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Abstract—The adoption of millimeter-wave technology could open the

possibility to integrate massive antenna arrays inside future 5G user

mobile devices, with the possibility to enable new interesting applica-

tions. Within this context, in this paper we put forth the concept of a

personal mobile radar operating at millimeter-waves and consisting of

a massive array for accurate environmental mapping. Frequency selec-

tivity and phase quantization effects are accounted for to characterize

the achievable angle and range resolution necessary to collect environ-

mental information. Successively, we propose an effective grid-based

Bayesian mapping approach by introducing a new state-space model,

which profits of the beneficial effects of the massive antenna array

characteristics. Numerical results show that the idea herein investigated

is feasible, and that a significant mapping performance is attainable even

employing coarse antenna arrays provided that the number of antenna

elements is sufficiently high.

Index Terms—Personal radar, indoor mapping, millimeter-wave, mas-

sive antenna arrays

1 INTRODUCTION

W ITHIN the concept of the Internet of Things, ob-
jects and devices are expected to be connected and

mapped into the Internet space to enable environment-
related applications [1]. In this context one key step is the
digital representation (mapping) of the physical world
into the so called smart space (i.e. a space that enables
the cooperation and interaction among smart objects).
While in the last years this process has rapidly taken
place in outdoor environments thanks to the availability
of GPS information and the introduction of location-
based applications, other techniques have to be adopted
in indoor environments [2], [3], whereas manual map-
ping and updating of all buildings in the world would
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Fig. 1: Users, equipped with massive arrays on their smart-
phones, in participatory or not manner scan indoor environ-
ments with the opportunity to share their maps.

require an unaffordable cost and effort. Traditionally,
simultaneous localization and mapping (SLAM) is based
on the concept that a robot, moving in an unknown envi-
ronment, recognizes the surrounding objects being then
able to reconstruct a 2D/3D map of the area. Current
accurate SLAM, for automatic creation of indoor maps
[4]–[6], requires both high-definition distance estimates
(ranging) and very narrow steering beams (angle resolu-
tion), traditionally accomplished by laser technology. In
addition, the exploitation of WiFi and sensors integrated
in smartphones for zero-effort automatic indoor posi-
tioning and mapping applications relate very poorly to
the actual mobile position, and topological environment
information can be hardly inferred.

Looking one step ahead, of particular interest for
next generation (5G) mobile wireless communications
is the millimeter-wave (mmW) technology, for example
that working in the 60 GHz band, which allows the
exploitation of a large clean unlicensed bandwidth (up
to 7GHz) [7]–[10]. The reduced wavelength at mmW
paves the way for packing massive arrays with electronic
steering capabilities into a small area, as done in [11].
Authors in [12] studied how to realize mmW massive
arrays, with dimensions which are becoming closer and
closer similar to that of a tablet, even though several
technological issues have still to be solved, such as
energy consumption.

The idea to adopt mmW radars to overcome the short-
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comings of laser is not new and it has been considered
for outdoor applications in some previous works, such
as [13]–[16], where a dedicated very high-directional
antenna is mechanically steered. The consequent near-
pencil beam returns a precise angle and range infor-
mation thus making the modeling and characterization
of the environment with mmW radars very similar to
that based on laser. Obviously, such systems can not be
integrated into smartphones or tablets.

Stimulated by this possibility, in this paper we put
forth the idea of placing massive antenna arrays in
smartphones or tablets thus realizing a high-definition
and low-cost personal mobile radar [17]–[19]. In fact, the
availability of a large number of antennas on mobile
devices opens the possibility of realizing narrow beams
with electronic-driven steering capabilities that are fun-
damental for high-accuracy mapping as a cheap, energy
efficient alternative to laser technology (see Fig. 1) [20].
In our vision the pervasive availability of personal radar
capabilities on smartphones will enable high-definition,
zero-effort and automatic indoor building mapping by
exploiting the possibility of crowd sourcing (crowd map-
ping) [21]–[24]. In addition, other new applications are
possible such as blind people aid or the pictorial 3D
environmental mapping where the third dimension re-
sults by the integration of the angle/range information
collected by the personal radar with the 2D picture
coming from the conventional embedded camera. From
a complementary perspective, in [25], a system of stereo
cameras and integrated sensors is used to have the depth
information and to create a 3D image of the environ-
ment. The main drawback of this solution is that cameras
are not able neither to automatically scan the environ-
ment as they do not perform a beamforming operation
(i.e. the user must be participatory as he/she has to
”pilot” the scan process by properly moving the camera)
nor to retrieve information about the electromagnetic
properties of materials. Our approach outperforms these
weakness thanks to the adoption of mmW technology
and of a multi-antenna radar system, which can scan
the environment even if the smartphone is kept in the
user pocket, i.e. without having the user participatory.

In our proposed mmW personal radar, wideband sig-
nals are employed to assure high ranging performance
[26]. Unfortunately, technology constraints prevent the
use of wideband time-delay components necessary to
realize the required signals alignment from different ar-
ray elements and only simple digitally-controlled phase
shifters can be realistically adopted. Therefore, loss in
steering and ranging accuracy due to quantized phase
shifters and frequency selectivity might arise [27], [28]. In
addition, even in case massive arrays are adopted, laser-
like beams are not obtainable and each measurement
might be affected by contributions coming from different
directions due to the effect of an increased main lobe
width and side-lobes level in the antenna radiation pat-
tern. Thus, dedicated mapping approaches are needed to
overcome these limitations and to make massive arrays

an attractive candidate for environment mapping. To
validate our idea, the main contributions of the paper
can be summarized as follows:

• We analyse the steering and ranging capabilities of
the proposed mmW personal radar concept as a
function of the signal bandwidth and the number
of antennas composing the array. Specifically, the
impact of frequency selectivity and quantization
phase errors on the beam pointing error and beam
width spread is jointly characterized.

• We propose a low-complexity personal radar
transceiver employing a massive antenna array and
based on the transmission of wideband signals
with non-coherent processing of the correspond-
ing backscatter response of the environment. Our
approach is different from the current state-of-the-
art. In fact, a classic two-step approach is typi-
cally followed [15], [16]: first, for each test direction
the obstacle is detected and its distance measured
and, subsequently, this “hard” decision becomes the
input for the mapping algorithm. Differently, we
propose a new observation model that considers
all the available raw measurements (“soft” decision)
and hence fully exploits all the information coming
from the antenna array.

• The environment mapping capabilities of the per-
sonal radar are investigated by introducing a new
Bayesian state-space model which considers a grid
representation of the environment based on the elec-
tromagnetic characteristics of each space element
and incorporating the new observation model able
to properly account for the intrinsic characteristic of
the massive antenna array and scanning process.

The rest of the paper is organized as follows. The
impact of errors on pointing and angle resolution in
massive antenna arrays due to frequency selectivity and
phase quantization noise is characterized in Sec. 2 and 3,
where the trade-off between ranging and steering accu-
racy as a function of the number of elements composing
the antenna array is also investigated. The personal radar
mapping capabilities are modeled and characterized in
Sec. 4, whereas in Sec. 5 numerical results related to a
typical indoor scenario are provided. Finally, the conclu-
sions are drawn in Sec. 6.

2 SOURCES OF ERROR IN MASSIVE ANTENNA

ARRAYS

2.1 Planar Phased Arrays

The planar array configuration appears well suited for
massive antennas array integration in smartphones and
tablets. Consider the scheme reported in Fig. 2, where
Narray = MN antenna elements are placed in a rectan-
gular area of dimension Lx ×Ly, with Lx = Mdx and
Ly = Ndy. The elements are spaced apart of dx (dy) in
the x (y) dimension. According to [29], and considering
a uniform array, the array factor (AF) at frequency f is
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defined as1

AF(Θ, f) =
M∑

m=1

N∑

n=1

ej[(m−1)Ψx+(n−1)Ψy] (1)

with

Ψx = kdx sin(θ) cos(φ) + βx

Ψy = kdy sin(θ) sin(φ) + βy (2)

with Θ = (θ, φ) being the considered direction identified
by the elevation and the azimuthal angles, θ and φ,
respectively, and k = 2πf/c the wavenumber, with c
indicating the speed of light. To steer the main lobe
towards a specific direction Θ0, parameters βx and βy

have to be set to

βx = −k0dx sin(θ0) cos(φ0)

βy = −k0dy sin(θ0) sin(φ0) (3)

with k0 = 2πf0/c, and f0 being the reference frequency
for which the steering parameters are designed. In the
steering direction, for f = f0 and in the absence of array
non-idealities, it is AF(Θ0, f0) = Narray.

The complex beam-steering weights determining the
beam shape and pointing direction can be expressed as

ωmn = ejϕmn = ej[(m−1)βx+(n−1)βy] (4)

where ϕmn is the weight phase, and βx and βy are
defined in (3).

2.2 Sources of Error in Antenna Arrays

There are several issues that arise when massive wide-
band phased arrays are adopted and both accurate beam
steering and ranging have to be guaranteed. They are
even more pronounced when working at very high
frequencies due to technological and cost constraints
[30].

This section deals with the effects of phase quantiza-
tion errors and large signal bandwidth. The joint impact
of such sources of error results in beam pointing errors
and beamwidth spread that must be properly charac-
terized when analyzing the performance of mapping
schemes, as done in Sec. 4.

2.2.1 Large Signal Bandwidth

A large bandwidth is in general desirable thanks to the
corresponding achievable high ranging resolution [31].
However, in a wideband system, the received signal
arrives at each antenna element with a delay that is not
negligible compared to the signal duration, and hence it
cannot be compensated by adopting only phase shifters,
as typically done in narrowband systems. Unfortunately,
the adoption of a huge number of time delay circuits
represents a high-cost solution, especially at millimeter
frequencies, then phase shifters remain at the moment

1. For simplicity and without loss of generality, we consider isotropic
array elements.
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Fig. 2: Array structure (a) and beam pointing error scheme (b).

the most viable solution [32]. Consequently, in the ab-
sence of time delays, the accumulation of the component
received by each branch will result in a signal shape dis-
tortion. In other words, the actual steering direction and
beamwidth would depend on frequency (beam squinting
effect). For this reason the effects of signal bandwidth
have to be carefully accounted for.

2.2.2 Array Weights Errors

Even the adoption of high resolution analog phase
shifters might still not be a feasible solution for mmW
massive antenna arrays if we aim at keeping a low
system cost. Digitally controlled phase shifters imple-
menting a discrete set of phase shifts represent a cheaper
alternative at the expense of quantization errors [20].
Some new solutions have been investigated in [30] to
find a compromise between the number of elements and
the phase shifters accuracy.

Starting from the general model for the quantized
version ω̃mn of weights ωmn proposed in [28], we express
ω̃mn = ωmne

jδmn , with δmn ∼ U(−∆/2,∆/2) uniformly
distributed random variables (RVs) in the quantization
step ∆. Note that array weights errors affect the beam
steering accuracy (see Fig. 2) and, consequently, the
beamwidth characteristics. In addition, the misalignment
of pulses at each array element causes temporal spread
if it is not well counteracted. These effects can reduce
the angle and ranging resolution as it will be detailed in
the next section.

3 IMPACT OF ERRORS ON POINTING AND AN-
GLE RESOLUTION

We now investigate the impact of errors on the array

characteristics. In particular, denote with ÃF(Θ, f) the
actual AF in the presence of the aforementioned errors.
Expression (1) becomes

ÃF(Θ, f) =
M∑

m=1

N∑

n=1

ej[(m−1)Ψx+(n−1)Ψy]ejδmn (5)

where δmn’s are the phase errors previously defined.

Now denote with Θ̃0 = (θ̃0, φ̃0) the actual beam
pointing direction at frequency f and in presence of
arrays non idealities. We can relate the actual beam
pointing error to the desired beam pointing direction as

Θ̃0 = Θ0+∆Θ̂0+δΘ0, with ∆Θ̂0+δΘ0 indicating the shift
from the desired pointing direction consisting of both a
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deterministic ∆Θ̂0 and random quantity δΘ0 = (δθ0, δφ0)
due to frequency selectivity and phase quantization,
respectively (Fig. 2). Note that Θ̂0 = (θ̂0, φ̂0) = Θ0+∆Θ̂0

is the actual beam pointing direction at frequency f and
in absence of quantization error, with

θ̂0 = sin−1

(
f0
f

sin(θ0)

)
, φ̂0 = φ0 . (6)

For what follows it is convenient to derive the squared
AF

|ÃF(Θ, f)|2 =
∑

mnpq

ej[(m−p)Ψx+(n−q)Ψy ]ej(δmn−δpq)

= |AF(Θ, f)|2 + ζerr(Θ, f) (7)

with

ζerr(Θ, f) =
∑

mnpq

ej[(m−p)Ψx+(n−q)Ψy ]
[
ej(δmn−δpq) − 1

]
(8)

and
∑

mnpq =
∑M

m

∑N
n

∑M
p

∑N
q . Equation (7) puts in

evidence the deterministic and random terms composing
the squared AF.

Considering δmn’s as independent, identically dis-
tributed (i.i.d.) RVs, the average squared AF is

E

{
|ÃF(Θ, f)|2

}
= Narray +

(
|AF(Θ, f)|2 −Narray

)
χ2 (9)

where χ = E
{
ejδmn

}
= 2

∆sin
(
∆
2

)
.

In the following we will discuss about the two effects
that arise when phase errors and frequency selectivity
are present. First, the beam pointing error phenomenon
is investigated. Second, we address the beamwidth devi-
ations caused by the joint influence of phase errors and
squint effect.

3.1 Beam Pointing Error

We now evaluate the impact of phase errors on the beam
pointing direction. In particular we derive the mean and
the variance of the mean beam pointing error.

The mean square error (MSE) of the beam pointing
error is given by

MSEθ(f, θ0)=E

[(
δθ0+∆θ̂0

)2
]
=
[
∆θ̂0

]2
+ E

[
δθ20(Θ̂0, f)

]

MSEφ(f, φ0)=E

[(
δφ0+∆φ̂0

)2
]
=
[
∆φ̂0

]2
+ E

[
δφ20(Θ̂0, f)

]

(10)

with

[
∆φ̂0

]2
=0,

[
∆θ̂0

]2
=

(
sin−1

(
f0
f

sin(θ0)

)
− θ0

)2

. (11)

In Appendix A it is shown that E [δθ0] = E [δφ0] = 0, and

in Appendix B explicit expressions for E
[
δθ20(Θ̂0, f)

]
and

E

[
δφ20(Θ̂0, f)

]
are derived and expressed by (58).

Given the transmitted signal power spectral density
(PSD) Pt(f), with bandwidth W , we finally define the
pointing root mean square error (PRMSE) as

PRMSE(Θ0) =

√∫
WPt(f) [MSEθ(f, θ0)+MSEφ(f, φ0)]df∫

W
Pt(f)df

.

(12)

It will be shown in Sec. 5 that small bandwidths W are
better suited for high beam pointing accuracy. This is in
contrast with the need to have large bandwidth signals
for accurate ranging and a trade-off has to be found as
will be reported in the numerical results.

3.2 Beamwidth Spread

We are now interested in finding the 3dB beamwidth

spread Θ̃3dB =
(
θ̃0 ± δθ, φ̃0 ± δφ

)
, which varies with

the frequency even if this is not explicitly indicated
for notation convenience. In particular, the half power
beamwidth (HPBW) can be evaluated by solving the
following equation

|AF(Θ̃3dB, f)|
2 =

1

2
|AF(Θ̃0, f)|

2 . (13)

It follows that

∑

mnpq

ŵmnpqe
j(m−p)Ψδx ej(n−q)Ψδy ej(δmn−δpq)=

1

2
|AF(Θ̃0,f)|

2

(14)

where ŵmnpq = e
j
[
(m−p)Ψx|Θ=Θ̃0

+(n−q)Ψy|Θ=Θ̃0

]

and

Ψδx = kdx

[
cos(θ̃0) cos(φ̃0)δθ − sin(θ̃0) sin(φ̃0)δφ

]

Ψδy = kdy

[
sin(θ̃0) cos(φ̃0)δφ+ cos(θ̃0) sin(φ̃0)δθ

]
. (15)

In Appendix C a practical expression for the numerical
evaluation of (13) is derived. From (62) and (63) in
Appendix C we introduce the beam solid area (BSA)

BSA = ΩA(Θ0, f) =4E
[
δθ̃x0(Θ̃0, f)

]
E

[
δθ̃y0(Θ̃0, f)

]
sec θ̃0.

(16)

In addition, we define the effective BSA as

ΩA, eff(Θ0) =

√∫
W
Pt(f)Ω2

A(Θ0, f)df∫
W Pt(f)df

. (17)

This parameter is an indicator of the angle resolution of
the scanning process at direction Θ0.

It will be shown in Sec. 5 through simulations that
a large number of elements lets to reduce the impact of
quantization errors as well as to narrow the beamwidth.s
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3.3 Ranging and Steering Accuracy

We now characterize the ranging and angle resolution of
massive antenna arrays accounting for bandwidth and
sources of errors discussed in Sec. 2.

Target distance estimate (ranging) during each step of
the scanning process is obtained through the measure-
ment of the signal round-trip time (RTT). The funda-
mental limit of ranging accuracy of a target at distance
d depends on the signal effective bandwidth Weff and
the received signal-to-noise ratio (SNR) as given by the
Cramér-Rao lower bound (CRLB) [31]

CRLB =
c2

8π2SNRW 2
eff

(18)

where Weff is defined as

Weff ,

√√√√
∫ +∞

−∞
f2Pt(f − f0) df

∫ +∞

−∞
Pt(f − f0) df

≈W . (19)

The mmW radar range equation related to a target at
distance d, a test steering direction Θ0, and considering
a waveform with incident direction Θi = (θi, φi) with
respect to the target, can be expressed as

Pr(Θ0,Θi, d)=

∫

W

Pt(f)c
2G2(Θ0, f)M(Θ0,Θi, f, d)

f2 (4π)
3
d4

df (20)

with G(Θ0, f) ≈ π2/ΩA(Θ0, f), being the array gain [29]
and M(Θ0,Θi, f, d) the target radar cross section (RCS).

Under the narrow beamwidth hypothesis, i.e. high
Narray, we approximate the illuminated area on the target
surface with the beam area of the incident wave gener-
ated by the massive array (footprint area). Thus, the RCS
of a target at mmW is given by [33], [34]

M(Θ0,Θi, f, d) = 4πρAfp(Θ0, f, d)ζ(Θi) (21)

where ρ is a parameter which depends on the type of
scattering and the target material, and ζ(Θi) is the inci-
dent/reflection coefficient of the target in the direction
Θi. The footprint area is

Afp(Θ, f, d) =
π

4
d2ΩA(Θ, d) (22)

with ΩA(Θ, f) given by (16). Thus (20) results

Pr(Θ0,Θi, d) =
πc2

64

∫

W

EIRP(f) ρ ζ(Θi)

d2f2
df (23)

where EIRP(f) = Pt(f)G(Θ0, f) is the effective radiated
isotropic power (EIRP) typically constrained by regula-
tory power emission limits. Note the quadratic depen-
dency of Pr(Θ0,Θi, d) on the mobile-target distance d.

The actual SNR can be improved by increasing the
transmission power or the observation time (e.g., by
transmitting several pulses/symbols). However, both pa-
rameters have some constraints on spectrum emission
regulations and the maximum tolerable scanning time,
respectively. For what the latter is regarded, suppose we
have to scan half of the full solid angle or half of the
full angle, i.e. Ωo = 2π [sr] and Ωo = π [rad] in 3D and

2D scenarios, respectively. The number Nsteer of steering
test directions to complete the scan process is strictly
related to the array beamwidth, and thus to the number
of antenna elements Narray, by the relation2

Nsteer =

⌊
Ωo

Ωmean

⌋
(24)

where Ωmean denotes the mean BSA HPBW averaged
over all the test directions Θ0 given by

Ωmean =
1

Ωo

∫

Ωo

ΩA,eff(Θ) dΩ . (25)

Note that Ωmean provides an indication on the scanning
average angle resolution.

As a consequence, the scanning time is Tscan =
TobNsteer, with Tob representing the observation time for
each test direction. Note the dependency on the BSA:
a narrow beam increases the scanning time, while the
scanning angle resolution is improved. Under scanning
time constraints, the SNR is given by

SNR=
Pr(Θ0,Θi, d)Tob

N0
=
Pr(Θ0,Θi, d)Tscan

NsteerN0
(26)

where N0 = Narray κ · T0 · F , being κ the Boltzmann
constant, T0 = 290 [K] the receiver temperature, and F
the receiver noise figure. Eq. (26) can be used in (18) to
derive the fundamental limit of ranging as a function of
the average BSA and scanning time constraint as it will
be investigated in the numerical results.

4 PERSONAL RADAR MAPPING CAPABILITY

The previous analysis has highlighted how angle res-
olution, scanning time, signal bandwidth and ranging
accuracy are tightly coupled.

We investigate now the mapping capabilities of the
personal radar integrating massive arrays working at
mmW. We consider a person with a mobile terminal
(e.g., a smartphone or a tablet) equipped with a mmW
massive antenna array who walks with constant speed
along a pre-determined trajectory and whose position
and orientation are constantly determined and updated
by sensors integrated on the terminal or by external
localization technologies [35]. The main task of per-
sonal radar is to incrementally build a consistent 2D/3D
map of the surrounding environment. To this purpose,
first we propose a mmW radar collecting a rich set of
measurements from the massive antenna array. Then a
grid-based probabilistic mapping approach is adopted to
fully exploit such measurements in a static environment.
Hereafter, for simplicity of notation, we will restrict our
analysis to a 2D scenario even if the 3D extension is
straightforward.

2. ⌊x⌋ denotes the biggest integer smaller than x.
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4.1 Massive Antenna Array Radar

The purpose of the radar is to provide a rich set of
observations for the subsequent mapping phase starting
from the analysis of the signals backscattered by the
surrounding environment.

Let θb = −π/2
(

Nsteer−1
Nsteer

)
+ (b − 1)π/Nsteer, b =

1, 2, . . . Nsteer, be the set of Nsteer steering directions
considered during the scanning process defined, and θv
the mobile orientation.

Consider a generic interrogation signal, for each steer-
ing direction θb, composed of Np wideband pulses p(t)

g(t) =

Np−1∑

i=0

p(t− iTf) (27)

with Tf being the time frame chosen so that all signals
backscattered by the environment are received by the
receiver before the transmission of the successive pulse,
thus avoiding inter-frame interference. The consequent
scanning time is Tscan = TobNsteer, where Tob = Np Tf .

Since each pulse is backscattered by the surrounding
targets populating the environment, for the steering
direction θb the received signal can be expressed as

r(t, θb) =

Np−1∑

i=0

s(t− iTf , θb) + n(t) (28)

where s(t, θb) = p(t)⊗hC(t, θb) is the channel response to
the transmitted pulse p(t) at direction θb, with hC(t, θb)
being the channel impulse response (CIR), de-embedded
of the propagation time, taking the joint environment
and antenna array response into account,3 and with n(t)
being the additive white Gaussian noise (AWGN) with
two-sided power spectral density N0/2.

The received signal is first passed through an ideal
bandpass filter with center frequency f0 to eliminate out-
of-band noise.4 The filtered signal is denoted by

y(t, θb) =

Np−1∑

i=0

x(t− iTf , θb) + z(t) (29)

where x(t, θb) = s(t, θb)⊗hF(t) ∼= s(t, θb) and z(t) = n(t)⊗
hF(t), with hF(t) being the impulse response of the filter.

To conjugate the need of having a manageable number
of measurements and a low complexity receiver, we
consider a non-coherent approach based on energy mea-
surements in a discretized time scale. This approach also
accounts for the complete uncertainty on the received
waveform shape deriving from the a priori ignorance on
environment electromagnetic characteristics. Specifically,
energy measurements are taken during the time frame
Tf after the transmission of each pulse by subdividing
the time frame into Nbin = ⌊Tf/TED⌋ time slots (bins)
of duration TED. Energy measurements are accumulated
for each time bin over the Np frames of the interrogation

3. ⊗ is the convolutional operator.
4. This operation is necessary since the receiver is energy-based, as

it will be described later.

signal. The accumulated energy measurement at the sth
time bin and bth steering angle θb is

ebs=

Np−1∑

k=0

∫ s TED

(s−1)TED

y2(t+ kTf , θb) dt (30)

with s = 1, 2, . . . , Nbin and b = 1, 2, . . . Nsteer. Note that
TED must be chosen to accommodate most of the energy
of the received pulse, i.e. TED ≈ 1/W .

According to [36], for each energy bin, the normalized
energy measurement output can be well approximated
by

Λbs =
2

N0
ebs ≃

1

σ2

Np−1∑

k=0

sNd∑

i=(s−1)Nd

(
xi(θb) + z

(k)
i

)2

(31)

where Nd = 2WTED, σ2 = N0W is the noise variance,
and z

(k)
i are for odd i (even i) the samples of the real

(imaginary) part of the equivalent low-pass of z(t+kTf),
k = 1, 2, . . . , Np, taken at Nyquist rate W in each interval
TED. In (31) we used the property x(t+kTf , θb) = x(t, θb),
with k = 1, 2, . . . , Np, so that xi(θb) represents for odd i
(even i) the samples of the real (imaginary) part of the
equivalent low-pass of x(t, θb), taken at Nyquist rate W
in each interval TED, which does not depend on k.

It turns out that Λbs is a non-central Chi-square dis-
tributed RV with N = NpNd degrees of freedom. The
non-centrality parameter is λbs = 2γbs [36] , where γbs is
given by

γbs =
Np

2σ2

sNd∑

i=(s−1)Nd

x2i (θb)≃
Np

N0

∫ s TED

(s−1) TED

x2(t, θb) dt . (32)

Note that (32) represents the accumulated SNR cor-
responding to the sth time bin and the bth steering
direction which increases with the number Np of pulses
at the expense of a longer observation time Tob. Further-
more, each energy measurement ebs does not depend
only on the signal backscattered in the steering direction
θb, but also on all contributions coming from different
directions according to the shape of the array radiation
pattern which affects hC(t, θb) and hence x(t, θb). During
the mapping process these contributions could create
ambiguities but, at the same time, permit to discriminate
between different array configurations.

4.2 Probabilistic State-Space Model for Mapping

In the following, we introduce a state-space model for
probabilistic mapping able to exploit the measurements
from the massive array radar under a Bayesian filtering
approach [18].

In a probabilistic mapping framework, the position
and orientation of the mobile is known or partially
known if resulting from an external localization sys-
tem exploiting, for example, inertial measurement unit
(IMU) and RF sensors measurements. The same mmW
technology could be in principle exploited to provide
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Fig. 3: Grid-based mapping performed with the personal radar
in three different positions at the instants k − 1, k and k + 1.

extremely high accuracy positioning down to a few cm
when interacting with base stations [26].

Different models can be adopted to represent the
map. Feature-based models are privileged when a set of
landmarks characterizes the environment and the sen-
sors on the mobile device are able to well-discriminate
them (i.e. using laser and video technologies). On the
contrary, grid-based models for map representation are
more suitable when sensors provide imprecise measure-
ments from which it is difficult to discriminate between
different features, such as when using radar [37]. In grid-
based approaches, the environment is discretized in cells
whose position is a-priori known and hence the number
of states is fixed to the number of cells. In most of works,
the state is a binary RV and represents the presence or
not of any physical element in the corresponding cell
(occupancy grid) [38].

In our work we consider RCS-based description of
cells in a map-grid representation context, and the adop-
tion of massive array radars with electronically steering
beams instead of mechanically steering devices. In par-
ticular, a 2D grid of NL = XgridYgrid cells representative
of the environment is considered. Differently from pre-
vious works, we propose a one-step procedure where a
larger observation vector is introduced accounting for
the specific massive antenna array radiation pattern,
investigated in Secs. 2 and 3, and whose response could
depend, in principle, on several cells, as illustrated in
Fig. 3. Therefore, the mapping process works with a
richer information set and no specific radar detection
scheme and associated detection threshold evaluation
strategy have to be designed, as required instead in
conventional two-step approaches [15]. In the following,
the adopted scheme is described, and the differences
with classic Bayesian SLAM are highlighted.

4.2.1 State Vector

We define the state vector at time k as

x(k) = m(k) = [m1(k), . . . , mi(k), . . . , mNL
(k)]T (33)

where mi(k) indicates the root radar cross section
(RRCS) (with sign) of the ith cell of the grid. Obviously,
if the cell is empty (only air), the corresponding RRCS is
zero. Note that in the model herein adopted we neglect
the dependency of mi(k) from the frequency and the
environment is assumed stationary.

4.2.2 Observation Model

Define e(k) the vector containing the accumulated mea-
sured energy at the output of the receiver at time k

e(k) = [e11(k), . . . , e1Nbin
(k), . . . , ebs(k), . . . ,

eNsteer1(k), . . . eNsteerNbin
(k)]

T
(34)

where ebs(k) is given by (30). As shown in the previ-
ous section, ebs(k) is proportional to a non-central Chi-
square distributed RV that makes the formulation of
the observation model challenging. However, for large
N (typically > 50), i.e. for large Np, the non-central
Chi-square distribution can be approximated with a
Gaussian distribution having mean λbs+N and variance
2(N + 2λbs) [39]. We exploit this property to construct a
tractable Gaussian observation model of the state-space
model

z(k) = [z11(k), . . . , zbs(k), . . . , zNsteerNbin
(k)]T

= h(x(k)) + v(k) (35)

where zbs(k) is the energy observation corresponding to
the sth time bin and the bth steering angle, h(·) is the
observation function that relates the state vector to the
observations, and

v(k) = [v11(k), . . . , vbs(k), . . . , vNsteerNbin
(k)]

T
(36)

is the vector of uncorrelated Gaussian observation er-
rors with zero mean and covariance matrix R(k) =
diag

(
σ2
11(k), . . . , σ

2
bs(k), . . . , σ

2
NsteerNbin

(k)
)

with σ2
bs(k) =

Var (ebs(k)). Note that the length Nm = NsteerNbin of z(k)
is related either to the number of the steering directions,
depending on the antenna array pattern G(θ, f), and
to the number of time bins depending on the signal
bandwidth W through TED.

The generic element of z(k) can be written as

zbs(k) = hbs(x(k)) + vbs(k) = E [ebs(k)] + vbs(k) (37)

with b = 1, 2, . . . , Nsteer, s = 1, 2, . . . , Nbin.
From (31) and (32) it is E [ebs(k)] = TfPbs(k) whereas
vbs(k) is the measurement noise, as defined in (36), with
variance σ2

bs(k) = N0(NpWTEDN0 + 2TfPbs(k)). Using
(21), the term Pbs(k) depends on x(k) and represents the
average received power at the bth steering angle and the
sth time bin given by

Pbs(k) =
E [ebs(k)]

Tf

= Pw +
∑

i∈R(s)

∫

W

Pt(f) c
2m2

i (k)G
2(θi − θv − θb, f)Np

f2 (4π)3d4i
df

(38)
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where Pw =
σ2TEDNp

Tf
is the noise power, di and θi are,

respectively, the distance and angle between the mobile
and the ith cell. Function R(s) returns the set of cells
indexes contributing to the sth time bin (i.e. all the cells
located at a distance close to s ·dbin with dbin = c ·TED/2).

Note that in (38) the actual footprint area corresponds
to the aggregate area of the cells illuminated by the
beam. In fact, mi(k) is evaluated using (21), by setting
the footprint area Afp to the area of a cell.

4.3 EKF-Mapping

There are several recursive approaches belonging to the
Bayesian filtering theory to evaluate the posterior distri-
bution p(x(k)|z(1 : k)) of x(k) given the set of measure-
ments z(1 : k) = {z(1), z(2), . . . , z(k)} collected by the
mobile device until time instant k. Among them, here we
employ the extended Kalman-Filter (EKF) which offers
a good trade-off between performance and complexity
considering the intrinsic large state vector of dimension
NL resulting from the grid-based map representation.

The mean and covariance state matrix of the pre-
dicted state are, in linear, x̂(k + 1|k) = x̂(k|k) and
P(k + 1|k) = P(k|k) respectively, due to the stationarity
of the environment.5 The prediction for the observation
model is given by ẑ(k + 1|k) = h(x̂(k + 1|k)). Once
the new measurement vector e(k + 1) is available, the
innovation in the model is

ν(k + 1) = e(k + 1)− ẑ(k + 1|k) . (39)

Consequently, the correction step performed by the EKF
is described by

x̂(k + 1|k + 1) = x̂(k + 1|k) +W(k + 1)ν(k + 1)

P(k+1|k+1)=P(k + 1|k)−W(k + 1)S(k + 1)WT(k+1)
(40)

where

S(k + 1) = ∇hP(k + 1|k)∇h
T +R(k + 1)

W(k + 1) = P(k + 1|k)∇h
T
S
−1(k + 1) (41)

with ∇h being the Jacobian of h(·) evaluated in x̂(k +
1|k), which gives using (37) and (38)

∂hbs
∂mi

=

{
2mi

∫
W

Pt(f) c
2 G2(θi−θv−θb,f)TfNp

f2 (4π)3d4
i

df if i∈R(s)

0 otherwise.
(42)

In the numerical results a case study is provided im-
plementing the state-space model and the EKF mapping
approach here introduced.

5 NUMERICAL RESULTS

We first evaluate the impact of frequency selectivity and
quantization errors on antenna array characteristics in
order to investigate the ranging and steering accuracy
as a function of Narray. Successively, mapping capability
is analyzed by exploiting the new state-space model
proposed in Sec. 4.

5. The notation (m|n) indicates at time m given the observations
until time n.
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Fig. 4: RMS CRLB vs. mobile-target distance for different values
of Narray, Θ0 = (45◦, 45◦), and W = 500MHz.

5.1 System Parameters

According to the wavelength λ0 and the object size L,
there are different scattering regimes. Coherently with
[34], we assume here to have λ0 ≪ L (optics regime)
even if in some cases it could result in a rough ap-
proximation. This assumption is reasonable in indoor
environments where most of targets are constituted by
walls that have an extension much larger than the wave-
length. We consider the approximation of a Lambertian
scattering [40], adopting the laser model proposed in
[33] for the monostatic laser RCS, where ρ is defined as
ρ = ρd/π, with ρd being the diffuse reflectivity (albedo),
and Θi normal to the target. In addition, we assume
a target made of aerate concrete by approximating the
albedo with the power reflection coefficient, evaluated
by setting the concrete relative permittivity to ǫr = 2.26
and its loss tangent to 0.0491 [41]. We also considered a
scanning time Tscan = 0.1ms, F = 4dB and the transmis-
sion of a root raised cosine (RRC) signal compliant with
the Federal Communications Commission (FCC) mask at
60GHz [42], but with an average EIRP limited to 30dBm
to make the system suitable for battery-powered handset
devices.

5.2 Ranging and Steering Accuracy Trade-off

In this section, an example of trade-off between ranging
and angle resolution is given considering a planar array
working at 60GHz with dx = dy = λ0/2 and M = N .

The RMS CRLB on ranging is reported in Fig. 4,
obtained for different mobile-target distances and for
different values of array elements Narray, where the
transmitted signal bandwidth is set to W = 500MHz.
When Narray increases, the SNR decreases due to the
reduced BSA and the constraint on EIRP according to
(26).6 In fact, Narray enters into N0 and the array gain,
which is inversely proportional to ΩA(Θ, f). Thus, large

6. Note that here performance is strictly related to the adopted
model, which is valid only for a high number of antenna elements,
which justify the performance degradation when Narray increases.
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Fig. 5: RMS CRLB vs. transmitted signal bandwidth W for a
mobile-target distance of 10 m, and for Θ0 = (45◦, 45◦).

values of Narray improve the scanning angle resolution,
but worsen the SNR affecting (18). As an example, if
we set a target ranging error of 5 cm at 5m distance,
from Fig. 4 it must be Narray ≤ 100. On the contrary, the
bandwidth improves the ranging accuracy, as shown in
Fig. 5, but it has a detrimental effect on the PRMSE, as
can be noticed in Fig. 6. From the same figure it can be
seen that PRMSE is quite sensitive to the test steering
elevation angle θ0 and to phase quantization errors.

Finally, Fig. 7 reports the BSA, evaluated according to
(62) and (63), whose expectation is computed through
Monte Carlo simulation. Note the weak dependance of
the BSA on the frequency, and how large Narray results in
lower BSA and lower sensitivity to quantization errors.
In any case the effect of quantization errors on BSA can
be neglected with good approximation. Moreover, if we
set BSA ≤ 0.04 [sr], it must be Narray ≥ 64.

Thus, we assist to a strong impact of Narray on the BSA,
which affects both the SNR and the ranging accuracy,
and hence it needs to be properly taken into account
during the system design.

Furthermore, there is also the trade-off in the choice
of the bandwidth: the ranging accuracy improves with a
larger bandwidth but the array pointing error increases
with W due to frequency selectivity effects. The band-
width and the phase errors slightly affect the effective
BSA and hence the scanning angle resolution.

In our numerical example, Narray = 100 and W =
1GHz represent a reasonable compromise.

5.3 Mapping Performance

We implemented the previously described mapping al-
gorithm in MATLAB in order to validate its theoretical
performance.

The case study proposed refers to a typical indoor
office environment of 20×20m2, whose layout is shown
in Fig. 8, which has been discretized in a grid of cells
having area 0.2 × 0.2m2 each, according to the high
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Fig. 6: PRMSE vs. bandwidth for different values of Narray, dif-
ferent steering angles and in presence/absence of quantization
effects.

arrays resolution, and accounting for a wall attenua-
tion, due to its thickness, of 40dB [41]. The mobile
device with personal radar capabilities moves along a
pre-determined trajectory and speed of 1m/s, and its
reference orientation is always towards the direction of
movement. Radar measurements are taken every second,
and black circles refer to the true radar positions while
the green squares to the positions perceived by the
mobile device.

We compare the personal radar performance in three
cases, Narray = 15×15 , Narray = 10×10 and Narray = 4×4,
respectively. In the previous numerical results, the array
with Narray = 10 × 10 elements resulted as a value
corresponding to a good compromise between ranging
and steering accuracy. A time frame of Tf = 100ns
is considered with bandwidth W = 1GHz and, con-
sequently, TED = 1ns if not otherwise indicated. The
constraint on the scanning time is fixed to Tscan = 80µs
while the number of steering directions and of pulses per
interrogation signal varies with the number of antenna
elements, as Nsteer increases with Narray. In fact, for
Narray = 16, Narray = 100 and Narray = 225 antenna
elements, it is Np = 100, Np = 40 and Np = 27,
respectively.

In the following results, the reconstructed map is
represented in terms of RCS estimated through the EKF
algorithm and it is juxtaposed to the true map of the
office environment. Obviously, only the walls resulting in
line-of-sight during the mobile movement are expected
to be identified.

5.3.1 Performance in Absence of System Non-Idealities

Fig. 8 shows the estimated maps obtained with ideal
(i.e. quantization error-free) antenna arrays of 4 × 4
(left), 10 × 10 (right) and 15 × 15 (bottom) elements,
and with perfect knowledge of the mobile position and
orientation. The higher number of cells that are correctly
identified using the 10 × 10 array with respect to 4 × 4
and 15 × 15 array puts in evidence that an enhanced
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Fig. 8: 2D mapping using 4 × 4 (top-left), 10 × 10 (top-right)
and 15×15 (bottom) antenna arrays with a perfect knowledge
of mobile position and no quantization errors.

performance in terms of map estimation accuracy can
be found as a compromise between ranging accuracy
and angular resolution, in agreement with the results
of Sec. 5.2. In fact, for Narray = 15 × 15, the map is well
defined at the prize of a reduced SNR, and thus part of
the map is not reconstructed, while for Narray = 4×4 the
higher number of pulses improves the SNR enabling the
full reconstruction of the map, but with a lower angle
resolution.

Fig. 9 reports the maps estimated through the adop-
tion of an ideal antenna array equipped with a 10 × 10
antenna array for different signal bandwidths. In par-
ticular, from the left to the right, the results obtained
with W = 500MHz (i.e. TED = 2ns), W = 2GHz (i.e.
TED = 0.5ns) and W = 3GHz (i.e. TED = 0.33ns) are
shown. As expected, when increasing the bandwidth the
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Fig. 9: 2D mapping using 10 × 10 antenna arrays with W =
500MHz (top-left), W = 2GHz (top-right) and W = 3GHz
(bottom) with no quantization errors and a perfect knowledge
of mobile position.
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Fig. 10: 2D mapping using 4 × 4 (top-left), 10 × 10 (top-right)
and 15×15 (bottom) antenna arrays with a perfect knowledge
of mobile position and with array quantization errors.

mapping performance improves due to the increased
time resolution at the expense of an increased number
Nbin of bins, and thus of receiver complexity.

5.3.2 Performance with System Non-Idealities

The effect of phase quantization errors is shown in
Fig. 10 where antenna arrays with very rough phasing
capability of step ∆ = π/2 are considered. When com-
pared to Fig. 8, it can be noted that, even if quantization
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Fig. 11: 2D mapping using 4× 4 (top-left), 10 × 10 (top-right)
and 15×15 (bottom) antenna arrays and with quantization and
mobile position (10 cm) and orientation errors (5◦).
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Fig. 12: 2D mapping using 10×10 antenna arrays with mobile
position errors of 0.5m (left) and 1m (right) and W = 1GHz.

errors might affect the array performance, their negative
effect on map reconstruction can be significantly mit-
igated if their impact on radiation pattern is properly
characterized in the measurement model (37) by adopt-
ing the analysis of Sec. 3.

In Fig. 11 we include also mobile orientation and
position errors caused by an imperfect external position-
ing system. In particular, we have taken into account
orientation estimation errors with standard deviation of
5◦, and position estimation errors with 0.1m standard
deviation [43], both along the x− and the y−axis. It is
evident from the figure how estimated maps become
much more degraded even if the performance of 10× 10
antenna array is still acceptable.

Despite future indoor location systems are expected
to guarantee a self-localization with errors below 0.5
m, current technologies provide errors typically greater
than 0.5m. Thus, in Fig. 12 we considered a mobile
position error of 0.5 and 1m, respectively. Performance
is evidently degraded, but it could be improved, for
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Fig. 13: 2D mapping using 10×10 antenna arrays with mobile
orientation errors of 10◦ (left) and 20◦ (right) and W = 1GHz.
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Fig. 14: 2D mapping using 10×10 antenna arrays with position
and mobile orientation errors 0.5m+20◦ (left) and 1m+20◦

(right) and W = 1GHz.

instance, through crowd sensing mechanism where users
share their measurements in a cooperative way.

Fig. 13 reports the mapping results considering an
augmented orientation estimation error of 10◦ and 20◦,
respectively. As we can see, the orientation estimation
accuracy has a less detrimental effect on the mapping
reconstruction with respect to the position.

Finally, in Fig. 14 we reported the results obtained
when high position and orientation errors are present.
As shown, the mapping quality is highly degraded and
a crowd-sensing mechanism becomes essential to refine
the map estimation.

6 CONCLUSIONS

We put forth the idea of adopting massive antenna
arrays at mmW as an effective way to embed personal
radar capabilities in future smartphones. The quanti-
zation and frequency selectivity effects have been ac-
counted for to derive the pointing error, the beamwidth
spread and the ranging accuracy of the personal radar
as a function of the number of antenna elements in the
array. Our analysis has highlighted how angular resolu-
tion, scanning time, signal bandwidth and ranging accu-
racy are tightly coupled and how a suitable trade-off has
to be obtained. Successively, the environment mapping
capabilities of the proposed personal radar have been
investigated through the introduction of a non-coherent
radar architecture and a new state-space model, within
a grid-based Bayesian framework, in which each cell of
the grid has been characterized by a specific RCS-based
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occupancy value. The peculiarities of the antenna array
have been properly exploited by a direct integration of
massive array radar measurements with the radar and
mapping processes.

To assess the feasibility of the system, simulations have
been performed in a realistic indoor scenario. Results
have shown that an increased number of array elements
guarantees more robustness to non-ideal effects and
allows an improved performance in terms of map recon-
struction, but it might suffer from a reduced SNR when a
constraint on the scanning time is given. Thus, a trade-
off has to be found. In addition, it has been assessed
that map reconstruction accuracy is more sensitive to
mobile position and orientation perception errors than
antenna quantization errors. The latter leads to impor-
tant implications for the feasibility of indoor mapping
with low-cost massive array antennas embedded in next-
generation smartphones and toward the diffusion of
crowd sourcing indoor mapping applications.

APPENDIX A

To evaluate E [δΘ0], consider that in the presence of non-
ideal effects, the actual pointing direction can be derived
by solving

S(Θ̃0, f)=
∂|ÃF(Θ, f)|2

∂θ

∣∣∣∣
Θ=Θ̃0

=0

F (Θ̃0, f)=
∂|ÃF(Θ, f)|2

∂φ

∣∣∣∣
Θ=Θ̃0

=0 . (43)

Considering the expansion with the first order of the

Taylor series evaluated in Θ̂0, it is

S(Θ̃0,f)= S(Θ̂0 + δΘ0, f)

= S(Θ̂0, f)+δθ0
∂S(Θ, f)

∂θ

∣∣∣∣
Θ=Θ̂0

=0

F (Θ̃0,f)=F (Θ̂0 + δΘ0,f)

=F (Θ̂0, f)+δφ0
∂F (Θ, f)

∂φ

∣∣∣∣
Θ=Θ̂0

=0 . (44)

Thus, considering δΘ0 = (δθ0(Θ̂0, f), δφ0(Θ̂0, f)), and
the approach followed in [28], where the derivatives
are approximated with their respective mean values, we
have

δθ0(Θ̂0, f) =
−S(Θ, f)

∂S(Θ,f)
∂θ

∣∣∣∣∣
Θ=Θ̂0

≈
−S(Θ, f)

E

[
∂S(Θ,f)

∂θ

]
∣∣∣∣∣
Θ=Θ̂0

δφ0(Θ̂0, f) =
−F (Θ, f)

∂F (Θ,f)
∂φ

∣∣∣∣∣
Θ=Θ̂0

≈
−F (Θ, f)

E

[
∂F (Θ,f)

∂φ

]
∣∣∣∣∣
Θ=Θ̂0

(45)

which allow us to write the mean components of δΘ0 as

E

[
δθ0(Θ̂0, f)

]
=−

E [S(Θ, f)]

E

[
∂S(Θ,f)

∂θ

]
∣∣∣∣∣
Θ=Θ̂0

E

[
δφ0(Θ̂0, f)

]
=−

E [F (Θ, f)]

E

[
∂F (Θ,f)

∂φ

]
∣∣∣∣∣
Θ=Θ̂0

. (46)

To solve (46), let express S(Θ, f) as

S(Θ, f) =
∂|ÃF(Θ, f)|2

∂θ

=
∂|AF(Θ, f)|2

∂θ
+
∂ζerr(Θ, f)

∂θ
. (47)

By defining

∂αmnpq

∂θ
=k cos(θ) [(m− p)dx cos(φ)+(n− q)dy sin(φ)]

= ψmnpq(Θ, f) (48)

it is

E

[
∂ζerr(Θ, f)

∂θ

]
=j

[
χ2 − 1

]∑

mnpq

ψmnpq(Θ, f) e
jαmnpq (49)

where ψmnpq = 0 when m = p, n = q. Consequently we
have

E [S(Θ, f)] = jχ2
∑

mnpq

ψmnpq(Θ, f)e
jαmnpq (50)

from which E

[
S(Θ̂0, f)

]
= 0.

Analogously, we can make the same considerations for

φ, obtaining E

[
δθ0(Θ̂0, f)

]
= E

[
δφ0(Θ̂0, f)

]
= 0, and

consequently E [δΘ0] = 0.

APPENDIX B

We express E

[
δθ20(Θ̂0, f)

]
and E

[
δφ20(Θ̂0, f)

]
as

E

[
δθ20(Θ̂0, f)

]
=

E
[
S2(Θ, f)

]
(
E

[
∂S(Θ,f)

∂θ

])2

∣∣∣∣∣
Θ=Θ̂0

E

[
δφ20(Θ̂0, f)

]
=

E
[
F 2(Θ, f)

]
(
E

[
∂F (Θ,f)

∂φ

])2

∣∣∣∣∣
Θ=Θ̂0

. (51)

For what the denominator of (51) is regarded, by
taking the derivatives of (47), we have:

∂S(Θ, f)

∂θ
=j

∑

mnpq

ejαmnpqej(δmn−δpq)

×

[
∂2αmnpq

∂θ2
+j

(
∂αmnpq

∂θ

)2]
(52)

with

∂2αmnpq

∂θ2
=−k sin(θ) [(m− p)dx cos(φ)+(n− q)dy sin(φ)]

= Λmnpq(Θ, f) . (53)

Therefore it is

E

[
∂S(Θ, f)

∂θ

∣∣∣∣
Θ=Θ̂0

]
= jχ2

∑

mnpq

Ωmnpq (54)

where

Ωmnpq = Λmnpq(Θ̂0, f)+j ψ
2
mnpq(Θ̂0, f) . (55)
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Regarding the numerator of (51) it is

S2(Θ̂0, f) =∑

mnpq

∑

rstu

ψmnpq(Θ̂0, f)ψrstu(Θ̂0, f)e
j(δmn−δpq)ej(δrs−δtu)

(56)

whose expectation is given by (57)

E

[
S2(Θ̂0, f)

]
= χ4

∑

mnpq

∑

rstu

mn6=pq 6=rs6=tu

ψmnpq(Θ̂0, f)ψrstu(Θ̂0, f)

+
(
υ2 − 1

)∑

mnpq

ψ2
mnpq(Θ̂0, f)

+ 2 υ χ2
∑

mnpq

∑

rs
mn6=rs

ψmnpq(Θ̂0, f)ψrspq(Θ̂0, f)

+ 2χ2
∑

mnpq

∑

rs
pq 6=rs

ψmnpq(Θ̂0, f)ψrsmn(Θ̂0, f) (57)

where υ = E
[
e−j2δmn

]
= E

[
ej2δmn

]
= 1

∆ sin(∆). We
finally obtain

E

[
δθ20(Θ̂0, f)

]
=

E

[
S2(Θ̂0, f)

]

−χ4
[∑

mnpq Ωmnpq

]2

E

[
δφ20(Θ̂0, f)

]
=

E

[
F 2(Θ̂0, f)

]

−χ4
[∑

mnpq Ω
′

mnpq

]2 (58)

with

E
2

[
∂S(Θ, f)

∂φ

∣∣∣∣∣
Θ=Θ̂0

]
= −χ4

[
∑

mnpq

Ω
′

mnpq

]2

. (59)

APPENDIX C

Equation (14) can be rearranged by developing
the second-order series expansion of the term

ej[(m−p)Ψδx+(n−q)Ψδy ] as
∑

mnpq

ŵmnpqe
jδmnpq∆2

mnpq =
∑

mnpq

ŵmnpqe
jδmnpq (60)

where ∆mnpq = (m − p)Ψδx + (n − q)Ψδy , and δmnpq =
δmn − δpq . To derive the BSA we adopt an approach
similar to that proposed in [29] and [44] where the beam
is considered alternatively lying on the XZ- and YZ-
plane. Specifically, consider the case in which φ̃0 = 0
and δφ = 0 so that the beam lies on the XZ-plane, with
deviation ±δθ̃x0 from the beam pointing direction in that
plane. We have that ∆mnpq = (m−p)kdxδθ̃x0 cos(θ̃0) and
(60) can be written as

∑

mnpq

ŵmnpqe
jδmnpq (m− p)2k2d2xδθ̃

2
x0 cos

2(θ̃0)= |AF(Θ̃0, f)|
2.

(61)

It is possible to write

E

[
δθ̃x0(Θ̃0, f)

]
≈

E


±

[
|AF(Θ̃0, f)|

2

∑
mnpq ŵmnpqejδmnpq (m− p)2k2d2x cos

2(θ̃0)

]1/2


 ,

(62)

and analogously

E

[
δθ̃y0(Θ̃0, f)

]
≈

E


±

[
|AF(Θ̃0, f)|

2

∑
mnpq ŵmnpqejδmnpq (n− q)2k2d2x cos

2(θ̃0)

]1/2


 .

(63)

Solving (62) and (63) appears very complicated because
the expected value regards the ratio of dependent RVs.
Nonetheless, they are useful to drastically facilitate nu-
merical calculation of the solution, as it will be done in
Sec. 5.2.
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