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1 The spiked tensor model One observes an order-p tensor Y ∈ p R N created as

Y = (p -1)! N p-1 2 r k=1 (X 0 k ) ⊗p + V , (1) 
where X 0 1 , . . . , X 0 r ∈ R N are r unknown vectors to be inferred from Y , and V ∈ p R N is a symmetric tensor accounting for noise. We denote by X the N ×r matrix that collects the r vectors X k . The observed tensor Y can thus be seen as a rank r perturbation of a random symmetric tensor V . Consider now the setting where the X 0 is generated at random from a known prior distribution. The core question considered in this paper is: What is the best possible reconstruction of X 0 one can hope for?

In fact, we can look at even more general noise than just additive one as in [START_REF] Michael Aizenman | Extended variational principle for the Sherrington-Kirkpatrick spin-glass model[END_REF]. Denote for i = 1, . . . , N , x i = (x i,1 , . . . , x i,r ) ∈ R r the r-dimensional vector created by aggregating the i th coordinates of the r vectors X k . Assume that for 1 ≤ i ≤ N the x 0 i are generated independently from a probability distribution P X over R r . We denote, for (i 1 , i 2 , . . . , i p ) ∈ {1, . . . , N } p W 0 i 1 ,i 2 ,...,ip = (p -1)!

N p-1 2 r k=1 x 0 i 1 ,k x 0 i 2 ,k • • • x 0 ip,k . (2) 
For simplicity, we will assume to only observe the extra-diagonal elements of Y , i.e. the coe cients Y i 1 ,i 2 ,...,ip for 1 ≤ i 1 < • • • < i p ≤ N . The case where all coe cients are observed can be directly deduced from this case. The observed tensor Y is generated from W 0 using a noisy component-wise output channel P out so that

P (Y |X 0 ) = i 1 <i 2 <•••<ip P out Y i 1 ,i 2 ,...,ip W 0 i 1 ,i 2 ,...,ip . (3) 
The simplest situation corresponds to eq. ( 1) with additive white Gaussian noise (AWGN), i.e. P out ( • | w) = N (w, ∆).

Given the above generative model and assuming that both the prior distribution P X and the output channel P out are known we can write the Bayes-optimal estimator of X 0 as marginalization of the following posterior distribution

P (X|Y ) = 1 Z N N i=1 P X (x i ) i 1 <i 2 <•••<ip P out Y i 1 ,i 2 ,...,ip W i 1 ,i 2 ,...,ip , (4) 
where Z N is a normalization constant depending of the observed tensor Y , W i 1 ,i 2 ,...ip is de ned analogously to (2) (with X instead of X 0 ). We will study this tensor estimation problem in the limit where the dimension N → ∞ while the rank r remains constant. The factor N p- 1 2 is here to ensure that information-theoretically the inference problem is neither trivially hard nor trivially easy when one deals with signals such that x i and the noise magnitude are of order 1. The factor (p -1)! is used for convenient rescaling of the signal-to-noise ratio.

Related work and summary of results

Recently there have been numerous works on the matrix (p = 2) version of the above setting. In particular an explicit single-letter characterization of the mutual information and of the optimal Bayesian reconstruction error have been rigorously established [START_REF] Barbier | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Deshpande | Information-theoretically optimal sparse PCA[END_REF][START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF][START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF]. A large part of these results rely on the approximate message passing (AMP) algorithm. For the rank-one matrix estimation problems AMP has been introduced by [START_REF] Rangan | Iterative estimation of constrained rank-one matrices in noise[END_REF], who also derived the state evolution (SE) formula to analyze its performance, generalizing techniques developed by [START_REF] Bayati | The dynamics of message passing on dense graphs, with applications to compressed sensing[END_REF]. In [START_REF] Lesieur | MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Lesieur | Phase transitions in sparse PCA[END_REF][START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF] the generalization to larger rank, and general output channel, was considered. Following the theorem proven in [START_REF] Barbier | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Deshpande | Information-theoretically optimal sparse PCA[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF], we know that indeed AMP is Bayes-optimal and achieves the minimum mean-squared error (MMSE) for a large set of parameters of the problem. There, however, might exist a region denoted as hard, where this is not the case, and polynomial algorithms improving on AMP are not known.

In comparison, there has been much less work on Bayesian low-rank tensor estimation. In statistical physics, the measure (4) was considered for Y with random i.i.d. components. For a Gaussian P X , it is called the spherical p-spin glass [START_REF] Crisanti | The spherical p-spin interaction spin glass model: The statics[END_REF], while for Rademacher P X it is the Ising p-spin glass [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF]. AMP for tensor estimation is actually equivalent to the so-called Thouless-Anderson-Palmer equations in spin glass theory [START_REF] Crisanti | Thouless-anderson-palmer approach to the spherical p-spin spin glass model[END_REF][START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF][START_REF] Thouless | Solution of 'solvable of a spin glass[END_REF]. In the context of tensor PCA these equations have been studied by Richard and Montanari [START_REF] Richard | A statistical model for tensor PCA[END_REF] for the maximum likelihood estimation. Interestingly, they showed that the hard phase was particularly large in the tensor estimation case and that, with side information (such that for each component x i,k we have its direct noisy observation), the estimation problem becomes easier. However, such a kind of component-wise side information is very strong and rarely available in applications. The tight statistical limits for the present tensor model were also studied in [START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF] for the special case of the Rademacher (Ising) prior. For more generic priors only upper and lower bounds are known rigorously [START_REF] Perry | Statistical limits of spiked tensor models[END_REF].

Summary of results:

In this contribution, we aim to bridge the gap between what is known for the general r, P x , P out Bayesian estimation for low-rank matrices and what is known for low-rank tensors. We present the following contributions:

(A) The AMP algorithm and its state evolution analysis for the Bayes-optimal tensor estimation, see sections 3 and 4. (B) The so-called channel universality result that allows us to map any generic channel P out on a model with additive Gaussian noise, see section 3. (C) Rigorous formula for the asymptotic mutual information and the MMSE, thus generalizing the matrix results of [START_REF] Barbier | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF], see section 5. (D) The identi cation of statistical and computational phase transitions. In fact, we show that as soon as the e ect of a non-zero-mean prior is taken properly into account, the hard region shrinks considerably, making the tensor decomposition problem much easier than hitherto believed, at least for algorithms that do take the prior information into account. Having a reliable prior information on the distribution of x i (not on each of the components as in [START_REF] Richard | A statistical model for tensor PCA[END_REF]) is rather realistic in applications, for instance when constraints of negativity or membership to clusters are imposed. This is presented in sections 4 and 6.

AMP algorithm & channel universality

We discuss in this section the Approximate Message Passing (AMP) algorithm for the Bayesian version of the problem. This is a relatively straightforward generalization of what has been done for the low-rank matrix estimation in e.g. [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF][START_REF] Matsushita | Low-rank matrix reconstruction and clustering via approximate message passing[END_REF][START_REF] Rangan | Iterative estimation of constrained rank-one matrices in noise[END_REF], i.e. p = 2 case of the present setting. In general, AMP is derived from belief propagation by taking into account that every variable in the corresponding graphical model has a large number of neighbors. Since the incoming messages are considered independent one can use the central limit theorem and represent each message as a Gaussian with a given mean xi ∈ R r and covariance σ i ∈ R r×r . A crucial property, called channel universality, that the tensor-AMP shares with the low-rank matrix estimation, allows to drastically simplify the problem of tensor estimation with generic output channel P out . The justi cation of this property follows closely the low-rank matrix estimation case, and we refer the reader to [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Lesieur | MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF][START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF]. First, we de ne the Fisher score tensor S associated to the output channel P out and its Fisher information ∆ as

S ≡ ∂ log P out (Y, w) ∂w w=0 , (5) 
1 ∆ ≡ E Y ∼Pout(• | 0) ∂ log P out (Y, w) ∂w 2 w=0 . ( 6 
)
where it is understood in (5) that the function y → ∂ log Pout(y,w) ∂w w=0 acts component-wise on Y . Informally speaking, the channel universality property states that the mutual information of the problem de ned by the output channel P out is the same as the one of a AWGN (1) with variance ∆, and that the AMP algorithm written for the Bayes-optimal inference of low-rank tensors then depends on the data tensor Y and the output channel P out only trough the tensor S and the e ective noise ∆.

AMP involves an auxiliary function that depends explicitly on the prior as follows. De ne the probability distribution

M(x) = 1 Z X (A, B) P X (x)e B x-x Ax 2 , (7) 
where Z X (A, B) is a normalization factor. Then AMP uses the function f in (A, B) ∈ R r , A ∈ R r×r , B ∈ R r de ned by the expectation f in (A, B) = E M(x) [x] as well as the covariance matrix ∂ B f in (A, B). We shall denote the

overlap of u = (u 1 , . . . u N ), v = (v 1 , . . . v N ) ∈ (R r ) N by u • v = 1 N n j=1 u j v j ∈ R r×r .
AMP is then written as an iterative update procedure on the estimates of the posterior means and co-variances xi and σ i that uses auxiliary variables B i ∈ R r and A ∈ R r×r :

B t i = (p -1)! N p-1 2 i 2 <i 3 <•••<ip S i,i 2 ,i 3 •••ip xt i 2 • xt i 3 • • • • • xt ip - (p -1) ∆ 1 N N j=1 σ t j • (x t • xt-1 ) •(p-2) xt-1 i ( 8 
)
A t = 1 ∆ (x t • xt ) •(p-1) (9) 
xt+1 i = f in (A t , B t i ) (10) 
σ t+1 i = ∂ B f in (A t , B t i ) , (11) 
where • denotes a component-wise (Hadamard) product of matrices, and x •p the corresponding componentwise power.

4 Theoretical analysis

State evolution of AMP

The evolution of the AMP algorithm in the limit of large systems N → ∞ can be tracked via a low-dimensional set of equations called the state evolution (SE). For maximum-likelihood estimation the state evolution have been used in [START_REF] Richard | A statistical model for tensor PCA[END_REF]. Its heuristic derivation for the present case of general rank r, prior P X , and output P out follows line by line the matrix estimation case detailed in [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF].

For the Bayes-optimal inference, SE is written in terms of an order parameter M t ∈ R r×r describing the overlap between xt (the AMP estimator at iteration t) and the ground truth x 0 de ned as M t = xt • x 0 , and reads

M t+1 = E Z,x 0 f in M t , M t x 0 + M t 1/2 Z x 0 , (12) 
M t = (M t ) •(p-1) /∆ , (13) 
where Z ∼ N (0, I r ) and x 0 ∼ P X are independent. M •(n) is again the n-th Hadamard power of a matrix M .

We shall not present a rigorous proof of the SE for tensor estimation and rely instead on standard arguments from statistical physics. The performance of the AMP algorithm can be understood by initializing the SE at M t=0 = 0. Or when M = 0 is a xed point of SE we initialize as M t=0 = , an in nitesimally small number (accounting for the fact that a random initialization of AMP will -due to nite size uctuationsbe in nitesimally correlated with the ground truth). We denote M AMP the xed point of the state evolution resulting from iterations of (12-13) from this initialization. The mean-squared error achieved by tensor-AMP is then

MSE AMP = Tr [Σ X -M AMP ] . (14) 
where

Σ X = E x [xx ].
When P X has zero mean, this is the covariance matrix of P X .

Information-theoretically optimal inference

Our next goal is to analyze the performance of (possibly intractable) Bayes-optimal inference that evaluates the marginals of the posterior probability distribution (4). The error achieved by this procedure will be denoted the minimum mean-squared error (MMSE) and is formally de ned as

MMSE N = inf θ 1 N E X 0 -θ(Y ) 2 = 1 N E X 0 -E[X 0 |Y ] 2 ,
where the in mum is taken over all measurable functions θ of Y . In order to compute the MMSE it is instrumental to compute the mutual information I(X 0 ; Y ). This quantity is related to the free energy from statistical physics (see section 5 and [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF]). To compute the limit of such quantities, one traditionally applies the replica method stemming from statistical physics [START_REF] Mézard | Spin-Glass Theory and Beyond[END_REF]. We take advantage of the fact that for the Bayesoptimal inference the so-called replica symmetric version of this method yields the correct free energy [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF].

The replica method yields

1 N I(X 0 ; Y ) ----→ N →∞ 1 2p∆ r k,k =1 (Σ X ) p k,k -sup M ∈S + r φ RS (M ) , (15) 
φ RS (M ) = E Z,x 0 log Z X M , M x 0 + M 1/2 Z - p -1 2p∆ r k,k =1 M p kk (16) 
where M = M •(p-1) /∆, Z X (A, B) is de ned in eq. ( 7), x 0 ∼ P X and Z ∼ N (0, I r ) are independent random variables. S + r denotes the set of r × r symmetric positive semi-de nite matrices. In section 5 we prove this result for the rank-one case (r = 1).

The replica free energy ( 16) not only provides the limit of the mutual information I(X 0 ; Y ), but thanks to an "I-MMSE Theorem" (similar to [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF]) it yields the value of the MMSE for tensor estimation, see sec. 5.

Denoting M * = argmax M φ RS (M ) we get MMSE = lim N →∞ MMSE N = Tr [Σ X -M * ] . (17) 
We proved [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF] rigorously, but only in the rank-one case and for odd values of p, see again sec. 5. Notice that when r ≥ 2 the estimation problem is symmetric under permutations of the r columns of X 0 : [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF] is not expected to be true without further assumptions.

Statistical and computational trade-o

By evaluation of the derivative of [START_REF] Lesieur | Phase transitions in sparse PCA[END_REF] with respect to M one can check that critical points of ( 16) are xed points of the state evolution equations (12-13) allowing all the results to be read of the curve φ RS (M ): The global maximum of [START_REF] Lesieur | Phase transitions in sparse PCA[END_REF] gives the MMSE while the (possibly local) maximum reached by iteration of (12-13) from the uninformative initialization yields the MSE AMP . We now discuss the interplay between the MMSE and MSE AMP . The working hypothesis in this paper is that AMP yields lowest MSE among known polynomial algorithms. Depending on the parameters of model (4), i.e. the order of the tensor p, rank r, prior distribution P X , and output channel P out that appears in the SE only via its Fisher information ∆, we can distinguish between two cases: the easy phase where asymptotically AMP is Bayes optimal so that MMSE = MSE AMP , and the hard phase where MMSE < MSE AMP .

Given both the MMSE and MSE AMP are non-decreasing in ∆ we denote the borders of the hard phase (when it exists) as follows: Information theoretic threshold ∆ IT as the (limsup of the) highest ∆ for which MMSE < MSE AMP . Algorithmic threshold ∆ Alg as the (liminf of the) lowest ∆ for which MMSE < MSE AMP . Another threshold used in this paper is that of a critical value ∆ c de ned as smallest ∆ such that for ∆ > ∆ c one has M AMP = M * (∆ = +∞) (the estimate one can do when the noise is in nite), and for ∆ < ∆ c one has M AMP > M * (∆ = +∞). Note that from the de nition we must have ∆ c ≥ ∆ Alg . In cases where the hard phase does not exist, but ∆ c < ∞ we will consider that ∆ c = ∆ IT = ∆ Alg .

Existing results on maximum likelihood estimation [START_REF] Richard | A statistical model for tensor PCA[END_REF] suggest that for tensor decomposition p ≥ 3 we have ∆ Alg = ∆ c = 0 in the limit N → 0 considered in this paper. This means that the spiked model of low-rank tensor decomposition is algorithmically very hard, compared to matrix p = 2 case. The authors of [START_REF] Richard | A statistical model for tensor PCA[END_REF] give a good account on how ∆ needs to scale with N for known polynomial algorithms to work.

For the Bayes-optimal estimation the situation seems at rst sight similar. Indeed, whenever the prior P X has a zero mean, for p ≥ 3 we get ∆ Alg = ∆ c = 0 and the hard phase is consequently huge. This can be seen as follows. Indeed if the mean of the prior P X is zero then the state evolution equations (12-13) have a xed point M = 0. Expanding the state evolution around this xed point we nd

M t+1 = 1 ∆ Σ X (M t ) •(p-1) Σ X . (18) 
Whenever p ≥ 3 the xed point M = 0 is stable for all ∆ > 0. Hence ∆ Alg = ∆ c = 0 for priors of zero mean.

A closer look, however, shows that the situation is not so pessimistic. Indeed, as soon as the mean of the prior P X is non-zero, M = 0 is no longer a xed point of the state evolution and once we solve the state evolution equations we observe either ∆ Alg > 0 (with AMP performing optimally for ∆ < ∆ Alg ) or the hard phase is completely absent and AMP has information-theoretically optimal performance for all ∆. We give examples of such priors in section 6.

Rigorous results

We present in this section rigorous results for the rank-one case (r = 1). As mentioned above, the universality property [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Lesieur | MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF] reduces the computation of the mutual information to the case of additive white Gaussian noise.

Consider a probability distribution P X over R that admits a nite second moment Σ X . The observation model (1) reduces in the rank-one case to

Y i 1 ,...,ip = (p -1)! N (p-1)/2 x 0 i 1 . . . x 0 ip + V i 1 ,...,ip for 1 ≤ i 1 < • • • < i p ≤ N,
where

X 0 = (x 0 1 , . . . , x 0 N ) i.i.d. ∼ P X and (V i 1 ,...,ip ) i 1 <•••<ip i.i.d.
∼ N (0, ∆) are independent. We de ne the Hamiltonian

H N (X) = ∆ -1 i 1 <•••<ip (p -1)! N (p-1)/2 Y i 1 ,...,ip x i 1 . . . x ip - (p -1)! 2N p-1 x i 1 . . . x ip 2 , (19) 
for X = (x 1 , . . . , x N ) ∈ R N . We also write dP X (X) = N i=1 dP X (x i ). The posterior distribution (4) of X 0

given Y reads then:

dP (X 0 = X|Y ) = 1 Z N dP X (X)e H N (X) , (20) 
where Z N is the appropriate normalizing factor. Then the free energy is de ned as (minus) the logarithm of Z N of the Boltzmann probability divided by N and averaged over Y . This is of particular interest since it is related to the mutual information (see [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF]):

I(X 0 ; Y ) = N 2p∆ Σ p X -E[log Z N ] + O(1) .
In the rank-one case, the expression ( 16) of φ RS simpli es, so that we will use in this section

φ RS : m ≥ 0 → E log dP X (x) exp m p-1 ∆ Zx + m p-1 ∆ xx 0 - m p-1 2∆ x 2 - p -1 2p∆ m p , ( 21 
)
where E is the expectation with respect to the independent random variables x 0 ∼ P X and Z ∼ N (0, 1).

The proof of ( 15) reduces then to the following Theorem.

Theorem 1 (Replica-symmetric formula for the free energy). Let P X be a probability distribution over R, with nite second moment. Then, for all ∆ > 0

F N ≡ 1 N E [log Z N ] ----→ N →∞ sup m≥0 φ RS (m) ≡ F RS (∆) . (22) 
We now de ne the tensor-MMSE, T-MMSE N by

T-MMSE N (∆) = inf θ    p! N p i 1 <•••<ip x 0 i 1 . . . x 0 ip -θ(Y ) i 1 ...ip 2    ,
where the in mum is taken over all measurable functions θ of the observations Y . Let us write λ = 1 ∆ . Using an "I-MMSE Theorem" (see [START_REF] Guo | Mutual information and minimum mean-square error in gaussian channels[END_REF]) and the fact that the tensor MMSE is achieved by the posterior mean of (X 0 ) ⊗p given Y , it is not di cult to verify that

∂F N ∂λ = N (N -1) . . . (N -p + 1) 2pN p Σ p X -T-MMSE N (∆) .
The arguments are the same than in the matrix (p = 2) case, see [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] Corollary 17. T-MMSE(∆) increases with the noise level ∆, so that ∂ ∂λ F N is a non-decreasing function of λ. F N is thus a convex function of λ, and so is F RS its pointwise limit. Consequently, ∂ ∂λ F N → ∂ ∂λ F RS at all values of λ at which F RS is di erentiable, that is for almost every ∆ > 0. For these values of ∆, one can also verify that the maximizer m * of φ RS is unique: we refer to [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] for a detailed proof in the matrix case p = 2. We thus obtain the following theorem:

Theorem 2 (Tensor-MMSE). For almost every ∆ > 0, φ RS admits a unique maximizer m * (∆) over R + and

T-MMSE N ----→ N →∞ Σ p X -m * (∆) p .
The information-theoretic threshold ∆ IT is the maximal value of ∆ such that lim T-MMSE N < Σ p X -E P X [x] 2p (which is the asymptotic performance achieved by random guess). We obtain thus the precise location of the information-theoretic threshold:

∆ IT = sup ∆ > 0 m * (∆) > E P X [x] 2 .
Let X = (x 1 , . . . , x N ) be a sample from the posterior (4), independently of everything else. An extension of Theorem 2 of [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] (that was derived for priors P X with bounded support) to the tensor case, gives that for almost every ∆ > 0,

E 1 N N i=1 x 0 i x i p -m * (∆) p ----→ N →∞ 0 , (23) 
i.e. the p th -power of the overlap X • X 0 concentrates around m * . This leads to Theorem 3 (Vector-MMSE for odd p). Suppose that P X has a bounded support. If p is odd, then for almost every

∆ > 0 MMSE N ----→ N →∞ Σ X -m * (∆).
Before showing how [START_REF] Rangan | Iterative estimation of constrained rank-one matrices in noise[END_REF] implies Theorem 3 we need to introduce a fundamental property of Bayesian inference: the Nishimori identity.

Proposition 1 (Nishimori identity). Let (X, Y ) be a couple of random variables on a polish space. Let k ≥ 1 and let X (1) , . . . , X (k) be k i.i.d. samples (given Y ) from the distribution P (X = • | Y ), independently of every other random variables. Let us denote • the expectation with respect to P (X = • | Y ) and E the expectation with respect to (X, Y ). Then, for all continuous bounded function f E f (Y, X (1) , . . . , X (k) ) = E f (Y, X (1) , . . . , X (k-1) , X) .

Proof. It is equivalent to sample the couple (X, Y ) according to its joint distribution or to sample rst Y according to its marginal distribution and then to sample X conditionally to Y from its conditional distribution P (X = • | Y ). Thus the (k + 1)-tuple (Y, X (1) , . . . , X (k) ) is equal in law to (Y, X (1) , . . . , X (k-1) , X).

We will now use Proposition 1 to prove Theorem 3.

Proof of Theorem 3. Let • denote the expectation with respect to the posterior distribution P (X 0 = • | Y ), and let X be a sample from this distribution, independently of everything else. The best estimator of X 0 in term of mean-squared error is the posterior mean X = ( x 1 , . . . , x N ). Therefore

MMSE N = 1 N E N i=1 (x 0 i -x i ) 2 = 1 N E N i=1 (x 0 i ) 2 + x i 2 -2 x 0 i x i = Σ X + E X • X -2E X 0 • X ,
where X is another sample from • , independently of everything else. We apply now the Nishimori identity (Proposition 1) to obtain

E X • X = E X 0 • X . This gives MMSE N = Σ X -E X • X 0 .
We then deduce from ( 23) that E X • X 0 ----→ N →∞ m * , because p is here supposed to be odd. This concludes the proof.

We will now prove Theorem 1. For the matrix case (p = 2), this has been proved in [START_REF] Barbier | Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula[END_REF][START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] and we explain here how this can be adapted to the case p ≥ 2. To prove the limit [START_REF] Perry | Statistical limits of spiked tensor models[END_REF], one shows successively an upper bound on lim sup F N and the matching lower bound on lim inf F N . As shown in [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] (Section 6.2.2) one only need to prove Theorem 1 for input distributions P X with nite support S. We now assume to be in this situation.

Adding a small perturbation

One of the key ingredient of the proof is the introduction of a small perturbation of our model, that takes the form of a small amount of side information. This kind of techniques are frequently used for the study of spin glasses, where these small perturbations forces the Gibbs measure to verify some crucial identities, see [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]. In our context of Bayesian inference, we will see that small quantities of side information "breaks" the correlations of the signal variables under the posterior distribution.

Let us x ∈ [0, 1], and suppose we have access to the additional information, for

1 ≤ i ≤ N Y i = x 0 i if L i = 1, * if L i = 0, (24) 
where

L i i.i.d.
∼ Ber( ) and * is a symbol that does not belong to R. The posterior distribution of X is now

P (X|Y, Y ) = 1 Z N,   i|Y i = * 1(x i = Y i )     i|Y i = * P X (x i )   e H N (X) ,
where Z N, is the appropriate normalization constant. For X = (x 1 , . . . , x N ) ∈ R N we will use the notation

X = (L 1 x 0 1 + (1 -L 1 )x 1 , . . . , L N x 0 N + (1 -L N )x N ) . ( 25 
)
X is thus obtained by replacing the coordinates of X that are revealed by Y by their revealed values. The notation X will allow us to obtain a convenient expression for the free energy of the perturbed model X) .

F N, = 1 N E log Z N, = 1 N E log X∈S N P X (X)e H N (
The next lemma shows that the perturbation does not change the free energy up to the order of . Recall that we supposed the support S of P X to be nite, so we can nd a constant K such that S ⊂ [-K, K].

Lemma 1. For all n ≥ 1 and all , ∈ [0, 1], we have

|F N, -F N, | ≤ K 2p ∆ | -|.
Lemma 1 follows from a direct adaptation of Proposition 23 from [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] to the tensor case. Consequently, if we suppose ∼ U([0, 1]) and de ne N = N -1/2 and L i i.i.d.

∼ Ber( N ), independently of everything else, we have

|F N -E [F N, N ]| ----→ N →∞ 0 , ( 26 
)
where E denotes the expectation with respect to only. It remains therefore to compute the limit of the free energy under a small perturbation. As shown in [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF], the perturbation [START_REF] Richard | A statistical model for tensor PCA[END_REF] forces the correlations to vanish asymptotically.

Lemma 2 (Lemma 3.1 from [START_REF] Montanari | Estimating random variables from random sparse observations[END_REF]).

E   1 N 2 1≤i,j≤N I(x 0 i ; x 0 j | Y, Y )   ≤ 2H(P X ) √ N .
Let us write • the expectation with respect to P (X = • | Y, Y ), and let X (1) , X (2) be two independents samples from P (X = • | Y, Y ), independently of everything else. We de ne Q = X (1) • X (2) . Notice that Q is a non-negative random variable. As a consequence of Lemma 2, the overlaps under the posterior distribution concentrates around Q:

Lemma 3. E X (1) • X (2) -Q 2 ----→ N →∞ 0 and E X (1) • X 0 -Q 2 ----→ N →∞ 0 , ( 27 
)
where E denotes the expectation with respect all random variables.

Lemma 3 follows from the arguments of section 4.4 from [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF].

The arguments presented in this section are robust and apply to a large class of Hamiltonians. In particular, we will be able to apply in the sequel Lemmas 1 and 3 to other Hamiltonians and posterior distributions (and corresponding free energies).

Guerra's interpolation scheme

The lower bound is obtained by extending the bound derived for p = 2 in [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF], using a Guerra-type interpolation [START_REF] Guerra | Broken replica symmetry bounds in the mean eld spin glass model[END_REF] as was already done for tensors by Korada and Macris in [START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF] (who consider tensors in the special case of Rademacher P X ).

Lemma 4.

lim inf

N →∞ F N ≥ sup m≥0 φ RS (m) .
Proof. We use a Guerra-type interpolation [START_REF] Guerra | Broken replica symmetry bounds in the mean eld spin glass model[END_REF]: Let 0 ≤ t ≤ 1 and m ∈ R + . We suppose to observe Y and Ỹ

given by

       Y i 1 ,...,ip = t(p -1)! N (p-1)/2 x 0 i 1 . . . x 0 ip + V i 1 ,...,ip for 1 ≤ i 1 < • • • < i p ≤ N Ỹj = (1 -t)m p-1 x 0 j + Ṽj for 1 ≤ j ≤ N
where the variables V i 1 ,...,ip and Ṽj are i.i.d. N (0, ∆) random variables. We de ne the interpolating Hamiltonian

H N,t (X) = ∆ -1 i 1 <•••<ip t(p -1)! N (p-1)/2 Y i 1 ,...,ip x i 1 . . . x ip - t(p -1)! 2N p-1 (x i 1 . . . x ip ) 2 + ∆ -1 N j=1 (1 -t)m p-1 Ỹj x j - 1 2 (1 -t)m p-1 x 2 j .
Then, the posterior distribution of X 0 given Y and Ỹ reads

P (X 0 = X|Y, Ỹ ) = 1 Z N,t P X (X) exp(H N,t (X)) , (28) 
where Z N,t is the appropriate normalization. Let ψ

N (t) = 1 N E[log Z N,t ] be the corresponding free energy. Notice that ψ N (1) = F N , ψ N (0) = φ RS (m) -(1-p)m p 2∆p .
Let • t denote the expectation with respect to the posterior (28) and let X be a sampled from [START_REF] Zdeborová | Statistical physics of inference: Thresholds and algorithms[END_REF], independently of everything else.

Using Gaussian integration by parts and the Nishimori identity of Proposition 1 one can show (see [START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF][START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF]) that for all 0 ≤ t ≤ 1

ψ N (t) = 1 2∆p E X • X 0 p -pm p-1 X • X 0 t + o N (1)
.

By convexity of the function a → a p on R + we have, for all a, b ≥ 0: a p -pb p-1 a ≥ (1 -p)b p . We would like to use this inequality with a = X • X 0 and b = m to obtain that ψ N (t) ≥ (1-p)m p 2∆p . This would conclude the proof of the lower bound because lim inf

N →∞ F N = lim inf N →∞ ψ N (1) = lim inf N →∞ ψ N (0) + 1 0 ψ N (t)dt ≥ φ RS (m) .
However, we do not know that X • X 0 ≥ 0 almost surely. To bypass this issue we can add, as in sec. 5.1, a small perturbation (24) that forces X • X 0 concentrates around a non-negative value (Lemma 3), without a ecting the "interpolating free energy" ψ N (t) in the N → ∞ limit, see [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF]. The arguments are the same than in sec. 5.1, so we omit the details and the rewriting of the previous calculations with the perturbation term. This concludes the proof.

Proving the upper-bound: Aizenman-Sims-Starr scheme

We are now going to show how the arguments of [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF] for the upper bound -using cavity computations with an Aizenman-Sims-Starr approach [START_REF] Michael Aizenman | Extended variational principle for the Sherrington-Kirkpatrick spin-glass model[END_REF]-can be extended to the tensor case.

Lemma 5.

lim sup

N →∞ F N ≤ sup m≥0 φ RS (m) .
Proof. We are going to compare the system with N variables to the system with N + 1 variables. De ne

A N = E[log Z N +1 ] -E[log Z N ]. Consequently, F N = 1 N N -1 k=0
A k and lim sup F N ≤ lim sup A N . We are thus going to upper-bound A N . Let X ∈ S N be the N -rst variables and σ ∈ S the (N + 1) th variable. We decompose H N +1 (X, σ) = H N (X) + σz(X) + σ 2 s(X) where

H N (X) = i 1 <•••<ip ∆ -1 (p -1)! (N + 1) (p-1)/2 Y i 1 ...ip x i 1 . . . x ip - ∆ -1 (p -1)! 2(N + 1) p-1 (x i 1 . . . x ip ) 2 , z(X) = ∆ -1 i 1 <•••<i p-1 ≤n (p -1)! (N + 1) (p-1)/2 Y i 1 ...i p-1 ,n+1 x i 1 . . . x i p-1 , s(X) = -∆ -1 i 1 <•••<i p-1 ≤n (p -1)! 2(N + 1) p-1 (x i 1 . . . x i p-1 ) 2 .
One can also decompose H N (X) = H N (X) + y(X) in law, where

y(X) = ∆ -1 i 1 <•••<ip (p -1)! p -1 N p + r n 1/2 V i 1 ...ip x i 1 . . . x ip + (p -1)! p -1 N p + r n x 0 i 1 . . . x 0 ip x i 1 . . . x ip - 1 2 (x i 1 . . . x ip ) 2 .
In the above de nition, the V are i.i.d. N (0, ∆) random variables, independent of everything else, and r n = o(N -p ). If we denote by • the Gibbs measure on S N corresponding to the Hamiltonian log P X + H N we can rewrite

A N = E log σ∈S P X (σ)e σz(X)+σ 2 s(X) -E log e y(X) , ( 29 
)
where X is a sample from • , independently of everything else. A N is thus a di erence of two terms that will correspond exactly to the terms of [START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF]. As in sec. 5.1, we can show that under a small perturbation of the system, the overlap X • X 0 with the planted con guration concentrates around a non-negative value Q . This leads to simpli cations in (29):

lim sup N →∞ A N ≤ lim sup N →∞ E[φ RS (Q )] ≤ F RS . (30) 
For a precise derivation of (30), the reader is invited to report to the matrix case (see [START_REF] Lelarge | Fundamental limits of symmetric low-rank matrix estimation[END_REF], sec. 4.6), since there is no major di erence with the tensor case on this point. The arguments presented there are commonly used in the study of spin glasses and are the analog of cavity computations in the SK model developed in [START_REF] Talagrand | Mean eld models for spin glasses: Volume I: Basic examples[END_REF], sec. 1.5. This concludes the proof.

6 Examples of phase transitions We used the state evolution eqs. [START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF][START_REF] Krzakala | Mutual information in rank-one matrix estimation[END_REF], and the free energy [START_REF] Lesieur | Phase transitions in sparse PCA[END_REF], to compute the values of the thresholds ∆ c , ∆ IT and ∆ Alg for several examples of the prior distributions: Gaussian (spherical spins), P X (x) = N (µ, 1); Rademacher (Ising spins), P X (x) = 1 2 [δ(x -1) + δ(x + 1)]; Bernoulli (sub-tensor localization), P X (x) = ρδ(x -1) + (1 -ρ)δ(x); and clustering (tensor stochastic block model),

P X (x) = 1 r r k=1 δ(x -e k ),
where e k ∈ R r is a vector with a 1 at coordinate k and 0 elsewhere. Examples of values of the thresholds for the above priors are given in Table 1. For the zero mean Gaussian and the Rademacher prior our results for ∆ IT indeed agree with those presented in [START_REF] Babu | Exact solution of the gauge symmetric p-spin glass model on a complete graph[END_REF][START_REF] Perry | Statistical limits of spiked tensor models[END_REF]. Central and right part of Fig. 1 present the thresholds for the Gaussian and Bernoulli prior as a function of the mean µ and density ρ, respectively. Left part of Fig. 1 illustrates that indeed the xed points of the state evolution agree with the xed points of the AMP algorithm. For the Bernoulli case the rescaling in power of ρ is for convenience to present quantities of order one, we did not check if it describes the large p limit.

∆ IT p log(p) ∆ Alg ∆ IT ∆ Alg ∆ IT ρ -p ∆ Alg ρ -2p+2 ∆ IT ∆ Alg ∆ Alg r 2p-2 p-1 2 2 log 2 1 1 1 - - 1 

Results for Gaussian prior

In this section we detail the analysis of the state evolution for rank r = 1 Gaussian prior of mean µ and variance 1.

P Gauss X = N (µ, 1) . (31) 
Using ( 12) one gets for the SE equation

M t+1 = ∆µ 2 + (M t ) p-1 (1 + µ 2 ) ∆ + (M t ) p-1 , ( 32 
)
where M is a scalar, and ∆ is the inverse Fisher information of the output channel. It turns out that as soon as p ≥ 3 the SE equation exhibits multiple stable xed points.

For the zero mean µ = 0 case one gets

M t+1 = (M t ) p-1 ∆ + (M t ) p-1 . (33) 
Here the xed point M = 0 is stable whatever the noise ∆ > 0 and therefore AMP will not achieve performance better than random guessing for any ∆ > 0. Ref. [START_REF] Richard | A statistical model for tensor PCA[END_REF] studies the scaling of ∆ with N for which AMP and other algorithms succeed.

For positive mean µ > 0, however, the AMP algorithm is able to recover the signal for values of ∆ < ∆ Alg with

∆ Alg (µ) = x p-2 Alg (1 + x Alg ) p-1 , ∆ Dyn (µ) = x p-2 Dyn (1 + x Dyn ) p-1 , (34) 
x

Alg (µ) = p -2 + 2µ 2 -(p -2) 2 -4µ 2 (p -1) 2(1 + µ 2 ) , (35) 
x

Dyn (µ) = p -2 + 2µ 2 + (p -2) 2 -4µ 2 (p -1) 2(1 + µ 2 ) , (36) 
where we de ned a new threshold ∆ Dyn as the smallest such that for ∆ > ∆ Dyn the state evolution has a unique xed point. We know of no analytical formula for ∆ IT and for Figure 1 we computed it numerically. The tri-critical point where all these curve meet is located at

µ Tri = p -2 2 √ p -1 . (37) 
Using the above expressions we derive that

∆ Dyn (µ = 0) = 1 p -2 p -2 p -1 p-1 ∼ p→∞ 1 ep , (38) 
∆ Alg (µ) ∼ µ→0 µ 2 p -2 p-2 . ( 39 
)
We can also compute the limit of the ∆ IT (µ = 0, p) as p → ∞ and get

∆ IT (µ = 0, p) ∼ p→∞ 1 p log(p) . ( 40 
)
This scaling agrees with the large p behavior derived in [START_REF] Richard | A statistical model for tensor PCA[END_REF] and [START_REF] Perry | Statistical limits of spiked tensor models[END_REF].

Results for clustering prior

An interesting example of the prior for rank r tensor estimation is

P Clusters X (x) = 1 r 1≤k≤r δ(x -e k ) . (41) 
This describes a model of r non-overlapping clusters. Due to the channel universality, this prior also describes the stochastic block model on dense hyper-graphs as considered for sparse hyper-graph in e.g. [START_REF] Chiara Angelini | Spectral detection on sparse hypergraphs[END_REF]. This model was considered in detail for p = 2 in [START_REF] Thibault Lesieur | Constrained low-rank matrix estimation: phase transitions, approximate message passing and applications[END_REF].

The above clustering prior has non-zero mean, and it also exhibits the transition ∆ c from a phase where recovery of clusters better than chance is not possible, to a phase where it is.

To analyze the SE equations we rst notice that the stable xed point will be of the form

M = bI r r + (1 -b)J r r 2 ∈ R r×r , b ∈ [0; 1] , (42) 
where I r is the identity matrix and J r is a matrix lled with ones. b = 0 means that the estimate of the marginals does not carry any information. b = 1 means perfect reconstruction. The state evolution now becomes

b t+1 = M r   r b t r + 1-b t r 2 p-1 -1-b t r 2 p-1 ∆    , (43) 
where M r is a function that was de ned and studied in [START_REF] Lesieur | MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel[END_REF]. Its Taylor expansion is 

m is a xed point of (43) when m = m(x) and ∆ = ∆(x). Rather than nding the xed point iteratively, the above equations allow us to draw all the xed point of (43), be it stable or unstable We have that m(x) is a stable xed point of (43) if and only if

∂∆(x) ∂x < 0 . ( 49 
)
The next question is whether there is a rst or second order phase transition at ∆ c . To answer this, one needs to analyze whether the xed point close to b = 0 is stable or unstable. For this we to compute ∂∆(x) ∂x at x = 0 to get using (44) that

∂∆(x) ∂x = p -1 2r 2p (-2p -r + pr) . (50) 
Therefore if -2p -r + pr > 0 there will be no stable xed point close to b = 0 and the system must have a rst order phase transition (discontinuity in the MSE AMP ) at ∆ c = ∆ Alg . For two clusters r = 2, there is a second order phase transition at ∆ c for all p ≥ 2. However, analyzing the state evolution numerically we observed that for p ≥ 5 there is a discontinuity later at some ∆ Alg < ∆ c . For three and more clusters r ≥ 3 we always have ∆ Alg = ∆ c , and for -2p-r +pr ≤ 0 we have not detected any other discontinuities. Values of ∆ IT for three clusters and some values of p are given in Table 1.
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 1 Figure 1: Left panel: Comparison between the AMP xed point reached from uninformative (marked with crosses) or informative (i.e. strongly correlated with the ground truth, marked with pluses) initialization and the xed point of the SE equations (stable xed point in blue, unstable in red). The data are for the Gaussian prior with mean µ = 0.2, unit variance, p = 3, r = 1. The AMP runs are done on a system of size N = 1000. Central panel: Phase diagram for the order p = 3 tensor factorization, rank r = 1, Gaussian prior of mean µ (x-axes) and unit variance. In the green-shaded zone AMP matches the information-theoretically optimal performance, MMSE = MSE AMP . In the orange-shaded zone MMSE < MSE AMP . The tri-critical point is located at µ Tri = (p -2)/(2 √ p -1) and ∆ Tri = x p-2 Tri /(1 + x Tri ) p-1 where x Tri = (p -2)(3p -4)/p 2 . Right panel: Phase diagram for the order p = 3 tensor factorization, rank r = 1, the Bernoulli prior as a function of ρ and ∆/ρ 4 . The tri-critical point is located at ρ Tri = 0.178 and ∆ Tri /ρ 4 = 2.60. As ρ → 0 we observed ∆ Alg /ρ 4 → 2e. Compare to Fig. 5 in [17] where the same phase diagram is presented for the matrix factorization p = 2 case.

M r (x) = x r 2 + x 2 r -4 2r 4 +

 24 O x 3 . (44)We further notice that b = 0 is always a xed point of (43). By expanding (43) to rst order one getsb t+1 = b t p -1 ∆r 2p-2 + O b t 2 . (45)This xed point therefore becomes unstable when∆ < ∆ c ≡ p -1 r 2p-2 .(46)By analyzing eq. (43) further we can prove that ∀x ∈ R + m(x) = M r (x)
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 1 Examples of the information-theoretic ∆ IT and algorithmic ∆ Alg thresholds for order-p tensor decomposition for di erent priors on the factors. For the Gaussian case ∆ IT p log(p) converges to 1 at large p.
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