
HAL Id: cea-01548491
https://cea.hal.science/cea-01548491

Submitted on 21 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A question of separation: disentangling tracer bias and
gravitational nonlinearity with counts-in-cells statistics
Cora Uhlemann, Martin Feix, Sandrine Codis, Christophe Pichon, Francis

Bernardeau, Benjamin L’Huillier, Juhan Kim, Sungwook E. Hong, Changbom
Park, Jihye Shin, et al.

To cite this version:
Cora Uhlemann, Martin Feix, Sandrine Codis, Christophe Pichon, Francis Bernardeau, et al.. A ques-
tion of separation: disentangling tracer bias and gravitational nonlinearity with counts-in-cells statis-
tics. Monthly Notices of the Royal Astronomical Society, 2018, 473 (4), pp.5098-5112. �10.1093/mn-
ras/stx2616�. �cea-01548491�

https://cea.hal.science/cea-01548491
https://hal.archives-ouvertes.fr


MNRAS 473, 5098–5112 (2018) doi:10.1093/mnras/stx2616
Advance Access publication 2017 October 9

A question of separation: disentangling tracer bias and gravitational
non-linearity with counts-in-cells statistics

C. Uhlemann,1‹ M. Feix,2 S. Codis,2,3,4‹ C. Pichon,2,5 F. Bernardeau,2,4 B. L’Huillier,6

J. Kim,5 S. E. Hong,6 C. Laigle,7 C. Park,5 J. Shin5 and D. Pogosyan8

1Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE, Utrecht, the Netherlands
2CNRS, UMR 7095 & UPMC, Institut d’Astrophysique de Paris, 98 bis Boulevard Arago, F-75014, Paris, France
3Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada
4CNRS & CEA, UMR 3681, Institut de Physique Théorique, F-91191, Gif-sur-Yvette, France
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ABSTRACT
Starting from a very accurate model for density-in-cells statistics of dark matter based on
large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts
a mean bias relation based on a quadratic bias model to relate the log-densities of dark
matter to those of mass-weighted dark haloes in real and redshift space. The validity of the
parametrized bias model is established using a parametrization-independent extraction of the
bias function. This average bias model is then combined with the dark matter PDF, neglecting
any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics
of mass tracers that is parametrized in terms of the underlying dark matter variance and
three bias parameters. The procedure is validated on measurements of both the one- and two-
point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing
excellent agreement for measured dark matter variance and bias parameters. Finally, it is
demonstrated that this formalism allows for a joint estimation of the non-linear dark matter
variance and the bias parameters using solely the statistics of subhaloes. Having verified that
galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h−1 closely
resemble those of subhaloes, this work provides important steps towards making theoretical
predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or
WFIRST.

Key words: large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Counts-in-cells statistics of galaxies have been extracted from ob-
servations in numerous works (Sheth, Mo & Saslaw 1994; Sza-
pudi, Meiksin & Nichol 1996; Adelberger et al. 1998; Yang &
Saslaw 2011; Wolk et al. 2013; Bel et al. 2016; Clerkin et al. 2017;
Hurtado-Gil et al. 2017) spanning data sets from IRAS over SDSS to
VIPERS and DES science verification. Conversely, significant the-
oretical progress has been made in analytically predicting the statis-
tics of dark matter densities-in-spheres based on perturbation the-
ory and local collapse models (Fry 1985; Balian & Schaeffer 1989;
Bernardeau 1992, 1994a; Juszkiewicz, Bouchet & Colombi 1993;

� E-mail: cu226@cam.ac.uk (CU); codis@iap.fr (SC)

Munshi, Sahni & Starobinsky 1994; Bernardeau & Kofman 1995;
Juszkiewicz et al. 1995; Scoccimarro & Frieman 1996; Fos-
alba & Gaztanaga 1998; Gaztañaga, Fosalba & Elizalde 2000;
Valageas 2002a; Ohta, Kayo & Taruya 2003, providing only a non-
exhaustive list of previous work), which has been recently refor-
mulated in terms of the theory of rare events (Bernardeau 1994b;
Valageas 2002b; Bernardeau, Pichon & Codis 2014; Bernardeau,
Codis & Pichon 2015; Bernardeau & Reimberg 2016) with Uhle-
mann et al. (2016) achieving percent accuracy on the dark matter
density PDF compared to state-of-the-art numerical simulations on
scales of �10 Mpc h−1.

Such joint progress should now allow us to extract informa-
tion from the mildly non-linear regime so as to efficiently improve
the estimation of cosmological parameters as this formalism al-
lows for analytical predictions in this regime. Achieving this goal
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requires to relate the predictions for dark matter densities in spheres
to galaxy counts which constitute biased tracers of the underlying
matter field. Indeed, in addition to non-linear gravitational dynam-
ics and the effect of redshift-space distortions, clustering analyses
of large-scale structure (LSS) are hampered by the fact that astro-
nomical objects such as galaxies do not trivially trace the underlying
dark matter distribution (see Desjacques, Jeong & Schmidt 2016,
for a recent review). This problem has been known for a long
time (e.g. Abell 1958; Dressler 1980; Bahcall & Soneira 1983;
Kaiser 1984; Coles 1986), and was subsequently confirmed in cos-
mological simulations demonstrating that haloes and galaxies are
biased with respect to dark matter (e.g. Cen & Ostriker 1992; Kauff-
mann, Nusser & Steinmetz 1997; Blanton et al. 1999; Somerville
et al. 2000). Since then several approaches have been pursued to
accurately model these biasing relations. One main complication is
that galaxy bias is generally a non-local and stochastic function of
the dark matter field due to the varied physical processes partaking
in galaxy formation (Dekel & Lahav 1999; Scoccimarro 2000). Yet,
smoothing the matter density fields over sufficiently large scales
mitigates the effects of non-locality and allows a sound descrip-
tion in terms of local bias expansions (e.g. Fry & Gaztanaga 1993)
which aim at absorbing the underlying physics into a finite set of
parameters. Later work has put such perturbative approaches on
to firmer grounds by including non-local contributions and provid-
ing a consistent theoretical framework for the statistics of biased
LSS tracers (e.g. Baldauf et al. 2011; Matsubara 2011; Schmidt,
Jeong & Desjacques 2013; Senatore 2015; Porto 2016). Galaxies
are believed to form inside the potential wells of dark matter haloes
whose biasing properties can be systematically studied in numerical
simulations or by means of analytic methods. Assuming that dark
matter haloes are associated with peaks of the initial density field,
the peak approach (Kaiser 1984; Bardeen et al. 1986) provides
a non-perturbative model for biased populations and reasonably
agrees with the abundance and the linear bias of virialized haloes.
Concerning non-linearity as well as its dependence on other pa-
rameters like halo mass and scale, the bias of dark matter haloes is
well approximated within the halo model (e.g. Mo & White 1996;
Sheth & Tormen 1999; Cooray & Sheth 2002) based on the ex-
cursion set approach (Bond et al. 1991). Its relation to galaxies
is typically quantified by combining cosmological N-body simu-
lations with semianalytic models of galaxy formation (Kauffmann
et al. 1999; Berlind & Weinberg 2002; Baugh 2006; Mo, van den
Bosch & White 2010).

This paper will start from the dark matter side and make one
crucial step towards reality by considering subhaloes, as the host of
and proxies for galaxies and dark matter tracers. Such subhaloes can
be extracted reliably from large cosmological simulations such as
Horizon Run 4 (HR4; Kim et al. 2015) that contain enough statistics
to extract continuous PDFs. Note that the focus is on the issue of
biasing for the PDF, such that it is not so essential which tracers are
chosen. However, the link between subhaloes and galaxies will also
be discussed based on recent results from Horizon-AGN (Dubois
et al. 2014a), a cosmological hydrodynamical simulation that cap-
tures the evolutionary trends of observed galaxies over the lifetime
of the Universe. The relation between continuous PDFs and discrete
galaxy counts is briefly addressed, see Bel et al. (2016) for a recent
and more exhaustive consideration of observational effects such as
masking in galaxy surveys.

In general, biasing is a notoriously challenging problem that
requires the formulation of non-local and stochastic relationships
between dark matter and tracer densities. This paper will how-
ever show that for the purpose of obtaining the one- and two-point

statistics of tracer densities in ∼10 Mpc h−1 spheres, a mean local
relationship (hence neglecting the scatter altogether) is enough to
obtain predictions that are as accurate as the underlying statistics
of dark matter densities. It will also show that the joint analysis of
one- and two-cells counts allows us to lift the degeneracy between
bias and dark matter variance, providing a key step towards mak-
ing count-in-cells statistics applicable to upcoming galaxy surveys
like Euclid or LSST, for the purpose of extracting cosmological
parameters in the mildly non-linear regime.

This paper is organized as follows. Section 2 recaps the results
presented in Uhlemann et al. (2016) for the dark matter density
PDF. Section 3 turns to the bias between dark matter and tracer
densities. After describing the HR4 simulation and the halo iden-
tification scheme, an analytic bias model is formulated and com-
pared to measurements from the simulation using scatter plots and
a parametrization-independent bias extraction. Based on Horizon-
AGN, the similarity of the mean bias relations for galaxies and
haloes is established and the influence of the scatter is assessed.
Section 4 combines the bias model with the one-point dark mat-
ter PDF and two-point sphere bias to obtain the one-point halo
PDF and two-point halo bias and establishes its accuracy against
simulations. Section 5 implements this formalism to estimate si-
multaneously variance and biasing, and discusses applications and
extensions. Finally, Section 6 concludes. Appendix B compares the
large deviation statistics (LDS) prediction to the lognormal models.
Appendix C shows perturbatively why the joint analysis of the one-
and two-point statistics breaks the degeneracy on tracer bias and
dark matter variance. Appendix D describes the hydrodynamical
simulation Horizon-AGN.

2 T H E DA R K M AT T E R D E N S I T Y PD F

As shown in Uhlemann et al. (2016), the PDF for dark matter
densities ρm within a sphere of radius R at redshift z, valid in
the mildly non-linear regime, can be obtained from LDS and is
expressed as

PR(ρm)=
√

� ′′
R(ρm) + � ′

R(ρm)/ρm

2πσ 2
μ

exp

(
−�R(ρm)

σ 2
μ

)
, (1)

where the prime denotes a derivative with respect to ρm and

�R(ρm) = τ 2
SC(ρm)σ 2

L (R)

2σ 2
L (Rρ

1/3
m )

. (2)

Here, σμ ≡ σμ(R, z) is the non-linear variance of the log-density
(because the formula has been derived from an analytic approxima-
tion based on the log-density μm = log ρm) while σ L is the linear
variance determined from the initial power spectrum PL using the
Fourier transform of the spherical top-hat filter W

σL(r) =
∫

d3k (2π)−3PL(k)W (kr)2 . (3)

τ SC(ρm) is the linear density contrast averaged within the La-
grangian radius r = Rρ1/3

m which can be mapped to the non-linearly
evolved density ρm within radius R using the spherical collapse
model. For this, an accurate approximation has been introduced by
Bernardeau (1992) according to

ρSC(τ ) = (1 − τ/ν)−ν ⇔ τSC(ρ) = ν(1 − ρ−1/ν) , (4)

where the parameter ν characterises the dynamics of spherical
collapse. Here, we choose ν = 21/13 to exactly match the high-
redshift skewness obtained from perturbation theory (Bernardeau
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et al. 2014). To ensure a unit mean density and the correct normal-
ization of the PDF, one can simply evaluate the PDF obtained from
equation (1) according to

P̂R(ρm) = PR

(
ρm

〈ρm〉
〈1〉

)
· 〈ρm〉

〈1〉2
, (5)

with the shorthand notation 〈f (ρm)〉 = ∫ ∞
0 dρm f (ρm)PR(ρm). This

step is necessary as equation (1) ensures the correct tree-level cu-
mulants of order 3 and above, the right non-linear variance of μm

and zero mean for μm. If instead, one wants ρm to have unit mean,
it is necessary to correct for the non-zero value of the mean of μm

using equation (5).
Following Codis, Bernardeau & Pichon (2016b), Uhlemann et al.

(2017b), the two-point PDF of the matter density reads in the large-
separation limit

PR

(
ρm, ρ ′

m

)=PR (ρm)PR

(
ρ ′

m

)[
1+ξ◦,m(r)b◦ (ρm) b◦

(
ρ ′

m

)]
, (6)

where r > 2R is the separation between two spheres of radius R and
densities ρm and ρ ′

m. The validity of this approximation in the large-
separation regime has been demonstrated in fig. 10 of Uhlemann
et al. (2017b). The sphere bias encodes the excess correlation (with
respect to the average sphere correlation ξ ◦, m) induced by a density
ρm at separation r and is defined as

b◦(ρm) = 〈ρ ′
m|ρm; r〉 − 1

ξ◦,m(r)
, ξ◦,m(r) = 〈ρmρ ′

m; r〉 − 1 . (7)

At large separation, the sphere bias becomes independent of sep-
aration r and is obtained with a much higher accuracy than the
approximation for the full two-point PDF (6). It can be computed
using the large-deviation principle and is well approximated by
(Bernardeau 1996; Abbas & Sheth 2007; Codis et al. 2016b; Uhle-
mann et al. 2017b)

b◦(ρm) = τSC(ρm)σ 2
L (R)

σ 2
L (Rρ

1/3
m )σ 2

μ

, (8)

with once again a normalization according to

b̂◦(ρm) = b◦(ρm) − 〈b◦(ρm)〉
〈(ρm − 1)b◦(ρm)〉 . (9)

3 BI A S B E T W E E N M AT T E R A N D T R AC E R
DE NSITIES

Let us now turn to biased tracers. Section 3.1 will first introduce the
HR4 simulation while Section 3.2 describes the theoretical models
for tracer (galaxy and halo) bias.

3.1 Biased tracers in Horizon Run 4 simulation

3.1.1 Halo identification

The HR4 simulation (Kim et al. 2015) is a massive N-body
simulation, evolving 63003 particles in a 3.15 h−1 Gpc box us-
ing the GOTPM TREEPM code (Dubinski et al. 2004). It as-
sumes a WMAP-5 cosmology, with (	m, 	
, 	b, h, σ8, ns) =
(0.26, 0.74, 0.044, 0.72, 0.79, 0.96), yielding a particle mass of
9 × 109 h−1 M�. The initial conditions were generated at z = 100
using the second-order Lagrangian perturbation theory, which en-
sures accurate power spectrum and halo mass function at redshift
0 (L’Huillier, Park & Kim 2014). The haloes were detected using
ordinary parallel friends-of-friends (OPFOF, Kim & Park 2006), a
massively parallel implementation of the friends-of-friends (FoF)

Figure 1. (Left-hand panel) Density scatter plot of the halo density ρh with
mass-weighting (blue-green region) and number-weighting (grey region)
versus the dark matter density ρm for radius R = 15 Mpc h−1 at redshift
z = 0. The figure also shows the the best-fitting quadratic bias model for the
log-density obtained from a fit to the CDF bias function and the scatter plot
(dotted and dashed line, respectively) which almost perfectly agrees with the
parametrization-independent bias obtained from the CDF (red line). Note
that for mass-weighted halo densities, the scatter is reduced significantly
compared to number-weighted halo densities. (Right-hand panel) Residual
scatter around the quadratic fit to the CDF bias function which is uniform
and symmetric.

algorithm, using a canonical linking length of 0.2 mean particle sep-
arations. Subhaloes were detected by the physically self-bound (PSB)
algorithm ( Kim & Park 2006), which finds the density peaks within
each FoF halo, removes unbound particles, similarly to the SUBFIND

halo finder, and additionally truncates the subhaloes to their tidal
radius. All subhaloes with more than 30 particles were considered,
yielding a masses from 2.7 × 1011 h−1 M� to 4.2 × 1015 h−1 M�.

3.1.2 Weighting of halo densities

Following the observations made in Seljak, Hamaus & Desjacques
(2009), Hamaus et al. (2010) and Jee et al. (2012) (Jee12 here-
after), let us consider a halo density with mass-weighting (instead
of number-weighting) because this makes the bias relation much
tighter and considerably reduces the scatter which is illustrated in
Fig. 1. For a discussion of a local polynomial bias relation for
number-weighted halo densities and their running with the smooth-
ing scale we refer to Manera & Gaztañaga (2011), Angulo, Baugh
& Lacey (2008), Chan & Scoccimarro (2012) and Paranjape et al.
(2013). The reduction in scatter can be understood by the intuition
that mass-weighted halo densities resemble the overall dark matter
density much more closely than halo number does. Note, however,
that the mass-weighted densities of subhaloes are expected to be
very similar to the mass weighted density of haloes (with no sub-
structure) as the mass is almost preserved from haloes to subhaloes.
This paper considers subhaloes as defined in Section 3.1 because
they can be related to galaxies using abundance matching (Kravtsov
et al. 2004; Vale & Ostriker 2004), see Section 3.2.5.

3.2 Bias models: mean bias relations and their scatter

Uhlemann et al. (2016) showed that the model for the PDF of the
dark matter density field P̂R(ρm|σμ) with the variance of the log-
density σμ(R) as a driving parameter was accurate at the percent
level for variances σ � 0.5. Hence, the question of how to obtain
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a similarly accurate model for the PDF of the density field of a bi-
ased mass tracer boils down to successfully describing the effective
bias relation between dark matter densities in spheres and the cor-
responding densities in spheres of their tracers. For simplicity, this
bias model is formulated between dark matter and halo (or galaxy)
densities for spheres of identical radii, so from now on ρm(ρh)
stands for ρm, R(ρh, R). While in general one would expect that the
full joint PDF of dark matter and tracer densities is needed, includ-
ing the scatter, it is shown in what follows that an accurate mean
bias relation is enough to obtain an excellent model for the biased
tracer PDF. This is in the spirit of LDS, that has been previously
applied to argue that the mean local gravitational evolution given
by spherical collapse is good enough to predict the dark matter PDF
at fixed radius at percent accuracy.1

3.2.1 Polynomial bias model in log-densities

In order to map the dark matter PDF to the halo PDF, let us rely
on an ‘inverse’ bias model ρm(ρh) writing the dark matter density
as a function of the halo density which, according to Jee12, has a
better performance than the ‘forward’ bias model ρh(ρm). These
bias parameters characterize the inverse relation and in particular
our linear bias will typically have values around 1/2 signalling
positive linear forward bias around 2. Again, following Jee12, let us
use a quadratic model for the log-densities μ = log ρ (rather than
for the densities) which reads

μm =
nmax∑
n=0

bnμ
n
h , nmax = 2 . (10)

It was checked that the higher order bias parameters are negligi-
ble, |b3| < 0.002 for all redshifts and radii considered here, and
lead to very minor improvements of the quality of fit that do not
warrant the use of this additional parameter. Note that, since the
offset b0 is additive in the log-densities, it ensures a multiplicative
renormalization for the density,2 which is preferable according to
an analytical result of Frusciante & Sheth (2012) that has been ob-
tained from a lognormal mapping. Jee12 emphasize that the reason
why equation (10) can be approximated by a linear bias model for
the density fluctuations δh = b̂1δm on large scales is that the ranges
of log-densities μh and μm become small and not because the bias
relation itself becomes linear. This is particular relevant here when
focusing on the tails of the distribution of densities and hence the
regime where linear bias is not sufficient.

3.2.2 Parametrisation-independent inference of bias

Following the idea of Sigad, Branchini & Dekel (2000), Szapudi
& Pan (2004), a direct way to obtain the mean bias relation is to

1 The large-deviation principle states that the statistics is dominated by the
path that minimises the ‘action’ – or in our case the rate function – in
order to maximize the probability. This most likely path or dynamics can be
decomposed into a gravitational part, given by the spherical collapse, and
an astrophysical part, given by the mean bias relation.
2 When expanding the quadratic bias model for log-densities in the halo
density contrast ρh = 1 + δh one obtains

ρm = exp(b0)

(
1 + b1δh +

[
1

2
(b1 − 1)b1 + b2

]
δ2

h + O(δ3
h)

)
.

Interestingly, for the similar radii R1 = 10, R2 = 15 Mpc h−1 one finds
identical b2 and exp (b0)b1 while b0 and b1 differ.

Table 1. Collection of simulation results for different radii R (Mpc h−1)
and redshifts z. The measured non-linear variances σ of the log-density
μ = log ρ and the correlation ξ of the density ρ at separation r = 30 Mpc h−1

of both dark matter (m) and haloes (h) in real space (upper part) and redshift
space (lower part) along with the bias parameters obtained from fitting the
quadratic model from equation (10) to the bias function obtained from the
CDF according to equation (11).

Param Variance Correlation Bias
z R σμ,m σμ,h ξρ,m ξρ,h b0 b1 b2

0 10 0.613 1.276 0.041 0.093 0.068 0.604 0.058
0 15 0.475 0.855 0.043 0.099 0.036 0.618 0.058
1 10 0.411 1.006 0.015 0.067 0.054 0.460 0.055
1 15 0.310 0.692 0.016 0.071 0.028 0.473 0.055

z R σz
μ,m σz

μ,h ξz
ρ,m ξz

ρ,h bz
0 bz

1 bz
2

0 10 0.614 1.286 0.041 0.115 0.086 0.566 0.052
0 15 0.476 0.911 0.043 0.122 0.048 0.574 0.052

use the properties of the cumulative distribution functions (CDFs),
defined as C(ρ) = ∫ ρ

0 dρ ′P(ρ ′), so that

Cm(ρm) = Ch(ρh) ⇒ ρm(ρh) = C−1
m (Ch(ρh)) . (11)

This parametrization-independent bias extraction is used to verify
the accuracy of the polynomial log-bias model, equation (10), as
described below.

3.2.3 Density scatter plots from numerical simulation

Fig. 1 presents a scatter plot showing ρh as a function of ρm for
redshift z = 0 and radius R = 15 Mpc h−1 in order to assess how well
bias models characterize the halo density bias. The lines correspond
to the mean bias obtained in a parametrization-independent way
from the CDF method (red line) and fits based on a quadratic bias
model for the log-densities (dotted and dashed red line) according
to equation (10). The corresponding values of the best-fitting bias
parameters are given in Table 1 for different redshifts and radii.
The second-order bias model for the logarithmic densities based
on equation (10) agrees almost perfectly with the parametrization-
independent way of inferring bias using CDFs as in equation (11)
and matches simulation results very well, as has been observed in
Jee12 for a wide range of mass cuts, smoothing lengths and redshifts.
Indeed, differences in the fits are almost imperceptible to the eye
and at the sub-percent level throughout, except for the extreme
low- and high-density tail, and the residual scatter around the mean
polynomial log-bias model is very symmetric and uniform. This has
to be contrasted with a quadratic model in the mass-weighted halo
densities that can be shown to have a clear residual skewness and to
be significantly less accurate (residuals of about 2 per cent between
ρ ∈ [0.2, 3], increasing more steeply in the tails). Since the mean
bias relation is used to map the PDFs, having an even scatter around
the mean relation is advantageous to mitigate possible effects of the
scatter. Hence, the polynomial bias model for the log-densities shall
be used. Given the smallness of the prefactor b2 for the quadratic
term compared to b1, one might wonder whether a linear model
in log-densities is sufficient. Unfortunately, the linear log-density
model fit shows residuals of order 5 per cent for almost all densities
when compared to the parametrization-independent bias function
and hence would degrade the accuracy of the halo PDF substantially.
This is why the quadratic bias model for the log-densities will be
used for the remainder of the text.

Furthermore, Fig. 2 presents a scatter plot for the halo density
determined in redshift space ρh, z. This was done by converting the
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Figure 2. (Left-hand panel) Density scatter plot of the halo density ρh,z

in redshift space with mass-weighting versus the dark matter density ρm

for radius R = 15 Mpc h−1 at redshift z = 0. The figure also shows the the
best-fitting quadratic bias model for the log-density obtained from a fit to
the CDF bias function in real space (red line) and redshift space (orange
line). (Right-hand panel) Residual scatter around the quadratic fit to the
CDF bias function which is uniform and symmetric (though the dispersion
is somewhat larger than that of Fig. 1).

comoving halo-positions r to the redshift-space ones s by shifting
them along the fictitious line of sight (chosen in x-direction here)
according to their peculiar velocity along that direction

s = r + 1 + z

H (z)
vx x̂ . (12)

As was done in real space, a parametrization-independent extrac-
tion of the mean bias relation was used as a complement to the
polynomial bias model in the log-densities (10) for mass-weighted
halo densities in redshift space, thereby extending the results of
Jee12. When comparing the scatter plot from redshift space to its
real space analogue (shown in Fig. 1), one can clearly see a en-
hanced scatter around the mean bias relation. Yet, this extra scatter
does not directly translate into inaccuracies of the PDF, as shown
in Fig. 5.

3.2.4 From densities to counts in cells

When considering the statistics of discrete tracers of the density
field, such as effective dark matter particles in simulations or haloes
identified therein, one needs to account for finite sampling effects in
the cells. The sampling process determines how a discrete cell-count
N in a sphere of radius R arises from the value of the underlying
average density ρ and can be written as a convolution

P(N ) =
∫

P(N |ρ)P(ρ)dρ , (13)

where P(N |ρ) is the sampling conditional probability of finding a
cell-count N given a density field value ρ. In order to predict the PDF
of the random variable N from the PDF of the underlying field ρ,
one needs an expression for the sampling conditional probability.
The most widespread of such schemes is local Poisson sampling
(see e.g. Bel et al. 2016; Repp & Szapudi 2017a), where

P(N |ρ) = (N̄ρ)N

N !
exp(−N̄ρ) , (14)

with N̄ as the mean number of objects per cell and N̄ρ the ex-
pectation value of the number count given average cell density ρ.

For a discussion of how to determine model parameters from data
that constitutes a discrete realization of an underlying continuous
density, we refer to Fry et al. (2011a) and Bel et al. (2016). Roughly,
one can expect that for smoothing scales which ensure that there
are enough tracers per cell, discreteness effects are mitigated. For
densities around the mean density this is fulfilled for sphere radii
larger than the mean separation of tracers. In the HR4 simulation,
the mean separation of subhaloes is around d � 4.5 Mpc h−1 be-
tween redshift z = 1 and z = 0 and hence smaller than the sphere
radii considered. For large densities where one has more tracers per
cell, discreteness effects are expected to be smallest while they will
be most relevant for very low densities. Typical galaxy densities for
current and forthcoming galaxy surveys such as BOSS, DESI and
Euclid are of order a few 10−4( Mpc h−1)−3 which yields an order
1–10 tracers per sphere of radius 15 Mpc h−1 at average density.
Note that, for tracer densities that are not number-weighted, but
weighted by mass or luminosity, one technically does not simply
count objects, but the formalism remains similar.

Besides finite sampling effects in the cells, there are also sampling
effects due to the finite number of cells available in the cosmic
volume, see appendix C in Codis et al. (2016b).

3.2.5 Applicability to galaxies

In order to check to which extent our formalism developed for haloes
will be applicable to galaxies, mass-weighted densities of haloes,
galaxies and luminosity-weighted densities of galaxies were ex-
tracted from the Horizon-AGN simulation. Horizon-AGN is a full-
physics hydrodynamical simulation in a cosmological volume with
side length Lbox = 100 Mpc h−1 (Dubois et al. 2014a) and in the lat-
est generation of state-of-the-art simulations. Dark matter and mass-
weighted subhalo densities in 125 non-overlapping spheres of radius
R = 10 Mpc h−1 are extracted from the simulated box at z = 1. In
order to mimic observational measurements, mass- and luminosity-
weighted (in the Ks band) galaxy densities are extracted from the
simulated light-cone in a redshift range around z = 1. All the galax-
ies with a mass M > 109.5 M� were included. While photometric
surveys can quite easily reach such limit at z ≈ 1, spectroscopic sur-
veys are generally a sparser. Realistic galaxy luminosities have been
computed in post-processing using spectral synthesis, and galaxy
stellar masses have been computed from photometry using SED-
fitting, as usually done in observational data sets, which naturally
allows us to incorporate realistic errors (Laigle et al. in preparation;
see Appendix D for more details). We didn’t find any qualitative
difference between the mean bias relations for galaxies and haloes.
Indeed, Fig. 3 displays the CDF of dark matter, mass-weighted sub-
haloes as well as mass- and luminosity-weighted galaxies together
with the corresponding scatter plot. The blue, green and orange
lines and points correspond to mass-weighted subhaloes, galaxies
and luminosity-weighted galaxies, respectively, and are practically
undistinguishable given the statistics we have,3 although the scatter
of the galaxies is significantly increased compared to haloes. This
is a very promising result that motivates the use of mass-weighted
halo density fields in this work. A thorough study of galaxy and
halo bias in Horizon-AGN will be the topic of a forthcoming pa-
per (Chisari et al., in preparation). Note that, if one weights the

3 Note that the box size is rather small, so the error bars are likely under-
estimated due to missing large-scale modes. Even if the small differences
between the three curves were statistically significant, their agreement is
impressively good.
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Figure 3. The CDF for densities in spheres of radius R = 10 Mpc h−1 as
measured from Horizon-AGN at redshift z = 1 for dark matter (dashed black
line), mass-weighted subhaloes (dotted blue line), mass-weighted galaxies
(solid green line) and luminosity-weighted galaxies (solid orange line).
The shaded areas show an estimation of the error based on 5 subsamples.
The inset shows the scatter plot comparing mass- and luminosity-weighted
galaxies (green and orange crosses) to mass-weighted subhaloes (blue
plusses) including the bias function extracted from the CDF method from
equation (11).

galaxy densities with the mass of the host subhalo, the resemblance
is even closer and the scatter reduced. But in practice this would
require both measuring the stellar masses (or luminosities) of the
galaxies and relating them to the masses of the host subhaloes.
The accuracy of the former is limited by the error on galaxy mass
which is expected to be a function of the mass and redshift. At
low redshift (z < 1), the observed galaxy mass is generally un-
derestimated compared to the intrinsic one and in general one can
have a discrepancy up to �(log Mg) � 15 per cent depending on the
quality of the spectroscopy or photometry available to estimate the
stellar mass (see e.g. Pforr, Maraston & Tonini 2012; Mobasher
et al. 2015, Laigle et al. in preparation). When adding a Gaussian
noise of this size to the measured halo masses, as explicitly checked
at z = 0 for the radii R = 10, 15 Mpc h−1, the corresponding PDFs
of the mass-weighted halo densities remain almost unchanged ex-
cept for their deep tails. The best-fitting bias parameters change
only marginally, with the linear and largest bias parameter b1 being
most robust (sub-percent difference) and larger effects on the rel-
atively small bias-renormalization b0 (5–7 per cent difference) and
the quadratic bias b2 (2–4 per cent difference). For relating galaxy
mass to halo mass, one can then use techniques based on subhalo
abundance matching (SHAM; Behroozi, Conroy & Wechsler 2010)
or its extensions (see e.g. Yang et al. 2012; Kulier & Ostriker 2015),
which are very close in spirit to the modelling of bias used here and
typically give an error of a similar size than the mass determina-
tion, at least for large halo masses. The same idea can be applied to
galaxy luminosities (see e.g. Vale & Ostriker 2004, 2006; Cooray
& Milosavljević 2005) which can be measured much more reli-
ably than galaxy masses. Very recently, Moster, Naab & White
(2017) presented an empirical model for galaxy formation find-
ing that average star formation and accretion rates are in good
agreement with models following an abundance matching strategy.
One can also determine the galaxy-halo connection, in particular
the stellar-to-halo mass ratio, from a joint lensing and clustering
analysis of observations (as done in Coupon et al. 2015; Zu &
Mandelbaum 2015) when using the halo occupation distribution
(HOD) framework that assumes that the number of galaxies per

halo is solely a function of halo mass, split into central and satellite
contributions.

4 TH E B I A S E D T R AC E R D E N S I T Y PD F

Having established the accuracy of the bias model, let us now com-
bine it with the one-point dark matter PDF and two-point sphere
bias to obtain the one-point halo PDF and two-point halo bias.
The accuracy of the analytical predictions for one- and two-point
statistics will be checked against the simulation. In Appendix B,
the analytical model for the halo PDF is compared to phenomeno-
logical reconstructions based on lognormal distributions and their
extensions through cumulant expansions.

4.1 Mapping to the tracer PDF with the mean bias relation

The halo density PDF, Ph, can be generally written as a convolution
of the dark matter PDF Pm and the conditional PDF of finding a
certain halo density given a dark matter density

Ph (ρh) =
∫

dρm Pbias (ρh|ρm)Pm(ρm), (15)

where the conditional PDF Pbias(ρh|ρm) depends on the details of
halo formation and its associated parameters such as, e.g. halo
mass, smoothing scales and redshift, but also includes stochasticity
which results from an incomplete understanding of the formation
process (e.g. Dekel & Lahav 1999). One could attempt to model
the joint PDF with the help of simulated and observed data sets in
the spirit of the halo model of galaxy clustering (e.g. Berlind &
Weinberg 2002; Cooray & Sheth 2002). Here, the scatter around
the mean relation between ρm and ρh will be neglected: this none
the less leads to an excellent model for the halo PDF provided the
underlying bias model is appropriate. Equipped with a bias model
for the mean relation ρm(ρh), the halo PDF Ph is now obtained
from the dark matter PDF Pm in equation (1) by conservation of
probability

Ph (ρh) = Pm(ρm(ρh)) |dρm/dρh| , (16)

where it is assumed that ρm(ρh) is a strictly monotonic function. Us-
ing equation (6), the halo two-point PDF can eventually be written
down as

Ph(ρh, ρ
′
h; r) = Ph(ρh)Ph(ρ ′

h)

× [
1 + ξ◦,m(r)b◦,m(ρm(ρh))b◦,m(ρ ′

m(ρ ′
h))

]
, (17)

where ξ ◦(r) denotes the correlation function of spheres at separation
r. In the remainder of the text, we will drop the separation r as
an argument, later it will be fixed to r = 30 Mpc h−1. We expect
that the accuracy of the large-separation approximation for haloes
(17) is similar to the one for dark matter considered in Uhlemann
et al. (2017b). One can then define the modulation of the two-point
correlation function, the sphere bias b◦ for haloes from the result
for dark matter given in equation (8)

b◦,h(ρh) = b◦,m (ρm(ρh))
√

ξ◦,m/ξ◦,h , (18)

where the ratio of correlation functions is given by√
ξ◦,h/ξ◦,m = 〈

ρh(ρm)b◦,m(ρm)
〉
, (19)

and can be approximated by expanding the log-bias relation to first
order to obtain

√
ξ◦,m/ξ◦,h � exp(b0)b1.
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Figure 4. Logarithmic view on the halo PDF as measured from the sim-
ulation in real space (data points) at redshifts z = 0, 1 for radii R = 10,
15 Mpc h−1 and analytically predicted (lines) using the measured dark mat-
ter variance and bias parameters given in the upper part of Table 1.

Figure 5. (Top panel) Halo mass-density PDFs Ph for measurements based
on halo catalogues in real space (points) and redshift space (triangles).
Shown are results for the quadratic bias for the log-densities models in real
space (solid lines) and redshift space (dashed lines) with fit values according
to Table 1. (Middle and bottom panel) The corresponding residuals in real
space (middle) and redshift space (bottom).

4.2 Checking the accuracy of halo PDF against simulations

Figs 4 and 5 show the result of the halo-PDF obtained from (16)
using the measured variance of the dark matter log-density and the
best-fitting bias parameters for the bias model for the log-densities
up to second order reported in Table 1. The prediction for the halo
PDF clearly matches the data, presenting residuals at the percent
level in a wide range of halo densities from 0.2 to 3, in both real
and redshift space. This should be contrasted to the log-normal
PDF family discussed in Appendix B. This is very encouraging
given the level of non-linearities involved in halo formation. The

Figure 6. Halo sphere bias function b◦ describing the modulation of the
two-point halo correlation function with the density as measured for a sep-
aration r = 30 Mpc h−1 in real space (circles) and redshift space (triangles)
in comparison to the analytical prediction based on a measured dark matter
variance σμ and the fitted bias parameters in real space bn (solid lines) and
redshift space bz

n (dashed lines) as given in Table 1.

scatter of the bias relation could in principle have degraded the
accuracy of the PDF, but Fig. 5 shows that it turns out to be a small
effect. This remains true for counts of haloes in redshift space,
even though the redshift space scatter plot displayed significantly
larger scatter than its real space counterpart. Fig. 6 compares the
prediction for the sphere bias function in both real and redshift
space, based on the same inputs as used for the halo PDF, with the
measurements from the simulation and is also displaying excellent
agreement. Note that, for the redshift-space correlation, which has
an angular dependence, only the monopole is effectively probed. To
measure the sphere bias function, encoding the excess correlation
between densities in spheres according to equation (7), a separation
of r = 30 Mpc h−1 is chosen, giving a grid of non-overlapping
spheres. The densities of the six neighbouring spheres are collected
in bins of width �ρ = 0.15; precise formulas are given by equations
(19) and (20) in Uhlemann et al. (2017b).

5 A PPLI CATI ON: PARAMETER ESTI MATI O N

One of the main goals of constructing tracer statistics is to extract
cosmological parameters from counts in cells. Let us now make use
of the one-point halo PDF (16) alone or combine it with the density-
dependent sphere bias (18) to estimate either the bias parameters,
the underlying dark matter variance, or both.

Due to the strong (although not complete) degeneracy between
the dark matter variance and linear bias [that can be shown to hold
exactly for a linearly biased lognormal PDF (see Appendix B), and
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is given as σμ,h � σμ,m/b1 at leading order in perturbation theory
according to equation (C4)], it turns out one cannot use the one-point
statistics alone to jointly determine the dark matter variance and
bias parameters. This is not at all surprising, given the well-known
degeneracy between linear bias and the clustering amplitude, caused
by the fact that a low matter fluctuation amplitude can be masked
out by a high galaxy bias or vice versa (see e.g. Seljak et al. 2005).
In principle, if (i) all the statistics could be measured exactly, (ii)
the truncation in the bias model was fully justified and (iii) the dark
matter PDF was exactly given by the LDS model and in particular
different from log-normal, then it should be possible to measure
jointly the dark matter variance and the three bias parameters. We
found that in practice, when considering limited noisy samples (with
a number of spheres corresponding to the available cosmic volume
at low redshifts), only the first three cumulants (mean, variance,
skewness) carry significant information in a statistical sense. Indeed,
the next order contribution to the PDF is coming from the fourth-
order cumulant which scales like σ 6 and is therefore negligible
with respect to the mean, variance and third-order cumulant. The
information coming from this term is therefore much lower than
that of the lower order terms.4 Hence, measuring the one-point
PDF can only put three constraints on the parameters of the model.
For a quadratic bias model, this means that one effectively ends
up with a degeneracy line (i.e a one-dimensional manifold) in the
four-dimensional parameter space. Because the information coming
from higher order cumulants is not exactly zero, we expect this
degeneracy line to be a very elongated ellipsoid instead which is
indeed what we find. Indeed, Section 5.1 shows how in practice the
one-point model does not yield enough information to measure both
on realistic surveys and discusses complementary strategies when
relying on one-point statistics only, while Section 5.2 explains why
one- and two-points halo counts does break this degeneracy in
principle. Finally, Section 5.3 shows how a joint fit of both counts
from the HR4 simulation yields an estimate of all four parameters
plus the dark matter correlation function.

5.1 Bias-variance degeneracy in one-point statistics

In order to quantify the bias-variance degeneracy in one-point statis-
tics, let us measure the density PDF at z = 1 in the HR4 simulation
covered by spheres of radius R = 15 Mpc h−1, and get 1σ error
bars as the error on the mean estimated from eight subcubes. Let
us describe the degeneracy with σμ,m as the curvilinear coordinate
and for each value of σμ,m between 0.1 and 0.5, and fit the mea-
sured non-linear PDF from ρh = 0.3 to 3 with bins �ρh,P = 0.01
as this is the regime where the model is expected to work well.
The 1σ confidence intervals of the bias parameters as a function
of σμ,m are displayed in the top panel of Fig. 7. As expected from
the perturbative argument, the degeneracy line is dominated by a
linear relationship between b1 and σμ,m (with slope σμ,h ≈ 0.7)
with higher order correction leading to non-zero (but small) values
of b0 and b2. The parabolic shape of b0 and the linear growth of b2

with σ , as well as their smallness, can in fact be understood per-
turbatively, as shown in equations (C3) and (C7) in Appendix C2.
The bottom panel of Fig. 7 shows that the predicted PDFs along the
degeneracy line are all within the 1σ error bars of the simulation
and therefore cannot be distinguished. Combining this observable

4 In addition, it is of the same order as the next order perturbative contribution
to the third-order cumulant which is not well-captured by the LDS being
exact only at tree order.

Figure 7. Top: Parameters along the degeneracy line obtained from a fit
to the measured density PDF at z = 1 and for a radius R = 15 Mpc h−1

in the HR4 simulation when determining the bias parameters bn given a
fixed dark matter variance σμ,m. The thin shaded area corresponds to the
one-sigma confidence interval for different values of the σμ,m. Bottom:
predicted density PDF along the degeneracy line from σμ,m = 0.1 (red)
to 0.45 (blue). Only residuals compared to the true value σμ,m = 0.31 are
displayed. The black lines show the one-sigma error on the measured PDF,
obtained by fitting with a polynomial the binned one-sigma error bars.

with other probes or using a model for the dark matter variance
should in principle break this degeneracy.

If the non-linear dark matter variance was known, for example
from empirical relations found in simulations (such as Repp &
Szapudi 2017b) or higher order perturbation theory (see e.g. Scoc-
cimarro & Frieman 1996), one could use the analytic dark matter
PDF (1) to obtain the CDF of dark matter Cm and then the bias
relation using equation (11) by measuring the halo CDF Ĉh. Note
that this procedure essentially looks for a non-linear transformation
of halo densities such that the result is distributed according to the
dark matter PDF equation (1), and hence similar in spirit to the idea
of Gaussianising the field (see e.g. McCullagh et al. 2016).

Conversely, if the bias parameters (including their time evolution)
were known from either theory or measured from an independent
probe, one could use the analytic halo PDF (16) to determine the
dark matter variance and use this to constrain, for example the
dark energy equation of state as demonstrated for dark matter in
Codis et al. (2016a). Analytical attempts to predict cumulants of
the halo density have been based on bias models starting from
Press–Schechter (Casas-Miranda et al. 2002; Casas-Miranda, Mo
& Boerner 2003), its extensions like excursion sets or peak theory,
or the halo model (Fry et al. 2011b). Note that to take advantage
of this idea one needs access to the bias that relates averaged halo
and matter densities rather than the bias based on n-point functions.
While there is a mapping between the two in the large-scale limit,
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for R � 50 Mpc h−1, they are not equal and their relation depends on
the shape of the power spectrum as well as the smoothing radius and
filter shape, as pointed out in Desjacques et al. (2016). For particular
observational signatures that are not degenerate with bias, such as
local primordial non-Gaussianity (Uhlemann et. al. in preparation),
the present formalism allows us to take the nature of tracers into
account and hence to obtain more realistic constraints. In principle,
future peculiar velocity surveys could also gain us qualitative in-
sights into biasing following the idea described in Uhlemann et al.
(2017a), although their statistical power is unlikely to yield accurate
enough constraints.

5.2 Joint one- and two-point statistics: the basic idea

In order to break the degeneracy between bias parameters and the
dark matter variance, one can make use of the two-point statistics
from equation (17) to jointly constrain the dark matter variance and
biases. The two-point halo PDF is built from the one-point halo
PDFs (16) and the density-dependent sphere bias (18) that mod-
ulates the two-point correlation function which were successfully
compared to numerical simulations in Section 4.

Let us present here the basic idea behind the degeneracy lift. The
leading-order mixed cumulant depends on the two-point sphere bias
function via

C12,h = 〈
δ2

hδ
′
h

〉 = ξ◦,h

∫
(ρh − 1)2b◦,h(ρh)P (ρh) dρh . (20)

Since the sphere bias function is not linear b◦,h(ρ) �∼ ρh − 1, espe-
cially in the tails that are sensitive to b2, equation (20) differs from
the one-point cumulant given by the skewness

C3,h = 〈δ3
h〉 =

∫
(ρh − 1)3P (ρh) dρh . (21)

The leading order expressions5 relating the corresponding dark
matter and halo reduced cumulants defined as S3 = C3/σ

4 and
S12 = C12/(ξσ 2) for the adopted (inverse quadratic in the log-
densities) biasing model are consistently given by

S
μ,m
3 = S3 − 3 = b−1

1

(
S

μ,h
3 + 6b2/b1

)
, (22)

S
μ,m
12 = S12 − 2 = b−1

1

(
S

μ,h
12 + 4b2/b1

)
. (23)

Combining equations (22) and (23) allows us in principle to solve
for the bias parameters, by relying on theoretical predictions for the
dark matter cumulants on the one hand, and measurements for the
halo cumulants on the other hand.6

This paper extends this cumulant-based strategy by taking ad-
vantage of the full two-point information (Bernardeau & Schaef-
fer 1992; Munshi, Melott & Coles 2000) which consistently include
higher order cumulants leading to improved accuracy, as demon-
strated in Codis et al. (2016a) and Uhlemann et al. (2017b). In effect,
instead of being restricted to the lowest order cumulants, it makes si-
multaneous use of the one-point PDF and the two-point sphere bias
function. Indeed, it can be shown that the two-point sphere bias’

5 Note that, at that order, the reduced cumulants of the density ρ and log-
density μ only differ by a constant, see Uhlemann et al. (2016).
6 These expressions closely resemble those given in Bel & Marinoni (2012)
which use a forward biasing model in the densities. This paper relies on
the lowest order cumulants predicted by tree-order perturbation theory and
combines them in a difference that is suspected to be more robust than the
individual cumulants.

Table 2. Collection of the results (best fits and 1σ confidence intervals) of
the joint fitting procedure forPh and b◦,h for radius R (Mpc h−1) and redshift
z at separation r = 30 Mpc h−1. The expected values, as given in Table 1,
are σμ,m = 0.310, ξ◦,m = 0.016, b0 = 0.028, b1 = 0.473, b2 = 0.055 and
lie well within the confidence intervals.

Param Dark matter Tracer bias
z R σμ,m ξ◦,m(r) b0 b1 b2

1 15 0.306 0.0154 0.0309 0.463 0.0534
±0.015 ±0.0016 ±0.0016 ±0.024 ±0.0032

slope with respect to the density is sensitive to bias alone, hence
the joint analysis of both counts breaks the degeneracy. Appendix C
sketches a proof at the perturbative level.

5.3 Joint one- and two-point statistics: a worked example

Let us finally present a worked-out fiducial experiment that allows
us to simultaneously obtain the dark matter variance, correlation
function as well as the bias parameters from measurements of one-
point halo PDF Ph(ρh|σμ,m, b0, b1, b2) given a redshift z and sphere
radius R and the two-point halo sphere bias bh(ρh|ξm(r), σμ,m,
b0, b1, b2) at a separation r ≥ 2R. In practice, sampling the joint
likelihood for five parameters is computationally expensive and
tricky because the joint PDF is noisy and the signal coming from
the sphere bias rather small.7 Let us therefore resort here to a simpler
fitting procedure to illustrate the capability of the one- and two-point
halo statistics for jointly constraining the dark matter variance and
correlation along with the bias parameters. A data sample is derived
from the simulation by binning the halo densities and measuring a
histogram for the PDF Ph in the range ρh ∈ [0.1, 3] with bin width
�ρh,P = 0.01 and the scaled halo sphere bias b̃◦,h

b̃◦,h(ρh) ≡ 〈
ρ ′

h(r)|ρh

〉 − 1 = ξ◦,hb◦,h(ρh), (24)

in the range ρh ∈ [0.07, 2.5] with bin width �ρh, b = 3/21. The
scaled halo sphere bias is used instead of the halo sphere bias as
this is the direct observable. The LDS prediction is given by

b̃◦,h(ρh) = 〈
ρhb◦,m(ρm(ρh))

〉
ξ◦,mb◦,m(ρm(ρh)) , (25)

where the prefactor encodes the difference of the correlation func-
tion

√
ξ◦,h/ξ◦,m = 〈ρhb◦,m(ρm(ρh))〉 and is tabulated using a fifth-

order Taylor expansion of ρh(ρm) near one.
Using this sample, a non-linear model fit is implemented for

the two functions Ph(ρh) and b◦,h(ρh) with weights determined
by the errors from the measured PDF and bias function (using
bootstrapping over eight subsamples of the simulation). The result
of the fit for the parameters and the associated uncertainties is given
in Table 2 (see also Fig. 8 for the corresponding figures of merit)
and agrees very well with the directly measured values reported in
Table 1. In particular, the sphere bias (i.e the two-point statistics of
density in spheres) is shown as anticipated to break the degeneracy.
Since the dark matter correlation function ξ ◦,m enters as an overall
amplitude, the degeneracy is broken by the information contained
in the shape of the sphere bias function, rather than its amplitude,
as can be seen perturbatively in Appendix C. As the noise is more
important in the two-point sphere bias than in the one-point density

7 Note also that the tracer PDF’s boundaries depend on the bias parameters,
which, combined with the fact that the LDS model is only accurate on a
finite range of densities adds an extra layer of complexity to the likelihood
exploration.
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Figure 8. One, two and three sigmas contours obtained by fitting the density PDF and the bias function at z = 1 and for spheres of radius R = 15 Mpc h−1

where η = ξ/σ 2, β i = bi/σ and σ = σμ,m.

PDF, the error budget on the parameters of the model is dominated
by the accuracy on the measurement of b̃◦,h.

The total number of spheres (≈106) is of the order of the number
of spheres that a survey like Euclid will probe at a redshift around
z ≈ 1 (Codis et al. 2016a). Hence, one can expect this novel idea to
be applicable to real data in a very near future, which will allow us to
measure consistently the growth of fluctuations across cosmic time
(through the dark matter variance σμ,m) and to characterize galaxy
biasing (through a set of bias parameters at different redshifts). The
accuracy of the constraints on those parameters depends on the ac-
cessible survey volume and therefore the number of spheres N, in a
way which can be studied by subsampling the simulation. Redoing
the above-described analysis on eight subcubes of the simulation,
yields the average best-fitting values (notably 0.29, 0.030, 1.518,
0.181, 0.161 for σμ,m, b0, β1, β2, η) are consistent with the param-
eters estimated from the full box (0.29, 0.032, 1.514, 0.177, 0.165),
as seen on Fig. 9. The mean standard deviation are, respectively,
0.033, 0.0030, 0.0052, 0.0056, 0.0023 (to be compared with the 1σ

error bars from the full volume: 0.016, 0.00089, 0.0021, 0.0023,
0.00099), which is consistent with a 1/

√
N scaling. Overall, the

typical one-sigma errors evolve as �σμ,m = 0.016
√

106/N and
�ξ◦,m = 0.0017

√
106/N .

Figure 9. Mean 1σ , 2σ , 3σ contours obtained from the eight subcubes by
averaging the best fits and covariance matrix (cyan). For comparison, the
figure of merit of the whole volume is superimposed in dark green and a line
at the target value σ ≡ σμ,m = 0.31 is displayed. As expected the constraints
on the model parameters shrink when the accessible volume increases.
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The above presented experiment is of course fairly idealized at
various levels. It may turn out to be too optimistic, but should none
the less provide a framework in which to implement a dark energy
experiment based on count-in-cells.

6 C O N C L U S I O N S

Starting from a very accurate model for the dark matter density in
cells, we extended it to biased tracers such as dark haloes or galaxies
and compared them to the state-of-the-art N-body simulation HR4
in real and redshift space. Our main findings can be summarized as
follows:

(i) on scales of the order of 10 Mpc h−1, mass-weighted subhalo
densities show considerably less scatter than their number-weighted
version; they can be accurately fit with a quadratic bias model in
the log-densities and closely resemble the bias relation of mass-
weighted galaxy densities.

(ii) Using a quadratic mean bias model for log-densities and
neglecting the scatter is sufficient to obtain a one-point halo PDF
and two-point sphere bias that are as accurate as the underlying
dark matter results when compared against simulations, see Figs 5
and 6. Combining the quadratic bias model with fitted coefficients
with the dark matter PDF from LDS with the measured dark matter
variance, the accuracy of the halo PDF is well within 5 per cent over
a wide range of densities, in both real and redshift space.

(iii) The one-point PDF yields access to a one-dimensional mani-
fold in the four-dimensional parameter space of dark matter variance
and quadratic bias.

(iv) Combining the one-point halo PDF and the two-point halo
sphere bias, one can jointly constrain the non-linear dark matter
variance and correlation as well as the bias parameters, and hence
disentangle tracer bias from non-linear gravitational evolution. This
is of interest both from the point of view of dark energy and non-
linear power spectra estimation. The density-dependent clustering
signal encoded in the two-point sphere bias is related to the concept
of ‘sliced’ or ‘marked’ correlation functions (see e.g. Sheth 2005;
White & Padmanabhan 2009; Neyrinck et al. 2016) which hence
might contain valuable information about bias and could be used to
break the degeneracy between linear bias and the clustering ampli-
tude in the two-point correlation.

(v) Comparison to counts extracted from ‘full-physics’ hydrody-
namical simulations suggest that our findings will scale from dark
haloes to galaxies.

The excellent accuracy of the analytical prediction for the dark
matter PDF and two-point bias plays a critical role in disentan-
gling the dark matter variance from biasing when applied to tracers.
Hence, this formalism should be applied to constrain cosmology
using counts-in-cells statistics in ongoing or upcoming surveys like
DES, Euclid, WFIRST, LSST, KiDs, following the fiducial dark
energy experiment presented in Codis et al. (2016a).
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Gaztañaga E., Fosalba P., Elizalde E., 2000, ApJ, 539, 522
Haardt F., Madau P., 1996, ApJ, 461, 20
Hamaus N., Seljak U., Desjacques V., Smith R. E., Baldauf T., 2010, Phys.

Rev. D, 82, 043515
Hurtado-Gil L., Martı́nez V. J., Arnalte-Mur P., Pons-Borderı́a M. J., Pareja-

Flores C., Paredes S., 2017, A&A, 601, 13
Ilbert O. et al., 2006, A&A, 457, 841
Jee I., Park C., Kim J., Choi Y.-Y., Kim S. S., 2012, ApJ, 753, 11
Jonsson P., 2006, MNRAS, 372, 2
Juszkiewicz R., Bouchet F. R., Colombi S., 1993, ApJ, 412, L9
Juszkiewicz R., Weinberg D. H., Amsterdamski P., Chodorowski M.,

Bouchet F., 1995, ApJ, 442, 39
Kaiser N., 1984, ApJ, 284, L9
Kauffmann G., Nusser A., Steinmetz M., 1997, MNRAS, 286, 795
Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999, MNRAS,

303, 188
Kaviraj S. et al., 2017, MNRAS, 467, 4739
Kim J., Park C., 2006, ApJ, 639, 600
Kim J., Park C., L’Huillier B., Hong S. E., 2015, J. Korean Astron. Soc., 48,

213
Komatsu E. et al., 2011, ApJS, 192, 18
Kravtsov A. V., Berlind A. A., Wechsler R. H., Klypin A. A., Gottlöber S.,
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A P P E N D I X A : L O G A R I T H M I C SC AT T E R
PLOTS

A logarithmic view on the scatter plot similar to Fig. 1 is shown in
Fig. A1. In there, one can also find a comparison between the best-
fitting linear and quadratic bias model for log-densities. As evident
from the plot, the linear model cannot fit the extreme density regions.
According to Neyrinck et al. (2014), an exponential relationship
between the halo and dark matter density is expected in the very low
density tail. We also find that a linear relation for log-densities does
not fit the low-density end and that the quadratic term is essential
there, but we do not see the need for another higher order term. This
observation could be related to differences in halo densities under

Figure A1. Density scatter plot of the halo log-density μh = log ρh with
mass-weighting versus the dark matter log-density μm = log ρm for radius
R = 15 Mpc h−1 at redshift z = 0. The figure also shows the the best-fitting
linear and quadratic bias model for the log-density obtained from a fit to the
CDF bias function (dotted and solid line, respectively)
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consideration, in particular the mass-range and weighting scheme
for the haloes or the size and shape of the cells. Note, however,
that unlike Neyrinck et al. (2014), we did not apply strategies to
suppress discreteness and stochasticity, so the difference could also
be due to an insufficient halo sampling level for the very low density
end.

A P P E N D I X B: LO G N O R M A L
R E C O N S T RU C T I O N

Let us compare the LDS approach to the well-known lognormal
models. The lognormal PDF, proposed first from a dynamical model
for dark matter in Coles & Jones (1991) but nowadays being used as
a phenomenological parametrization for PDFs of dark matter and
its tracers, has the following form

PLN(ρ | σμ, μ̄) = 1√
2πσμ

1

ρ
exp

[
− (log ρ − μ̄)2

2σ 2
μ

]
, (B1)

where the variance σμ of the log-density μ = log ρ can be treated as
free parameter and the mean of the log-density is connected to the
variance via μ̄ = 〈log ρ〉 ≈ −σ 2/2 by requiring a unit mean density
〈ρ〉 = 1. The skewed lognormal PDF as introduced in Colombi
(1994), involves an Edgeworth expansion around the lognormal
PDF and reads

PSLN(ρ | σμ, μ̄, ε3, ε4) = PLN(ρ | σμ, μ̄)

×
[

1 + ε3

6
H3(μ̂) + ε4

24
H4(μ̂) + ε2

3

72
H6(μ̂)

]
, (B2)

with the normalized log-density μ̂ = (μ − μ̄)/σμ, its rescaled cu-
mulants εn = 〈μ̂〉c and the probabilist’s Hermite polynomials Hn.8

A comparison between the accuracy of the three different lognor-
mal based models, when the underlying parameters (the mean μ̄,
variance σμ, skewness ε3 and kurtosis ε4 of the log-density) are
measured from the simulated halo densities as shown in Fig. B1.
The generalized normal distribution Nv2 adopted by Shin et al.
(2017) to fit dark matter PDFs has very similar properties to the
skewed lognormal PDF in the range of radii we consider and hence
will not be discussed here.

The lognormal dark matter PDF can be combined with a poly-
nomial bias model for the log-densities. For a linear bias model
of the log-densities, the resulting halo PDF is again lognormal
with variance and mean given by σμ,h = σμ,m/b1 and −μ̄h =
b0/b1 + b1σ

2
μ,h/2, once the dark matter mean density is fixed to

one so that −μ̄m = σ 2
μ,m/2. In addition, the halo mean density be-

ing one, one gets an additional constraint which relates the constant
bias shift to the linear bias factor and the variance according to
b0 = b1(1 − b1)σ 2

μ,h/2 and agrees with the leading order perturba-
tive result. In this model, there is a full degeneracy between the
linear bias b1 and the log-variance of the underlying dark matter
σμ,m.

Let us now consider a quadratic log-bias model. Even if the dark
matter PDF was close to lognormal (which is typically the case at
∼10 per cent accuracy; see Uhlemann et al. 2017b), this non-linear
mapping induces extra terms in the exponential. If one expands
these terms in an Edgeworth-like fashion, one can see that non-
linear bias naturally feeds into higher order cumulants, in particular

8 Note that Edgeworth expansions are known to be problematic in the tails
of the distribution because the expression in the brackets can eventually
become negative depending on the size of the corrections in the cumulant
expansion.

Figure B1. Halo mass-density PDFs Ph for direct measurements based
on halo catalogues at redshifts z = 0, 1 for radii R = 10, 15 Mpc h−1 in
comparison to the recovered PDF of lognormal models with measured mean
and variance (upper panel), the skewed lognormal model with measured
cumulants up to skewness (upper middle panel) and up to kurtosis (lower
middle panel) and the PDF assuming a lognormal model with measured
matter variance and quadratic bias model for the log-densities (lower panel).

the skewness and kurtosis, which is why it is necessary to go to the
skewed lognormal forms to fit the measured halo PDF. The residu-
als obtained when augmenting the lognormal dark matter PDF with
the quadratic bias model with measured parameters are shown as
comparison in the lower panel of Fig. B1. In this case, the predicted
PDF is slightly less accurate than the large-deviation prediction,
with two additional parameters that cannot easily be related to bias
because they mix in contributions from the dark matter PDF, which
is significantly better fitted by a skewed lognormal. This is in con-
trast with the LDS formalism that clearly disentangles the effect of
gravitational evolution (parametrized through the non-linear dark
matter variance) from non-linear biasing (parametrized through the
bias parameters).

A P P E N D I X C : B R E A K I N G D E G E N E R AC I E S

The main text has shown that with a practical implementation of
the LDS formalism, one can accurately measure bias parameters
and dark matter variance, and break the degeneracies by including
information from two-point statistics, an idea also followed by Bel
& Marinoni (2012) in another context. Let us illustrate these findings
using perturbation theory.
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C1 One-point PDF

From equation (10), one can easily compute the relation between
halo and matter contrast within the quadratic log bias model

δh = −1 + exp

[√
b2

1 − 4b2(b0 − log(1 + δm)) − b1

2b2

]
. (C1)

Expanding this relation for small contrasts yields perturbative bias
consistency relations. First, imposing a zero mean for the halo con-
trast allows us to get b0 at all orders in the dark matter variance
σ

b0 = ∑
i b

(i)
0 σ 2i , (C2)

with

b
(0)
0 = 0 , b

(1)
0 = b1 − 2b2 − b2

1

2b2
1

. (C3)

The measured halo variance then imposes a relation between the
dark matter variance and the bias parameters which reads

σ 2
h =

(
σ

b1

)2 [
1 + σ 2�NL

]
, (C4)

with

�
(0)
NL = (S3 − 3)(b1 − 2b2 − b2

1)

b2
1

+ 20b2
2 − 8b1b2 − b4

1

2b4
1

. (C5)

The constraints are therefore dominated by this degeneracy between
b1 and σ at first order in PT. After the mean and the variance, the
PDF will typically pick up the information from the skewness. Let
us therefore compute perturbatively the skewness of the halo density
field. At first order, it reads

S3,h = 3 + b1(S3 − 3) − 6
b2

b1
+ O(σ ). (C6)

This latter equation gives a relation between σ and b2 at first order

b2 = σ (3 − S3,h)

6σh

(
1 + σ (S3 − 3)

σh(S3,h − 3)

)
+ O(σ 2). (C7)

Equations (C4) and (C7) predict a linear degeneracy between on
the one hand σ and b1 and on the other hand σ and b2 which is
indeed observed when performing the model fitting (see Fig. 7).
This model fitting described in Section 5 eventually gathers all the
information coming from the mean, variance, skewness and higher
order cumulants in a fully consistent way (because LPD provides the
PDF and therefore the full statistics). In principle, the knowledge of
the full hierarchy of cumulants eventually breaks those degeneracies
if the LDS model is exact. In practice, (i) sample noise prevents
accurate measurements of the higher order cumulants (kurtosis etc.)
which scale like higher power of the variance (σ 6 and above) and
(ii) loop corrections in the skewness that are not accounted for in the
LDS model appears at the same perturbative order as those higher
order cumulants and therefore do not allow us to fully break the
degeneracy between the parameters. To break this degeneracy, one
must involve two-point statistics as described in the next section.

C2 Two-point PDF

Let us assume that the two-point PDF of the matter density is well
described by its large-scale approximation given by equation (6).
The sphere bias b◦,m(ρm) can be exactly computed using the large-

deviation principle (Codis et al. 2016b; Uhlemann et al. 2017b). A
fair approximation for small densities is given by

b◦,m(ρm) = τSC(ρm)

σ 2
L

(
Rρ

1/3
m

) . (C8)

Remarkably, plugging in the bias relation in b◦(ρ), shows that the
sphere bias of the halo density field at small density behaves as

b◦,h(ρh) = δhb
(1)
◦ + b(0)

◦
σ 2

L

(
R

3
√

eb0 + 1
) , (C9)

where

b(1)
◦ =

2eb0b1νγ
(

3
√

eb0 + 1
)

3
(
eb0 + 1

)2/3

[(
eb0 + 1

)− 1
ν −1

]
+ eb0b1(

eb0 + 1
) 1+ν

ν

,

b(0)
◦ = ν

(
1 − (

eb0 + 1
)− 1

ν

)
.

and γ = σ ′/σ . Obviously, the overall amplitude in b◦,h cannot be
measured because it is degenerate with the unknown dark matter
correlation function ξ ◦,m. In contrast, the ratio between the slope
called b(1)

◦ and intercept b(0)
◦ can be obtained

b(1)
◦

b
(0)◦

=−
2eb0b1γ

(
3
√

eb0 + 1
)

3
(
eb0 + 1

)2/3 + eb0b1

(
eb0 + 1

)−1

ν
((

eb0 + 1
) 1

ν − 1
) . (C10)

This ratio is in particular proportional to b1 and does not depend
on the variance. Constraining this ratio, as is done in the joint fit
presented in the main text will therefore break the degeneracy in
equation (C4).

A P P E N D I X D : T H E H O R I Z O N - AG N
SI MULATI ON

Let us briefly describe the cosmological hydrodynamical simula-
tion used in the main text, Horizon-AGN (Dubois et al. 2014b).
The simulation http://www.horizon-simulation.org/ is run with a

CDM cosmology with total matter density 	m = 0.272, dark
energy density 	
 = 0.728, amplitude of the matter power spec-
trum σ 8 = 0.81, baryon density 	b = 0.045, Hubble con-
stant H0 = 70.4 km s−1 Mpc−1 and ns = 0.967 compatible with
the WMAP-7 data (Komatsu 2011). The size of the simulation
box is Lbox = 100 h−1 Mpc on a side, and the volume contains
10243 DM particles, corresponding to a DM mass resolution of
MDM,res = 8 × 107 M�. The simulation is run with the RAMSES code
(Teyssier 2002), and the initially coarse 10243 grid is adaptively re-
fined down to �x = 1 proper kpc, with refinement triggered in a
quasi-Lagrangian manner: if the number of DM particles becomes
greater than 8, or the total baryonic mass reaches eight times the
initial DM mass resolution in a cell. It leads to a typical number
of 6.5 × 109 gas resolution elements (leaf cells) in the simulation
at z = 1. Heating of the gas from a uniform UV background takes
place after redshift zreion = 10 following Haardt & Madau (1996).

Star formation occurs in regions of gas number density above
n0 = 0.1 H cm−3 following a Schmidt law: ρ̇∗ = ε∗ρg/tff , where ρ̇∗
is the star formation rate mass density, ρg the gas mass density,
ε∗ = 0.02 the constant star formation efficiency, and tff the local
free-fall time of the gas. Feedback from stellar winds, supernovae
type Ia and type II are included into the simulation with mass, energy
and metal release. The simulation also follow the formation of black
holes (BHs), which can grow by gas accretion at a Bondi-capped-at-
Eddington rate and coalesce when they form a tight enough binary.
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BHs release energy in a quasar/radio (heating/jet) mode when the
accretion rate is, respectively, above and below one per cent of
Eddington, with efficiencies tuned to match the BH-galaxy scaling
relations at z = 0 (see Dubois et al. 2012, for details). A light-cone
has been generated from the simulation, as described in Pichon et al.
(2010). The area of the light-cone is 5 deg2 below z = 1 and 1 deg2

above. A mock photometric galaxy catalogue has been extracted
from the light-cone in order to mimic observational data sets (see
Laigle et al. in preparation for more details). Galaxies have been
identified from the stellar particles distribution using the ADAPTAHOP

halo finder (Aubert, Pichon & Colombi 2004). The local density is
computed from a total of 20 neighbours, and a density threshold ρ t of
178 times the average matter density is required to select structures.
Once identified mock galaxies in the light-cone, a BC03 simple
stellar population (SSP) has been attached to any stellar particle
in each galaxy, according to its mass and stellar metallicity. The
spectrum of the galaxy is then obtained by adding the SEDs of all
the SSPs. The (possibly redshifted) spectra are then convolved with
photometric filter passbands, in order to get absolute and apparent
magnitudes in the following 13 bands: NUV, u, B, V, r, i+, z++, Y,
J, H, Ks, 3.6μm, 4.5μm. Dust attenuation is also taken into account
along the line of sight of each stellar particle in the galaxy, assuming
the dust mass scales with the gas metal mass, with a dust-to-metal
ratio of 0.4 (Dwek 1998; Jonsson 2006). In order to get observed
stellar masses, the SED-fitting code LEPHARE (Arnouts et al. 2002;
Ilbert et al. 2006) has been run using as input photometry the virtual
magnitudes included in the mock catalogue and with a configuration
similar to Laigle et al. (2016).

In closing, the galaxy population was shown to reproduce in
overall the luminosity function of observed galaxies in Kaviraj et al.
(2017) (see Fig. D1 for a qualitative representation of the count-in-
cells within its light-cone).

Figure D1. Qualitative distribution of spheres in the simulated galaxies in
Horizon-AGN. The background represents synthetic galaxies produced by
the simulation while converting cold gas into stars. Realistic colours are post
processed using spectral synthesis (Kaviraj et al. 2017).
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