
HAL Id: cea-01543664
https://cea.hal.science/cea-01543664v2

Submitted on 7 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermalization of overpopulated systems in the 2PI
formalism

Shoichiro Tsutsui, Jean-Paul Blaizot, Yoshitaka Hatta

To cite this version:
Shoichiro Tsutsui, Jean-Paul Blaizot, Yoshitaka Hatta. Thermalization of overpopulated systems in
the 2PI formalism. Physical Review D, 2017, 96, pp.036004. �10.1103/PhysRevD.96.036004�. �cea-
01543664v2�

https://cea.hal.science/cea-01543664v2
https://hal.archives-ouvertes.fr


Thermalization of overpopulated systems in the 2PI formalism

Shoichiro Tsutsui,1 Jean-Paul Blaizot,2,3 and Yoshitaka Hatta3
1Department of physics, Kyoto University, Kyoto 606-8502, Japan

2Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette, France
3Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

(Received 22 May 2017; published 3 August 2017)

Based on the two-particle irreducible (2PI) formalism to next-to-leading order in the 1=N expansion, we
study the thermalization of overpopulated systems in scalarOðNÞ theories with moderate coupling. We focus
in particular on the growth of soft modes, and examine whether this can lead to the formation of a transient
Bose-Einstein condensate (BEC) when the initial occupancy is high enough. For the value of the coupling
constant used in our simulations, we find that while the system rapidly approaches the condensation
threshold, the formation of a BEC is eventually hindered by particle number changing processes.
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I. INTRODUCTION

Understanding the thermalization process of relativistic
heavy-ion collisions remains an outstanding issue in the
physics of quark-gluon plasmas (see a recent review [1] and
references therein). It is commonly assumed that the initial
state of the matter formed after a collision is dominated
by gluons whose typical momentum is the saturation scale
Qs, and whose occupation number f is inversely propor-
tional to the strong coupling constant αs. In high energy
collisions, such as those at the Large Hadron Collider
(LHC), the occupation number may become large,
f ∼ 1=αsðQsÞ ≫ 1, leading to an overpopulated initial
state. By this we mean that, given their total energy, the
number of the initial gluons, if conserved during the
evolution, is too large to be accommodated in the final
state in a thermal distribution.
In general, when overpopulated systems are driven

towards thermal equilibrium by elastic processes which
conserve particle number, the particles in the final state that
cannot be accommodated in the Bose-Einstein distribution
populate a Bose-Einstein condensate (BEC). The formation
of such a condensate has been much studied in various
contexts, mainly within kinetic theory (see [2–8], and
references therein for some representative works). Most
of these works only consider elastic 2 → 2 scattering in
the Boltzmann equation. Inelastic scattering may qualita-
tively change the picture [9,10], allowing only for the
formation of a transient BEC [9]. A recent analysis of the
specific effect of 2 → 3 processes, dominated in QCD by
collinear splittings, suggests a complete hindrance of BEC
formation [11].
The validity of kinetic theory to discuss this kind of

phenomenon may be questioned. It is known in particular
[12], from the way it can be derived from the field equations
of motion, that the Boltzmann equation is only an approxi-
mate description of the full nonequilibrium evolution, that
is best suited for the dilute regime fðpÞ ≪ 1=λwhere λ≪ 1
is the coupling constant. Strictly speaking then, the soft

momentum regime fðp ≈ 0Þ ≫ 1=λ, which is important for
the discussion of the BEC formation, is outside the region
of applicability of the Boltzmann equation. While the range
of applicability of kinetic equations may be wider than
what is suggested by a specific derivation from microscopic
physics, it is interesting to explore the dynamics of BEC
formation using more complete formalisms. This has been
done for instance within classical statistical field theory in
[13] (see also [14,15]), where the formation of a transient
BEC has been observed, as well as its subsequent decay
due to the inelastic processes which are naturally included
in this formalism. However, the classical statistical field
theory is sensitive to the ultraviolet cutoff, unless the
coupling constant is chosen extremely small, λ ≪ 1,
corresponding to very large occupations f ≫ 1 [6]. If
one has in mind getting insight into the situation in
QCD, where the coupling αs ∼ 0.3–0.4 is not particularly
weak, we should explore other regimes.
In this paper, we investigate the problem of the BEC

formation in the two-particle irreducible (2PI) formalism in
the scalar OðNÞ theory to next-to-leading order in the 1=N
expansion [16–18]. This framework allows us to explore
the entire momentum regime, from the deep infrared where
fðpÞ ≫ 1=λ all the way to the ultraviolet regime where f
exhibits the exponential Boltzmann tail. Moreover, the
calculations are not limited to weak coupling, and allow for
the study of arbitrary occupations. Unfortunately, in prac-
tice, these calculations involve heavy numerics. As a result
simulations have been sparse in the literature, often done in
1þ 1 or 1þ 2 dimensions [16,17,19,20], and in 1þ 3
dimensions on small lattices [21,22]. Very recently, a large
volume simulation in 1þ 3 dimensions has appeared [23],
but the focus there was on the so-called non-thermal fixed
points and the self-similar behaviours which emerge far-
from-equilibrium at small coupling. Instead, we shall work
at moderate coupling, so that the system eventually
approaches equilibrium in a finite (computer) time, and
we focus on whether and how a BEC is formed as we dial
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the initial occupancy. We shall indeed find that the system
approaches condensation for large enough initial occupan-
cies. However, our choice of a relatively large coupling
enhances the effect of inelastic processes which eventually
hinder the condensation.

II. TIME EVOLUTION EQUATION

The 2PI formalism for nonequilibrium dynamics that we
shall use in this paper is well developed and extensively
discussed in the literature (for a pedagogical introduction
see e.g. [12]). In this section, we just summarize the main
equations that we solve. We consider a scalar field theory
with OðNÞ symmetry in a nonexpanding geometry. The
action is given by

S½φ� ¼
Z

d4x

�
1

2
∂μφa∂μφa −

1

2
m2φaφa −

λ

4!N
ðφaφaÞ2

�
;

ð1Þ
where a ¼ 1;…; N. In the 2PI formalism, the basic
building blocks of the nonequilibrium evolution equations
are the statistical function

Fabðx; yÞ ¼ hfφaðxÞ;φbðyÞgi; ð2Þ
and the spectral function

ρabðx; yÞ ¼ ih½φaðxÞ;φbðyÞ�i; ð3Þ
where f; g and ½; � denote respectively an anticommutator
and a commutator. We assume unbroken OðNÞ symmetry
so that the one-point function hφaðxÞi vanishes at all times,
and the 2-point functions take the forms Fab ¼ δabF,
ρab ¼ δabρ. We also assume that the system is spatially
homogeneous and isotropic, and perform a Fourier trans-
formation to momentum space

Fðx; yÞ ¼
Z

d3p
ð2πÞ3 Fðt; t

0; pÞeip⃗·ðx⃗−y⃗Þ:

ρðx; yÞ ¼
Z

d3p
ð2πÞ3 ρðt; t

0; pÞeip⃗·ðx⃗−y⃗Þ; ð4Þ

where Fðt; t0; pÞ depends only on the modulus p ¼ jp⃗j of
the momentum, and similarly for ρðt; t0; pÞ. The evolution
equations then read

ð∂2
t þ p2 þM2ðtÞÞFðt; t0; pÞ

¼ −
Z

t

t0

dt00Σρðt; t00; pÞFðt00; t0; pÞ

þ
Z

t0

t0

dt00ΣFðt; t00; pÞρðt00; t0; pÞ; ð5Þ

ð∂2
t þ p2 þM2ðtÞÞρðt; t0; pÞ

¼ −
Z

t

t0
dt00Σρðt; t00; pÞρðt00; t0; pÞ; ð6Þ

where M is the effective mass (the local part of the self-
energy)

M2ðtÞ ¼ m2 þ λðN þ 2Þ
6N

Z
d3p
ð2πÞ3 Fðt; t; pÞ: ð7Þ

The right-hand sides of Eqs. (5) and (6) contain memory
effect from the initial time t0 ¼ 0 to the current time t
and t0.
The self-energies ΣF and Σρ are given by the sum of 2PI

diagrams starting from three loops. We shall however go
beyond the skeleton loop expansion, and use here the large-
N approximation, and resum the “ring diagrams” which
appear at the next-to-leading order in the 1=N expansion
[18]. In this approximation, the self energies are evaluated as

ΣFðt; t0; pÞ ¼ −
λ

3N

Z
d3k
ð2πÞ3

�
Fðt; t0; jp⃗ − k⃗jÞIFðt; t0; kÞ −

1

4
ρðt; t0; jp⃗ − k⃗jÞIρðt; t0; kÞ

�
; ð8Þ

Σρðt; t0; pÞ ¼ −
λ

3N

Z
d3k
ð2πÞ3 ðFðt; t

0; jp⃗ − k⃗jÞIρðt; t0; kÞ þ ρðt; t0; jp⃗ − k⃗jÞIFðt; t0; kÞÞ; ð9Þ

where

IFðt; t0; kÞ ¼
λ

6

Z
d3q
ð2πÞ3

�
Fðt; t0; jk⃗ − q⃗jÞFðt; t0; qÞ − 1

4
ρðt; t0; jk⃗ − q⃗jÞρðt; t0; qÞ

−
Z

t

t0

dt00Iρðt; t00; kÞ
�
Fðt00; t0; jk⃗ − q⃗jÞFðt00; t0; qÞ − 1

4
ρðt00; t0; jk⃗ − q⃗jÞρðt00; t0; qÞ

�

þ 2

Z
t0

t0

dt00IFðt; t00; kÞρðt00; t0; jk⃗ − q⃗jÞFðt00; t0; qÞ
�
; ð10Þ

Iρðt; t0; kÞ ¼
λ

3

Z
d3q
ð2πÞ3

�
ρðt; t0; jk⃗ − q⃗jÞFðt; t0; qÞ −

Z
t

t0
dt00Iρðt; t00; kÞρðt00; t0; jk⃗ − q⃗jÞFðt00; t0; qÞ

�
: ð11Þ
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The diagrams resummed in this expansion scheme are
shown in Fig. 1.
In thermal equilibrium, the statistical and spectral func-

tions take the form:

Feqðt; t0; pÞ ¼
1

ωp

�
1

2
þ fBEðωpÞ

�
cosωpðt − t0Þ; ð12Þ

ρeqðt; t0; pÞ ¼
1

ωp
sinωpðt − t0Þ; ð13Þ

where ωp is the particle energy and fBEðωpÞ¼1=ðeβωp−1Þ
is the Bose-Einstein distribution. Since the particle number
is not conserved, the chemical potential μ vanishes in
equilibrium. The memory integrals in Eqs. (5) and (6)
vanish for these distributions in the long time limit
t; t0 → ∞.
When the system is not in equilibrium, but the quasi-

particle picture is valid (which occurs on short time scales),
one may define the quasiparticle distribution and the
quasiparticle energy from the following equations [12]

fðt; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðt; t0; pÞ∂t∂t0Fðt; t0; pÞ − ∂tFðt; t0; pÞ∂t0Fðt; t0; pÞ

p
jt¼t0 −

1

2
; ð14Þ

ωpðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂t∂t0Fðt; t0; pÞ
Fðt; t0; pÞ

s ����
t¼t0

; mqpðtÞ ¼ ωp¼0ðtÞ; ð15Þ

where mqp is the quasiparticle mass.
Motivated by the form of the equilibrium 2-point

function (12), we choose the following initial conditions
for Eqs. (5) and (6)

Fðt; t0; pÞjt¼t0¼0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
p �

1

2
þ finðpÞ

�
; ð16Þ

∂tFðt; t0; pÞjt¼t0¼0 ¼ 0; ð17Þ

∂t∂t0Fðt; t0; pÞjt¼t0¼0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q �
1

2
þ finðpÞ

�
; ð18Þ

where

finðpÞ ¼ AθðQ − pÞ: ð19Þ
The initial conditions for the spectral function are
automatically fixed by the equal-time commutation

relation as ρðt; t0Þjt¼t0¼0 ¼ 0, ∂tρðt; t0Þjt¼t0¼0 ¼ 1 and
∂t∂t0ρðt; t0Þjt¼t0¼0 ¼ 0. The momentum Q is the analog
of the “saturation momentum” in the context of heavy-ion
collisions. The parameter A characterizes the initial occu-
pancy. We shall be interested in how the nature of the
thermalization process changes as we dial A to larger and
larger values. A general expectation is that for large enough
values of A, A > Ac, a Bose-Einstein condensate is formed.
A crude estimate of the critical value Acrit is as follows [9].
Assuming m ¼ 0 for simplicity, the initial number density
and the energy density are

nin ¼
AQ3

6π2
; εin ¼

AQ4

8π2
; ð20Þ

per degree of freedom. If the system eventually thermalizes
at the temperature T and vanishing chemical potential, we
have, for a noninteracting theory,

FIG. 1. The ring diagrams resummed in the loop and 1=N expansions. The first diagram (tadpole) corresponds to the mass shift (7).
The “3-loop approximation”which we shall discuss later on includes only the first two diagrams (a) and (b) in this figure. The sum of the
NLO diagrams can be partially understood as a correction to the 3-loop diagram where one of the two vertices is replaced by a screened
interaction that corresponds to the sum of the bubble diagrams.
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neq ¼
ζð3Þ
π2

T3; εeq ¼
π2

30
T4: ð21Þ

Condensation occurs if the dimensionless ratio nin=ε
3=4
in

exceeds the equilibrium value neq=ε
3=4
eq . This leads to the

condition A ≥ Ac ≈ 0.15. It is straightforward to generalize
this argument to the case of noninteracting massive
particles (see also [8]). In Fig. 2, we plot the function
AcðmÞ which we obtained numerically. Note that this
estimate is only an approximation in the case of the fully
interacting theory: it ignores indeed the effects of the
interactions, aside from that of giving a mass to the
excitations.
It is interesting to study whether and how the expectation

of BEC formation is borne out in our field theoretic system
where the coupling is not too small and the particle number
is not conserved. To quantify the latter effect, we follow the
evolution in time of the number density nðtÞ, and the time
derivative of its integral within a sphere of radius p, Jðt; pÞ:

nðtÞ ¼
Z

d3p
ð2πÞ3 fðt; pÞ ¼

1

2π2

Z
∞

0

dpp2fðt; pÞ; ð22Þ

Jðt; pÞ≡ d
dt

Z
p

0

d3p0fðt; p0Þ: ð23Þ

The potential delta-function contribution at p ¼ 0 is kept in
nðtÞ when we discretize the momentum integral to a sum
over different p-bins.1 If the particle number is conserved,
and if no particle accumulates in the state p ¼ 0, J can be
interpreted (to within a factor 4πp2) as the flux of particles
in momentum space through the sphere of radius p
(counted positively if the particles are towards p ¼ 0).
In the present situation, because of the existence of inelastic
processes that do not conserve particle number, J also
includes, in addition to the flux just mentioned, contributions

from particle creation and annihilation inside the sphere of
radius p.
We also control the time evolution of the total energy

density, given by

εðtÞ ¼ 1

2

Z
d3p
ð2πÞ3 ½∂t∂t0 þ p2 þm2�Fðt; t0; pÞjt¼t0

þ λðN þ 2Þ
24N

�Z
d3p
ð2πÞ3 Fðt; t; pÞ

�
2

þ λ

12N

Z
t

t0
dt0
Z
d3z

�
−2IFðt; t0;jx⃗ − z⃗jÞFρðt; t0;jx⃗ − z⃗jÞ

− Iρðt; t0; jx⃗ − z⃗jÞ
�
F2 −

ρ2

4

�
ðt; t0; jx⃗ − z⃗jÞ

�
: ð24Þ

In contrast to nðtÞ, εðtÞ should be strictly conserved, and
this serves as a check of our numerical simulations.

III. NUMERICAL RESULTS

In this section, we present the numerical solutions of
Eqs. (5) and (6). We fix N ¼ 4 and λ ¼ 10 throughout. We
choose a rather large value of the coupling constant,
λ ¼ 10, in order to achieve thermalization on a relatively
short (computing) time [20]. The initial occupancy is
chosen uncorrelated to the value of the coupling constant.
We consider three different values of A: A ¼ 0.1, A ¼ 1
and A ¼ 5. The results depend on two dimensionful
quantities: the bare mass m and the parameter Q in the
initial distribution function. As we shall explain shortly, we
use two different values of the ratio of these parameters,
m=Q ¼ 1=5, or m=Q ¼ 1=2, depending on the value of A.
The calculations are done on a regular lattice in

momentum space. We call a the lattice spacing and Λ
the maximum value of the momentum on the grid. We
choose the lattice spacing as ap ¼ 0.2m, and the time step
as at ¼ 0.01=m. In order to ensure energy conservation, the
momentum cutoff Λ must be at least several times larger
than Q, and this requirement becomes more and more
severe as A is increased (the final, equilibrium, distribution
extends to larger momenta as A grows). We use Λ ¼ 2Q ¼
10m (50 grid points) for (a) A ¼ 0.1 and (b) A ¼ 1, and
Λ ¼ 7.5Q ¼ 15m (75 grid points) for (c) A ¼ 5. Note that,
according to Fig. 2, the case A ¼ 0.1 is “underpopulated”
and the cases A ¼ 1 and A ¼ 5 are “overpopulated.” The
A ¼ 5 case is numerically more demanding; in order to
make the ratio Λ=Q large, we increased the number of grid
points and chose a larger ratio m=Q ¼ 1=2.
For the calculation of the memory integrals in Eqs. (5)

and (6), we exploit the fact that the self-energies ΣFðt; t00Þ
and Σρðt; t00Þ decay rapidly as t − t00 increases, and we
introduce a cutoff tc on the t00 integration:

R
t
t0
dt00… →R

t
t−tc dt

00… with tc ¼ 50=Q. We have checked that the
results are unchanged even if we use the smaller value

 0

 1

 2

 3

 4

 5

 0  0.1  0.2  0.3  0.4  0.5  0.6

overpopulated

underpopulated
(a)

(b)

(c)

A
c

m/Q

FIG. 2. The critical initial occupancy Ac as a function of the
mass. Three points (a)-(c) denote the parameter sets that we
employ in our numerical simulations.

1We do not introduce a specific field to describe the potential
condensate, as done e.g in Ref. [13], Eq. (4).
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tc ¼ 25=Q. The convolution integrals in the collision term
is somewhat simplified by using the formula

Z
d3k
ð2πÞ3 Aðjp⃗ − k⃗jÞBðkÞ

¼ 1

32π2p

Z
∞

p
du

Z
p

−p
dvðu2 − v2ÞA

�
u − v
2

�
B

�
uþ v
2

�
:

ð25Þ

Finally, we perform a mass renormalization in order to
eliminate the most severe ultraviolet divergences. These
appear in the p-integral in Eq. (7), which is quadratically
divergent due to the vacuum contribution to F. At each time
step, we perform a simple subtraction and use the renor-
malized mass

M2
renðtÞ ¼ m2 þ λðN þ 2Þ

6N

Z
d3p
ð2πÞ3 ðFðt; t; pÞ − Fð0; 0; pÞÞ:

ð26Þ

The same mass renormalization is applied to the total
energy (24). Thanks to this and our choice of the cutoff Λ,
the total energy is conserved to better than 1% accuracy in
all the results to be presented below. There exist also
logarithmic divergences that could be eliminated by a

coupling constant renormalization. However these are
milder and in practice do not affect the results [21].
Finally, we observe that large numbers are generated by a

combination of the coupling constant and various factors of
π emerging from angular integrations. As a very rough
estimate, after rescaling all dimensionful quantities by
appropriate factors of Q, one extracts, in the right hand
side of Eqs. (5) and (6) an overall factor λ2Q2=ð72Nπ4Þ
or λ2Q2=ð1152Nπ6Þ depending on how one estimates the
angular integrals2 We could absorb these factors in a
“natural” time scale τ, with t ≈ 16τ or t ≈ 210τ (in units
Q−1). These numbers are in fact underestimates, as we shall
see, but they indicate that we should expect the dynamics to
develop over time units that are typically in the range
100 Q−1 or even larger.

A. A= 0.1: Underpopulated case

We start our discussion with the underpopulated case,
i.e., with A ¼ 0.1. The results are summarized in Fig. 3.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.5  1  1.5  2

A =  0.1

f(
t,

 p
)

p/Q

Qt = 2500
Qt = 5000

Qt = 10000
Qt = 15000

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0  3000  6000  9000  12000  15000

T
/Q

, 
µ

/Q

Qt

T
µ

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

 0  6000  12000  18000

f(
p
=

0
)

Qt

FIG. 3. Results for A ¼ 0.1. Upper left: time evolution of the particle distribution. The initial step function distribution is also shown.
Upper right: fit to the Bose-Einstein distribution with finite T (upper, red line) and μ (lower, blue line). The black dashed line in the
middle denotes the renormalized quasiparticle mass Eq. (15), which is nearly constant, mqpðtÞ≃Q=5. Bottom: the occupancy of the
zero mode p ¼ 0 as a function of time.

2In Eqs. (5) and (6), we estimate the magnitude of Σ as follow.
In Eq. (8) we isolate the factor λ=3N, and in Eq. (10) the factor
λ=6, while Fðt; t0; pÞ is taken to be of order Q−1. Collecting these
factors together with factors 1=ð2π2Þ, or 1=ð8π3Þ, coming from
the angular integrations, one obtains the estimates mentioned in
the text.
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The upper left figure shows the time evolution of the
distribution fðt; pÞ, and the right figure shows the temper-
ature TðtÞ and the chemical potential μðtÞ in units of Q
extracted by fitting fðt; pÞ to the Bose-Einstein distribution
in the soft, low-p (p≲ 0.5Q), region. We find that such a fit
is possible already at early times. The smooth evolution of
the distribution function, as well as the behaviors of the
temperature and chemical potential as a function of time,
clearly show the trend towards thermalization. However, it
takes a very long time for the system to fully thermalize.
This can be seen by noticing that the effective chemical
potential μ is always negative and eventually approaches,
very slowly, the equilibrium value μ ¼ 0 from below. Also,
as shown in the lower figure, the zero mode p ¼ 0
occupancy grows monotonously and has not reached it
equilibrium value at the end of the simulation. The growth
of soft modes is mostly due to elastic scattering. In fact the
number density (22) is approximately conserved: it only
changes by less than 2% during the time span of the
simulation.

B. A= 1: Overpopulated case

Next we turn to the “overpopulated” case A ¼ 1, with the
main results displayed in Fig. 4. One sees both quantitative
and qualitative differences as compared to the A ¼ 0.1

case. The lower left figure shows that the zero mode
occupancy fðp ¼ 0Þ rises sharply at early times, reaches a
maximum and then decreases slowly. The particle number
is approximately conserved during the growth of the soft
modes, and it starts to decrease appreciably at a later time
as shown in the lower right figure. By the end of the
simulation, the system has lost about 20% of particles.
Another visualization of the growth of soft modes is given
in the right figure of Fig. 5 where we plot the particle flux.
Before fð0Þ reaches a maximum, the flux in the soft region
is positive, meaning that particles are flowing into the soft
momentum region. After the peak, the flux turns negative
everywhere.
As already pointed out, the growth of soft modes is

primarily due to elastic processes, which conserve particle
number. Eventually inelastic processes, presumably 2 to 4
processes,3 take over and start to eliminate the particles
in excess in order to reach the equilibrium distribution.
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FIG. 4. Results for A ¼ 1. Upper left: the time evolution of the particle momentum distribution. Upper right: the parameters μ (lower
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3We have no way at this point to isolate precisely which
inelastic processes dominate. In leading order both 2 → 4 and
1 → 3 (and their reverse) can contribute. However the 1 → 3
process can only occur off shell, which is made possible in a heat
bath by the thermal width acquired by the quasiparticles. In
contrast 2 → 4 processes can occur on shell, and for this reason
we believe these to be the dominant ones.
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The existence of this “delay” in the action of the inelastic
processes is also observed in calculations based on kinetic
equations [11]. A further perspective on this feature is
provided by the comparison of the full 1=N NLO calcu-
lation with a 3-loop 2PI calculation where we keep only the
first line of (10) and (11). The corresponding occupancy
of the zero momentum mode is shown in Fig. 4, lower
left panel. One sees that the inelastic collisions suppress the
growth of the low momentum modes sooner than in the
full NLO calculation. This we interpret as a result of
the screening of the interaction in the full calculation [24],
making inelastic processes less effective.

In the upper right figure, we determined the set ðT; μÞ
from the soft (p≲ 0.5Q) and hard (p≳ 1.0Q) momentum
regions separately. The two determinations converge at late
times, indicating that the soft and hard modes approach
thermalization. However, it takes an extremely long time
(much longer than the simulation time) for the system to
reach the true equilibrium state where μsoft ¼ μhard ¼ 0.
What is interesting is that, unlike what happens in the A ¼
0.1 case, where the chemical potential remains negative,
here μsoft quickly turns positive and approaches very close
to (but never exceeds) the quasiparticle mass mqp defined
by Eq. (15). This is more clearly shown in the left plot of
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Fig. 5 (magnified version of the upper-right figure in Fig. 4)
where μsoft and mqp differ only by less than 2% when they
are the closest, which roughly occurs at the time when
fðp ¼ 0Þ peaks out. This is reminiscent of the dynamical
BEC formation in number-conserving theories [2,5,6,8],
and in fact, the particle number is approximately conserved
up to this point. The spectrum in the infrared is well
approximated by the Bose-Einstein, or Rayleigh-Jeans
distribution

fðt; pÞ ≈ TðtÞ
ωp − μðtÞ ; ð27Þ

but does not exhibit any obvious scaling behavior [2,25].
Moreover, the subsequent behavior is very different from
what it would be if the threshold for BEC was crossed.
Since μ never becomes equal to the quasiparticle mass,
fðp ¼ 0Þ does not diverge. Instead, it starts to decrease,
and at around the same time, the total particle number nðtÞ
also starts to decrease as a result of inelastic processes, as
already discussed. Such a “decay of a condensate” has also
been observed in [13] where fðp ¼ 0Þ exhibits a plateau
behavior before starting to decrease. The reason we do not
see such a plateau here is presumably due to the strength of
the coupling which makes the recombination process more
efficient.

C. A= 5: Strongly overpopulated case

The results for A ¼ 5, shown in Figs. 6 and 7, do not
differ much, qualitatively, from those of the previous case
A ¼ 1. Most comments made for this case could be
repeated here. The zero mode occupancy fðp ¼ 0Þ rises
more sharply, and faster, and it peaks out earlier than in the
A ¼ 1 case. At around the peak, μsoft makes its closest
approach to mqp. After that, both fðp ¼ 0Þ and the total

particle number start to decrease, the latter dropping by
about 40% by the end of the simulation. Given that the
value A ¼ 5 is safely labeled “overpopulated,” these results
corroborate our discussion above, that the formation of a
BEC is hindered by inelastic processes. It is interesting to
note that the competition between elastic and inelastic
processes forces the system to spend a fair amount of time
in the vicinity of the onset of condensation, a situation
somewhat reminiscent of that of nonthermal fixed points.

IV. DISCUSSIONS AND CONCLUSIONS

Due to technical reasons, it is difficult to go beyond A ¼
5 in our present numerical setup. Since our lattice size is
limited, already when A ¼ 5 we had to employ a Q value
smaller than in the A ¼ 1 case in order to make the ratio
Λ=Q large and ensure cutoff-independence. The case
A ¼ 10, λ ¼ 10 has been studied in the same formalism
in [23], and the evolution of fðt; pÞ reported there is
qualitatively similar to the A ¼ 1 and A ¼ 5 cases above.4

Actually, in Ref. [23] the authors considered the region
1000 ≥ A ≥ 10 with fixed Aλ ¼ 100. When A ≫ 10,
which corresponds to the weak coupling regime, the
spectrum can no longer be fitted by the Bose-Einstein or
Rayleigh-Jeans distribution. This is a far-from-equilibrium
regime where nonthermal fixed points appear and fðt; pÞ
exhibits self-similar scaling behaviors. Our study is com-
plementary to this, being more focused on the regime where
one can discuss the formation of a BEC on top of the Bose-
Einstein distribution.
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FIG. 7. Results for A ¼ 5. Left: the effective chemical potential in the soft region, and the quasiparticle massmqp, as a function of time.
Right: particle flux Jðt; pÞ, Eq. (23), before ðQt ¼ 500Þ and after (Qt ¼ 1000, 1500) the peak in fðp ¼ 0Þ (see Fig. 6). The oscillations
at large p at early times is because J ∼ ∂tfðt; pÞ ∼ ∂tðFωpðtÞÞ, and the dispersion relation ωpðtÞ oscillates at large p at such early times.

4Reference [23] used massless fields m ¼ 0 and observed that
fðt; pÞ approaches the Bose-Einstein distribution with μ ¼ 0. In
our simulations, m is kept finite, and this allows us to study in
detail the transient regime where μ approaches m before relaxing
to the true equilibrium value μ ¼ 0.
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In the previous studies of the BEC formation based on
the Boltzmann equation, special care has been taken in
order to treat the singular behavior near the condensation
onset. For instance, Ref. [2] used a much larger lattice with
logarithmic spacings in p to allow soft particles to decay
into even softer ones, instead of accumulating them in a
single p ¼ 0 mode as in our simulation. Besides, usually
one splits the Boltzmann equation into two equations, one
for the zero mode and the other for nonzero modes. It is not
clear to us whether such more elaborate treatments can
qualitatively change the overall picture that emerges from
our calculations. Our result suggests, at least for the range
of parameters that we have considered, that the formation
of a BEC is hindered by the particle number changing
processes. Amusingly though, condensation is approached,
and the competition between elastic and inelastic processes
forces the system to spend a relatively long time in the
vicinity of the condensation onset, an effect somewhat
reminiscent of that of nonthermal fixed points observed for
other ranges of parameters.
It would be interesting to extend the present analysis

to longitudinally expanding systems as in heavy-ion

collisions. The BEC formation in the presence of longi-
tudinal expansion has been studied in [25,26] in different
approaches. The NLO-2PI simulation in the longitudinally
expanding geometry was performed in [20] but in 1þ 2
dimensions (see also [22]). It should be straightforward to
generalize the work of [20] to 1þ 3 dimensions.
Finally, applications of the 2PI formalism to nonequili-

brium phenomena in QCD have been so far quite limited,
and there are only a few attempts in the literature which
however take into account only low-order 2PI diagrams
[27,28]. Unfortunately, a systematic all-order resummation
scheme of 2PI diagrams (like the 1=N expansion in the
scalar theory) is lacking in gauge theory.
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