
HAL Id: cea-01555504
https://cea.hal.science/cea-01555504

Submitted on 18 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical and computational phase transitions in spiked
tensor estimation

Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, Lenka
Zdeborová

To cite this version:
Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, Lenka Zdeborová. Statistical and
computational phase transitions in spiked tensor estimation. ISIT 2017 - IEEE International Sympo-
sium on Information Theory, Jun 2017, Aachen, Germany. pp.511 - 515, �10.1109/ISIT.2017.8006580�.
�cea-01555504�

https://cea.hal.science/cea-01555504
https://hal.archives-ouvertes.fr


Statistical and computational phase transitions
in spiked tensor estimation

Thibault Lesieur†, Léo Miolane♦, Marc Lelarge♦, Florent Krzakala? & Lenka Zdeborová†

Abstract

We consider tensor factorization using a generative model and a Bayesian approach. We compute
rigorously the mutual information, the Minimal Mean Squared Error (MMSE), and unveil information-
theoretic phase transitions. In addition, we study the performance of Approximate Message Passing (AMP)
and show that it achieves the MMSE for a large set of parameters, and that factorization is algorithmically
“easy” in a much wider region than previously believed. It exists, however, a “hard” region where AMP
fails to reach the MMSE and we conjecture that no polynomial algorithm will improve on AMP.

This study inscribes into the line of research on low-rank tensor decomposition, a problem with many
applications ranging from signal processing to machine learning [2, 6, 25]. We consider the model of [24]
where the tensor is a noisy version of a r-dimensional randomly generated spike and analyze the Bayes-
optimal inference of the spike, compute the associated mutual information and the minimum mean-squared
error (MMSE). We also investigate whether the MMSE is achievable with some known e�cient algorithms,
and most particularly by approximate message passing (AMP).

1 The spiked tensor model

One observes an order-p tensor Y ∈
⊗pRN created as

Y =

√
(p− 1)!

N
p−1
2

r∑
k=1

(X0
k)⊗p + V , (1)

where X0
1 , . . . , X

0
r ∈ RN are r unknown vectors to be inferred from Y , and V ∈

⊗pRN is a symmetric
tensor accounting for noise. We denote by X the N×r matrix that collects the r vectors Xk. The observed
tensor Y can thus be seen as a rank r perturbation of a random symmetric tensor V . Consider now the setting
where the X0 is generated at random from a known prior distribution. The core question considered in this
paper is: What is the best possible reconstruction of X0 one can hope for?

In fact, we can look at even more general noise than just additive one as in (1). Denote for i = 1, . . . , N ,
xi = (xi,1, . . . , xi,r) ∈ Rr the r-dimensional vector created by aggregating the ith coordinates of the r vectors
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Xk. Assume that for 1 ≤ i ≤ N the x0
i are generated independently from a probability distribution PX over

Rr . We denote, for (i1, i2, . . . , ip) ∈ {1, . . . , N}p

W 0
i1,i2,...,ip =

√
(p− 1)!

N
p−1
2

r∑
k=1

x0
i1,kx

0
i2,k · · ·x

0
ip,k . (2)

For simplicity, we will assume to only observe the extra-diagonal elements of Y , i.e. the coe�cients Yi1,i2,...,ip
for 1 ≤ i1 < · · · < ip ≤ N . The case where all coe�cients are observed can be directly deduced from this
case. The observed tensor Y is generated from W 0 using a noisy component-wise output channel Pout so
that

P (Y |X0) =
∏

i1<i2<···<ip

Pout

(
Yi1,i2,...,ip

∣∣∣W 0
i1,i2,...,ip

)
. (3)

The simplest situation corresponds to eq. (1) with additive white Gaussian noise (AWGN), i.e. Pout( · |w) =

N (w,∆).
Given the above generative model and assuming that both the prior distribution PX and the output chan-

nel Pout are known we can write the Bayes-optimal estimator of X0 as marginalization of the following
posterior distribution

P (X|Y ) =
1

ZN

N∏
i=1

PX(xi)
∏

i1<i2<···<ip

Pout

(
Yi1,i2,...,ip

∣∣Wi1,i2,...,ip

)
, (4)

where ZN is a normalization constant depending of the observed tensor Y , Wi1,i2,...ip is de�ned analogously
to (2) (with X instead of X0).

We will study this tensor estimation problem in the limit where the dimension N→∞ while the rank r
remains constant. The factor N

p−1
2 is here to ensure that information-theoretically the inference problem is

neither trivially hard nor trivially easy when one deals with signals such that ‖xi‖ and the noise magnitude
are of order 1. The factor

√
(p− 1)! is used for convenient rescaling of the signal-to-noise ratio.

2 Related work and summary of results

Recently there have been numerous works on the matrix (p = 2) version of the above setting. In particular an
explicit single-letter characterization of the mutual information and of the optimal Bayesian reconstruction
error have been rigorously established [4, 9, 12–14]. A large part of these results rely on the approximate
message passing (AMP) algorithm. For the rank-one matrix estimation problems AMP has been introduced
by [23], who also derived the state evolution (SE) formula to analyze its performance, generalizing techniques
developed by [5]. In [15–17] the generalization to larger rank, and general output channel, was considered.
Following the theorem proven in [4, 9, 14], we know that indeed AMP is Bayes-optimal and achieves the
minimum mean-squared error (MMSE) for a large set of parameters of the problem. There, however, might
exist a region denoted as hard, where this is not the case, and polynomial algorithms improving on AMP are
not known.

In comparison, there has been much less work on Bayesian low-rank tensor estimation. In statistical phys-
ics, the measure (4) was considered for Y with random i.i.d. components. For a Gaussian PX , it is called the
spherical p-spin glass [8], while for RademacherPX it is the Ising p-spin glass [19]. AMP for tensor estimation
is actually equivalent to the so-called Thouless-Anderson-Palmer equations in spin glass theory [7,12,27]. In
the context of tensor PCA these equations have been studied by Richard and Montanari [24] for the maximum
likelihood estimation. Interestingly, they showed that the hard phase was particularly large in the tensor es-
timation case and that, with side information (such that for each component xi,k we have its direct noisy
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observation), the estimation problem becomes easier. However, such a kind of component-wise side informa-
tion is very strong and rarely available in applications. The tight statistical limits for the present tensor model
were also studied in [12] for the special case of the Rademacher (Ising) prior. For more generic priors only
upper and lower bounds are known rigorously [22].

Summary of results: In this contribution, we aim to bridge the gap between what is known for the
general r, Px, Pout Bayesian estimation for low-rank matrices and what is known for low-rank tensors. We
present the following contributions:

(A) The AMP algorithm and its state evolution analysis for the Bayes-optimal tensor estimation, see sec-
tions 3 and 4.

(B) The so-called channel universality result that allows us to map any generic channel Pout on a model
with additive Gaussian noise, see section 3.

(C) Rigorous formula for the asymptotic mutual information and the MMSE, thus generalizing the matrix
results of [4, 14], see section 5.

(D) The identi�cation of statistical and computational phase transitions. In fact, we show that as soon as
the e�ect of a non-zero-mean prior is taken properly into account, the hard region shrinks considerably,
making the tensor decomposition problem much easier than hitherto believed, at least for algorithms
that do take the prior information into account. Having a reliable prior information on the distribution
of xi (not on each of the components as in [24]) is rather realistic in applications, for instance when
constraints of negativity or membership to clusters are imposed. This is presented in sections 4 and 6.

3 AMP algorithm & channel universality

We discuss in this section the Approximate Message Passing (AMP) algorithm for the Bayesian version of the
problem. This is a relatively straightforward generalization of what has been done for the low-rank matrix
estimation in e.g. [17, 18, 23], i.e. p = 2 case of the present setting. In general, AMP is derived from belief
propagation by taking into account that every variable in the corresponding graphical model has a large
number of neighbors. Since the incoming messages are considered independent one can use the central limit
theorem and represent each message as a Gaussian with a given mean x̂i ∈ Rr and covariance σi ∈ Rr×r .

A crucial property, called channel universality, that the tensor-AMP shares with the low-rank matrix es-
timation, allows to drastically simplify the problem of tensor estimation with generic output channel Pout.
The justi�cation of this property follows closely the low-rank matrix estimation case, and we refer the reader
to [13, 15, 17]. First, we de�ne the Fisher score tensor S associated to the output channel Pout and its Fisher
information ∆ as

S ≡ ∂ logPout(Y,w)

∂w

∣∣∣∣
w=0

, (5)

1

∆
≡ EY∼Pout(· | 0)

[(
∂ logPout(Y,w)

∂w

)2

w=0

]
. (6)

where it is understood in (5) that the function y 7→ ∂ logPout(y,w)
∂w

∣∣
w=0

acts component-wise on Y . Informally
speaking, the channel universality property states that the mutual information of the problem de�ned by the
output channel Pout is the same as the one of a AWGN (1) with variance ∆, and that the AMP algorithm writ-
ten for the Bayes-optimal inference of low-rank tensors then depends on the data tensor Y and the output
channel Pout only trough the tensor S and the e�ective noise ∆.
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AMP involves an auxiliary function that depends explicitly on the prior as follows. De�ne the probability
distribution

M(x) =
1

ZX(A,B)
PX(x)eB

>x−x>Ax
2 , (7)

where ZX(A,B) is a normalization factor. Then AMP uses the function fin(A,B) ∈ Rr, A ∈ Rr×r, B ∈ Rr

de�ned by the expectation fin(A,B) = EM(x)[x] as well as the covariance matrix ∂Bfin(A,B). We shall
denote the overlap of u = (u1, . . . uN ), v = (v1, . . . vN ) ∈ (Rr)N by

u · v =
1

N

n∑
j=1

ujv
>
j ∈ Rr×r .

AMP is then written as an iterative update procedure on the estimates of the posterior means and co-variances
x̂i and σi that uses auxiliary variables Bi ∈ Rr and A ∈ Rr×r:

Bt
i =

√
(p− 1)!

N
p−1
2

∑
i2<i3<···<ip

Si,i2,i3···ip x̂
t
i2 ◦ x̂

t
i3 ◦ · · · ◦ x̂

t
ip −

(p− 1)

∆

[
1

N

N∑
j=1

σtj ◦ (x̂t · x̂t−1)◦(p−2)

]
x̂t−1
i (8)

At =
1

∆
(x̂t · x̂t)◦(p−1) (9)

x̂t+1
i = fin(At, Bt

i) (10)
σt+1
i = ∂Bfin(At, Bt

i) , (11)

where ◦ denotes a component-wise (Hadamard) product of matrices, and x◦p the corresponding component-
wise power.

4 Theoretical analysis

4.1 State evolution of AMP

The evolution of the AMP algorithm in the limit of large systemsN →∞ can be tracked via a low-dimensional
set of equations called the state evolution (SE). For maximum-likelihood estimation the state evolution have
been used in [24]. Its heuristic derivation for the present case of general rank r, prior PX , and output Pout

follows line by line the matrix estimation case detailed in [17].
For the Bayes-optimal inference, SE is written in terms of an order parameter M t ∈ Rr×r describing the

overlap between x̂t (the AMP estimator at iteration t) and the ground truth x0 de�ned as M t = x̂t · x0, and
reads

M t+1 = EZ,x0
[
fin

(
M̂ t, M̂ tx0 +

(
M̂ t
)1/2

Z
)
x>0

]
, (12)

M̂ t = (M t)
◦(p−1)

/∆ , (13)

where Z ∼ N (0, Ir) and x0 ∼ PX are independent. M◦(n) is again the n-th Hadamard power of a matrix
M .

We shall not present a rigorous proof of the SE for tensor estimation and rely instead on standard argu-
ments from statistical physics. The performance of the AMP algorithm can be understood by initializing the
SE at M t=0 = 0. Or when M = 0 is a �xed point of SE we initialize as M t=0 = ε, an in�nitesimally small
number (accounting for the fact that a random initialization of AMP will —due to �nite size �uctuations—
be in�nitesimally correlated with the ground truth). We denote MAMP the �xed point of the state evolution
resulting from iterations of (12-13) from this initialization. The mean-squared error achieved by tensor-AMP
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is then
MSEAMP = Tr [ΣX −MAMP] . (14)

where ΣX = Ex[xx>]. When PX has zero mean, this is the covariance matrix of PX .

4.2 Information-theoretically optimal inference

Our next goal is to analyze the performance of (possibly intractable) Bayes-optimal inference that evaluates
the marginals of the posterior probability distribution (4). The error achieved by this procedure will be denoted
the minimum mean-squared error (MMSE) and is formally de�ned as

MMSEN = inf
θ̂

{
1

N
E
[∥∥∥X0 − θ̂(Y )

∥∥∥2
]}

=
1

N
E
[∥∥X0 − E[X0|Y ]

∥∥2
]
,

where the in�mum is taken over all measurable functions θ̂ of Y . In order to compute the MMSE it is in-
strumental to compute the mutual information I(X0;Y ). This quantity is related to the free energy from
statistical physics (see section 5 and [13]). To compute the limit of such quantities, one traditionally applies
the replica method stemming from statistical physics [19]. We take advantage of the fact that for the Bayes-
optimal inference the so-called replica symmetric version of this method yields the correct free energy [28].
The replica method yields

1

N
I(X0;Y ) −−−−→

N→∞

1

2p∆

r∑
k,k′=1

(ΣX)pk,k′ − sup
M∈S+

r

φRS(M) , (15)

φRS(M) = E
Z,x0

[
logZX

(
M̂, M̂x0 +

(
M̂
)1/2

Z

)]
− p− 1

2p∆

r∑
k,k′=1

Mp
kk′ (16)

where M̂ = M◦(p−1)/∆,ZX(A,B) is de�ned in eq. (7), x0 ∼ PX andZ ∼ N (0, Ir) are independent random
variables. S+

r denotes the set of r × r symmetric positive semi-de�nite matrices. In section 5 we prove this
result for the rank-one case (r = 1).

The replica free energy (16) not only provides the limit of the mutual information I(X0;Y ), but thanks
to an “I-MMSE Theorem” (similar to [11]) it yields the value of the MMSE for tensor estimation, see sec. 5.
Denoting M∗ = argmaxMφRS(M) we get

MMSE = lim
N→∞

MMSEN = Tr [ΣX −M∗] . (17)

We proved (17) rigorously, but only in the rank-one case and for odd values of p, see again sec. 5. Notice that
when r ≥ 2 the estimation problem is symmetric under permutations of the r columns of X0: (17) is not
expected to be true without further assumptions.

4.3 Statistical and computational trade-o�

By evaluation of the derivative of (16) with respect to M one can check that critical points of (16) are �xed
points of the state evolution equations (12-13) allowing all the results to be read of the curve φRS(M): The
global maximum of (16) gives the MMSE while the (possibly local) maximum reached by iteration of (12-13)
from the uninformative initialization yields the MSEAMP.

We now discuss the interplay between the MMSE and MSEAMP. The working hypothesis in this paper is
that AMP yields lowest MSE among known polynomial algorithms. Depending on the parameters of model
(4), i.e. the order of the tensor p, rank r, prior distribution PX , and output channel Pout that appears in the SE
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only via its Fisher information ∆, we can distinguish between two cases: the easy phase where asymptotically
AMP is Bayes optimal so that MMSE = MSEAMP, and the hard phase where MMSE < MSEAMP.

Given both the MMSE and MSEAMP are non-decreasing in ∆ we denote the borders of the hard phase
(when it exists) as follows: Information theoretic threshold ∆IT as the (limsup of the) highest ∆ for which
MMSE < MSEAMP. Algorithmic threshold ∆Alg as the (liminf of the) lowest ∆ for which MMSE <

MSEAMP. Another threshold used in this paper is that of a critical value ∆c de�ned as smallest ∆ such that
for ∆ > ∆c one has MAMP = M∗(∆ = +∞) (the estimate one can do when the noise is in�nite), and for
∆ < ∆c one has MAMP > M∗(∆ = +∞). Note that from the de�nition we must have ∆c ≥ ∆Alg. In cases
where the hard phase does not exist, but ∆c <∞ we will consider that ∆c = ∆IT = ∆Alg.

Existing results on maximum likelihood estimation [24] suggest that for tensor decomposition p ≥ 3 we
have ∆Alg = ∆c = 0 in the limit N → 0 considered in this paper. This means that the spiked model of
low-rank tensor decomposition is algorithmically very hard, compared to matrix p = 2 case. The authors
of [24] give a good account on how ∆ needs to scale with N for known polynomial algorithms to work.

For the Bayes-optimal estimation the situation seems at �rst sight similar. Indeed, whenever the prior PX
has a zero mean, for p ≥ 3 we get ∆Alg = ∆c = 0 and the hard phase is consequently huge. This can be seen
as follows. Indeed if the mean of the prior PX is zero then the state evolution equations (12-13) have a �xed
point M = 0. Expanding the state evolution around this �xed point we �nd

M t+1 =
1

∆
ΣX

[
(M t)

◦(p−1)
]

ΣX . (18)

Whenever p ≥ 3 the �xed point M = 0 is stable for all ∆ > 0. Hence ∆Alg = ∆c = 0 for priors of zero
mean.

A closer look, however, shows that the situation is not so pessimistic. Indeed, as soon as the mean of the
prior PX is non-zero, M = 0 is no longer a �xed point of the state evolution and once we solve the state
evolution equations we observe either ∆Alg > 0 (with AMP performing optimally for ∆ < ∆Alg) or the hard
phase is completely absent and AMP has information-theoretically optimal performance for all ∆. We give
examples of such priors in section 6.

5 Rigorous results

We present in this section rigorous results for the rank-one case (r = 1). As mentioned above, the universality
property [13, 15] reduces the computation of the mutual information to the case of additive white Gaussian
noise.

Consider a probability distribution PX over R that admits a �nite second moment ΣX . The observation
model (1) reduces in the rank-one case to

Yi1,...,ip =

√
(p− 1)!

N (p−1)/2
x0
i1 . . . x

0
ip + Vi1,...,ip for 1 ≤ i1 < · · · < ip ≤ N,

whereX0 = (x0
1, . . . , x

0
N ) i.i.d.∼ PX and (Vi1,...,ip)i1<···<ip

i.i.d.∼ N (0,∆) are independent. We de�ne the Hamilto-
nian

HN (X) = ∆−1
∑

i1<···<ip

√
(p− 1)!

N (p−1)/2
Yi1,...,ip xi1 . . . xip −

(p− 1)!

2Np−1

(
xi1 . . . xip

)2
, (19)

for X = (x1, . . . , xN ) ∈ RN . We also write dPX(X) =
∏N
i=1 dPX(xi). The posterior distribution (4) of X0
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given Y reads then:

dP (X0 = X|Y ) =
1

ZN
dPX(X)eHN (X) , (20)

where ZN is the appropriate normalizing factor. Then the free energy is de�ned as (minus) the logarithm of
ZN of the Boltzmann probability divided by N and averaged over Y . This is of particular interest since it is
related to the mutual information (see [13]):

I(X0;Y ) =
N

2p∆
Σp
X − E[logZN ] +O(1) .

In the rank-one case, the expression (16) of φRS simpli�es, so that we will use in this section

φRS : m ≥ 0 7→ E

[
log

∫
dPX(x) exp

(√
mp−1

∆
Zx+

mp−1

∆
xx0 − mp−1

2∆
x2

)]
− p− 1

2p∆
mp , (21)

where E is the expectation with respect to the independent random variables x0 ∼ PX and Z ∼ N (0, 1).
The proof of (15) reduces then to the following Theorem.

Theorem 1 (Replica-symmetric formula for the free energy). Let PX be a probability distribution over R, with
�nite second moment. Then, for all ∆ > 0

FN ≡
1

N
E [logZN ] −−−−→

N→∞
sup
m≥0

φRS(m) ≡ FRS(∆) . (22)

We now de�ne the tensor-MMSE, T-MMSEN by

T-MMSEN (∆) = inf
θ̂

 p!

Np

∑
i1<···<ip

(
x0
i1 . . . x

0
ip − θ̂(Y )i1...ip

)2

 ,

where the in�mum is taken over all measurable functions θ̂ of the observations Y .
Let us write λ = 1

∆ . Using an “I-MMSE Theorem” (see [11]) and the fact that the tensor MMSE is achieved
by the posterior mean of (X0)⊗p given Y , it is not di�cult to verify that

∂FN
∂λ

=
N(N − 1) . . . (N − p+ 1)

2pNp

(
Σp
X − T-MMSEN (∆)

)
.

The arguments are the same than in the matrix (p = 2) case, see [14] Corollary 17. T-MMSE(∆) increases
with the noise level ∆, so that ∂

∂λFN is a non-decreasing function of λ. FN is thus a convex function of λ, and
so is FRS its pointwise limit. Consequently, ∂

∂λFN →
∂
∂λFRS at all values of λ at which FRS is di�erentiable,

that is for almost every ∆ > 0. For these values of ∆, one can also verify that the maximizer m∗ of φRS is
unique: we refer to [14] for a detailed proof in the matrix case p = 2. We thus obtain the following theorem:

Theorem 2 (Tensor-MMSE). For almost every ∆ > 0, φRS admits a unique maximizerm∗(∆) over R+ and

T-MMSEN −−−−→
N→∞

Σp
X −m

∗(∆)p .

The information-theoretic threshold ∆IT is the maximal value of ∆ such that lim T-MMSEN < Σp
X − EPX

[x]2p

(which is the asymptotic performance achieved by random guess). We obtain thus the precise location of the
information-theoretic threshold:

∆IT = sup
{

∆ > 0
∣∣m∗(∆) > EPX

[x]2
}
.

7



Let X = (x1, . . . , xN ) be a sample from the posterior (4), independently of everything else. An extension of
Theorem 2 of [14] (that was derived for priors PX with bounded support) to the tensor case, gives that for
almost every ∆ > 0,

E

∣∣∣∣∣
(

1

N

N∑
i=1

x0
ixi

)p
−m∗(∆)p

∣∣∣∣∣ −−−−→N→∞
0 , (23)

i.e. the pth-power of the overlap X ·X0 concentrates around m∗. This leads to

Theorem 3 (Vector-MMSE for odd p). Suppose that PX has a bounded support. If p is odd, then for almost
every ∆ > 0

MMSEN −−−−→
N→∞

ΣX −m∗(∆).

Before showing how (23) implies Theorem 3 we need to introduce a fundamental property of Bayesian
inference: the Nishimori identity.

Proposition 1 (Nishimori identity). Let (X,Y ) be a couple of random variables on a polish space. Let k ≥ 1

and let X(1), . . . , X(k) be k i.i.d. samples (given Y ) from the distribution P (X = · |Y ), independently of every
other random variables. Let us denote 〈·〉 the expectation with respect to P (X = · |Y ) and E the expectation
with respect to (X,Y ). Then, for all continuous bounded function f

E〈f(Y,X(1), . . . , X(k))〉 = E〈f(Y,X(1), . . . , X(k−1), X)〉 .

Proof. It is equivalent to sample the couple (X,Y ) according to its joint distribution or to sample �rst Y ac-
cording to its marginal distribution and then to sampleX conditionally to Y from its conditional distribution
P (X = · |Y ). Thus the (k + 1)-tuple (Y,X(1), . . . , X(k)) is equal in law to (Y,X(1), . . . , X(k−1), X).

We will now use Proposition 1 to prove Theorem 3.

Proof of Theorem 3. Let 〈·〉 denote the expectation with respect to the posterior distribution P (X0 = · | Y ),
and let X be a sample from this distribution, independently of everything else. The best estimator of X0 in
term of mean-squared error is the posterior mean 〈X〉 = (〈x1〉, . . . , 〈xN 〉). Therefore

MMSEN =
1

N
E

[
N∑
i=1

(x0
i − 〈xi〉)2

]
=

1

N
E

[
N∑
i=1

(x0
i )

2 + 〈xi〉2 − 2〈x0
ixi〉

]
= ΣX + E〈X ·X ′〉 − 2E〈X0 ·X〉 ,

whereX ′ is another sample from 〈·〉, independently of everything else. We apply now the Nishimori identity
(Proposition 1) to obtain E〈X ·X ′〉 = E〈X0 ·X〉. This gives

MMSEN = ΣX − E〈X ·X0〉 .

We then deduce from (23) that E〈X ·X0〉 −−−−→
N→∞

m∗, because p is here supposed to be odd. This concludes
the proof.

We will now prove Theorem 1. For the matrix case (p = 2), this has been proved in [4, 13, 14] and we
explain here how this can be adapted to the case p ≥ 2. To prove the limit (22), one shows successively an
upper bound on lim supFN and the matching lower bound on lim inf FN . As shown in [14] (Section 6.2.2)
one only need to prove Theorem 1 for input distributions PX with �nite support S. We now assume to be in
this situation.
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5.1 Adding a small perturbation

One of the key ingredient of the proof is the introduction of a small perturbation of our model, that takes
the form of a small amount of side information. This kind of techniques are frequently used for the study
of spin glasses, where these small perturbations forces the Gibbs measure to verify some crucial identities,
see [21]. In our context of Bayesian inference, we will see that small quantities of side information “breaks”
the correlations of the signal variables under the posterior distribution.

Let us �x ε ∈ [0, 1], and suppose we have access to the additional information, for 1 ≤ i ≤ N

Y ′i =

{
x0
i if Li = 1,

∗ if Li = 0,
(24)

where Li i.i.d.∼ Ber(ε) and ∗ is a symbol that does not belong to R. The posterior distribution of X is now

P (X|Y, Y ′) =
1

ZN,ε

 ∏
i|Y ′i 6=∗

1(xi = Y ′i )

 ∏
i|Y ′i =∗

PX(xi)

 eHN (X) ,

where ZN,ε is the appropriate normalization constant. For X = (x1, . . . , xN ) ∈ RN we will use the notation

X̄ = (L1x
0
1 + (1− L1)x1, . . . , LNx

0
N + (1− LN )xN ) . (25)

X̄ is thus obtained by replacing the coordinates of X that are revealed by Y ′ by their revealed values. The
notation X̄ will allow us to obtain a convenient expression for the free energy of the perturbed model

FN,ε =
1

N
E logZN,ε =

1

N
E
[

log
∑
X∈SN

PX(X)eHN (X̄)
]
.

The next lemma shows that the perturbation does not change the free energy up to the order of ε. Recall that
we supposed the support S of PX to be �nite, so we can �nd a constant K such that S ⊂ [−K,K].

Lemma 1. For all n ≥ 1 and all ε, ε′ ∈ [0, 1], we have

|FN,ε − FN,ε′ | ≤
K2p

∆
|ε− ε′|.

Lemma 1 follows from a direct adaptation of Proposition 23 from [14] to the tensor case. Consequently, if
we suppose ε ∼ U([0, 1]) and de�ne εN = N−1/2ε and Li i.i.d.∼ Ber(εN ), independently of everything else, we
have

|FN − Eε[FN,εN ]| −−−−→
N→∞

0 , (26)

where Eε denotes the expectation with respect to ε only. It remains therefore to compute the limit of the free
energy under a small perturbation. As shown in [20], the perturbation (24) forces the correlations to vanish
asymptotically.

Lemma 2 (Lemma 3.1 from [20]).

Eε

 1

N2

∑
1≤i,j≤N

I(x0
i ;x

0
j |Y, Y ′)

 ≤ 2H(PX)√
N

.

Let us write 〈·〉 the expectation with respect to P (X = · | Y, Y ′), and let X(1), X(2) be two independents
samples from P (X = · | Y, Y ′), independently of everything else. We de�ne Q = 〈X(1) · X(2)〉. Notice
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that Q is a non-negative random variable. As a consequence of Lemma 2, the overlaps under the posterior
distribution concentrates around Q:

Lemma 3.

E
〈(

X(1) ·X(2) −Q
)2
〉
−−−−→
N→∞

0 and E
〈(

X(1) ·X0 −Q
)2
〉
−−−−→
N→∞

0 , (27)

where E denotes the expectation with respect all random variables.

Lemma 3 follows from the arguments of section 4.4 from [14].
The arguments presented in this section are robust and apply to a large class of Hamiltonians. In particular,

we will be able to apply in the sequel Lemmas 1 and 3 to other Hamiltonians and posterior distributions (and
corresponding free energies).

5.2 Guerra’s interpolation scheme

The lower bound is obtained by extending the bound derived for p = 2 in [13], using a Guerra-type interpol-
ation [10] as was already done for tensors by Korada and Macris in [12] (who consider tensors in the special
case of Rademacher PX ).

Lemma 4.
lim inf
N→∞

FN ≥ sup
m≥0

φRS(m) .

Proof. We use a Guerra-type interpolation [10]: Let 0 ≤ t ≤ 1 and m ∈ R+. We suppose to observe Y and Ỹ
given by 

Yi1,...,ip =

√
t(p− 1)!

N (p−1)/2
x0
i1 . . . x

0
ip + Vi1,...,ip for 1 ≤ i1 < · · · < ip ≤ N

Ỹj =
√

(1− t)mp−1x0
j + Ṽj for 1 ≤ j ≤ N

where the variables Vi1,...,ip and Ṽj are i.i.d.N (0,∆) random variables. We de�ne the interpolating Hamilto-
nian

HN,t(X) = ∆−1
∑

i1<···<ip

√
t(p− 1)!

N (p−1)/2
Yi1,...,ipxi1 . . . xip −

t(p− 1)!

2Np−1
(xi1 . . . xip)2

+ ∆−1
N∑
j=1

√
(1− t)mp−1Ỹjxj −

1

2
(1− t)mp−1x2

j .

Then, the posterior distribution of X0 given Y and Ỹ reads

P (X0 = X|Y, Ỹ ) =
1

ZN,t
PX(X) exp(HN,t(X)) , (28)

where ZN,t is the appropriate normalization. Let ψN (t) = 1
NE[logZN,t] be the corresponding free energy.

Notice that {
ψN (1) = FN ,

ψN (0) = φRS(m)− (1−p)mp

2∆p .

Let 〈·〉t denote the expectation with respect to the posterior (28) and let X be a sampled from (28), independ-
ently of everything else.
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Using Gaussian integration by parts and the Nishimori identity of Proposition 1 one can show (see [13,14])
that for all 0 ≤ t ≤ 1

ψ′N (t) =
1

2∆p
E
〈(
X ·X0

)p − pmp−1
(
X ·X0

)〉
t
+ oN (1) .

By convexity of the function a 7→ ap on R+ we have, for all a, b ≥ 0: ap − pbp−1a ≥ (1 − p)bp. We would
like to use this inequality with a = X ·X0 and b = m to obtain that ψ′N (t) ≥ (1−p)mp

2∆p . This would conclude
the proof of the lower bound because

lim inf
N→∞

FN = lim inf
N→∞

ψN (1) = lim inf
N→∞

[
ψN (0) +

∫ 1

0
ψ′N (t)dt

]
≥ φRS(m) .

However, we do not know that X · X0 ≥ 0 almost surely. To bypass this issue we can add, as in sec. 5.1,
a small perturbation (24) that forces X · X0 concentrates around a non-negative value (Lemma 3), without
a�ecting the “interpolating free energy” ψN (t) in the N → ∞ limit, see (26). The arguments are the same
than in sec. 5.1, so we omit the details and the rewriting of the previous calculations with the perturbation
term. This concludes the proof.

5.3 Proving the upper-bound: Aizenman-Sims-Starr scheme

We are now going to show how the arguments of [14] for the upper bound —using cavity computations with
an Aizenman-Sims-Starr approach [1]— can be extended to the tensor case.

Lemma 5.
lim sup
N→∞

FN ≤ sup
m≥0

φRS(m) .

Proof. We are going to compare the system with N variables to the system with N + 1 variables. De�ne
AN = E[logZN+1]− E[logZN ]. Consequently, FN = 1

N

∑N−1
k=0 Ak and lim supFN ≤ lim supAN .

We are thus going to upper-bound AN . Let X ∈ SN be the N -�rst variables and σ ∈ S the (N + 1)th

variable. We decompose HN+1(X,σ) = H ′N (X) + σz(X) + σ2s(X) where

H ′N (X) =
∑

i1<···<ip

∆−1
√

(p− 1)!

(N + 1)(p−1)/2
Yi1...ipxi1 . . . xip −

∆−1(p− 1)!

2(N + 1)p−1
(xi1 . . . xip)2 ,

z(X) = ∆−1
∑

i1<···<ip−1≤n

√
(p− 1)!

(N + 1)(p−1)/2
Yi1...ip−1,n+1xi1 . . . xip−1 ,

s(X) = −∆−1
∑

i1<···<ip−1≤n

(p− 1)!

2(N + 1)p−1
(xi1 . . . xip−1)2 .

One can also decompose HN (X) = H ′N (X) + y(X) in law, where

y(X) = ∆−1
∑

i1<···<ip

√
(p− 1)!

(
p− 1

Np
+ rn

)1/2

V ′i1...ipxi1 . . . xip

+ (p− 1)!

(
p− 1

Np
+ rn

)(
x0
i1 . . . x

0
ipxi1 . . . xip −

1

2
(xi1 . . . xip)2

)
.

In the above de�nition, the V ′ are i.i.d.N (0,∆) random variables, independent of everything else, and rn =

o(N−p). If we denote by 〈·〉′ the Gibbs measure on SN corresponding to the Hamiltonian logPX + H ′N we
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can rewrite
AN = E log

〈∑
σ∈S

PX(σ)eσz(X)+σ2s(X)
〉′
− E log

〈
ey(X)

〉′
, (29)

where X is a sample from 〈·〉′, independently of everything else. AN is thus a di�erence of two terms that
will correspond exactly to the terms of (21). As in sec. 5.1, we can show that under a small perturbation of
the system, the overlap X ·X0 with the planted con�guration concentrates around a non-negative value Q′.
This leads to simpli�cations in (29):

lim sup
N→∞

AN ≤ lim sup
N→∞

E[φRS(Q′)] ≤ FRS . (30)

For a precise derivation of (30), the reader is invited to report to the matrix case (see [14], sec. 4.6), since there
is no major di�erence with the tensor case on this point. The arguments presented there are commonly used
in the study of spin glasses and are the analog of cavity computations in the SK model developed in [26], sec.
1.5. This concludes the proof.

6 Examples of phase transitions
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Figure 1: Left panel: Comparison between the AMP �xed point reached from uninformative (marked with
crosses) or informative (i.e. strongly correlated with the ground truth, marked with pluses) initialization and the
�xed point of the SE equations (stable �xed point in blue, unstable in red). The data are for the Gaussian prior
with mean µ = 0.2, unit variance, p = 3, r = 1. The AMP runs are done on a system of size N = 1000.
Central panel: Phase diagram for the order p = 3 tensor factorization, rank r = 1, Gaussian prior of mean
µ (x-axes) and unit variance. In the green-shaded zone AMP matches the information-theoretically optimal
performance, MMSE = MSEAMP. In the orange-shaded zone MMSE < MSEAMP. The tri-critical point is
located at µTri = (p− 2)/(2

√
p− 1) and ∆Tri = xp−2

Tri /(1 + xTri)
p−1 where xTri = (p− 2)(3p− 4)/p2. Right

panel: Phase diagram for the order p = 3 tensor factorization, rank r = 1, the Bernoulli prior as a function
of ρ and ∆/ρ4. The tri-critical point is located at ρTri = 0.178 and ∆Tri/ρ

4 = 2.60. As ρ → 0 we observed
∆Alg/ρ

4 → 2e. Compare to Fig. 5 in [17] where the same phase diagram is presented for the matrix factorization
p = 2 case.

We used the state evolution eqs. (12-13), and the free energy (16), to compute the values of the thresholds
∆c, ∆IT and ∆Alg for several examples of the prior distributions: Gaussian (spherical spins), PX(x) =

N (µ, 1); Rademacher (Ising spins), PX(x) = 1
2 [δ(x− 1) + δ(x+ 1)]; Bernoulli (sub-tensor localization),

PX(x) = ρδ(x− 1) + (1− ρ)δ(x); and clustering (tensor stochastic block model), PX(x) = 1
r

r∑
k=1

δ(x−~ek),

where ~ek ∈ Rr is a vector with a 1 at coordinate k and 0 elsewhere. Examples of values of the thresholds for
the above priors are given in Table 1. For the zero mean Gaussian and the Rademacher prior our results for
∆IT indeed agree with those presented in [12, 22]. Central and right part of Fig. 1 present the thresholds for
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the Gaussian and Bernoulli prior as a function of the mean µ and density ρ, respectively. Left part of Fig. 1
illustrates that indeed the �xed points of the state evolution agree with the �xed points of the AMP algorithm.

HHH
HHHp

Prior Gaussian N (0, 1) Rademacher Bernoulli ρ = 0.1 3 clusters

∆ITp log(p) ∆Alg ∆IT ∆Alg ∆ITρ
−p ∆Algρ

−2p+2 ∆IT
∆Alg

∆Algr
2p−2

p−1

2 2 log 2 1 1 1 − − 1 1

3 0.754 0 0.2828 0 0.577 3.738 1 1

4 0.701 0 0.1902 0 0.398 6.017 1.18 1

5 0.685 0 0.1473 0 0.311 8.251 1.62 1

10 0.677 0 0.07216 0 0.154 19.30 6.59 1

Table 1: Examples of the information-theoretic ∆IT and algorithmic ∆Alg thresholds for order-p tensor decom-
position for di�erent priors on the factors. For the Gaussian case ∆ITp log(p) converges to 1 at large p. For the
Bernoulli case the rescaling in power of ρ is for convenience to present quantities of order one, we did not check
if it describes the large p limit.

6.1 Results for Gaussian prior

In this section we detail the analysis of the state evolution for rank r = 1 Gaussian prior of mean µ and
variance 1.

PGauss
X = N (µ, 1) . (31)

Using (12) one gets for the SE equation

M t+1 =
∆µ2 + (M t)p−1(1 + µ2)

∆ + (M t)p−1
, (32)

where M is a scalar, and ∆ is the inverse Fisher information of the output channel. It turns out that as soon
as p ≥ 3 the SE equation exhibits multiple stable �xed points.

For the zero mean µ = 0 case one gets

M t+1 =
(M t)

p−1

∆ + (M t)p−1 . (33)

Here the �xed point M = 0 is stable whatever the noise ∆ > 0 and therefore AMP will not achieve perform-
ance better than random guessing for any ∆ > 0. Ref. [24] studies the scaling of ∆ with N for which AMP
and other algorithms succeed.

For positive mean µ > 0, however, the AMP algorithm is able to recover the signal for values of ∆ < ∆Alg

with

∆Alg(µ) =
xp−2

Alg

(1 + xAlg)p−1 , ∆Dyn(µ) =
xp−2

Dyn

(1 + xDyn)p−1 , (34)

xAlg(µ) =
p− 2 + 2µ2 −

√
(p− 2)2 − 4µ2(p− 1)

2(1 + µ2)
, (35)

xDyn(µ) =
p− 2 + 2µ2 +

√
(p− 2)2 − 4µ2(p− 1)

2(1 + µ2)
, (36)

where we de�ned a new threshold ∆Dyn as the smallest such that for ∆ > ∆Dyn the state evolution has a
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unique �xed point. We know of no analytical formula for ∆IT and for Figure 1 we computed it numerically.
The tri-critical point where all these curve meet is located at

µTri =
p− 2

2
√
p− 1

. (37)

Using the above expressions we derive that

∆Dyn(µ = 0) =
1

p− 2

(
p− 2

p− 1

)p−1

∼
p→∞

1

ep
, (38)

∆Alg(µ) ∼
µ→0

(
µ2

p− 2

)p−2

. (39)

We can also compute the limit of the ∆IT(µ = 0, p) as p→∞ and get

∆IT(µ = 0, p) ∼
p→∞

1

p log(p)
. (40)

This scaling agrees with the large p behavior derived in [24] and [22].

6.2 Results for clustering prior

An interesting example of the prior for rank r tensor estimation is

PClusters
X (x) =

1

r

∑
1≤k≤r

δ(x− ~ek) . (41)

This describes a model of r non-overlapping clusters. Due to the channel universality, this prior also describes
the stochastic block model on dense hyper-graphs as considered for sparse hyper-graph in e.g. [3]. This model
was considered in detail for p = 2 in [17].

The above clustering prior has non-zero mean, and it also exhibits the transition ∆c from a phase where
recovery of clusters better than chance is not possible, to a phase where it is.

To analyze the SE equations we �rst notice that the stable �xed point will be of the form

M =
bIr
r

+
(1− b)Jr

r2
∈ Rr×r, b ∈ [0; 1] , (42)

where Ir is the identity matrix and Jr is a matrix �lled with ones. b = 0 means that the estimate of the
marginals does not carry any information. b = 1 means perfect reconstruction. The state evolution now
becomes

bt+1 =Mr

r
(
bt

r + 1−bt
r2

)p−1
−
(

1−bt
r2

)p−1

∆

 , (43)

whereMr is a function that was de�ned and studied in [15]. Its Taylor expansion is

Mr(x) =
x

r2
+ x2 r − 4

2r4
+O

(
x3
)
. (44)

We further notice that b = 0 is always a �xed point of (43). By expanding (43) to �rst order one gets

bt+1 = bt
p− 1

∆r2p−2
+O

(
bt

2
)
. (45)
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This �xed point therefore becomes unstable when

∆ < ∆c ≡
p− 1

r2p−2
. (46)

By analyzing eq. (43) further we can prove that ∀x ∈ R+

m(x) = Mr(x) (47)

∆(x) = r

(
Mr(x)
r + 1−Mr(x)

r2

)p−1
−
(

1−Mr(x)
r2

)p−1

x
. (48)

m is a �xed point of (43) when m = m(x) and ∆ = ∆(x). Rather than �nding the �xed point iteratively, the
above equations allow us to draw all the �xed point of (43), be it stable or unstable We have that m(x) is a
stable �xed point of (43) if and only if

∂∆(x)

∂x
< 0 . (49)

The next question is whether there is a �rst or second order phase transition at ∆c. To answer this, one needs
to analyze whether the �xed point close to b = 0 is stable or unstable. For this we to compute ∂∆(x)

∂x at x = 0

to get using (44) that

∂∆(x)

∂x
=
p− 1

2r2p
(−2p− r + pr) . (50)

Therefore if −2p− r + pr > 0 there will be no stable �xed point close to b = 0 and the system must have a
�rst order phase transition (discontinuity in the MSEAMP) at ∆c = ∆Alg.

For two clusters r = 2, there is a second order phase transition at ∆c for all p ≥ 2. However, analyzing
the state evolution numerically we observed that for p ≥ 5 there is a discontinuity later at some ∆Alg < ∆c.
For three and more clusters r ≥ 3 we always have ∆Alg = ∆c, and for−2p−r+pr ≤ 0 we have not detected
any other discontinuities. Values of ∆IT for three clusters and some values of p are given in Table 1.
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