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In this paper we investigate the possibility to jointly adopt millimeter-wave technology with passive RFID based on backscattered signals, which paves the way to new identification and localization applications for next 5G scenarios. In particular, we assess the feasibility of this solution by comparing it with the passive RFID in the microwave UWB band. Results show that, despite the high path-loss at 60 GHz, it is possible to achieve interesting performance thanks to the less stringent requirements in terms of emitted power with respect to the UWB technology. Moreover, the possibility of localizing tags with a single reader is foreseen thanks to the adoption of narrow-beam antennas and beamsteering operations.

I. INTRODUCTION

Next Internet of Things (IoT) and fifth generation (5G) communication scenarios are expected to bring an increased connectivity between people and the surrounding environment, foreseeing a pervasive presence of tagged objects [START_REF] Boccardi | Five disruptive technology directions for 5G[END_REF]. Among the expected key technologies, radiofrequency identification (RFID) has attracted a great interest in the recent years. It has been adopted to overcome current bar-codes limitations in the short reading distance, with the opportunity to detect and identify batteryless tags attached to objects placed even at several meters from the reader. Current Gen. 2 ultra-high frequency (UHF)-RFID is widely exploited and studied [START_REF] Zhang | Item-level indoor localization with passive UHF RFID based on tag interaction analysis[END_REF], and new solutions have been proposed in order to enable tags localization [START_REF] Arnitz | Characterization and modeling of UHF RFID channels for ranging and localization[END_REF]. Recent studies have moved from UHF band to the ultrawide bandwidth (UWB) technology in the 3.1 -10.6 GHz microwave bandwidth in order to integrate the possibility to localize tags as well as to reduce the power consumption [START_REF] Dardari | Ultrawide bandwidth RFID: The next generation?[END_REF], [START_REF] Errico | An UWB-UHF semi-passive RFID system for localization and tracking applications[END_REF]. In particular, the use of passive UWB-RFID solutions has a great appeal in all those applications requiring low-cost as well as good ranging performance. Since passive tags are not equipped with a transmitter, the communication relies on the modulation of the backscattered signal and several techniques were conceived in order to maximize the performance [START_REF] Decarli | Passive UWB RFID for tag localization: Architectures and design[END_REF], [START_REF] Guidi | Analysis of UWB tag backscattering and its impact on the detection coverage[END_REF]. Unfortunately, due to power regulations constraints, it has been shown that passive UWB is strongly limited in terms of reader-tag communication range. Moreover, high accuracy localization requires multiple interrogations from at least three readers. To overcome such limitation, the joint adoption of RFID and millimeter-wave (mmW) technologies is a possible solution. In fact, despite the higher path-loss brought by the technological shift towards higher frequencies (e.g. at 60 GHz), the requirements in terms of power emission are less stringent [START_REF]Revision of Part 15 of the Commissions Rules Regarding Operation in the 57-64 GHz Band[END_REF] than those in the UWB band [START_REF]Revision of Part 15 of the Commission Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order[END_REF] with an available bandwidth up to 7 GHz [START_REF] Boccardi | Five disruptive technology directions for 5G[END_REF], [START_REF] Rappaport | Millimeter wave wireless communications[END_REF]. Currently, only few preliminary studies concern the joint adoption of such technologies, which are at their infancy [START_REF] Pursula | Millimeter-wave identification -a new short-range radio system for low-power high data-rate applications[END_REF]- [START_REF] Pursula | Passive RFID at millimeter waves[END_REF]. In particular, [START_REF] Pellerano | A mm-wave powerharvesting RFID tag in 90 nm CMOS[END_REF] showed a tag which harvests energy from the mmW signal transmitted by the reader, and successively exploits a 60 GHz free-running oscillator to transmit back pulse-width modulated bursts. In [START_REF] Pursula | Passive RFID at millimeter waves[END_REF] instead, the use of a standard UHF-RFID architecture, compatible with that of mmW-RFID, has been proposed. Unfortunately, due to the proposed schemes, the achievable reader-tag ranges are strongly limited by the path-loss.

We aim here to study the feasibility and the opportunities that can be offered by the joint adoption of mmW and RFID technologies when ad-hoc reader-tag architectures are exploited [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF], and tags are assumed to be woken-up from stand-by mode by exploiting a dedicated signal as detailed in [START_REF] Errico | An UWB-UHF semi-passive RFID system for localization and tracking applications[END_REF]. In particular, we first describe the considered scheme, and successively we present a measurement campaign conducted at 60 GHz in order to enable a preliminary validation of the proposed system through both simulated and measured data.

Note that if near-pencil beam mmW antennas are exploited, the considered scheme could enable tags localization with only one reader which performs beamsteering, with the multi-tags interference phenomenon [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF] drastically reduced [START_REF] Dardari | The future of Ultra-Wideband localization in RFID[END_REF].

The rest of the paper is organized as follows. In Sec. II, the considered reader-tag signalling scheme and the readertag architectures here exploited are described; successively the measurement campaign is described in III. Finally, numerical results are reported in Sec. IV and conclusions and future perspectives end the paper.

II. SYSTEM ARCHITECTURE

A. Backscattering Principle

The reader-tag communication herein considered is based on the modulation of the backscattered signal. Usually, tags are in sleeping mode and they are woken-up thanks to the transmission of a wake-up signal (e.g., an unmodulated UHF carrier [START_REF] Errico | An UWB-UHF semi-passive RFID system for localization and tracking applications[END_REF]). Once the wake-up procedure is completed, the reader transmits an interrogation pulse train, which is reflected back by tags and objects (see Fig. 1 and Fig. 2). In particular, the signals backscattered by tags are composed of two parts: the structural and the antenna mode component, as depicted in Fig. 1 [START_REF] Decarli | Passive UWB RFID for tag localization: Architectures and design[END_REF]. While the former depends only on the antenna and support shape and materials, the latter is strictly related to how the antenna is loaded and thus it is the part of interest. In the ideal case, the antenna mode scattered waveforms present a phase difference of 180 • between the case of open and short circuit loads, which are usually adopted to discriminate different data symbols. Unfortunately, such signals are usually superimposed with those signals scattered by the surrounding environment (clutter), which could be even a few order of magnitude higher. To counteract such effects, ad-hoc signal processing algorithms have to be conceived in order to achieve long reader-tag reading distances.

B. Transmitted Signal Model

The reader is composed of a transmitter and a receiver section both connected to the same antenna through a TX/RX switch. According to the number of symbols N b in the data packet, during the interrogation phase the reader transmits a sequence of N b •N s pulses, each having energy E p , modulated by the specific reader code, in the form

s(t) = Nb-1 m=0 Ns-1 n=0 d n p(t -n T p -m T s ) (1) 
where {d n } is the spreading code of the reader with length N s , and T s , T p are the symbol and frame time, respectively. 1The signal received by the kth tag is then modulated according to a bipolar code c (k) n , for n = 0, 1, . . . , N s -1 and to the data {b m } stored inside it. To extremely simplify the architecture, the backscatter modulator reduces to a simple switch (see Fig. 2). Operating in such a manner it is possible to discriminate a specific reader-tag couple among all the possible combinations. Moreover, the choice of a zero mean code (that is, with the same number of +1 and -1) allows the clutter suppression if the received signals composing one symbol are coherently accumulated [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF].

In addition, note that the longer the code sequence N s , the higher the reading range because of the higher accumulated signal-to-noise ratio (SNR). On the other side, N s should be limited mainly for two reasons: to reduce the power consumption (i.e., the tag active time), and to reduce the effect of clock drift during the SNR accumulation.

In the following, we describe two possible architectures to post-process the received signal.

C. Receiver Architecture

We foresee the adoption of two possible classical receivers for mmW-RFID: a matched filter (MF), exploitable for kth tag data demodulation, and an energy detector (ED), applicable in all those scenarios requiring low complexity.

1) Matched-Filter Receiver: Define w(t) as the antenna mode backscattered response to the transmitted pulse p(t), which is modulated by the load, and w (c) (t) as the clutter response. When the previously defined scheme is adopted, the kth tag signal of interest results modulated by both the tag code and the information symbol. The received signal can thus be written as

r(t) = k∈T Nb-1 m=0 Ns-1 n=0 d n c (k) n b m w (k) (t -nT p -mT s ) + Nb-1 m=0 Ns-1 n=0 d n w (c) (t -nT p -mT s ) + n(t) (2) 
with T being the set of the tags in the environment. The received signal is first passed through a filter having impulse response h (MF) (t) to obtain v(t) = r(t) ⊗ h (MF) (t), where ⊗ is the convolution operator and h (MF) (t) is a local replica template of the received antenna mode component. 2Then, by assuming the intended tag is present, and by supposing perfect code and pulse synchronization, the output of the MF is sampled at time intervals t l,m = lT p + mT s + τ 0 ,3 with l=0, . . . , N s -1, thus obtaining the samples v l,m [START_REF] Dardari | Ultrawide bandwidth RFID: The next generation?[END_REF]. In order to remove the clutter contribution and the interference from other tags, the sampled values are multiplied by the reader and kth useful tag composite sequence and successively accumulated. Thus we can write for the mth symbol

y m = Ns-1 l=0 c (k) l d l v l,m = b m N s E r + z m (3)
where E r is the collected energy per pulse from the kth tag according to the considered template, the clutter has been suppressed thanks to the considered zero-mean codes which give

Ns-1 l=0 c (k) l
= 0 and z m is the thermal noise at the output of the processing scheme. 4 Among the possible choices for h (MF) (t), the simplest solution is the single-path matched filter where the template is chosen to be proportional to the received antenna mode backscattered component at a reference distance and in free-space propagation. In that case, E r reduces with good approximation to the energy of the first received path in line-of-sight conditions [START_REF] Dardari | Ultrawide bandwidth RFID: The next generation?[END_REF]. 5According to [START_REF] Dardari | Ultrawide bandwidth RFID: The next generation?[END_REF], for the considered scheme the bit error probability (BEP) can be written as

P b = 1 2 erfc E r N s N 0 (4) 
where erfc(•) is the complementary error function and N 0 is the noise power spectral density. Consequently, the received energy per symbol in ideal conditions is E s = N s E r and, analogously, (4) can be written as

P b = 1 2 erfc P r N 0 R b (5) 
where R b = 1/(N s T p ) is the data rate, and P r accounts for the transmitted power and the round-trip channel power gain. Finally, in order to find the required number of pulses to achieve a certain reader-tag distance for a target P ⋆ b , it is possible to write (4) as

N s ≥ Ns = N 0 • erfc -1 (2 P ⋆ b ) 2 E r (6) 
which puts in relation the minimum required number of pulses per symbol Ns with the received energy E r .

2) Energy Detector: A simple and practical solution for wideband RFID, especially when the overall system complexity has to be kept low, is represented by the ED architecture which exploits the presence of a square-law device. Since the task here is only to accomplish tag detection, the receiver performs the coherent accumulation of the received signals corresponding to the N s transmitted pulses p(t) within a symbol [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF]. As for the previous scenario, we assume to have the clock of readers and tags synchronous, and the kth tag as the intended useful one. Then, the signal received back by the reader is expressed as in [START_REF] Zhang | Item-level indoor localization with passive UHF RFID based on tag interaction analysis[END_REF], with b m = 1 ∀ m, which can thus be neglected. According to [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF], first the received signal is passed through a band-pass filter to eliminate the out-ofband noise, obtaining r(t). Once the signal is filtered, it is de-spread and accumulated, giving

y(t) = Ns-1 l=0 c (k) l r(t+lT p ) (7) 
with t ∈ [0, T p ]. From [START_REF] Guidi | Analysis of UWB tag backscattering and its impact on the detection coverage[END_REF], by passing y(t) through an ED, we obtain a vector of energy bins, where each element can be expressed by

e b = b TED (b-1) TED [y(t)] 2 dt (8) 
with b = 1, 2, . . . , N bins , T ED being the integration time, and N bins = ⌊T p /T ED ⌋ is the number of bins at the output of the ED. Successively, each element e b is compared with a threshold. If there is at least one element overcoming the threshold, then the tag is assumed detected. Consequently, we have two pieces of information: the kth tag received energy, which can be obtained by the bin value, and the TOA of the received signal, given by the bin index.

There are two figures of merit which can be adopted to evaluate the performance of the considered detection approach: the probability of false alarm (PFA) and the probability of detection (PD). The former stems from the probability to wrongly detect a tag even if it is not present in the scenario, whereas the latter to correctly detect its presence when effectively the intended useful tag is in the considered scenario. To this purpose, performance of passive UWB-RFID has been extensively characterized in terms of PFA and PD [START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF]. In particular, it has been shown that it is possible to achieve the desired performance in terms of PFA and PD by setting the minimum required number of pulses per symbol as

N s ≥ Ns = N 0 2E r Q -1 h P ⋆ D , ξ 2 (9) 
where Q h is Marcum-Q function of order h [14], P ⋆ D is the apriori desired PD and ξ is the threshold set for a-priori desired PFA (P ⋆ FA ). 6

III. 60 GHZ MEASUREMENT CAMPAIGN

In order to validate the considered RFID architecture at mmW, a measurements campaign has been conducted at CEA-Grenoble indoor premises (see Fig. 3 and4.). In particular, we measured the S 21 (f ) parameter by placing the reader antenna at different distances from the tag antenna, with the reader antenna pointing towards the tag, as reported in Fig. 4. From this measure, the two-way channel comprising the reader and tag antennas gain can be easily found as H(f ) = S 2 21 (f ) [START_REF] Errico | An indoor backscattering channel characterization for UWB passive RFID applications[END_REF]. Note that the one-way channel is obviously easier to measure than a two-way backscattering channel in terms of SNR. This channel transfer function accounts for the antenna mode The exploited measurement set-up consists of a 4-ports Vector Network Analyzer (VNA) operating in the frequency range 10 MHz-24 GHz connected both to the reader antenna (a horn with 20 dBi gain and half power beamwidth (HPBW) of 20 • ) and to the tag antenna (a 0 dBi gain omni-antenna, reported in Fig. 4), respectively, thanks to two mmW converters operating in the frequency range 50 GHz-75 GHz. Consequently, a central frequency f c = 62 GHz and bandwidth of 6 GHz have been considered.

Table I presents the reader-tag distances considered in the conference room scenario with respect to the tag position, as reported in Fig. 3, which vary from 2.7 m to 6.7 m with a step of 0.8 m. For the planned set of measurements, the reader orientation has been kept constant towards the tag. Moreover, for each measurement point, co-polar and crosspolar measurements have been carried out. The cross-polar data have been obtained by rotating the reader horn antenna by 90 • with the help of a waveguide twist. In this way, we emulated the presence of a tag attached to an object which has been rotated from its expected working condition. In such a way, performance can result to be drastically degraded as shown in the next section. 

IV. RESULTS

In this section we characterize the performance of the passive mmW-RFID through both simulation and measurement data. In particular, the comparison with the UWB backscattering based technology is performed in order to assess preliminary system performance. Results are obtained by means of ( 5), ( 6) and ( 9), for a target P ⋆ b = 10 -3 , a P ⋆ FA = 10 -3 and a P ⋆ D = 0.9.

A. Simulation Results

We first compare through simulations the performance of UWB and mmW-RFID in the additive white Gaussian noise (AWGN) scenario. In both cases, we considered the parameters reported in Table II, and a transmitted pulse centered at 4 GHz and 60 GHz, respectively, compliant with the Federal Communications Commission (FCC) mask in the two different bands [START_REF]Revision of Part 15 of the Commissions Rules Regarding Operation in the 57-64 GHz Band[END_REF], [START_REF]Revision of Part 15 of the Commission Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order[END_REF]. The system parameters were selected according to [START_REF] Decarli | Passive UWB RFID for tag localization: Architectures and design[END_REF] for UWB. Consequently, by moving towards 60 GHz, we experience the variation of two parameters: the effective radiated isotropic power (EIRP), which is less stringent at 60 GHz with respect to lower frequencies [START_REF]Revision of Part 15 of the Commissions Rules Regarding Operation in the 57-64 GHz Band[END_REF], and the reader antenna gain which is higher due to the adopted antennas. For what the ED is concerned, we considered an ideal case where all the received energy is contained in one bin.

Figure 5 shows the values of Ns for the two receiver architectures. Note that under the EU mask constraint for UWB, a reading range of about 6.5 m can be achieved adopting Ns ≃ 1.5 • 10 4 for an ED, whereas only around 2 • 10 3 pulses are required for the same distance and conditions at mmW. We have different competing effects: if from one side, mmW-RFID suffers from the high path-loss experienced at 60 GHz, from the other side it benefits from the less stringent power regulations than at 4 GHz [START_REF]Revision of Part 15 of the Commission Rules Regarding Ultra-Wideband Transmission Systems, First Report and Order[END_REF]. In this way, if one of the main requirements is the system refresh rate, which is given by R f = 1/(T s N b ), mmW-RFID is more promising than a UWB solution as T s can be reduced for a given reader-tag distance. Such advantage is mainly given by the significantly power emission allowed in the mmW band to which more energy consumption corresponds. Fig. 6 shows the obtained BEP as a function of the different data rates for passive mmW-RFID by using [START_REF] Errico | An UWB-UHF semi-passive RFID system for localization and tracking applications[END_REF]. If we fix the target BEP to 10 -3 , results show that data rates in the order of 2 Mbit/s for distances around 2 m are achievable.

B. Measurement Results

We here exploit measured data to assess the feasibility of the proposed reader-tag communication scheme. In particular, the backscattering channel impulse response has been convoluted with a root raised cosine pulse centered at 60 GHz and with bandwidth BW= 2 GHz, compliant with the FCC mask. For the ED, we considered an ideal case scenario where the bin with T ED = 1 ns is centered to the received signal with the highest peak. 7 Moreover, for the MF we consider a single path MF whose template is perfectly matched to the received maximum peak pulse, without accounting for pulse distortion 7 With good approximation, it can be associated to the first path for the considered scenario. [4]. In addition, we compare the performance for co-polar and cross-polar measurements, thus simulating the two opposite scenarios for a tag randomly attached to an object. Fig. 7 reports Ns for the two receiver architectures. Now, with Ns ≃ 10 3 , it is possible to achieve p 6 = 6.7 m for a MF, whereas around 10 4 pulses are required for tag detection with an ED architecture. Thus, the performance is a bit degraded with respect to the AWGN scenario because of the simplifying assumptions done in simulations, that is the entire received energy is contained in one bin. On the contrary, it is expected that performance can be improved if architectures closer to ideal matched filters are exploited, thus giving the opportunity to collect the received energy from different multipath components. Note that cross-polar configurations need a really high number of accumulated pulses. This effect is detrimental when the tag orientation is not known or could change. In controlled environments (that is, where the tag orientation is always kept the same) this result could be exploited to limit the interference of close different reader-tag devices to cope with the high polarization loss.

As far as the localization capability is concerned, the adoption of near-pencil beam antennas at reader side could enable the opportunity to perform tags localization through beamsteering operations as well as to further increase the link budget and reduce the clutter. In this way, reliable localization performance is expected to be guaranteed by exploiting a single reader beamsteering [START_REF] Guerra | Position and orientation error bound for wideband massive antenna arrays[END_REF], and future scenarios can foresee the integration of such mmW-RFID readers into portable devices to search and localize the surrounding tags [START_REF] Dardari | The future of Ultra-Wideband localization in RFID[END_REF].

V. CONCLUSION

In this paper we investigated the possibility to adopt mmW technology for passive RFID systems. After briefing introducing the proposed architectures and a mmW measurement campaign, we evaluated the attainable performance by comparing results with those of UWB in the microwave band. Thanks to measured data, a preliminary system characterization has been also performed in a real environment. In ideal conditions we showed that the proposed scheme can outperform the UWB one, because of requiring a lower number of pulses to achieve the same reader-tag distance and consequently a reduced complexity. Future works are expected to investigate ad-hoc tags wakeup procedures, mmW energy-harvesting possibilities, and adhoc low-complexity single reader localization schemes, as well as to extensively characterize the performance for different tags orientations, positions and measurement scenarios.
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TABLE II SIMULATION

 II PARAMETERS.

	Parameter	UWB Value	mmW Value
	EIRP	-11 dBm	30 dBm
	Bandwidth W	2 GHz	2 GHz
	Center frequency fc	4 GHz	60 GHz
	Time frame Tp	128 ns	128 ns
	Reader antenna gain Gr	5 dBi	20 dBi
	Tag antenna gain Gt	0 dBi	0 dBi
	Tag losses Lt	2 dB	2 dB
	Receiver noise figure F	4 dB	4 dB
	Desired PFA P ⋆		

According to[START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF], the analysis can be extended to multiple readers.

In practical applications, it could be more favorable to down-convert the received signal with a mixer and perform base-band post-processing to reduce the receiver complexity.

We assume that a perfect time-of-arrival (TOA) estimate is available, and consequently the time instant τ 0 is perfectly chosen.

Several codes have been proposed for multi-tag interference suppression[START_REF] Guidi | Detection of multiple tags based on impulsive backscattered signals[END_REF]. Here, since the system is assumed to be perfectly synchronous, classical orthogonal codes for readers and tags can be considered.

It is important to notice that the performance of this solution, and of the others accounting for Rake fingers synchronized to different paths of the received signal, is bounded by ideal matched filters able to collect the entire received energy, that is Er = Tp w 2 (t)dt.

For the herein considered case, ξ does not account for interference signal and for any system non-ideality, but only for the receiver noise.
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