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In this paper we present a thorough study of transport, spectral and wave-function properties at
the Anderson localization critical point in spatial dimensions d = 3, 4, 5, 6. Our aim is to analyze
the dimensional dependence and to asses the role of the d → ∞ limit provided by Bethe lattices
and tree-like structures. Our results strongly suggest that the upper critical dimension of Anderson
localization is infinite. Furthermore, we find that the dU = ∞ is a much better starting point
compared to dL = 2 to describe even three dimensional systems. We find that critical properties
and finite size scaling behavior approach by increasing d the ones found for Bethe lattices: the critical
state becomes an insulator characterized by Poisson statistics and corrections to the thermodynamics
limit become logarithmic in N . In the conclusion, we present physical consequences of our results,
propose connections with the non-ergodic delocalised phase suggested for the Anderson model on
infinite dimensional lattices and discuss perspectives for future research studies.

I. INTRODUCTION

Anderson localization (AL) is one of the most fun-
damental quantum phenomena. A system of non-
interacting disordered electrons can be driven (e.g., by
increasing the disorder strength or the energy) through
a transition between a metallic (delocalized) phase and
insulating (localized) phase, where diffusive transport is
completely suppressed due to quantum interference [1].
After more than half century of research [2], the subject
is still very much alive as proved by recent experimental
observation of AL in 1d [3] and 3d [4] atomic gases and
for classical sound elastic waves in 3d [5].

The properties of AL in low dimensional systems are
by now very well established and understood. As pre-
dicted by the scaling theory of localization [6], all states
are localized in 1d [7] and 2d (for system with orthog-
onal symmetry) by an infinitesimal amount of disorder.
In fact, dL = 2 is the lower critical dimension of the
problem, where the so-called “weak localization” takes
place [8].

During the last 40 years, a field theoretical approach [9]
based on the replicated Non-Linear σ-Model (NLσM)
has been developed, and a perturbative ε expansion in
d = 2+ε dimensions has been pushed up to five-loops [10].
These advances culminated in a functional (perturbative)
renormalization group analysis [11] of the NLσM, which
allowed to compute the multifractal spectra of wave-
function amplitudes at the AL critical point in d = 2 + ε.

Nonetheless, despite about 60 years of intense research,
there is still (almost) no available analytical approach for
AL away from the low-dimensional limit and much less is
known in higher dimensions. The main reasons for that
are:

(a) The absence of small parameter: The critical dis-
order is of the same order (or even larger) than the

bandwidth already in three dimensional systems.

(b) The fact that AL is not associated to a conventional
spontaneous symmetry breaking. Indeed, the order
parameter which naturally arises in the field theo-
retical description is a function: the probability dis-
tribution of the local density of states (DOS) which
develops heavy tails in the insulating phase due to
very large and rare resonances. The average DOS
instead does not show any sign of discontinuity at
the transition.

These unconventional properties represent a challenge
for analytical approaches. As a consequence numerical
methods are still at the core of the advances in this
topic [12].

AL in three dimensions was analyzed by many au-
thors using numerical techniques for increasing system
size, with the use of various scaling analysis, and of
different observables related both to transport proper-
ties [13, 14] and to the statistics of energy levels [15] and
wave-functions coefficients [16, 17]. In Ref. [18] the phase
diagram in the energy-disorder plane was also calculated.
For the model described in the next section (spinless elec-
tron in a uniformly distributed disordered potential) and
for E = 0 (middle of the band) a localization transition
is found at a critical value of the disorder Wc ' 16.5,
separating a metallic phase, where wave-functions are ex-
tended over the whole volume, from an insulating phase,
where wave-functions are exponentially localized around
some particular sites. The quantity Υ2 =

∑
i |〈n|i〉|4,

called the inverse participation ratio (IPR)—averaged
over the disorder and over all eigenstates |n〉 around
E = 0—is often used to distinguish between these two
regimes as Υ2 ∼ C/Ld in the extended phase and stays
of O(1) in the localized phase. Diffusion is completely
suppressed in the insulating regime and the conductiv-
ity σ vanishes in the thermodynamic limit, while it stays
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finite in the metallic phase. The localization length, mea-
suring the spatial extent over which wave-functions are
localized, diverges at the transition coming from the in-
sulating phase. At present, the most precise numerical
estimate of the critical exponent ν describing this diver-
gence in 3d—for systems with orthogonal symmetry—is
ν = 1.58± 0.01 [14, 16].

AL had a very strong impact also on Random Matrix
Theory (RMT). As a matter of fact, in the delocalized
phase the level statistics on the scale of the mean-level
spacing is expected to be described by RMT and gener-
ally corresponds to the Gaussian Orthogonal Ensemble
(GOE), whereas instead in the localized phase is deter-
mined by Poisson statistics because wave-functions close
in energy are exponentially localized on very distant sites
and hence do not overlap; thus, contrary to the GOE
case, there is no level-repulsion and eigen-energies are
distributed similarly to random points thrown on a line.
These ideas have been confirmed by numerical simula-
tions in 3d [15].

Right–and only–at the critical point, level statistics is
neither GOE nor Poisson [19] (it is instead characterized
by a universal distribution which depends on the dimen-
sionality) and wave-function amplitudes show a multi-
fractal spectrum [17]—the critical eigenstates being nei-
ther extended nor localized reveal large fluctuations of
wave-function amplitudes at all length scales.

Few recent accurate results are also available in 4d and
5d [20], based on the study of transport properties only.
However, there are very few results on level statistics
above dimension three [21] and no exact results for trans-
port properties for d > 5 [22]. As we will discuss in the
following, the reason for that is that running times of
numerical algorithms increase very rapidly with the size
of the system (more precisely, as L3d for exact diago-
nalization (ED) and as L3d−2 for transfer matrix (TM)
techniques). This sets a very severe limitation on the
system sizes which can be simulated as dimensionality is
increased.

For these reasons, some basic questions of AL remain
unanswered or debated. For instance, the existence of an
upper critical dimension dU is still an issue. Although
several observations seem to indicate that dU might be
infinite [21, 23], different propositions corresponding to
dU = 4, 6, and 8 have been put forward [24, 25].

Another important and highly debated aspect is the
relation with the infinite d limit, corresponding to AL
on tree-like structures [26] and to other random matrix
models with long-range hopping [27]. On the one hand,
these models allow for an exact solution, making it possi-
ble to establish the transition point and the correspond-
ing critical behavior [27–29]. On the other hand, how-
ever, the properties of the delocalized phase are very un-
usual, since they are affected by dramatic—and somehow
unexpected—finite-size effects (FSE) even very far from
the critical point, which produce a strong non-ergodic be-
havior in a crossover region where the correlation volume
is larger than the accessible system sizes [27, 30–35]. This

makes the finite-size analysis of numerical data highly
non-trivial [33, 35], and has been interpreted by some au-
thors [30–32] in terms of the existence of a new interme-
diate delocalized but non-ergodic phase—which might be
characterized by non-universal level statistic, anomalous
scaling exponents of the IPR, and multifractality [36]—in
a broad interval of disorder strength between the metallic
(fully ergodic) phase and the insulating one.

This possibility is clearly very intriguing (although it
appears to be in conflict with the analytical predictions
of the SUSY formalism [29]), especially due to its rela-
tionship with Many-Body localization [37], a fascinating
new kind of phase transition between a low temperature
non-ergodic phase—a purely quantum glass—and a high
temperature ergodic phase. Theoretical work strongly
suggests that this phenomenon takes place for several dis-
ordered isolated interacting quantum systems, in partic-
ular disordered electrons [37] (it was also independently
investigated in [38] to explain the quantum ergodicity
transition of complex molecules). MBL can be pictori-
ally interpreted as localization in the Fock space of Slater
determinants, which play the role of lattice sites in a dis-
ordered (single-particle) Anderson tight-binding model.
A paradigmatic representation of this transition [37–41]
is indeed AL on a very high dimensional lattice, which
for spinless electrons consists in an N -dimensional hyper-
cube of 2N sites.

All the open questions presented above motivated us
to thoroughly analyse AL in high spatial dimensions. In
the following we present a detailed study of the critical
properties of AL in dimensions from 3 to 6 based on “ex-
act” numerical methods (ED and TM techniques) and on
an approximate Strong Disorder Renormalization Group
(SDRG) approach [42, 43]. We focus on both the statis-
tics of energy levels and wave-functions coefficients and
on transport properties. Our aim is to shed new light on
the critical properties of AL and provide new insights to
develop alternative analytical approaches to tackle this
problem.

Our results support the idea that the upper critical
dimension of AL is infinite. For instance, the critical
exponent ν smoothly evolves from ν → ∞ in d = 2 to
the value ν = 1/2 in d → ∞ predicted by the SUSY
approach [44], showing no sign of saturation. Moreover,
we find that the infinite dimensional limit is a very good
quantitative and qualitative starting point to describe
AL even down to three dimensions. Expansions around
the lower critical dimension, dL = 2, instead give poorer
results (even up to five-loops). The higher is the dimen-
sion the more AL is well described by a strong disorder
limit, as signalled by the fact that the critical values of
all observables smoothly approach the ones of the local-
ized phase as the dimensionality is increased—in d→∞
the critical states seem to correspond to an insulator, for
which the statistics of energy levels is of Poisson type,
and the multifractal spectrum of wave-functions ampli-
tudes takes its strongest possible form. Another strong
indication of this fact is that the SDRG approach gives
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very accurate results in estimating the critical parame-
ters in all dimensions d ≥ 3.

We also show that FSE become anomalously strong as
d is increased. When d gets large the scaling variable
controlling finite size scaling (FSS) is |W −Wc|L1/ν and
the leading corrections to FSS turn out to be proportional
to Ly. Both ν and y depend weakly on the dimensions
and tend to a constant when d→∞: ν → 1/2 and y stays
roughly constant and close to −1. When re-expressed in
terms of the systems size N = L1/d these results suggest
that corrections become logarithmic-like in N in the d→
∞ limit. This behavior is drastically different from the
one observed in conventional phase transitions, for which
it exists an upper critical dimension dU such that for
d > dU finite size effects are governed by the scaling
variable |T − Tc|N1/νdU with corrections of the order of

Ny′ (with some negative exponent y′ independent of d)
The paper is organized as follows: In Sec. II we intro-

duce the model and some basic definitions. In Sec. III
we present our numerical results based on exact diago-
nalization (ED) and transfer matrix (TM) methods for
dimensions from 3 to 6. In Sec. IV we discuss the SDRG
approach, focusing especially on the properties of the flow
close to criticality. In Sec. V we give a brief summary of
the results found and discuss the their possible implica-
tions on the unusual properties of the delocalized phase
observed in the Anderson model on tree-like structures,
which can be interpreted in terms of the extreme “quasi-
localized” character of the AL critical point in d → ∞,
and of anomalously strong FSE. Finally, in Sec. VI we
present some concluding remarks and perspectives for fu-
ture work.

II. THE MODEL

The model we focus on consists in non-interacting spin-
less electrons in a disordered potential:

H = −t
∑
〈i,j〉

(
c†i cj + c†jci

)
−

N∑
i=1

εic
†
i ci , (1)

where the second sum runs over all N = Ld sites, and
the first sum runs over all dLd links of nearest neigh-

bors sites of the d-dimensional hyper-cubic lattice; c†i , ci
are fermionic creation and annihilation operators, and
t is the hopping kinetic energy scale, which we take
equal to 1 throughout. The on-site energies εi are i.i.d.
random variables uniformly distributed in the interval
[−W/2,W/2]:

p(ε) =
1

W
θ

(
W

2
− |ε|

)
, (2)

W being the disorder strength. The model (1) has time
reversal (and spin rotation) symmetry (also called orthog-
onal symmetry in the context of RMT). The common be-
lief, supported by the scaling theory of localization [6] is

L

x

FIG. 1: Sketch of the quasi-one dimensional bar along the x
direction of cross section L(d−1).

that the transition is universal, i.e., it does not depend on
microscopic details of the model such as the probability
distribution of the on-site energies. However, it depends
on the dimension and on the physical symmetry of H.

In terms of RMT, the model (1) can be thought as a
sum of two matrices, H = C(d) + E (i.e., a Schrödiger op-
erator with random on-site potential): C(d) is the (deter-
ministic) connectivity matrix of the d-dimensional hyper-

cube, C(d)ij = −t if sites i and j are connected and zero
otherwise. E is a diagonal random matrix corresponding
to the on-site energies, Eij = εiδij .

In the following we will focus only on the middle of the
spectrum, E = 0.

III. NUMERICAL RESULTS IN d = 3, . . . , 6

In this section we present our numerical results in di-
mensions from 3 to 6 obtained from ED and a TM ap-
proach. We will focus first on transport properties and
then on the statistics of energy gaps and wave-functions
amplitudes.

A. Transport properties

We consider a very long (length Lx) quasi-one dimen-
sional bar of cross-section Ld−1, as sketched in fig. 1.
The system is open along the x-direction, while periodic
boundary conditions are enforced along the transverse
directions. Such system, being quasi-1d, is always local-
ized at any arbitrarily weak value of the disorder. The
localization of electrons on this bar can be studied using
the TM method. To this aim, we introduce the resol-
vent matrix, G = [zI − H]−1, where z = E + iη with
η → 0+ being the imaginary regulator, and express its
matrix elements in terms of a Gaussian integral over a
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FIG. 2: log ImG(x) as a function of x in 6 dimensions, for
L = 6 and for several values of the disorder, showing that ξ1d
can be measured from Eq. (6) by linear fitting of the data at
large enough x.

real auxiliary field:

Glm = − i

Z

∫ N∏
i=1

dφi φlφm e
S[φi] , (3)

where the action is given by:

S[φi] =
i

2

N∑
i,j=1

φi (zδij −Hij)φj

=
i

2

∑
i

(E + iη + εi)φ
2
i + i

∑
〈i,j〉

tijφiφj ,

(4)

and the “partition function” reads:

Z =

∫ N∏
i=1

dφi e
S[φi] . (5)

We set E = 0 throughout, which corresponds to the band
center. We set a finite positive value of η at x = 0 and
η = 0 elsewhere inside the bar, at x > 0. This mimics
putting the left boundary of the quasi-1d bar of fig. 1 in
contact with a thermal bath, and study how dissipation
propagates through the sample. The quasi-1d localiza-
tion length, ξ1d, can be easily measured from the expo-
nential decay of the typical value of the imaginary part
of the Green’s function, exp[log ImG(x)], as a function of
x, averaged over all the sites of the x-th layer and over
several realizations of the disorder:

log ImG(x) ' cst− x

ξ1d
. (6)

Since Eq. (4) is a Gaussian action, in order to compute
the l.h.s. of Eq. (6) one can—at least formally—integrate
over all the sites on a given layer x in Eq. (3), yielding an
exact recursive relation expressing the Green’s function
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FIG. 3: Left panel: λ1d as a function of the disorder W for
several system sizes L from 2 to 18. The vertical dashed line
spots the position of the critical point, Wc ' 34.5. Top-right
panel: Finite size scaling of the same data for L from 10 to
18, showing data collapse for ν ' 1.11. Bottom-right panel:
ψf1 = (λ1d − f∞)/Ly as a function of the scaling variable

(W −Wc)L
1/ν for different sizes L from 2 to 7, showing data

collapse for the same value as before of Wc and ν and for
y ' −1.

on the subsequent layer, x + 1, in terms of the Green’s
function on the layer x in absence of layer x+ 1 (a kind
of cavity equation for the whole layer):

[G(x+ 1)]
−1
ij = εx,iδij + tC(d−1)ij − t2Gij(x) , (7)

where the index i runs over all the sites of layer x, εx,i is
the random on-site energy on site i belonging to layer x,
and C(d−1) is the connectivity matrix of the transverse
layers, i.e., the (d − 1)-dimensional hyper-cube. This
equation can be solved numerically by iteration, start-
ing from the following initial condition at x = 0:

[G(0)]
−1
ij = (ε0,i + iη) δij + tC(d−1)ij . (8)

In order to do this we need to invert the matrix G(x) layer
by layer, which can be done by LU decomposition. Since
the computer time required to perform this operation is
proportional to the third power of the total number of
sites of the matrix, L3(d−1), the running time of the TM
algorithm scales as LxL

3d−3 ∼ L3d−2.
As an example, in fig. 2 we plot log ImG(x) as a func-

tion of x in 6 dimensions, for L = 6 and for several val-
ues of the disorder W , showing that ξ1d can be mea-
sured using Eq. (6) by linear fitting of the data at large
enough x. This is equivalent to the following definition
of the quasi-1d localization length via the trasmission co-
efficient [13, 45]:

ξ−11d = − lim
Lx→∞

1

2(Lx + 1)
log Tr|〈0|G|Lx〉|2 ,
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FIG. 4: Left panel: λ1d as a function of the disorder W for
several system sizes L from 2 to 9. The vertical dashed line
spots the position of the critical point, Wc ' 57.5. Top-right
panel: Finite size scaling of the same data for L from 6 to
9, showing data collapse for ν ' 0.96. Bottom-right panel:
ψf1 = (λ1d − f∞)/Ly as a function of the scaling variable

(W −Wc)L
1/ν for different sizes L from 2 to 6, showing data

collapse for the same value as before of Wc and ν and for
y ' −1.2.

where 〈0|G|Lx〉 denotes the Ld−1-dimensional matrix of
the resolvent between the site states in the 0-th and Lx-th
slice of the system (i.e., Tr|〈0|G|Lx〉|2 is the probability
for an electron to go from a site on the layer 0 to a site
on the layer Lx). One can then work out the asymptotic
behavior of ξ1d: In the localized regime one expects that
for L large enough ξ1d saturates to the actual value of the
localization length ξ of the d-dimensional system. Con-
versely, in the extended regime the wave travelling along
the bar is evenly spread over the whole bar. The effective
disorder seen by the wave in each layer is thus a statistical
average over the disorder in the layer. One can show that
the results of perturbation theory for 1d are also valid
here, with the modified disorder W̃ 2 = W 2/Ld−1 [45]. As
a result, one expects that in the metallic phase ξ1d grows
as Ld−1, i.e., the number of (open) channels in the trans-
verse direction. (Note that in this case the correlation
lenght ξ is related to the resistivity of the d-dimensional
system via σ ∝ 1/ξd−2 [45]).

Hence, the good scaling variable is the dimensionless
quasi-1d localization length, defined as λ1d = ξ1d/L.
This quantity is the inverse of the smallest positive Lya-
punov exponent γ, and behaves as:

λ1d '

 (L/ξ)d−2 ∝ σLd−2 for W < Wc

λc for W = Wc

ξ/L for W > Wc

The left panels of figs. 3, 4, and 5 show the behav-
ior of (the log of) the dimensionless quasi-1d localization
length λ1d as a function of W for several system sizes
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FIG. 5: Left panel: λ1d as a function of the disorder W for
several system sizes L from 2 to 6. The vertical dashed line
spots the position of the critical point, Wc ' 83.5. Top-right
panel: Finite size scaling of the same data for L equal to 4,
5 and 6, showing data collapse for ν ' 0.84. Bottom-right
panel: ψf1 = (λ1d− f∞)/Ly as a function of the scaling vari-

able (W −Wc)L
1/ν for different sizes L from 2 to 5, showing

data collapse for the same value as before of Wc and ν and
for y ' −1.4.

in dimensions 4, 5 and 6 respectively. As expected, for
small (resp. large) values of the disorder λ1d grows (resp.
decreases) as L is increased; For large enough sizes, the
curves corresponding to different L cross at the critical
point. However, the figures show the presence of system-
atic FSE due to practical limitations on the system sizes:
In 4d the crossing point shifts towards higher values of W
by about 2.5% as L is increased from 2 to 18, while in 5d
it moves towards lower values of the disorder (again by
about 2.5%) when L goes from 2 to 9. FSE become very
strong in 6d, where the crossing point shifts systemati-
cally to lower values of W by about 10% when L varies
from 2 to 6. This gives a first qualitative indication of
the fact that, differently from conventional phase transi-
tions, FSE for AL get stronger as the dimensionality is
increased.

Such finite-size corrections must thus be taken into ac-
count in in order to get accurate estimations of the crit-
ical values of the disorder strength and of the critical
exponent. This can be done considering the presence
of irrelevant scaling variables. More precisely, we fol-
low [14, 20] and suppose that the dependence of λ1d on
W and L can be described in terms of a scaling function:

λ1d(W,L) = F
(
wL1/ν , ψLy

)
, (9)

where w = (W −Wc)/Wc is the (dimensionless) distance
from the critical point, ν is the critical exponent, ψ is
the leading irrelevant scaling variable, and y is the small-
est (in absolute value) irrelevant critical exponent (con-
sistently, we should find y < 0 if ψ is irrelevant). For
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finite L there is no phase transition and F is a smooth
function of its arguments. Hence, assuming that the ir-
relevant scaling variable is not dangerous (and for L large
enough), one can expand Eq. (9) up to first order in ψLy:

λ1d(W,L) = f∞

(
wL1/ν

)
+ ψLyf1

(
wL1/ν

)
. (10)

In order to estimate Wc, ν and y we then proceed in the
following way:

(1) Since FSE are negligible for L large enough, we
suppose that one can obtain an approximate evalu-
ation of the function f∞(x) by performing a cubic
fit of the numerical data for the largest available
system sizes (in practice we use L = 18 and 16 in
d = 4, L = 9 and 8 in d = 5, and L = 6 in d = 6).
Note that the validity of this assumption must be
verified a posteriori, since it depends on the value
the irrelevant exponent y, on Lmax, and on the form
of the scaling function f1.

(2) We plot the difference between the numerical data
for L < Lmax and the function f∞ estimated in
step (1), divided by Ly, as a function of the scaling
variable (W−Wc)L

1/ν . We determine the values of
Wc, ν and y that give the best data collapse of the
curves corresponding to different values of L (see
bottom-right panels of figs. 3, 4, and 5), yielding
an approximate estimation of (ψ times) the scaling
function f1 (which can also be approximated by a
cubic fit).

(3) We plot λ1d as a function of (W −Wc)L
1/ν for the

largest sizes only, checking that our estimation of
the critical parameters give a good data collapse
(see top-right panels of figs. 3, 4, and 5).

(4) Having estimated the scaling function ψf1 and the
critical parameters Wc, ν, and y in the previous
steps, we can iteratively improve the estimation
of f∞ obtained in step (1) by performing a cu-
bic fit of λ1d(W,Lmax)−ψLymaxf1(W,Lmax), which
takes into account finite-size corrections also for the
largest system size in a self-consistent way. One can
then repeat the whole process until it converges.

This analysis yields the following values for the critical
parameters:

d = 4 d = 5 d = 6

Wc = 34.5± 0.2 Wc = 57.5± 0.2 Wc = 83.5± 0.4

ν = 1.11± 0.05 ν = 0.96± 0.06 ν = 0.84± 0.07

y = −1± 0.1 y = −1.2± 0.1 y = −1.4± 0.2
(11)

The results in 4d and 5d are in excellent agreement with
the recent accurate estimations of [20], while our analysis
provides the first direct calculation of the critical param-
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FIG. 6: r (top-left) and qtyp (bottom-left) as a function of
the disorder W for several system sizes L from 4 to 30. The
horizontal dashed lines correspond to the reference GOE and
Poisson asymptotic values. The vertical dashed line spots the
position of the AL transition, Wc ' 16.35. Finite size scal-
ing of the same data (top and bottom-right panels) showing
data collapse obtained for ν ' 1.57. Finite-size corrections to
Eq. (12) are observed at small sizes (open symbols), and can
be described by Eq. (10) with y ' −1.

eters for AL in six dimensions.1 We also applied this
method in 3d (not shown), yielding Wc = 16.35 ± 0.1,
ν = 1.57±0.02, and y = −1±0.1, in excellent agreement
with the results of Refs. [14, 16]. Remarkably, the lead-
ing irrelevant exponent y seems to depend very weakly
on the spatial dimension at least up to 6d.

It is remarkable that finite size corrections are governed
by scaling variables ((W −Wc)L

1/ν and Ly) in which the
linear size L enters raised to exponents (ν and y) that
seem to have a finite limit when d → ∞. This sug-
gests a very different behavior from conventional phase
transition where scaling variables instead are naturally
expressed in terms of N = Ld. We will come back to this
point in the conclusion.

B. Statistics of level spacings and of wave-functions
coefficients

In order to analyze the statistics of energy gaps and
of wave-functions amplitudes we have diagonalized the
Hamiltonian (1) for dimensions from 3 to 6, for several

1 Note, however, that in order for the assumption in (1) to be
correct, one has to check self-consistently that ψLymaxf1(0) �
f∞(0). While this seems fully justified in d = 4 and d = 5, it
might be slightly less well grounded in d = 6. Hence, the critical
disorder Wc and the absolute value of the exponent y might be
overestimated in six dimensions.
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FIG. 7: r (top-left) and qtyp (bottom-left) as a function of
the disorder W for several system sizes L from 3 to 13. The
horizontal dashed lines correspond to the reference GOE and
Poisson asymptotic values. The vertical dashed line spots the
position of the AL transition, Wc ' 34.5. Finite size scal-
ing of the same data (top and bottom-right panels) showing
data collapse obtained for ν ' 1.11. Finite-size corrections to
Eq. (12) are observed at small sizes (open symbols), and can
be described by Eq. (10) with y ' −1.

system sizes L (with periodic boundary conditions), and
for several values of the disorder strength W . For each
L and W , we have averaged over several realizations of
the on-site quenched disorder. Since we are interested
in E = 0, we only focused on 1/16 of the eigenstates
centered around the middle of the band (we have checked
that taking 1/32 or 1/64 of the states does not affect
the results, but yields a poorer statistics). The computer
time required for ED grows as the third power of the total
number of sites of the matrix, L3d. As a consequence,
we can access slightly smaller system sizes with respect
to the TM method. Still, one can simulate rather large
values of L for low enough dimensions (e.g., Lmax = 30
for d = 3 and Lmax = 13 for d = 4), whereas one is
instead limited to very small sizes as dimensionality is
increased (Lmax = 8 for d = 5 and Lmax = 5 for d = 6).
Note, however, that ED algorithms are faster if one only
computes the eigenvalues and not eigenvectors. For this
reason, in d = 6 we have been able to obtain some data
for the statistics of energy gaps, for which the knowledge
of the eigenfunctions is not necessary, also for Lmax = 6.

We have studied the statistics of level spacings of
neighboring eigenvalues: sn = En+1−En ≥ 0, where En
is the energy of the n-th eigenstate in the sample. In the
extended regime level crossings are forbidden. Hence the
eigenvalues are strongly correlated and the level statis-
tics is expected to be described by RMT (more precisely,
several results support a general relationship between de-
localization and the Wigner’s surmise of the GOE). Con-
versely, in the localized phase wave-functions close in
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FIG. 8: r (top-left) and qtyp (bottom-left) as a function of
the disorder W for several system sizes L from 3 to 8. The
horizontal dashed lines correspond to the reference GOE and
Poisson asymptotic values. The vertical dashed line spots the
position of the AL transition, Wc ' 57.5. Finite size scal-
ing of the same data (top and bottom-right panels) showing
data collapse obtained for ν ' 0.96. Finite-size corrections to
Eq. (12) are observed at small sizes (open symbols), and can
be described by Eq. (10) with y ' −1.2.

energy are exponentially localized on very distant sites
and do not overlap. Thus there is no level-repulsion
and eigenvalues should be distributed similarly to ran-
dom points thrown on a line (Poisson statistics). In order
to avoid difficulties related to the unfolding of the spec-
trum, we follow [46] and measure the ratio of adjacent
gaps,

rn =
min{sn, sn+1}
max{sn, sn+1}

,

and obtain the probability distribution Π(r), which dis-
plays a universal form depending on the level statis-
tics [46]. In particular Π(r) is expected to converge to
its GOE and Poisson counterpart in the extended and
localized regime [46, 47], allowing to discriminate be-
tween the two phases as r changes from rGOE ' 0.5307
to rP ' 0.3863 respectively.

The GOE-Poisson transition can also be captured by
correlations between nearby eigenstates such as the mu-
tual overlap between two subsequent eigenvectors, de-
fined as:

qn =

N∑
i=1

|〈i|n〉||〈i|n+ 1〉| .

In the GOE regime the wave-functions amplitudes are
i.i.d. Gaussian random variables of zero mean and vari-
ance 1/N [48], hence q converges to qGOE = 2/π. Con-
versely in the localized phase two successive eigenvector
are generically peaked around very distant sites and do



8

40 60 80 100 120
W

0.4

0.45

0.5

r

L=6
L=5
L=4
L=3
L=2

-200 0 200 400

(W-W
c
)L

1/ν

0.4

0.45

0.5

r

-200 0 200 400

(W-W
c
)L

1/ν

-0.1

0

(r
-g

∞
)/

L
y

FIG. 9: Left panel: r as a function of the disorder W for
several system sizes L from 2 to 6. The horizontal dashed
lines correspond to the reference GOE and Poisson asymptotic
values. The vertical dashed line spots the position of the AL
transition, Wc ' 83.5. Top-right panel: Finite size scaling
of the same data for the largest system sizes only, L = 4,
5, and 6, showing data collapse for ν ' 0.84. Bottom-right
panel: ψg1 = (r−g∞)/Ly as a function of the scaling variable

(W − Wc)L
1/ν for different sizes L from 2 to 5, showing a

reasonably good data collapse for the same value as before of
Wc and ν, and for y ' −1.4.

not overlap, and therefore qP → 0 for L → ∞. At first
sight this quantity seems to be related to the statistics
of wave-functions coefficients rather than to energy gaps.
Nonetheless, in all the random matrix models that have
been considered in the literature up to now, one empiri-
cally finds that q is directly associated to the statistics of
level spacings. The best example of that is provided by
the generalization of the Rosenzweig-Porter random ma-
trix model of [36], where there is a whole region of the pa-
rameter space where wave-functions are delocalized but
multifractal and strongly correlated, while the statistics
of neighboring gaps is still described by the GOE ensem-
ble. In this case one numerically finds that q converges
to its GOE universal value 2/π irrespective of the fact
that wave-functions amplitudes are not i.i.d. Gaussian
random variables of variance 1/N .

In figs. 6, 7, and 8 we show the behavior of the average
value of the ratio of adjacent gaps, r, and of the typical
value of the mutual overlap between subsequent eigen-
vectors, qtyp = exp[log q], as a function of the disorder
W , for several system sizes L, and for d = 3, 4, and 5
respectively. As expected, for small (resp. large) enough
disorder we recover the universal values rGOE ' 0.5307
and qtypGOE = 2/π (resp. rP ' 0.3863 and qtypP → 0) cor-
responding to GOE (resp. Poisson) statistics. Data for
different system sizes exhibit a crossing point around the
critical points Wc, which coincide, within our numerical
accuracy, with the ones obtained in the previous subsec-
tion from the analysis of the Lyapunov exponent, and are

in good agreement with the ones reported in the litera-
ture [14, 16, 20]. One also finds that for large enough L
the whole probability distribution Π(r) converges to its
GOE and Poisson counterparts for W < Wc and W > Wc

respectively. In the right panels of figs. 6, 7, and 8, we
show that for the largest accessible system sizes the de-
pendence of r and qtyp on W and L can be described in
terms of the scaling functions:

r(W,L) = g∞

(
wL1/ν

)
,

qtyp(W,L) = h∞

(
wL1/ν

)
,

(12)

with w = (W −Wc)/Wc. The values of ν are consistent,
within our numerical incertitude, with the ones estimated
using the TM method in the previous subsection, and are
in perfect agreement with Refs. [14, 16, 20]. Deviations
from Eq. (12) due to FSE are clearly visible at small L,
and can be described in terms of systematic corrections
to the one-parameter scaling due to the presence of irrel-
evant scaling variables as explained above [see Eq. (10)].
The numerical values of the exponent y describing finite-
size corrections to scaling for r and qtyp are compatible,
within our numerical precision, with the ones reported
in Eq. (11), confirming that the same sets of critical pa-
rameters describe the critical properties of level statistics
and transport properties.

As already pointed out before, FSE get stronger as
dimensionality is increased. This effect is even more vis-
ible when level statistics is considered. In the left panel
of fig. 9 we show the behavior of r as a function of the
disorder strength W , for L from 2 to 6 in six dimen-
sions, showing dramatic FSE: The crossing point shifts
towards smaller values of W from about W ∼ 130 to
W ∼ 86 as L is increased from 2 to 6, and it has not
converged yet to Wc even for the largest available sys-
tem size. Nevertheless, taking care carefully of finite-size
corrections as explained in Sec. III A, one is able to show
that the same set of critical parameters found from the
analysis of the Lyapunov exponent (Wc ' 83.5, ν ' 0.84,
and y ' −1.5) yield a reasonably good finite-size scaling.
This is demonstrated by the top-right and bottom-right
panels of fig. 9, where the scaling functions g∞ and (ψ
times) g1 are found from the data collapse of the numer-
ical data in terms of the scaling variables (W −Wc)L

1/ν .
(We were not able to repeat the same analysis for qtyp,
since numerical data for the overlap between subsequent
eigenvectors are available only up to L = 5.)

Analyzing fluctuations of eigenfunctions, we also fo-
cused on the (averaged) Inverse Participation Ratio.

The IPR of the eigenfunction |n〉 is defined as Υ
(n)
2 =∑Ld

i=1 |〈i|n〉|4. In the full extended regime wave-functions
are uniformly spread over all the volume, thus 〈i|n〉 are

random variables of order 1/
√
Ld, due to normalization,

and Υ2 vanishes as C/Ld for L→∞—the prefactor C de-
pends on the disorder strength W , approaching its GOE
value equal to 3 deep in the metallic phase. Conversely in
the localized phase wave-functions are localized on O(ξd)
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FIG. 10: Left panel: Flowing fractal exponent β describing
the scaling of the typical value of the IPR with the system size.
The vertical dashed black line corresponds to the critical dis-
order Wc ' 34.5. Right panel: Finite size scaling of the same
data showing a reasonably good data collapse obtained for
ν ' 1.11. Strong finite-size corrections to the one-parameter
scaling are observed at small sizes (open symbols), and can
be described by Eq. (10) with y ' −1.

sites and Υ2 approaches a constant value in the thermo-
dynamic limit (in the infinite disorder limit, W → ∞,
one has that Υ2 → 1).

From the wave-functions amplitudes obtained via ED,
we have computed the typical value of the IPR, defined
as Υtyp

2 = exp[log Υ2], for several values of the disorder
strength and of the system size L, and for dimensions
from 3 to 5. The flowing fractal exponent β describing
the scaling of Υtyp

2 with L can then be approximately
evaluated as:

β(W,L) = − log Υtyp
2 (W,L)− log Υtyp

2 (W,L− 1)

d[logL− log(L− 1)]
.

(13)

In fig. 10 we plot the numerical results for the exponent
β as a function of W for several system sizes in four di-
mensions, showing a similar—although much less clean—
behavior compared to the one found for the statistics of
energy gaps: For W < Wc one observes that β grows with
L; its behavior is compatible with an approach towards
1 for L large enough, corresponding to full delocalized
wave-functions. Conversely, for W > Wc the exponent
β decreases as the system size is increased, and seems
to approach 0 for large L, implying that Υtyp

2 → cst, as
expected for localized eigenstates. For the largest avail-
able sizes, the curves corresponding to different values of
L cross approximately around Wc ' 34.5. Although β
is affected by much larger fluctuations and stronger FSE
compared to r and qtyp, the same set of critical param-
eters found before (Wc ' 34.5, ν ' 1.11, and y ' −1)
yields a reasonably good data collapse of numerical data,
as shown in the right panel of fig. 10. Similar results are

✏atai

✏i
tij

✏a ✏b
tab

✏i
tij

FIG. 11: Sketch of the SDRG decimation procedure for a site
(top), and a bond (bottom) transformation. Dotted blue lines
represent pre-existing hopping amplitudes before decimation.
Solid blue lines represent new or renormalized bonds. The on
site energies of all the neighbors of the decimated sites (blue
circles) are renormalized as well.

also found in dimensions 3 and 5 (not shown). This anal-
ysis can not be performed in six dimensions, due to the
fact that the IPR can be measured only up to Lmax = 5,
which is not sufficiently large to take care in an accurate
way of the strong FSE.

IV. STRONG DISORDER RG

In this section we present our results based on the
Strong Disorder RG approach for AL recently introduced
in [42, 43]. The SDRG is an efficient real-space decima-
tion procedure, consisting in integrating-out iteratively
the largest coupling constant in the Hamiltonian. The
ideas behind this method reside in the seminal work of
Ref. [49], and have been successful applied to describe
the critical and near-critical behavior of the Random
Transverse-Field Ising model and other random magnetic
transitions [50], and have also been recently used in elec-
tronic systems [51].

In the case in which the strongest energy scale happens
to be the on-site energy |εa| on site a, as sketched in the
top panel of fig. 11, one can perform the Gaussian inte-
gral over φa in Eq. (5), obtaining a RG transformation
for the on-site energies on all the neighbors i of a and
for the hopping amplitudes between all possible pairs of
neighbors (ij) of a:

εi → εi −
t2ai
εa
,

tij → tij −
taitaj
εa

.

(14)

Similarly, if the strongest energy scale is the hopping am-
plitude |tab| between sites a and b, as sketched in the bot-
tom panel of fig. 11, performing the Gaussian integrals
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over φa and φb in Eq. (5) yields the following RG trans-
formation for the on-site energies on all the neighbors i
of a and b and for the hopping amplitudes between all
possible pairs of neighbors (ij) of a and/or b:

εi → εi −
εat

2
bi − 2tabtaitbi + εbt

2
ai

εaεb − t2ab
,

tij → tij −
εatbitbj − tab(taitbj + tajtbi) + εbtaitaj

εaεb − t2ab
.

(15)

Note that Eqs. (15) can be obtained using Eqs. (14) twice
to eliminate first site a and then site b.

Eqs. (14) and (15) are in fact exact RG transforma-
tions, as it was first shown in [52]. However, the number
of non-zero matrix elements grows very rapidly under RG
due to the proliferation of new bonds (except, of course,
in 1d [43]). This makes the numerical analysis unprac-
tical. Several procedures have been proposed to solve
this problem, which is also encountered in similar SDRG
schemes for electronic systems [51] as well as for other
disordered models such as random transverse-field Ising
model [50]. In this work we follow [42] and set a maxi-
mum coordination number kmax per site, throwing away
most of the weak couplings. The rationale behind this
procedure is that—at least in high enough dimension—
the critical properties of AL are controlled by a strong
disorder limit, and the weak coupling constants gener-
ated under RG are in fact “irrelevant”.

In order to check whether or not this assumption is
correct, it is important to analyze the accuracy of the
results obtained using the SDRG and study their con-
vergence with kmax. We first focus on the average DOS,
ρ = −Tr ImG/(πLd).
We define the following quadratic form Γ[φi; {ωi, σij , κ}]
of the auxiliary fields φi:

Γ[φi; {ωi, σij , κ}] =
∑
i

ωiφ
2
i +

∑
i<j

σijφiφj + iκ , (16)

in terms of which the average DOS can be written as:

ρ =
i

πLdZ
Im

∫ N∏
i=1

dφi

× Γ[φi; {ωi = 1, σij = 0, κ = 0}] eS[φi] ,

(17)

where Z is defined in Eq. (5). When a site or a bond are
integrated-out under the RG transformations, some of
the coefficients of Γ (i.e., those involving the neighboring
sites of the decimated variables) must then be renormal-
ized as well. Hence, although at the level of the initial
conditions one has that ωi = 1 for all i, σij = 0 for all
(ij), and κ = 0 [see Eq. (17)], in order to compute the av-
erage DOS one needs to keep track of the flow of all the
coefficients of Γ under RG. For example, when a given
site, say site a, is decimated out, one has to renormalize
the coefficients ωi of all sites i neighbors of a, the coef-
ficients σij of all possible pairs of neighbors (ij) of a, as

100 200 300
k

max

0.132

0.136

0.14

λ 1d

L=3
L=6

FIG. 12: Quasi-1d dimensionless localization length, λ1d,
obtained using the SDRG procedure for different values of
kmax, at the AL critical point, Wc ' 83.5, in 6 dimensions,
and for L = 3 (blue circles) and L = 6 (red squares). The
horizontal blue (resp., red) solid and dashed lines corresponds
to the average value of λ1d and its fluctuations computed
using the TM method for L = 3 (resp., L = 6), showing
that for kmax & 240 the approximate SDRG results converge,
within our numerical accuracy, to the exact values.

well as the value of the constant κ. This can be easily
done by Gaussian integration:

ωi → ωi +
ωat

2
ai

ε2a
− taiσai

εa
,

σij → σij +
2ωataitaj

ε2a
− taiσaj + tajσai

εa
,

κ→ κ+
ωa
εa
.

(18)

Similarly, when the hopping amplitude between sites a
and b is eliminated, one can determine analogous RG
relations for the coefficients of Eq. (16) using Eq. (18)
twice, first on site a and then on site b. At the end of
the RG, when all sites have been integrated-out, ρ can
be then obtained from Eq. (17) as (minus) the imaginary
part of the final value of κ divided by πLd.

We have computed the average DOS around the AL
critical points for dimensions from 3 to 6 using this
method for several values of kmax, and compared its nu-
merical value with the one obtained from ED, finding an
excellent agreement even at small values of kmax. In prac-
tice, already for kmax & 60 the average DOS obtained
via the SDRG coincides within error-bars and sample-
by-sample with the one computed from ED for all the
accessible system sizes and in all dimensions.

We turn now to transport properties. In particular,
in the following we compare the results for the dimen-
sionless quasi-1d localization length computed from the
TM approach as described in Sec. III A, with the ones
obtained using the SDRG with different values of kmax.
More precisely, we consider the quasi-1d bar of fig. 1 and
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instead of solving Eq. (7) exactly via LU decomposition,
we apply the SDRG to invert the matrix [G(x)]−1 in an
approximate way, as explained in the following:

(1) We start from the layer at x = 0 which is in con-
tact with an electron bath (η > 0) and integrate-
out progressively all the sites of the layer us-
ing Eqs. (14) and (15), eliminating iteratively the
strongest energy scale, until no sites are left on the
layer.

(2) In such a way, at the end of step (1) we end up
with an approximate expression for the matrix ele-
ment of the inverse cavity Green’s function on the
layer x = 1, [G(x = 1)]−1ij (in absence of the layer at

x = 2). Then, knowing the l.h.s. of Eq. (7), one can
infer the matrix elements of the (cavity) Green’s
function on the layer x = 0, Gij(x = 0), and com-
pute the typical value of the imaginary part of its
diagonal elements, log ImG(x = 0).

(3) We then integrate-out progressively all the sites of
the layer x = 1 using Eqs. (14) and (15) to elimi-
nate iteratively the strongest energy scale, yielding
the matrix elements of the inverse cavity Green’s
function [G(x = 2)]−1ij on the layer x = 2 in ab-

sence of the subsequent layer (x = 3), and use
Eq. (7) “backwards” to infer Gij(x = 1). We mea-

sure log ImG(x = 1) and repeat the whole process
until the layer x = Lx is reached.

This procedure allows to compute the dimensionless
quasi-1d localization length in a considerably faster way
compared to exact LU decomposition. In fig. 12 we plot
the results for λ1d at the AL critical point in dimension
6 (Wc ' 83.5) for different values of kmax and for L = 3
and 6, showing that for kmax & 240 the numerical val-
ues of λ1d obtained via the SDRG approach converge,
within our numerical precision, with the ones obtained
from exact techniques. Similar results are found in all
dimensions down to d = 3 (not shown).

This analysis shows that the results obtained using
the SDRG approach for both for the average DOS and
the Lyapunov exponent converge already for reason-
ably small values of kmax to the exact ones in all spa-
tial dimensions, at least close enough to the AL criti-
cal point.2 Hence, the critical parameters found using
the SDRG approach (for sufficiently large kmax) coin-
cide, within error-bars, with the ones given in Eq. (11).
Since the computer time required for an efficient algo-
rithmic implementation of the SDRG procedure scales as
dLd(logL)k2max(log kmax), one can in principle apply this
method to obtain very accurate results for much larger
system sizes compared with the exact numerical tech-
niques. The SDRG can then also be applied to study

2 It is natural to expect that the accuracy of the SDRG gets worse
at small disorder strength, deep into the metallic phase.

AL in dimensions larger than 6. This analysis goes be-
yond the scope of this work. Preliminary results in this
direction have already been obtained in [42] up to d = 10.

In the last part of this section, we focus instead on the
properties of the flow of the SDRG close to the AL critical
point. More precisely, we study the evolution under RG
of the probability distributions of the diagonal and off-
diagonal matrix elements, Qτ (ε) andRτ (t) respectively—
the index τ corresponds to the RG “time”. It is impor-
tant to stress that these probability distributions do not
contain all the relevant physical information on the sys-
tem. For instance, they are insensitive to correlations
between on-site energies and hopping amplitudes and/or
spatial correlations between matrix elements which may
be possibly generated during the flow. However, as we
will discuss below, they can be still used to gather some
useful qualitative insights on the critical properties of AL
in high dimension.

In the following, for simplicity, we will restrict our-
selves to the case of real matrix elements (i.e., we set
η = 0 on all the sites of the system). Similar results
are obtained if one considers a finite (but small, e.g.
η ∼ 10/Ld) imaginary regulator and study, for instance,
the flow of the probability distributions of the modulus
of diagonal and off-diagonal matrix elements. At the AL
critical point, the initial conditions for the probability
distributions of on-site energies and hopping amplitudes
are:

Qτ=0(ε) =
1

Wc
θ

(
Wc

2
− |ε|

)
,

Rτ=0(t) =
2d

N − 1
δ(t− 1) +

N − 1− 2d

N − 1
δ(t) .

(19)

The critical disorder Wc is much larger than 1 already in
three dimensions—and it grows very fast as d is increased
(see fig. 16). As a consequence, at the beginning of the
RG, the strongest energy scales are provided by the sites
with on-site energies close to the edges of the support of
Qτ=0(ε). As these sites are integrated-out, new hopping
amplitudes are generated, and the two δ-peaks of Rτ=0(t)
acquire a finite support. Hence, as the RG time τ grows,
Qτ (ε) shrinks and Rτ (t) broadens. When the support
of the two distributions become approximately the same,
we observe a stationary state.3

The stationary distributions Qτ?(ε) and Rτ?(t) at the
AL critical points are plotted in fig. 13. Despite the fact
that the initial conditions (19) change dramatically as d
is increased, we observe that Qτ?(ε) and Rτ?(t) are strik-
ingly similar in all spatial dimensions from 3 to 6. This

3 In practice, we observe that in all dimensions from 3 to 6 this
happens when the support of the probability distributions of the
diagonal and off-diagonal elements become of O(1). As τ is fur-
ther increased, the number of matrix elements left in the systems
becomes very small and the stationary distribution is wiped out.
However, this is a finite-size effect which could in principle be
avoided taking larger and larger systems.
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FIG. 13: Bottom-left and bottom-right panels: The station-
ary distributions Rτ?(t) and Qτ?(ε) at the AL critical points
in dimensions from 3 to 6. The system size is L = 33 in
3d, L = 14 in 4d, L = 8 in 5d, and L = 6 in 6d, in such a
way that the total number of sites is approximately the same,
N ∼ 4 ·104, in all dimensions. The stationary state is reached
for a RG time τ? such that the number of sites left in the
system are approximately 1/8 of the initial ones in 3d, 1/16
in 4d, 1/26 in 5d, and 1/40 in 6d. The value of kmax is set
to 360 in all dimensions. Top-panel: The same data of the
bottom-left panel plotted in a log-log scale, showing the power
law behavior of Rτ?(t) ∼ t−γ with γ ' 2 (black dashed line),
for t smaller than a cut-off of O(1).

implies that the RG flow, and thus the critical proper-
ties of AL, are controlled by a fixed point which is very
similar for all d ≥ 3. As shown in the inset of fig. 13,
the tails of R?(t) seems to be described by a power law,
Rτ?(t) ∼ t−γ , with an exponent γ ' 2 which is also
roughly independent on d, and a cut-off for hopping am-
plitudes of O(1), which seems to drift slowly to larger
values of t as d is increased. Note however that for large
d the initial conditions (19) get further and further from
the stationary distributions. One needs then more and
more RG steps to approach the stationary regime of the
flow, i.e., τ? increases as d grows. For this reason, FSE on
Qτ?(ε) and Rτ?(t) also increase as d is increased since for
τ = τ? we are left with smaller systems and fewer matrix
elements (see the caption of fig. 13 for more details).

The power law tails of Rτ?(t) are reminiscent of a
strong disorder fixed point scenario [53], since they are
related to the divergence of the variance of the distribu-
tion of the hopping amplitudes. However, the fact that
the stationary distributions exhibit a cut-off on a scale of
O(1)—which does not seems to be due to a FSE—implies
that in fact all matrix elements stay of O(1) and that the
disorder do not grows under iterations of the RG trans-
formations. Nonetheless, although at any finite d the
fixed point is not of a “truly” infinite disorder type, the
SDRG approach still provides an efficient and accurate
approximation scheme. Furthermore, we find that the
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FIG. 14: Numerical values of the inverse of the critical expo-
nent ν as a function of 1/d in dimensions from 3 to 6 (blue cir-
cles), showing a smooth behavior interpolating from ν → ∞
in d = 2 to ν = 1/2 in d → ∞ [44]. The turquoise dashed
line shows the predictions of the self-consistent theory of [25],
with dU = 4. The dashed-dotted magenta line corresponds to
the lower bound ν ≥ 2/d provided by the Harris criterion [54].
The red solid line shows the dimensional dependence of ν ob-
tained from a perturbative analysis of the NLσM to five-loop
in ε = d − 2 [10], Eq. (20). The straight dotted blue line is
a linear fit corresponding to the first correction in 1/d from
which we find 1/ν ' 2− 4, 75/d.

cut-off on the power law hopping distribution increases
and possibly diverges in the large-d limit, suggests that
in this case one recovers a genuine IRFP scenario [53].

All in all, these observations provide a convincing in-
dication of the fact that the properties of AL in high di-
mensions are governed by a “strong disorder” fixed point,
as already suggested in [33, 42]. This idea is also sup-
ported by the results of the SUSY approach for the crit-
ical properties of AL on tree-like structures and infinite
dimensional models [28, 29], and will be discussed in more
details in the next section.

V. WEAK VERSUS STRONG COUPLING:
ANALYSIS OF DIMENSIONAL DEPENDENCE

In this section we analyze the dimensional dependence
at criticality of all observables discussed previously. As
we shall show, approaching the lower critical dimension,
dL = 2, the critical point corresponds to weak disorder
(or, equivalently, weak coupling in terms of the NLσM):
when d approaches two the system at criticality is more
and more metallic-like and described by the GOE univer-
sality class. On the contrary, when d→∞, the system at
criticality is more and more insulating-like and described
by the Poisson universality class. This section presents
results supporting one of the main message of this work,
which is that the infinite dimensional limit is a better
starting point to describe systems in all dimensions down
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to d = 3.

1. Critical exponents and level statistics

We start by focusing on the critical exponent ν, whose
behavior as a function of 1/d is plotted in fig. 14. One
clearly observes that ν continuously decreases from ν →
∞ in d = 2 to the value ν = 1/2 in d→∞ predicted by
the SUSY approach [44], showing no sign of saturation.
This strongly indicates that the upper critical dimension
of AL is infinite, as already suggested in [21, 23], in con-
trast, for instance, with the self-consistent theory of [25],
which predicts dU = 4 (turquoise dashed line). The per-
turbative analysis of the effective field theory based on
the replicated NLσM has been carried to five-loops order
in ε = d− 2 [10], yielding:

ν =
1

ε
− 9

4
ζ(3)ε2 +

27

16
ζ(4)ε3 +O(ε4) . (20)

Such dimensional dependence of the critical exponent
corresponds to the solid red line of fig. 14, and yields
a very poor agreement with the numerical results even in
low dimensions. In fact, Eq. (20) violates the lower bound
ν ≥ 2/d based on the Harris criterion [54] (dashed-dotted
magenta curve) already in 3d. The straight dotted blue
line in fig. 14 is a linear fit corresponding to the first
correction in 1/d from which we find

1

ν
' 2− 4, 75

d
.

The quality of the fit shows that the first correction in
1/d performs much better than the expansion to the fifth
order in d− 2 down to d = 3.

As mentioned above, these observations suggest that
the critical properties of AL away from the lower critical
dimension might be governed by a strong disorder regime,
as suggested in [33, 42]. This idea is fully confirmed
by the analysis of the critical values and their dimen-
sional dependence: In fig. 15 we plot rc (top-left panel),
qtypc (bottom-left panel), (λ1d)c (top-right panel), and βc
(bottom-right panel) as a function of 1/d. In d = 2+ε di-
mensions the critical point corresponds to weak disorder
(or, equivalently, weak coupling in terms of the NLσM),
which means that the critical level statistics is close to the
GOE one. With increasing d the critical point moves con-
tinuously towards strong disorder (strong coupling), and
rc and qtypc approach the Poisson reference values, sug-
gesting that the critical level statistics in the in infinite
dimensional limit is of Poisson form, like in the localized
phase. Similarly, βc decreases as d is increased and seems
to vanish in the d→∞ limit, implying that the IPR has
a finite limit at the AL critical point in infinite dimen-
sions, as predicted by the SUSY approach [29]. Finally,
(λ1d)c is also a decreasing function of d, and smoothly ap-
proaches 0 for d → ∞, confirming the idea that the AL
critical point in infinite dimensions is strongly localized
also as far as transport properties are concerned.
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FIG. 15: Dimensional dependence of rc (top-left panel), qtypc
(bottom-left panel), (λ1d)c (top-right panel), and βc at the
AL critical point as a function of 1/d. The dashed horizontal
red (resp. black) lines correspond to the reference GOE (resp.
Poisson values).

2. Dimensional dependence of the critical disorder strength

It is also interesting to study the dimensional de-
pendence of the critical value of the disorder strength
Wc. Fig. 16 shows that Wc grows faster than d (which
would be the natural scale set by the coordination num-
ber for conventional phase transitions) as the dimen-
sionality is increased and seems to approach the curve
Wc/t ∼ 4(2d−1) ln(2d−1) for large d, which corresponds
to the exact asymptotic behavior on tree-like structures
in the large connectivity limit [26, 55]. As for ν, we nu-
merically evaluated corrections to the d → ∞ result by
a fit containing the first correction in 1/d (straight dot-
ted blue line in fig. 16). As before, the first correction
performs impressively well down to d = 3.

3. Multifractality

We finally turn to the analysis of the dimensional de-
pendence of the critical multifractal spectra of wave-
function amplitudes. Having in our disposition all the
coefficients of the eigenvectors from ED, we can easily
find the scaling behavior of all moments

Υ(n)
q =

Ld∑
i=1

|〈i|n〉|2q ∝ L−τ(q) ,

with the system size L. (Note that Υ1 = 1 due to the
normalization condition, and Υ2 is the IPR studied in
Sec. III B.) In the metallic phase the wave-functions am-
plitudes are of O(1/Ld) and τ(q) = dq − 1, whereas
τ(q) = 0 in the insulating regime. At criticality τ(q) is
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FIG. 16: Dimensional dependence of the critical value of
the disorder strength, Wc, divided by 8d log(2d), which corre-
sponds to the exact asymptotic behavior on tree-like lattices
in the large connectivity limit [55]. The straight dotted blue
line is a fit that takes into account corrections in 1/d, from
which we find: Wc/8d log(2d) ' 1− 1, 81/d.

characterized by anomalous scaling exponents [56] which
are the signatures of multifractal states. It is custom-
ary to introduce the singularity spectrum f(α), which
denotes the fractal dimension of the set of points where
the wave-function amplitude is |〈i|n〉|2 ∼ L−α (in our
discrete system the number of such points N(α) scales
as Lf(α)):

Υq =

N∑
i=1

|〈i|n〉|2q ∼
∫

dα exp [(f(α)− qα) logL] .

Then, in the thermodynamic limit, the saddle point com-
putation of Υq leads to the following Legendre transfor-
mation:

α =
dτ(q)

dq
, q = f ′(α) ,

f(α) = αq − τ(q) .

(21)

f(α) is by definition a convex function of α. The value
q = 0 is associated with the most probable value αm
of the wave-function coefficients, where the singularity
spectrum reaches its maximum, f(αm) = d. The value
q = 1 is associated with the point α1 such that f(α1) =
α1, and f ′(α1) = 1. A finite support 0 < α− < α <
α+ where f(α) > 0 in the L → ∞ limit is a signature
of multifractality, while for ergodic states, f(α) = −∞
unless for α = d, where f(d) = d. From the ED data we
have evaluated the typical value of the exponent τ(q) at
the AL critical point as [17]:

τ typq = −d log Υq

dL
,

from which the spectrum of fractal dimensions f(α) can
be determined applying the Legendre transformation,
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FIG. 17: Re-scaled singularity spectrum f(α)/d as a function
of α/d at the AL critical point in dimensions from 3 to 5.
The dashed black straight line f(α) = α/2 for α ∈ [0, 2]
corresponds to the prediction of [56] in the d→∞ limit.

Eq. (21). Our numerical results in dimensions from 3
to 5 are plotted in fig. 17, showing that the (re-scaled)
singularity spectrum of critical wave-functions broadens
as d is increased. In particular, the lower edge α− of
the support of f(α) seems to approach zero as d is in-
creased and f(α) seems to approach (even though there
is still a substantial difference) the infinite dimensional
prediction—observed on tree-like lattices— which corre-
sponds to the strongest possible form of multifractality
and is represented by the straight line in fig. 17 [56].4

These observations support once again the extreme form
of AL criticality in the d → ∞ limit, where the critical
states correspond to an insulator, are described by Pois-
son statistics, and their multifractal spectrum takes its
strongest possible form.

4. The d→∞ limit and the Bethe Lattice

We have shown above that the d → ∞ limit is an
extremely good starting point to analyze AL in finite di-
mensions. In usual phase transition the mean-field theory
corresponding to the large d-limit is provided by the exact
solution on completely connected models. In the case of
AL instead completely connected lattices do not provide
interesting results and the mean-field theory is instead
believed to correspond to AL on Bethe lattices [26]. Our
results confirm this expectation: the critical values of all
observables tend for d → ∞ to the ones of the localized
phase, rc = rP , qtypc = 0, βc = 0, i.e. to the same critical
behavior obtained for AL on Bethe lattices and tree-like

4 We were not able to compute the singularity spectrum in 6 di-
mensions due to practical limitations in the system sizes.
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structures [28, 29].

VI. CONCLUSION, PHYSICAL PICTURE AND
PERSPECTIVES

In the last part of this section, we discuss the impli-
cations of our results on the qualitative and quantitative
understanding of AL on finite dimensional lattices.

• Anderson localization and rarefied conduct-
ing paths. The fact that the d → ∞ limit pro-
vides a very good starting point to quantitatively
describe AL suggests that the solution of AL on
Bethe lattices is a good starting point to get a
physical picture of AL on finite dimensional lat-
tices. Recently the delocalized phase of the An-
derson model on tree-like structures (and on re-
lated d → ∞ random matrix models with long-
range hopping [27]) has attracted a lot of atten-
tion [30–35]. Although it is still debated whether
before the AL transition there is a non-ergodic de-
localised phase or very strong cross-over regime, it
is clear that localisation is related to the rarefaction
of paths over which electrons can travel, as antici-
pated in [39, 44]. Some authors advocates that this
leads to a bona-fide multi-fractal intermediate non-
ergodic but delocalised phase [31, 32, 39], others
that this picture is valid below a certain scale that
diverges (extremely fast) approaching the transi-
tion [33–35]. Although we do not see numerical ev-
idences of an intermediate non-ergodic delocalised
phase for large d, the fact that in the scaling vari-
ables that govern finite size scaling the linear size of
the system, L = N1/d, enters raised to powers that
remain finite for d→∞ suggests that (1) quasi one-
dimensional paths are indeed the relevants geomet-
rical objects for AL in high dimensions, (2) scaling
becomes logarithmic in N for d → ∞ as found for
tree-like structures [27] and Bethe lattices [33, 35].
In summary the idea of non-ergodic transport along
rarified paths is relevant even in finite dimension
even though possibly only on finite but very large
length-scales (on larger ones transport would be in-
stead described by standard diffusion).

• Expansion around the Bethe lattice. In usual
phase transitions two different expansions have
been developed in order to describe the critical
properties: one around the upper and another
around the lower critical dimension. Our results
clearly indicate that the former is a much better
starting point for AL, see for example the com-
parison for the value of ν in fig. 14. This is cer-
tainly a direction for future research and suggests
that a 1/d expansion of the NLσM (in its repli-
cated or SUSY formulation) could provide an ex-
cellent and controlled framework for AL. It would
also be interesting to apply the SDRG to higher di-
mensions (preliminary results in this direction are
already available [42] up to d = 10) as well as to
implement alternative real-space RG schemes (such
as the “resonance RG” method [57] and the Weg-
ner flow equation approach [58]) introduced for the
family of the power-law random banded matrix en-
sembles, which have been shown to be appropri-
ate RG schemes in the strong disorder limit. It
seems that the only unique framework which would
be capable to span the whole range from the in-
finitely weak disorder regime (in d = 2 + ε) to the
infinitely strong disorder limit (for d → ∞) is a
non-perturbative RG approach [59]. Developping
such an RG method for AL is certainly worth fu-
ture studies.

In summary, our work sheds new lights on the critical
properties of AL, it characterizes the infinite dimensional
limit and stresses its relevance to describe AL even in
three dimensions. Our results are also relevant for cases
in which localization takes place on infinite dimensional
spaces, such as for Many Body Localized systems.
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P. Szriftgiser, and J. C. Garreau, Phys. Rev. Lett. 101,
255702 (2008).

[5] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, B.
A. van Tiggelen, Nat. Phys. 4, 945 (2008).

[6] E. Abrahams, P. W. Anderson, D. Licciardello, and T.
V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).

[7] N. F. Mott and W. D. Twose, Adv. Phys. 10, 107 (1961).
[8] L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitskii, JETP

Lett. 30, 228 (1979).
[9] F. J. Wegner, Z. Phys. B 35, 207 (1979); L. Schaefer

and F. J. Wegner, Z. Phys. B: Condens. Matter 38, 113
(1980); K. B. Efetov, Adv. Phys. 32, 53 (1983);

[10] S. Hikami, Prog. Theor. Phys. Suppl. 107, 213 (1992).
[11] M. S. Foster, S. Ryu, and A. W. W. Ludwig, Phys. Rev.

B 80, 075101 (2009).



16

[12] For a review see B. Kramer and A. MacKinnon, Rep.
Prog. Phys. 56, 1469 (1993). See also P. Markoš, Acta
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