
HAL Id: cea-01549318
https://cea.hal.science/cea-01549318

Submitted on 28 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of Integrated Nano Materials
Amal Chabli, Peter Cherns, Chevalier Nicolas, David Cooper, Lafond

Dominique, François Bertin, Henri Blanc, A. Brenac, Philippe Andreucci,
Jean Christophe Gabriel

To cite this version:
Amal Chabli, Peter Cherns, Chevalier Nicolas, David Cooper, Lafond Dominique, et al.. Charac-
terization of Integrated Nano Materials. 2009 International Conference on Frontiers of Characteri-
zation and Metrology for Nanoelectronics, May 2009, Albany, New York, United States. pp.12-20,
�10.1063/1.3251207�. �cea-01549318�

https://cea.hal.science/cea-01549318
https://hal.archives-ouvertes.fr


FRONTIERS OF
CHARACTERIZATION
AND METROLOGY FOR
NANOELECTRONICS
2009 International Conference on Frontiers of
Characterization and Metrology for Nanoelectronics

Albany, New York            11 – 15  May 2009

SPONSORING ORGANIZATIONS
National Institute of Standards & Technology
College of Nanoscale Science & Engineering, SUNY Albany
Semiconductor Equipment & Materials International
Semiconductor Research Corporation
International SEMATECH Manufacturing Initiative
Semiconductor International
National Science Foundation
American Physical Society
American Vacuum Society

All papers have been peer-reviewed.

CD-ROM INCLUDED

Melville, New York, 2009
AIP CONFERENCE PROCEEDINGS      VOLUME 1173

EDITORS
David G. Seiler

National Institute of Standards & Technology
Gaithersburg, Maryland

Alain C. Diebold  
College of Nanoscale Science & Engineering

SUNY Albany, New York

Robert McDonald
Technology Associates

Monte Sereno, California

C. Michael Garner
Intel, Santa Clara, California

Dan Herr
Semiconductor Research Corporation 
Research Triangle Park, North Carolina 

Rajinder P. Khosla
National Science Foundation

Arlington, Virginia

Erik M. Secula
National Institute of Standards & Technology 

Gaithersburg, Maryland

EXHIBITORS
Bruker AXS, Inc.
Omicron NanoTechnoloy, USA



Characterization of Integrated Nano Materials 

Amal Chabli, Peter Cherns, Nicolas Chevalier, David Cooper, Dominique 
Lafond, François Bertin, Henri Blanc, Ariel Brenac, Philippe Andreucci 

and Jean-Christophe Gabriel 

CEA, LETI, MINATEC, F38054 Grenoble, France 

Abstract.  Depending on the level of the technological developments, the characterization techniques are mature to 
support them or still require protocol definition and relevance demonstration for the issues addressed. For Beyond 
CMOS and Extreme CMOS devices, the integration of nano-objects like nanowires and carbon nanotubes, brings about 
analysis requirements that are at the frontier of the state-of-the-art characterization techniques. The specific limitations 
of the use of the existing physical and chemical characterization techniques for integrated nanomaterials are highlighted. 
In the case of Scanning Probe Microscopy, in-situ localization and positioning are specifically challenging and data 
analysis is mainly statistical. It is also shown how specific sample preparation may serve the extraction of the required 
3D information in particular for Electron Microscopy. The measurement developments related to NEMS technologies 
guided by the need for dynamic characterization of these components are covered too.  

Keywords: 3D characterization, Microscopy, Tomography, Dynamic properties, Nanowires, Nanotubes, Nanoneedle. 
PACS: 68.37.-d; 81.07.-b 

INTRODUCTION 

The increasing interest for size effects on material 
properties has driven an important effort in the 
development of physical and chemical characterization 
techniques at the nanoscale. Impressive capabilities in 
terms of sensitivity, selectivity, depth resolution and 
spatial resolution are demonstrated. They may be 
based on huge instrumental effort including 
synchrotron radiation use [1] or advanced 
configurations of probe-sample interaction such as the 
inelastic electron tunneling spectroscopy performed in 
a scanning tunneling microscope [2]. Moreover, 
powerful simulations for data interpretation are 
required to extend for example the use of x-ray to the 
structural characterization of nanocrystalline materials 
[3]. All these improvements sustain nanoscience 
research promoting innovative nanocomponent design.  

However, only few characterization developments 
address the integration issues. The integration of nano 
material has to deal with process selectivity; process 
reproducibility and uniformity; self organisation; 
localisation; connection and manipulation at the 
nanoscale while keeping the basic properties of the 
nanomaterial during these processes. The integration 
of nano-objects like nanowires and carbon nanotubes, 
brings about analysis requirements that are at the 

frontier of the state-of-the-art characterization 
techniques. Furthermore, the Beyond CMOS 
technology issues would call for anticipating the 
characterization challenges related to the 3D-
information that will be needed. 

In this paper, we highlight the specific limitations 
of the use of the existing physical and chemical 
characterization techniques for integrated 
nanomaterials. Extension of the 2D information 
capabilities of Scanning Probe Microscopy for the 
characterization of integrated nanostructures will be 
overviewed. Then we show how specific sample 
preparation may serve the extraction of the required 
3D information, taking electron microscopy as a 
demonstration technique. Finally, the 3D integration 
and NEMS (Nano Electro Mechanical Systems) 
technologies set specific characterization conditions 
related to the very high aspect ratio and to the motion 
of the integrated nanostructures that will be pointed 
out. 

CHARACTERIZATION CHALLENGES 
VS ISSUES OF BEYOND CMOS AND 

MEMS/NEMS TECHNOLOGIES 

It is commonly considered that the technological 
research is governed by three main driving forces. The 
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micro and nanotechnology driving forces are depicted 
schematically on figure 1 regarding both the device 
scaling down level and the technological node 
considered. The first driving force is the continuous 
scaling down requirements of the “More Moore” 
developments. The second one is the complexity 
increase of the device functions with the use of other 
material properties than the electronic ones 
(mechanical, thermal, piezoelectric, biochemical, 
optical…) leading to the “More Than Moore” 
developments. The convergence of this two driving 
force is expected to result from the 3D integration 
below the 22 nm node. The third driving force, related 
to the so called “beyond CMOS” developments, is a 
bottom up approach. While the two first driving forces 
are used to deal with integration of materials, the last 
one is still at the stage of understanding and 
controlling the physical and chemical properties of 
different kinds of nanoscale materials. 

Even though, the technological investigations are 
always concerned by new material introduction and 
new integration process evaluation in order to meet the 
requirements of these driving forces. The role of the 
physical and chemical characterization is to support all 
together, the material choice and its improvement, the 
analysis of scaling effects and their use or correction, 
and the design of integration processes and their 
validation. Depending on the level of the technological 
developments, the characterization techniques are 
mature to support them or still require protocol 
definition and relevance demonstration for the issues 
addressed. 
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FIGURE 1.  Status of the physical and chemical 
characterization developments as required by the micro and 
nanotechnology driving forces. 

As indicated in figure 1, until the 45 nm node, the 
integrated materials are in general available as full 
wafer layers. The process improvement and control 
requires mainly 1D information. However, the sub-
nanometer depth resolution is mandatory due to the 
layer thickness decrease with device scaling down. 

During the ten last years, several characterization 
techniques have been demonstrated to reach the sub-
nanometer depth resolution in specific configurations 
for the analysis of metal gate stacks or Cu interconnect 
stacks. At least four of them may be mentioned: (i) 
Secondary Ion Mass Spectrometry (SIMS) using Cs 
primary ions and MCs secondary cluster ions for the 
M atom analysis [4], (ii) Medium Energy Ion 
Scattering (MEIS) with its specific sensitivity to heavy 
atoms like Hf or Zr [5], (iii) Photoelectron 
Spectroscopy (PES) using the angle resolved mode for 
the selectivity of the analysis depth [6,7] and (iv) 
infrared spectrometry in the Attenuated Total 
Reflection optical configuration (ATR) [8]. They are 
always complementary to electron microscopy even if 
this latter technique shows the ultimate spatial 
resolution in the transmission mode (TEM). Indeed, 
TEM is still limited by its poor chemical sensitivity 
and both the time consuming and the artifact 
generation of the sample preparation. 

Below the 45 nm node, several integrated materials 
are not available on full wafers and process steps 
simulated on full wafers are no more representative of 
the integration processes. This is the case of the SiGe 
selective epitaxy, growth of self aligned barriers, 
narrow Cu lines in damascene structures and ultra 
shallow doping of source and drain areas. Then, the 
support of the technology development requires 
mainly 2D information. This has led to an impressive 
improvement of the characterization techniques in 
terms of lateral resolution inducing the set up of 
imaging capabilities too. Indeed, SIMS in the Time-
Of-Flight mass selection mode together with the dual 
primary source shows imaging capabilities that allow 
Cl contamination analysis in Cu lines [9]. Thanks to 
the introduction of aberration corrected electron 
analyzers, full field imaging PES demonstrates highly 
promising spatial resolution for chemical surface 
analysis [10]. Also, electrical Scanning Probe 
Microscopies (SPMs), based on Atomic Force 
Microscopy (AFM), gained specific attention related 
to the various operating modes that allow selecting the 
probe-sample interaction depending on the wanted 
information. Thus, Scanning Probe Microscopy (SCM) 
and Scanning Spreading Resistance Microscopy 
(SSRM) are used in contact mode with a conducting 
probe for doping imaging and junction delineation 
capabilities [11-15]. More recently, local work 
function measurement by Kelvin Force Microscopy 
(KFM) has been proposed to support the metal gate 
developments [16]. Generally, surface topography is a 
limiting parameter for reliable image interpretation. 

At the same time, a great effort has been undergone 
to improve TEM column stability and aberration 
correction allowing uppermost spatial resolution [17] 
and increased sensitivity through longer integration 
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times. This is highlighted in figure 2 that shows the 
effect of the increased integration time on the signal to 
noise ratio in phase images obtained on a CMOS 
device examined using off-axis electron holography.  

 

100nm100nm100nm

(a) 
100nm100nm100nm

(b) 
 
FIGURE 2.  Reconstructed phase image obtained using off-
axis electron holography on a CMOS device with an 
integration time of (a) 4s and (b) 45s thanks to the column 
stability of the FEI Titan microscope and a well controlled 
TEM environment. 

Holograms recorded for integration times up to 
128 s result in measuring steps in potential of less than 
0.030±0.003 V giving access to an improved 
sensitivity in 2D doping profiles as shown on figure 3. 
For that, the TEM specimens are prepared as lamellae 
that need to be in the thickness range 400 to 500 nm 
that should be as constant as possible on the whole 
field of view [18]. 

 

200 nm200 nm

 
 

FIGURE 3.  Reconstructed phase image in false colors 
obtained using off-axis electron holography on 45 nm 
CMOS structures thanks to a controlled sample thickness on 
a wide field of view and the TEM stability. 

Nevertheless, one has to take sufficient care during 
sample preparation to obtain quantitative information 
as reported by D. Cooper et al. [19]. In addition, the 
reliable analysis is based on the assumption of 
constant properties throughout the whole specimen 
thickness. 

Despite these effective and decisive improvements 
in sensitivity, selectivity and spatial resolution, the 45 
nm node technology developments are still waiting for 
some relevance demonstration of the analysis 
techniques and the set-up of specific characterization 
protocols. 

Then, below the 22 nm node, the 3D integration 
and the integration of nanomaterials is bringing 

analysis requirements that are at the frontier of the 
state-of-the-art characterization techniques. 
Furthermore, the Beyond CMOS technology issues 
would call for anticipating specific characterization 
challenges. For example, the presence of a nanoscale 
material within the lamella specimen for TEM is no 
more respectful of the constant properties assumption 
in the lamella thickness. Thus, a 3D-information is 
mandatory to overcome the breakdown of this 
assumption. 

As a matter of fact, ongoing comprehensive 
developments have to provide the 3D information that 
will be required. We will not elaborate on the whole 
developments covering 3D characterization. An 
extensive literature may be found in a very recent 
review paper [20]. TEM tomography [20], X-ray 
tomography [21] or atom probe analysis [22,23] are 
clearly of interest in our field. Instead we will focus on 
the possible extension of 2D characterization to 
integrated nanomaterials and on the TEM capabilities 
for tomography. This will highlight the mandatory 
specific sample preparation developments to get 
reliable 3D information from a general point of view. 
Then a particular attention will be given to the 
characterization issues related to devices based on 
nanomaterial motion like NEMS. 

2D ELECTRICAL SPM 
CHARACTERIZATION 

As indicated previously, electrical SPMs are 
widely used to probe samples with low surface 
topography. They are also easily applied to study 
transport properties of individual nanomaterials using 
specific contact design and nanomaterial positioning 
[24]. However, it is not straightforward to extend their 
use to integrated nanomaterials like vertically grown 
nanotubes and nanowires (NWs) on a substrate. Figure 
4 shows a scheme of the possible extension of the use 
of the electrical SPMs to characterize the electrical 
properties of as grown vertical nanomaterials.  
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FIGURE 4. Scheme of the electrical Electrical SPM  
                                                                                                             characterization of as grown vertical nanomaterials SSRM 
                                                                                                             configuration used for local electrical characterization
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They may be first embedded in a dielectric material 
like a polymer or a spin on glass (SOG) as shown by 
the Scanning Electron Microscopy (SEM) cross 
section of carbon nanofibers (CNF) in figure 5. 
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FIGURE 5.  SEM view of CNF embedded in SOG to allow 
SPM electrical measurements. 

SSRM measurements performed on these 
embedded CNF grown on a TiN layer are given in 
figure 6. A one to one correlation between topography 
and electrical images indicates that bright spots on the 
SSRM images are related to individual CNF.  

 

 
(a) 

 
(b) 

 
FIGURE 6.  SPMs in contact mode on embedded vertical 
CNF: (a) AFM topography (amplitude range of about 300 
nm), (b) SSRM measurement using a PtIr coated silicon tip 
(brightest points in the electrical image correspond to the 
more conductive CNF). 

A resistance distribution is observed and is widely 
discussed by L. Fourdrinier et al. [25]. Apart from the 
explanation for the measured resistance distribution 
which is assumed to be related to the TiN layer 
roughness, these measurements shows that the 
properties of the integrated nanomaterials would 
highly depend on their environment and they would 
hardly keep their intrinsic properties. At least, only a 
statistical analysis as given in figure 7 is significant 
considering these integrated CNF. 

In the same manner, SPM characterizations were 
performed on non-intentionally doped n-type ZnO 
nanowires embedded in a polymer matrix. Transport 
properties investigations using SCM revealed local p-
type space charge regions spreading over the outer 
shell of the polymer-coated ZnO NW. Correlatively, 
different electrical behaviors were found for the core 
and shell parts of the nanowires using SSRM. 

 
 
FIGURE 7.  SPMs in contact mode on embedded vertical 
CNF: statistical analysis of the SSRM measurement 
performed on about 200 CNFs after calibration and 
conversion of the SSRM signal in resistance units [26]. 

Examples of the results are shown on figure 8. A 
self-consistent electrical transport model was 
developed based on Fermi level pinning at surface 
states arising from the surrounding environment [27]. 
Here again, the 2D electrical measurements have 
shown that keeping the intrinsic properties of 
nanomaterials during their integration is a central 
issue. 
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FIGURE 8.  ZnO nanowire embedded in polymer: (a) AFM 
topography; (b) SCM measurement using a PtIr coated 
silicon tip. 

Through these experiments, SPMs are revealed as 
powerful techniques for the analysis of vertically 
integrated nanomaterials with almost no sample 
preparation. However, their extensive use is still 
limited by AFM tip wearing that is not easily detected 
during the measurements. Only a post-measurement 
inspection under SEM observation helps to control the 
tip state as illustrated in figure 9.  

Moreover, in the reported experiments, both CNFs 
and ZnO NWs are randomly grown on the wafer. 
Thus, the AFM probe does not need to be accurately 
positioned on the sample and the electrical path is 
easily defined by substrate back contact (fig. 4). 

Then SPM measurements become challenging 
when in-situ localization and positioning are required 
at the nanoscale. On one hand, the magnification of the 
optical microscopes available on the commercial AFM 
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tools is not always sufficient to allow direct 
localization of the feature to be analyzed. Time 
consuming successive SPM imaging must be 
performed before the final acquisition. This is not 
compatible with tip life time issues. On the other hand, 
depending on the nanomaterial integration 
architecture, the electrical path for the SPM 
measurements is not possible through the substrate 
back contact. 

 

500 nm500 nm500 nm
 

(a) 

500 nm500 nm500 nm
 

(b) 

500 nm500 nm500 nm
 

(c) 
FIGURE 9.  SEM observation of SPM tip: (a) Diamond 
coated Si tip before use; (b) Diamond coated Si tip and (c) 
PtIr coated Si tip after SSRM measurements. 

To overcome these limitations, coupling SEM with 
AFM has been previously proposed. Electrical contact 
issues are specifically addressed by Troyon et al.[28]. 
Another emerging solution is a multiprobe system as 
proposed by X. Lin et al. [29]. 

3D TEM CHARACTERIZATION 

As pointed out above, when the sample structure is 
not homogeneous through the whole TEM lamella 
thickness, the 3D information becomes mandatory for 
a complete analysis. The device shown on figure 10 
exemplifies clearly that kind of configuration.  

 

50 nm50 nm  
(a) 

50 nm50 nm  
(b) 

 
FIGURE 10.  2D images bright field TEM of a complex 
device inducing a TEM sample lamellae with in-depth 
heterogeneous structure: (a) lamella A and (b) lamella B 
(lamellae A and B are perpendicular to each other, lines 
added to the bright field image of lamella A indicate the 
position of the lamella B). 

Two separated TEM lamellae has been prepared to 
control the morphology of the devices from 
perpendicular observations as shown on figures 10a 

and b. Different devices have been used to get these 
two observations making difficult to extract correlative 
information. Figure 11 shows the 2D high angle 
annular dark field (HAADF) image obtained on a 
TEM lamella prepared as indicated by the lines added 
on the bright field image of figure 10a. As a matter of 
fact, the full structure of the device may not be 
identified from the unique view of this complex 
device.  
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FIGURE 11.  HAADF STEM image of lamella B of fig. 10. 

High-resolution 3D tomography imaging in TEM 
may be obtained when images are recorded every one 
or two degrees about a tilt axis, over a specimen tilt 
range as large as possible. These series of tilted images 
is ‘back-projected’ to form a full 3-dimensional image 
of the sample, namely the 3D reconstruction. In 
principle, all the imaging modes available in the TEM 
may be used.  

The powerful 3D information has been previously 
reported for quantitative analysis of pore size in low k 
materials [30]. Taking advantage of the distinctly 
different plasmon loss for Si and SiOx, the complicated 
shapes of nanosized particles of silicon embedded in 
silicon oxide has been demonstrated using 3D 
reconstruction from TEM tilt series [31]. They were 
previously assumed as simple spheres. This 
emphasizes the limited information provided by 
conventional 2-dimensional electron-microscope 
images for this kind of nanomaterials. 

For the device of figure 10, the lamella B has been 
used for analysis by electron tomography on a probe 
corrected Titan TEM from FEI. To allow high tilt for 
tomography, a Fischione 2020 sample holder is used. 
All tilt series have been acquired using HAADF 
STEM imaging. Each tilt series consists of 151 
images, acquired with 1° steps, between ± 75°. The 
post-acquisition tilt series alignment and 3D 
reconstruction was carried out using the FEI Inspect 
3D software. The simultaneous iterative reconstruction 
technique (SIRT) algorithm, with 25 iterations, was 
used for the reconstruction. Visualisation and analysis 
has been carried out using the visualisation software 
suites Amira and Chimera. The reconstructed three-
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dimensional image is shown on figure 12 and the 3D 
structure of the device is revealed. This structure could 
not be resolved with the conventional 2D TEM 
observation. 
 

 
 

FIGURE 12.  Reconstructed 3D image from HAADF 
STEM tilt series of the device of figure 10. 

However, even with a 3D reconstruction, an 
accurate analysis of the results may reveal some 
artifacts that will be highlighted on the next example. 
Figure 13a shows the sample structure under concern 
which is based on NWs integration through a top down 
process described elsewhere [32]. First tilt series are 
recorded on a conventional lamella (fig. 13b) obtained 
by Focused Ion Beam (FIB) sample preparation.  

 

(a)  
 

(b)  
 

FIGURE 13.  NWs device TEM tomography imaging (a) 
Nanowire schematic structure; (b) SEM view of the lamella 
sample preparation. 

As demonstrated by the two selected views of the 
tilt series in figure 14, the wire cross section is lost 
during the reconstruction. Indeed, at the high tilt angle, 
the sample thickness causes degradation in image 
quality and shadowing from heavy elements. Both 
these problems limited the available tilt range and 

therefore increased distortions caused by the missing 
wedge. 

 

 
 

FIGURE 14.  NWs device TEM tomography imaging: Two 
views of the TEM image series acquired for tomography. 

To overcome these limitations, use of needle 
shaped specimens prepared using annular milling in 
the FIB has been previously proposed [33, 34]. The 
end result is that the device is isolated inside a 350 nm 
diameter needle (fig. 15a and b). The preparation in 
this case is more specialized and therefore more time-
consuming, but the final sample can be tilted over the 
full tilt range of the holder without issues of 
shadowing or thickness changes, as demonstrated in 
figure 15c. 

 

350nm350nm
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WiresWires
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(d) 

 
FIGURE 15.  Needle shaped specimen for reliable 3D TEM 
tomography on integrated NWs: (a) SEM view of the FIB 
prepared needle; (b) HAADF STEM image showing the 
vertically aligned NWs in the needle; (c) extreme angle 
images of the tilt series (d) Iso-surface representation of 
NWs device showing boundaries of TiN layers. 

50 nm50 nm50 nm
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Figures 15d demonstrate that the reconstruction 
from the NWs device has been successful. An iso-
surface representation of the tomogram is presented. 
The threshold in this image is set at the intensity level 
of the TiN encapsulating layer. In this case, the SiGe 
wire is not directly represented, but the location of its 
boundary is inferred from the shape of the 3 nm HfO2 
surround, allowing analysis of changes in thickness 
and morphology on the whole length of the NWs. 

As a summary of this section, 3D information 
clearly appears as mandatory for the characterization 
of integrated nanomaterials. Moreover, we have made 
a specific focus on the sample preparation issue even if 
it is not the only one. Even with the optimized needle 
preparation, depending on the sample in-depth 
structure, some reconstruction artefacts may still occur 
and will be analysed elsewhere. This call for the 
development of improved reconstruction algorithms 
that should take into account complementary 
information obtained from chemical analysis for 
example [35]. 

NANOSCALE DYNAMICAL 
CHARACTERIZATION 

NEMS devices are emerging as a new field of 
interest because they can simultaneously offer 
compatibility with CMOS integration and also specific 
advantages such as the potential for ultra-miniature 
size elements, low power consumption, high resonant 
frequencies and enhanced detection sensitivity. NEMS 
can be used in a wide range of applications such as 
low-pass sensors (accelerometer, etc.), resonant 
sensors (mass sensor, etc.), or even clock time 
references [36]. Thus integrating on the same die a 
CMOS circuit and a NEMS is of increasing interest 
from the technological point of view. This integration 
brings about specific characterization challenges 
related to the NEMS structures that show unusual 
aspect ratios with regards to the CMOS technologies. 
Indeed, structures like the one viewed on figure 16 
associate micrometer scale together with nanometer 
scale dimensions, implying a high spatial resolution 
together with a wide field of view for the 
morphological characterization. 

Since NEMS are aimed to be used for various 
applications like chemical sensors, not only 
morphological characterizations are needed but also 
the use of all the powerful chemical and electrical 
characterization techniques mentioned in the previous 
sections is required. It is obvious that these NEMS 
structures will call for some specific sample 
preparations that are not covered here.  

In addition to the challenges related to the 
characterization of integrated nanomaterials, the 

NEMS manufacturing process faces a specific issue 
related to the control of the dynamical performances of 
the mobile parts of the devices. 

 

1 µm1 µm
 

 
FIGURE 16.  SEM view of a clock time reference radio 
frequency NEMS with high aspect ratio features. 

Up to now, one has to wait for the complete 
manufacturing process, including the encapsulation 
step, to test individual devices. Figure 17 shows the 
results of the mechanical device test through the final 
capacitive detection that requires interconnect level 
integration. 
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FIGURE 17.  Dynamical characterization using capacitive 
detection of the clock time reference radio frequency NEMS 
of figure 16. 

In order to improve the throughput of the 
electromechanical devices production, it would be 
desirable to characterize the dynamic behavior of the 
mechanical elements at earlier stages of integration, 
specifically before some interconnection integration 
steps. However, while many methods have been 
dedicated for the mechanical assessment of thin films, 
only few are able to address micromechanical devices 
[37]. Among them, optical stroboscopic interferometry 
has been reported for dynamic characterization of 
nanostructures for both out of plane and in plane 
vibrations [38]. This technique has proved its 
efficiency for MEMS, but its extension to NEMS faces 
a spatial resolution limitation. More recently, 
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improvements in spatial resolution are proposed by 
using electron stroboscopic detection [39]. The motion 
is detected by scanning the SEM electron beam across 
the edge of the mobile structure and analyzing the 
yield of the secondary electrons. This characterization 
still requires integrated actuation of the NEMS and 
does not overcome interconnect process step for the 
NEMS test. 

In a very large scale integration (VLSI) scheme for 
NEMS manufacturing, the measurement of dynamical 
properties at intermediate process steps, before device 
completion, is the key for effective process 
improvements and manufacturing cost reduction. 
Indeed, it is foreseen that a large number of mobile 
structures will be present on the same wafer as shown 
on figure 18. 

 

5µm5µm
 

 
FIGURE 18.  SEM view of NEMS array manufactured in a 
VLSI scheme 

As performed for the CMOS development, it would 
be useful to test mechanically each of these structures 
before any interconnect step. However, at this stage of 
the process, neither the detection layers, nor the 
actuation layers are available to allow the dynamic 
characterization of the mobile structures. As a 
conclusion, this means that actuation and detection 
systems external to the device and using nanometer 
scale probes are still to be proposed. 

SUMMARY 

Depending on the level of the technological 
developments, the characterization techniques are 
mature to support them or still require protocol 
definition and relevance demonstration for the issues 
addressed. For Beyond CMOS and Extreme CMOS 
devices, the integration of nano-objects like nanowires 
and carbon nanotubes, brings about analysis 
requirements that are at the frontier of the state-of-the-
art characterization techniques. The specific 
limitations of the use of the existing physical and 
chemical characterization techniques for integrated 
nanomaterials have been highlighted from three 
different characterization aspects.  

First, the use of Scanning Probe Microscopy has 
demonstrated that keeping the intrinsic properties of 
nanomaterials during their integration is a central 
issue. Moreover, in-situ localization and positioning 
are specifically challenging and data analysis is mainly 
statistical.  

Then the extraction of the reliable 3D information 
that is mandatory for integrated nanomaterials needs 
specific sample preparation. Nanoneedle sample 
preparation is demonstrated to overcome some 
reconstruction artifacts. However, the need for full 
360° tilt series and reconstruction algorithms taking 
into account physical properties of the integrated 
materials, like heavy elements, are required for reliable 
results. 

Finally, the measurement developments related to 
NEMS technologies guided by the need for dynamic 
characterization of these components are shown to be 
the key issue for the VLSI objective. 
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