHAL CCSD2017[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]De Laborderie, Emmanuelle2017-07-17 10:52:142023-03-24 14:53:042017-07-17 13:39:54enPreprints, Working Papers, ...https://cea.hal.science/cea-01562873/documenttext/html; charset=utf-81The in-medium property of the axial-vector coupling constant $g_A$ in nuclei and dense baryonic matter is reformulated in terms of the recently constructed scale-invariant hidden local symmetric ($bs$HLS) Lagrangian. It is shown that unlike the pion decay constant that slides with the vacuum change induced by density, the axial-current constant $g_A$ remains unmodified up to high density relevant to compact stars in nuclear Gamow-Teller transitions (involving the space component of the axial current) whereas it gets strongly enhanced in axial-charge transitions (involving the time component of the axial current) as density nears nuclear matter density $n_0$ and stays more or less constant up to $\sim 6n_0$. The implications of these predictions on giant Gamow-Teller resonances in nuclei and on first-forbidden beta transitions (relevant to nuclear astrophysical processes) are discussed.