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Abstract—Recently, several studies have been moving towards
the idea to adopt massive arrays for localization and mapping
applications thanks to the high scanning resolution achievable. In
this framework, this paper investigates the impact of different de-
sign parameters in order to maximize the mapping performance
while keeping the receiver architecture as simple as possible
when a Bayesian approach is used. To this end, thresholding
strategies to filter out unwanted received signal components
(cleaning operation before soft mapping), e.g. thermal noise, are
analyzed together with other design parameters that can operate
directly on raw data. Considerations about possible system design
configurations are then drawn inspired by results obtained using
measured data, which showed a more pronounced impact of the
cleaning approach for 1GHz bandwidth with respect to 3GHz.

Index Terms—Millimeter-waves, massive antenna arrays, in-
door mapping, personal radar.

I. INTRODUCTION

Nowadays, several studies are focusing towards the minia-

turization and the adoption of large scale arrays [1] for

several ranging and localization applications, such as mobile

communication [2], simultaneous localization and mapping

(SLAM) [3], [4] or personal radars [5], thanks to the possibility

to achieve a precise and high-scanning resolution given by the

large number of adopted antennas [6]–[9].

In traditional SLAM, a robot equipped with a laser-based

radar or a camera (visual SLAM) moves in an unknown indoor

environment and is able to reconstruct a map of it while

inferring its own position and orientation inside the generated

map [3]. The main shortcomings of traditional approaches are

mainly related to technological aspects. Indeed, laser-based

radar as well as camera-based systems work well only in

perfect visibility conditions and they require a mechanical

steering in order to perform a scanning operation [10]. Instead,

when moving towards human-centric systems, as for example

personal radars [5], electronic steering capabilities are highly

appreciated to reduce the user active participation to the

mapping process and to overcome the shortcomings of laser.

When considering millimeter-wave (mmW) massive arrays,

different technological issues could arise. In fact, a trade-

off has to be met to assure electronic steering capabilities,

high directivity, low side-lobes as well as to maintain the

array complexity and cost low. In [5], [11], [12], mapping
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Fig. 1. Personal radar scenario.

performance with massive arrays have been investigated as a

function of the array characteristics and errors.

Motivated by this background, in this paper we exploit real

measured data to investigate and propose different techniques

to ameliorate the mapping capabilities of a low complexity and

cost non-coherent receiver, based on mmW massive arrays,

for personal radars applications. In our specific scenario,

a unique receiver section is considered where the signals

received at each antenna branch are properly combined by

phase shifters blocks. We propose also a cleaning operation

in which the threshold strategy is intended to improve the

mapping performance. By investigating the impact of different

design parameters, we show that environment reconstruction

can become more reliable.

The rest of the paper is organized as follows. Sec. II

describes the system model whereas Sec. III reports some

details related to the mapping algorithms considered, and

some of the key parameters involved for the design of the

algorithm. Finally, in Sec. IV mapping results are reported

and commented. Sec. V concludes the work.

II. SYSTEM MODEL

We consider a personal radar in monostatic configuration,

i.e. with TX and RX sections co-located, which moves in

the surrounding space and, for each position, it performs a

scanning operation by steering its beam in different Nsteer

directions. For each steering direction θb, a train of Np pulses

with bandwidth W is transmitted.
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Fig. 2. Considered receiver scheme.

To perform radar-like operations, we consider a non-

coherent approach based on energy measurements, according

to the receiver architecture reported in Fig. 2. As it can

be noticed, the received signals at each antenna branch are

properly combined by phase shifters blocks to maximize the

array gain in a particular direction in space. Then the collected

responses are filtered to eliminate the out-of-band noise. From

the filtered received signals, energy bins are evaluated during

a time frame Tf after the transmission of each pulse by

considering Nbins = ⌊Tf/TED⌋ time slots (bins) of duration

TED ≈ 1/W . Energy measurements are accumulated for each

time bin over the Np frames of the interrogation signal. The

accumulated measured energy vector, containing the values

for all the steering directions at the output of the receiver, is

defined as

e = [e11, . . . , e1Nbin
, . . . , ebs, . . . , eNsteer1, . . . eNsteerNbin

]T (1)

where [·]
T

indicates the transpose operation and ebs is given

by

ebs=

Np−1
∑

l=0

∫

s TED

(s−1)TED

y2(t+ lTf , θb) dt (2)

with s = 1, 2, . . . , Nbin, b = 1, 2, . . . Nsteer and where we have

indicated with y(·) the received filtered signal.

Then, two different steps can be followed: (i) a soft decision

mapping (Fig. 2-top), where data are directly included in the

mapping algorithm; (ii) a cleaning procedure on the measured

energy vector in order to limit the impact of unwanted com-

ponents in the mapping approach. Thus, based on these two

different approaches, it is possible to infer the map of the

explored environment by exploiting the algorithm defined in

Sec. III.

III. MAPPING ALGORITHM

In the considered approach, measured energy bins are in-

cluded in the mapping algorithm. In particular, we consider the

grid-based state-space model for probabilistic mapping in [11],

where performance is investigated by means of real measured

data. To this purpose, we assume that the radar orientation and

trajectory are known.

We represent the environment with a grid of NL = XgridYgrid

cells, where each cell is associated with a root radar cross

section (RRCS) value to be inferred by the estimation process.1

1We choose to estimate the RRCS (with sign) instead of the radar cross
section (RCS) because we model it as a Gaussian random variable.

As it will be described later, the choice of cell size impact both

the mapping accuracy and the computational complexity.

Algorithm 1: Mapping algorithm including measured data.

Input: Np, T , position p initialized to p = p1, with

p1 ∈ T being the initial radar position.

1 Initialize the state vector and the covariance matrix

2 while p ∈ T do
• Collect a new radar energy measurement ;

• Time Update (Prediction);

1) Estimate the mean of the state to the next

trajectory point;

2) Estimate the covariance matrix to the next

trajectory point.

• Measurement Update (Correction);

1) Compute the innovation by comparing the

measurement with the prediction related to the

previous trajectory point;

2) Compute the extended Kalman-Filter (EKF)

update;

3) Update the estimate of the state;

4) Update the covariance matrix.

Go to the next radar position

3 return RCS value for each grid point

The mapping algorithm is reported in Algorithm 1, where

we considered T = [p1, ..., pNPOS
] the vector containing

the NPOS radar positions (i.e. the spatial coordinates) inside

the room. Moreover, since we accounted for a stationary

environment, the transition model is neglected. In particular,

we assume the following state vector of the system

x(k) = m(k) = [m1(k), . . . , mi(k), . . . , mNL
(k)]

T
(3)

where k is the discrete time instant and mi(k) indicates the

RRCS of the ith cell of the grid, where the frequency depen-

dency has been neglected. In case a soft mapping approach is

considered, the mapping process is not preceded by a detection

phase related to the vector e(k) containing the accumulated

measured energy at the output of the receiver at time k.

The corresponding Gaussian observation model z(k) is fully

described in [5].

According to [5], [13], the map estimation process is

performed by adopting the EKF method to efficiently evaluate



the posterior distribution p(x(k)|e(1 : k)) of x(k) given the

set of measurements e(1 : k) = {e(1), e(2), . . . , e(k)}, from

which a maximum a posteriori estimate of the state x(k) is

derived.

Differently from the literature, here a detection phase is not

accounted for in the mapping process. In the following, we

briefly describe a simple approach to reduce the impact of

noisy bins into the algorithm herein reported.

A. Cleaning of Measured Data

Define now, for each energy bin, the energy detector test

Λbs = ebs
D1

≷
D0

ξbs (4)

where ξbs being the threshold for the bth steering direction

and sth bin, and D1 and D0 represent the two states in which

the target in the θb steering direction and for the sth time bin

overcomes or not the threshold, respectively. The presented

decision rule consists in

Assign:

{

Pw Tf , if D0

ebs , if D1

(5)

where Pw =
σ
2
TEDNp

Tf
is the power noise. Contrarily to clas-

sical detection schemes, where the bins below the threshold

are discarded, here they are assigned to a fix value to let the

mapping algorithm to converge quickly, as Pw Tf represents

the initialization value of the cells. To mask noisy bins, the

threshold can be designed accounting for a global requirement

on the probability of false alarm (PFA) P ⋆

FA for the bth steering

direction, which can be written as

P ⋆

FA = 1−

Nbins
∏

s=1

(

1− p
(FA)
bs

)

≈ Nbins · pFA (6)

where it is assumed that all bins Nbins are statistically inde-

pendent for a steering direction, and p
(FA)
bs

≪ 1. Consequently,

the required p⋆FA per bin can be expressed as

p⋆FA ≈
P ⋆

FA

Nbins

(7)

which gives a constant threshold per bin given by

ξbs = ξ = 2

[

InvΓ̃

(

N

2
,
P ⋆

FA

Nbins

)]

(8)

where InvΓ̃ (·, ·) is the inverse gamma regularized function,

and N = Np 2W TED is the number of degrees of freedom.

Note that with such approach, the threshold does not depend

on the bin and steering index, i.e. ξbs = ξ, and it is set to keep

the PFA due to the receiver noise to a desired value P ⋆

FA.

B. Design Parameters Impact

According to the previously defined mapping algorithm,

we have different competing effects entering the mapping

algorithm.

A key design parameter is represented by the transmitted

number of pulses Np. In fact, the higher it is, the higher will

TABLE I
SUMMARY OF THE TRADE-OFFS CONSIDERED FOR THE MAPPING

ALGORITHM.

Np Scanning time vs SNR
Cell size Mapping accuracy vs level of complexity

Max Range Noisy bins vs useful bins discarded
W Temporal resolution vs level of complexity

Cleaning Approach Reduced noisy bins vs level of complexity

be the signal-to-noise ratio (SNR) of the accumulated received

waveforms. On the other side, increasing too much Np implies

a higher transmitted power. Last but not least, consider the

scanning time per position defined as

Tscan = Nsteer · Tob = Nsteer ·Np · Tf . (9)

where Tob is the observation time. If the system is constrained

by a certain scanning time, Np should be preserved as low as

possible.

Another possibility is to reduce the maximum range, i.e.

the number of bins, with the purpose to avoid the inclusion

of noisy bins into the mapping process. Such procedure has

to account for the environment characteristics (which are not

a-priori known), and thus the parameters should be cautiously

changed. In addition, if too many bins are discarded, there is

the risk to waste useful source of information. The alternative

is to reduce Tf with the problem to have a system affected by

inter-frame interference.

As also shown in [5], the bandwidth W impact the mapping

resolution, thus if possible it has to be increased with an

augmented impact of array non-idealities into the performance.

Another important parameter is the grid size: the lower it

is, the more accurate is the environment representation. On

the other side, the computational complexity is increased as a

more complex state vector has to be updated.

In the numerical results, we briefly investigate how the

parameters and techniques impact the performance.

IV. RESULTS

A. Measurement Campaign

In order to validate the personal radar concept, a measure-

ments campaign has been conducted at CEA-Grenoble in a

corridor, where we adopted transmitarrays (TAs) which are a

possible candidate for massive arrays applications [12].

We connected a 4-ports Vector Network Analyzer (VNA)

operating in the frequency range 10MHz-24GHz with 2

mmW converters (frequency range 50GHz-75GHz) and to

2 linearly polarized TAs (size 20 × 20, 1 bit, F/D = 0.5)

with gain 23.1 dBi [14]. The two TAs were placed in a

bistatic configuration on a X-Y-Azimuth positioner, spaced

apart of 0.16m to reduce the antenna coupling and to separate

the transmitting and receiving channels. Measurements have

been collected in 12 different positions spaced of 0.405m

in the frequency range between 55 − 70GHz with a step of

5MHz. Thanks to mechanical rotations (the TAs exploited for

measurements were not electronically reconfigurable), the X-

Y-Azimuth positioner rotates the radar in the semi-plane from



Fig. 3. W impact. RCS results for Np = 100, cell size 0.1 × 0.1m2,
MR = 15m and no cleaning. Top-left: W = 1 GHz. Top-right: W = 2GHz.
Bottom: W = 3GHz.

−90◦ to 90◦ with a step of 5◦ according to the TA half power

beamwidth (HPBW).

B. Mapping Results

We now report mapping results using the previously de-

scribed algorithm, and by varying the parameters of interest in

order to investigate the achievable performance. If otherwise

indicated, we consider a noise figure of NF = 4 dB, T0 =
290K and a signal bandwidth of W = 1 − 2 − 3GHz (with

TED = 1/W ). We account for root raised cosine (RRC) pulses

centered at frequency fc = 60GHz and roll-off factor α = 0.6,

compliant with Federal Communications Commission (FCC)

mask at 60GHz [15] by considering an effective radiated

isotropic power (EIRP) of 30 dBm. The time frame has been

set to Tf = 100 ns, and thus a maximum range MR = 15m is

considered.

a) Impact of System Design Parameters: We first report

the impact of the bandwidth in the mapping performance,

as it was also deeply analyzed in [12]. In fact, Fig.3 shows

that by increasing the bandwidth it is possible to improve the

mapping resolution and, for example, the contour of walls in

the environment.

Then, Fig. 4 reports results for a grid cell size of 0.2 ×
0.2m2. The prize of a reduced complexity is paid in terms

of highly degraded map resolution. Consequently, during the

design of the system, it is preferable to reduce as much as

possible the size of the grid cells. In our specific case, 0.1×
0.1m2 has been found as a good compromise.

Successively, we investigate the impact of reducing Np for

different bandwidths. As shown in Fig. 5, the measured SNR

could be dramatically affected in certain areas of the perimeter.

Consequently, Np = 100 represents a good choice to achieve

reliable SNR for the considered environment, at the prize of

around 3.3 times the scanning time needed for Np = 30.

Fig. 4. Cell size impact. RCS results for Np = 100, cell size 0.2× 0.2m2,
MR = 15 m and no cleaning. Top-left: W = 1GHz. Top-right: W = 2GHz.
Bottom: W = 3GHz.

Fig. 6 reports instead the impact of the maximum range

by discarding the bins after MR = 10m, MR = 5m or

MR=2m. Due to the environment chosen for measurements,

we experienced a drastic performance improvement only for

MR=2m. On the other side, it is expected that this parameter

could limit the performance in other environments, so its

variations should be carefully considered. If from one side part

of measured data is wasted by reducing the maximum range, it

is not possible to reduce Tf to avoid inter-frame interference,

as Tf should be chosen to accomodate the entire backscattered

response.

b) Approach with Filtered Energy Values: We succes-

sively apply the threshold to measured data, in order to avoid

the contribution of undesired components into the mapping

algorithm. To this purpose we adopted the following three

approaches: (approach 1) exploitation of the threshold ξ de-

rived in (8); (approach 2) the threshold is set by lowering the

maximum measured power in p1 of 24 dBm; (approach 3) the

maximum measured power in p1 is lowered of 18 dBm. Note

that the second and third approaches were conceived in order

to mask higher non-ideal radiation pattern effect (i.e. those

coming from side-lobes).

Results are reported in Fig. 7 and 8 for the three approaches

and different W . As it is possible to observe, when the

threshold is set to mask the noise only, i.e. with approach

1, the performance variations with respect to Fig. 3 are not

evident. On the other side, by increasing the threshold, i.e. by

using approaches (2) and (3), the artifacts are reduced with

a rough degradation of the contour of the corridor, especially

for W = 3GHz and approach 3. Consequently, we remark

that the cleaning technique is more useful when W = 1GHz,

and thus it could be a good compromise for real applications

where the bandwidth is limited by the available technology.

In summary, the best option seems to be the exploitation



Fig. 5. Np impact. RCS results for Np = 30, cell size 0.1 × 0.1m2,
MR = 15m and no cleaning. Top-left: W = 1 GHz. Top-right: W = 2GHz.
Bottom: W = 3GHz.

Fig. 6. Maximum range impact for W = 3GHz. RCS results for grid
cell size 0.1 × 0.1m2 and Np = 100. Top-left: MR = 10 m. Top-right:
MR = 5m. Bottom: MR = 2m.

of a 3GHz bandwidth by limiting the maximum range. On

the other side, this solution can work well in the considered

scenario, but it could dramatically reduce the map recon-

struction in other larger environments. The joint choice of

Np = 100 with a smaller grid size lets to achieve good

mapping performance. The adoption of a threshold seems

more indicated whenever a system with 1GHz is considered.

Furthermore, it could be interesting to relate the approaches 2

and 3 herein considered to the massive arrays characteristics,

as in part proposed in [16].

Fig. 7. Cleaning approach for W = 1GHz. RCS results for Np = 100, cell
size 0.1× 0.1m2, MR = 15m. Top-left: approach 1. Top-right: approach 2.
Bottom: approach 3.

Fig. 8. Cleaning approach for W = 3GHz. RCS results for Np = 100, cell
size 0.1 × 0.1m2, MR = 15m. Top-left: Approach 1. Top-right: approach
2. Bottom: approach 3.

V. CONCLUSIONS

In this paper we investigated the impact of different design

parameters into the mapping performance when mmW massive

arrays are used for personal radars applications. In particular,

by means of measured data and of a grid-based Bayesian state-

space approach for map reconstruction, we showed the impact

of different design parameters as well as of cleaning approach

for measured data. In particular, from the obtained results we

experienced that the joint adoption of W = 3GHz, Np = 100
and 0.1 × 0.1m2 grid size cells let to achieve good mapping

performance, which can be further improved with a reduction

of the maximum range MR. On the other side, MR has to be

cautiously diminished not to lose useful information from the



measured energy vectors.

From the obtained results it has also been evidenced that

if the bandwidth is limited to 1GHz, a cleaning approach

is helpful to improve the performance. To this purpose, en-

hanced algorithms could be conceived in order to account for

the adopted massive arrays characteristics into the algorithm

design (i.e. side-lobes).
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