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We analyze the unusual slow dynamics that emerges in the bad metal delocalized phase preceding
the Many-Body Localization transition by using single-particle Anderson Localization on the Bethe
lattice as a toy model of many-body dynamics in Fock space. We probe the dynamical evolution by
measuring observables such as the imbalance and equilibrium correlation functions, which display
slow dynamics and power-laws strikingly similar to the ones observed in recent simulations and
experiments. We relate this unusual behavior to the non-ergodic spectral statistics found on Bethe
lattices. We discuss different scenarii, such as a true intermediate phase which persists in the
thermodynamic limit versus a glassy regime established on finite but very large time and length-
scales only, and their implications for real space dynamical properties. In the latter, slow dynamics
and power-laws extend on a very large time-window but are eventually cut-off on a time-scale that
diverges at the MBL transition.

Understanding the inter-play of quenched disorder, in-
teractions and quantum fluctuations has been a central
theme of hard condensed matter for many years. Activ-
ity on this topic boomed recently, in particular after that
Basko, Aleiner and Altshuler (BAA) showed by using
the self-consistent Born approximation that interacting
and isolated quantum systems can fail to thermalize due
to Anderson localization in Fock space [1]. This phe-
nomenon, called Many Body Localization (MBL), repre-
sents a new kind of ergodicity breaking transition, which
is purely dynamical—indeed it can take place even at infi-
nite temperature by increasing the amount of disorder—
and which results from the interplay of disorder, interac-
tions and quantum fluctuations [2, 3]. One of the most
surprising results is that even the delocalized phase is
unusual in a wide range of parameters already before the
MBL transition. In fact both in numerical simulations [4–
8] and in experiments [9–11] it was found that transport
appears to be sub-diffusive and that out-of-equilibrium
relaxation toward thermal equilibrium is slow and power-
law-like with exponents that gradually approach zero at
the transition. Several works explained this behavior in
terms of Griffiths regions, i.e., rare inclusions of the lo-
calised phase which impede transport and relaxation [12–
15]. However, also quasi-periodic 1d and disordered 2d
systems, in which Griffiths effects should be absent or
milder [14, 15], do display analogous unusual transport
and relaxation [10, 11, 16, 17]. It is therefore important
to look for other explanations that might hold beyond
the particular case of 1d disordered systems. Moreover,
it is interesting to complement the real space Griffiths
perspective to one directly based on quantum dynamics
in Fock-space. These are the aims of our work.
As a matter of fact, already in [1] it was argued in favor
of a bad metal phase characterized by unusual transport.
Even before that, by mapping MBL to Anderson localiza-
tion on a Bethe lattice [18], it was suggested that the de-

localized phase could be non-ergodic, i.e., not fully ther-
mal: in an entire regime of parameters, before the MBL
transition, wave-functions could be delocalized but not
uniformly spread and could show multifractal behavior.
The existence of such delocalised non-ergodic phase in
the (non-interacting) Anderson model on tree-like struc-
tures [19–23] and on related random matrix models with
long range hopping [24–26] has been the focus of an in-
tense research activity in the last five years. Although
it is still debated whether this phase indeed exists for
infinitely large systems, it is indisputable that finite-size
samples do not display fully ergodic behavior even far
from the localization transition and for very large sizes.
In this work, by focusing on the non-interacting Anderson
model on the Bethe lattice as a toy model of MBL [18, 27–
29], we show that these non-ergodic features of the spec-
tral statistics leads to unusual slow and “glassy” dynam-
ics in a broad region of parameters within the delocalized
phase. In particular, in this regime Bethe lattice proxies
for observables such as equilibrium correlation functions
and the imbalance display a power-law dynamical be-
havior completely analogous to the one found in realistic
many-body interacting systems.

As anticipated, we consider Anderson localization on
the Bethe lattice, originally introduced and studied
in [30], as a simple framework for MBL [18, 27–29]. This
system corresponds to a tight-binding Hamiltonian for
spinless non-interacting fermions, where the quenched
disorder is due to on-site random energies which are taken
as i.i.d. random variables with a uniform distribution be-
tween [−W/2,W/2] (we set the hopping t = 1). The un-
derlying lattice structure is a random-regular graph [31].
In the analogy with MBL, sites should be interpreted as
many-body configurations, and on-site energies as exten-
sive energies of a N -body interacting system [18, 27–29].
The two main—drastic—simplifications that we make are
the following ones:
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1. The configuration space of a many-body disordered
quantum system is a very high-dimensional space. For
example for Ising spins it corresponds to a hypercube in
N dimensions, where N is the total number of spins of
the system; MBL can hence be viewed as single-particle
Anderson localisation on a very high dimensional lattice
with correlated random energies. By considering Ander-
son localization on a Bethe lattice as a toy model, we
retain the infinite dimensional character of the configu-
ration space [32] but we neglect the correlations between
energies as well as the specific structure of the hyper-
cube. Note, moreover, that we shall consider a finite
connectivity Bethe lattice, whereas the Fock space has a
connectivity that increases logarithmically with N .
2. We are interested in studying averages and correlation
functions of local operators in real space. In order to fig-
ure out how to model such local operators on the Bethe
lattice, let us focus on the following exemple. Here and
henceforth we shall consider a random disordered quan-
tum spin-chain, such as the one studied in [8], as a refer-
ence model to explain our procedure. As local observable
we take the z-component of the spin σzi . The representa-
tion of σzi in Fock space is simply

∑
C |C〉〈C|fσzi (C) where

C = {σz1 , . . . , σzN} and fσzi (C) is equal to the value of σzi in
the configuration C. The main properties of the function
fσzi (C) is that it changes in a rapid and scattered way
along the hypercube and it is equal to 1 (respectively,
−1) for half of the configurations. On the Bethe lattice
we approximate such complex behavior by a random one
by defining local operators as Ôlocal =

∑
C |C〉〈C|fO(C),

where C denotes a site of the lattice (i.e., a proxy for a
many-body configuration), and fO(C) is a random binary
variable equal to ±1 with probability 1/2 [33].
Without loss of generality, we consider the transition in-
duced by increasing W at infinite temperature. It takes
place when the states in the middle of the spectrum,
i.e., at E = 0, become localized. For a Bethe lattice
with connectivity three, which is the model we focus on
henceforth, this happens at Wc ≈ 18.1. The observ-
ables we shall study are the imbalance and the two-point
equilibrium dynamical correlation function. The former
measures whether, say, an initial random magnetization
profile converges to its flat thermodynamic average or
remains instead inhomogeneous even at very long times;
this corresponds to check whether

∑
i〈σzi (t)〉2rand/N tends

to zero or to a positive residual value at long times, where

〈σzi (t)〉rand = 〈ψ0|eiHtσzi e−iHt|ψ0〉 .

and |ψ0〉 is a random initial state (we rescaled time by
1/~). The Bethe lattice counterpart of |ψ0〉 is a ran-
dom site |x0〉 whose energy is close to zero; following
the approximation discussed before, the counterpart of
〈σzi (t)〉rand reads:

〈σzi (t)〉rand ≡
M∑
x=1

fσzi (x)

∣∣∣∣∣
′∑
α

〈x0|α〉〈α|x〉eiEαt
∣∣∣∣∣
2
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FIG. 1. Equilibrium correlation function, C(t), as a func-
tion of time for different disorder strengths (log-log plot).
Dashed straight lines highlight the apparent power-law be-
havior C(t) ∼ t−α.

where we have denoted M the number of sites of the
Bethe lattice, and Eα and |α〉 the eigenvalues and the
eigenvectors of the single-particle Anderson Hamiltonian.
The prime means that we restrict the sum over eigen-
states around zero energy. In a many-body system this
restriction is automatically enforced by the scaling of the
energies in the thermodynamic limit: the states that mat-
ter physically, even the virtual ones, have all the same
intensive energy. In the model we focus on, which lacks
this concentration property, we have to impose it as a
constraint [34].
Averaging over the disorder [35], we thus obtain the
Bethe lattice proxy for the imbalance, which reads:

I(t) =
[ 1

N

∑
i

〈σzi (t)〉2rand
]
≡

M∑
x=1

∣∣∣∣∣
′∑
α

〈x0|α〉〈α|x〉eiEαt
∣∣∣∣∣
4

.

Note that because of the constraint on the sum over
eigenstates the right-hand side of the expression above is
not equal to one for t = 0. In order to cure this pathology
of the model we normalize the previous expression by its
value at t = 0.
Following the same kind of reasoning, one can define the
Bethe lattice proxy for the equilibrium dynamical corre-
lation function

C(t) =
1

2N

∑
i

〈(σzi (t)σzi (0) + σzi (0)σzi (t))〉T=∞

≡ 1

Z

′∑
α,β

M∑
x=1

|〈α|x〉|2|〈β|x〉|2 cos [(Eβ − Eα)t] ,

where Z =
∑′
α is the partition function at infinite tem-

perature. As for the imbalance, we normalize by the
value at t = 0 [36].



3

0 2 4 6 8 10
ln t

-6

-4

-2

0

ln
 I

(t
)

W=8
W=11
W=12
W=13
W=14
W=15
W=16
W=17

FIG. 2. Imbalance, I(t), as a function of time for differ-
ent disorder strengths (log-log plot). Dashed straight lines
highlight the apparent power-law behavior I(t) ∼ t−β .

These two observables are plotted in Figs. 1 and 2 for dis-
order strengths W = 8, . . . , 17, for the largest available
system size, M = 215, and by averaging over 64 samples.
For this value of M our numerical data do not display
finite size effects on the time-scales shown in the figures
(we do observe finite size effects on much larger time-
scales or for smaller system sizes, see SI). It is clear from
the figures that for W & 10 a regime of slow dynamics
sets in and both observables show a clear power-law be-
havior. We found an exponent for the imbalance which
is the double of the one for the correlation function, con-
sistently with what found for many-body systems and
expected on the basis of scaling arguments [8, 15]. By
increasing W and approaching the localization transition
the exponents vanish. These results, which are strikingly
similar to the ones found approaching the MBL transi-
tion in simulations and experiments [4–11, 15], emerge in
the part of the phase diagram where previous analysis of
the spectral properties have suggested the presence of a
non-ergodic delocalised phase [21].
In order to establish a direct link between the two phe-
nomena it is useful to introduce the spectral probe [37–
39]:

K2(E) =
1

N

′∑
α,β

M∑
x=1

|〈α|x〉|2|〈β|x〉|2δ[E − (Eβ − Eα)] ,

where N is a normalization factor (chosen in such a way
that the integral over E is equal to one). This func-
tion was introduced to characterize the critical proper-
ties of the Anderson localization transition and recently
studied to probe the putative non-ergodic delocalized
phase [21, 25, 40]. We show its behavior in Fig. 3 for
different system sizes and W = 14. In a standard er-
godic delocalized phase K2(E) converges in the thermo-
dynamic limit to a function with a finite value at zero
energy [25, 38]. This is indeed what happens for very
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FIG. 3. Log-log plot of K2(E) for different system sizes M =
2n (n=11,12,14,15). The straight dashed line highlights the
apparent power-law behavior K2(E) ∼ E−µ. Inset: Power-
law exponents α, β, µ observed numerically as a function of
W . For smaller values of W our precision on the exponents
decreases since we can track the power-laws for less decades.
The difference found for W = 11, 12 is likely due to this lack
of precision.

small values of W ; for W = 0 we fully recover the GOE
behavior. In the interval 10 . W . Wc the function
K2(E) instead displays an apparent power-law regime
that extends to smaller and smaller energy the larger
is the systems size. Since K2(E) can be related to our
proxy for the equilibrium correlation function through
C(t) ∼

∫
dEK2(E) cos(Et), the power-laws observed in

Figs. 1 and 2 are actually tightly linked to the power-laws
in energy found for K2(E). A direct numerical proof is
that the power-law exponent of the imbalance, β, of the
equilibrium correlation function, α, and of K2(E), µ, are
all related within numerical accuracy: α ' β/2 ' 1− µ,
see inset of Fig. 3. All this clearly shows that the phys-
ical origin of the unusual time dependence observed in
the correlation functions is the non-ergodic-like features
of the spectral statistics that emerge within the delocal-
ized phase before that the transition takes place.
As already stressed, the existence of a bona-fide non-
ergodic delocalized phase has recently been matter of
debate. All the crux of showing the presence of such
intermediate phase is finding out whether or not in the
M → ∞ limit the power-law divergence in E is cut-off
for a certain (very small) value Ec or instead it persists
forever. In the latter case the power-laws in time would
extend for arbitrary large times, whereas in the former
they would be cut-off at very long times. Whatever is
the correct answer, our results show that on a very large
time-window the system behaves for all practical pur-
poses as if there were a non-ergodic delocalized phase,
and that this explains the power-law behavior of physi-
cal correlation functions.
The existence of a cross-over size, Mc, above which one
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would find back normal ergodic behavior has received
some evidences from analytical and numerical works [22–
24]; approaching the transition the logarithm of Mc is
expected to diverge as 1/

√
W −Wc [41]. It is natural to

assume that the characteristic energy Ec scales as the in-
verse of the correlation volume Mc dominating the finite
size effects, as it happens for ordinary Anderson localiza-
tion transitions [25, 38], thus implying that the power-law
dependence and slow dynamics are cut-off on a time-scale
τ(W ) ∼ ec/

√
W−Wc , where c is a positive constant. If this

were the case then the dynamics of the system would be
very slow and unusual on a very large time-window span-
ning many decades, although it might become eventually
ergodic—a situation that strikingly resembles the one of
super-cooled liquids close to the glass transition. Taking
inspiration from this case, as also suggested in [21], we
dubb glassy and delocalized the regime beforeWc. Estab-
lishing whether this regime is truly non-ergodic is a very
interesting theoretical question but irrelevant for many
practical purposes (as also is the existence of a bona-fide
ideal glass transition). Moreover, note that what leads to
the power-laws we found in the imbalance and the cor-
relation functions is the behavior of K2(E) at arbitrary
small but finite energies. This relates unusual slow dy-
namics to unusual spectral properties on the scale Ec,
and not on the scale of the mean level-spacing δ (Ec � δ
even in presence of an intermediate phase [25]), in agree-
ment with recent results [7, 39, 40].
Let us finally comment on the relationship with Griffiths
effects in real space. Inclusions of the localised phase in
real space lead to kinetic bottlenecks in Fock space and,
consequently, to a very heterogenous many-body delocal-
isation [42]. Similarly, on the Bethe lattice, the unusual
properties of the delocalised phase have been traced back
to delocalisation along rare paths. In this case the differ-
ence between the ergodic and non-ergodic phases is very
similar to the one between the normal and glassy phases
of directed polymers in random media, where preferred
conformations of the polymer correspond to favorable de-
localization paths [19, 21–23] (these non-ergodic features
might extend only up to a large but finite length-scales if
the delocalized phase indeed becomes standard and fully
ergodic asymptotically). The interest of focusing on real
space to explain the unusual dynamics of the delocal-
ized phase is that this leads to a very intuitive and con-
crete theoretical explanation. The advantage of focusing
on Fock space is instead that this perspective provides
a more general framework that could be relevant also
in cases where, strictly speaking, Griffiths effects do not
hold or should be milder [14], such as in 2d disordered or
1d quasi-periodic systems, but the dynamics is slow and
unusual as for 1d disordered systems [11, 16, 17]. Under-
standing the precise connection between the real space
and the Fock space perspectives certainly requires to go
beyond the simple toy model studied in this work. This
is something worth future investigations for which our

results provide useful guidelines.
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SUPPLEMENTAL MATERIAL

In this supplemental materials we illustrate and
discuss in more detail the finite-size effects observed on
the time-dependence of dynamical observables at small
sizes and very large times-scales.

In Fig. 4 we plot the time dependence of the equi-
librium correlation function C(t) for W = 14, of the
imbalance I(t) for W = 13, and for different system sizes
M = 2n with n = 11, . . . , 15. The data are averaged over
221−n realizations of the disorder. After a relatively fast
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FIG. 4. Equilibrium correlation function C(t) for W = 14
(top) and imbalance I(t) for W = 13 (bottom) as a function
of time and different system sizes M = 2n with n = 11, . . . 15
(log-log plot). The dashed straight lines highlight the appar-
ent power-law behaviors, C(t) ∼ t−α and I(t) ∼ t−β .

decay at short times, a slow power-law regime sets in
for intermediate times, where the dynamical observables
behave as C(t) ∼ t−α and I(t) ∼ t−β . At large t the
curves depart from the straight lines and approach a
plateau value whose height decreases as the system size
is increased. As a result, the time window over which the
power-law decays are observed gets broader for larger
samples. The exponents α and β of the power-laws
appear however to be independent on the system size.

http://arxiv.org/abs/1704.07393
http://arxiv.org/abs/1705.00756
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The key observation is that the finiteness of M only
affects the long-time value on scales that are larger the
larger is M . The plateau values and their scaling with
M are related to the possible multi-fractal behavior.
For instance, the plateau value of the correlation func-
tion equals the Inverse Participation Ratio, defined as
Υ2 ≡

∑
x |〈α|x〉|4 (where the average is performed over

the eigenstates around zero energy). Its scaling with
M is Υ2 ∼ M−D2 where D2 is a fractal dimension.
Likewise, one finds that the plateau of the imbalance
goes to zero with M as a power law. If the system is
ergodic the exponents of these power-laws are trivial,
e.g. D2 = 1.
In conclusion, only the very large time behaviour
(diverging with M) suffers of finite size effects. The plot
of the imbalance and the correlation function presented
in the main text, which are for large but finite times,

can be considered converged for M →∞. Put it in more
mathematical terms, pointwise convergence is reached
for not too large values of M even for relatively large
times.

Our numerical findings show that at smaller values of
W , for instance, at W = 10, the incipient power-law de-
cay observed at intermediate times is cut-off and replaced
at very large times by a faster (probably stretched expo-
nential) decay, which can be observed only for the largest
accessible system sizes (M = 215). For 11 /W < Wc the
bigger the system size the longer the power-law regime
holds. In order to find out whether there is cut-off in
this regime, one should reach very long time-scales and,
hence, beat finite size effects, that induce a spurious
plateau, by using very large system sizes M .
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